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Visualization of Graphs

Johannes Zink
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Lecture 3:
Straight-Line Drawings of Planar Graphs I:
Canonical Ordering and the Shift Method
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Planar Graphs
G

G is planar:
it can be drawn in such a way that
no two edges intersect each other.

planar embedding:
clockwise orientation of adjacent
vertices around each vertex

1

2 3

4

5

1→ (2, 3, 5)
2→ (3, 1, 4)
3→ (4, 1, 2)
4→ (5, 3, 2)
5→ (1, 4)

1

2

3

4

5

1→ (2, 5, 3)
2→ (3, 4, 1)
3→ (4, 2, 1)
4→ (5, 2, 3)
5→ (1, 4)

A planar graph can have many
planar embeddings.

2

3

A planar embedding can have many
planar drawings!

faces: Connected region of the plane
bounded by edges

5 4

1

outer face

inner faces

Euler’s polyhedra formula.
#faces − #edges + #vertices = #conn.comp. + 1
f − m + n = c + 1

Proof. By induction on m:
m = 0⇒ f = 1 and c = n

1− 0 + n = n+ 1X
m ≥ 1⇒ add some edge e ⇒ m→ m+ 1

e ⇒ e ⇒ f → f + 1

⇒

c→ c− 1 X
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Properties of Planar Graphs

Theorem. G simple planar graph with n ≥ 3 vtc.
1. m ≤ 3n− 6 2. f ≤ 2n− 4
3. There is a vertex of degree at most 5.

Euler’s polyhedra formula.
#faces − #edges + #vertices = #conn.comp. + 1
f − m + n = c + 1

Proof. 1.
1

2

3

4

5

Every edge incident to ≤ 2 faces
Every face incident to ≥ 3 edges
⇒ 3f ≤ 2m
⇒ 6 ≤ 3c+ 3 = 3f − 3m+ 3n ≤ 2m− 3m+ 3n= 3n−m
⇒ m ≤ 3n− 6

2. 3f ≤ 2m≤ 6n− 12

3.
∑

v∈V deg(v)

⇒ f ≤ 2n− 4

≤ 6n− 12

⇒ minv∈V deg(v) = 1
n

∑
v∈V deg(v) ≤ 6n−12

n < 6

= 2m

Handshaking lemma.∑
v∈V deg(v) = 2|E|

≤ average degree(G)

idea: count
edge–face
incidences
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Triangulations with planar embedding

1

2

3

4

5

A plane (inner) triangulation is a plane
graph where every (inner) face is a triangle.

A maximal planar graph is a planar
graph where adding any edge would
violate planarity.

Observation.
Any maximal plane graph is a plane
triangulation (and vice versa).

We focus on plane triangulations:

Lemma.
Every plane graph is subgraph of a plane
triangulation.Lemma.

Any plane triangulation is 3-connected
and thus has a unique planar embedding
(up to mirroring).
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Motivation

[Bennett, Ryall, Spaltzeholz and Gooch ’07]
The Aesthetics of Graph Visualization

� Why planar and straight-line?

Drawing conventions

� No crossings ⇒ planar

� No bends ⇒ straight-line

Drawing aesthetics to optimize

� Area
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Towards Straight-Line Drawings

K5 K3,3

Also computes a planar embedding in O(n) time.

Theorem. [Kuratowski 1930]
G planar ⇔
neither K5 nor K3,3 minor of G

The algorithms implied by these theorems produce drawings
whose area is not bounded by any polynomial in n.

Characterization

Recognition

Drawing

Let G be a graph with n vertices. There is an
O(n)-time algorithm to test whether G is planar.

Theorem. [Hopcroft & Tarjan 1974]

Every planar graph has a planar drawing
where the edges are straight-line segments.

Theorem. [Wagner 1936, Fáry 1948, Stein 1951]
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Planar Straight-Line Drawings

Idea.

� Find a canonical order (v1, . . . , vn) of the vertices of a triangulation.

� Start with single edge (v1, v2). Let this be G2.

� To obtain Gk+1, add vk+1 to Gk so that neighbors of vk+1 are on
the outer face of Gk.

� Neighbors of vk+1 in Gk have to form a path of length at least two.

vk+1

v1 v2

[De Fraysseix, Pach, Pollack ’90]Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).

[Schnyder ’90]

Gk
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Canonical Order – Definition

Definition.
Let G = (V,E) be a triangulated plane graph on n ≥ 3 vertices.
An ordering π = (v1, v2, . . . , vn) of V is called a canonical order
if the following conditions hold for each k ∈ {3, 4, . . . , n}:
(C1) Vertices {v1, . . . , vk} induce a biconnected internally

triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk, and the
neighbors of vk+1 form a path on the boundary of Gk.

vk+1

Gk

v1 v2
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Canonical Order – Example

G16

v1 v2

v16

(C1) Vertices {v1, . . . , vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and the neighbors of vk+1 form a path on the
boundary of Gk.
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Canonical Order – Example

v15

G15

v1 v2

v16

(C1) Vertices {v1, . . . , vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and the neighbors of vk+1 form a path on the
boundary of Gk.
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Canonical Order – Example

v14

G14

v1 v2

v16

v15

(C1) Vertices {v1, . . . , vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and the neighbors of vk+1 form a path on the
boundary of Gk.
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Canonical Order – Example

G13

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . , vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and the neighbors of vk+1 form a path on the
boundary of Gk.
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Canonical Order – Example

G12

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . , vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and the neighbors of vk+1 form a path on the
boundary of Gk.
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Canonical Order – Example

chord:

G13

v1 v2

v16

v15

v13

v14

edge joining two
non-adjacent
vertices in a cycle

(C1) Vertices {v1, . . . , vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and the neighbors of vk+1 form a path on the
boundary of Gk.
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Canonical Order – Example

G13

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . , vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and the neighbors of vk+1 form a path on the
boundary of Gk.
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Canonical Order – Example

G12

v1 v2

v16

v15

v13

v14

(C1) Vertices {v1, . . . , vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and the neighbors of vk+1 form a path on the
boundary of Gk.

v12
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Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . , vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and the neighbors of vk+1 form a path on the
boundary of Gk.

G11

v16

v15

v13

v14

v11

v12
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Canonical Order – Example

v1 v2

(C1) Vertices {v1, . . . , vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and the neighbors of vk+1 form a path on the
boundary of Gk.

G3

v16

v15

v13

v14

v11

v12

v10

v9

v8 v7

v6
v5

v4
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Canonical Order – Example

v3
v7

v8

v9

v12

v13
v10

v11

v5
v4

v6

v1 v2

v16

v15

v14

(C1) Vertices {v1, . . . , vk} induce a biconnected internally
triangulated graph; call it Gk.

(C2) Edge (v1, v2) belongs to the outer face of Gk.

(C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and the neighbors of vk+1 form a path on the
boundary of Gk.
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Canonical Order – Existence

Induction base (k = n): Let Gn = G, and let v1, v2, vn be the
vertices of the outer face of Gn. Conditions (C1)–(C3) hold.

Induction hypothesis: Vertices vn−1, . . . , vk+1 have been chosen
such that conditions (C1)–(C3) hold for all i ∈ {k + 1, . . . , n}.

We need to show:
1. vk not incident to

chord is sufficient
2. Such vk exists

Induction step: Consider Gk. We search for vk.

(C1) Gk biconnected and internally
triangulated

(C2) (v1, v2) on outer face of Gk

(C3) k < n⇒ vk+1 in outer face of Gk,
neighbors of vk+1 form path on
boundary of Gk

v2

Gk

v1

vk

v2

Gk−1

v1

cut vertexbecause vk
incident to a

chord

Lemma.
Every triangulated plane graph has a canonical order.

Consider any n-vertex plane triangulation. We show
this statement by induction on k from n down to 3.
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Canonical Order – Existence

vkGk

Not triangulated!

v1 v2

Contradiction to neighbors of
vk forming a path on ∂Gk−1!

Gk−1

vk

This completes the proof of the lemma. �

Gk

v1 v2

Claim 1.
If vk is not incident to a chord,
then Gk−1 is biconnected.

Claim 2.
There exists a vertex in Gk that is not
incident to a chord as choice for vk.

Gk was not biconnected!
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Canonical Order – Implementation

CanonicalOrder(G = (V,E), (v1, v2, vn))

forall v ∈ V do
chords(v) ← 0; out(v) ← false; mark(v) ← false

out(v1), out(v2), out(vn) ← true
for k = n downto 3 do

choose v ∈ V \ {v1, v2} such that mark(v) = false,
out(v) = true, chords(v) = 0
vk ← v; mark(v) ← true; out(v) ← false
let wp, . . . , wq be the ordered unmarked neighbors of vk
for i = p+ 1 to q − 1 do

out(wi) ← true
foreach u ∈ Adj[wi] \ {wi−1, wi+1} do

if out(u) then chords(wi) + +, chords(u) + +

if p+ 1 = q then chords(wp)−−, chords(wq)−−

� chord(v):
# chords incident to v

� out(v) = true iff v is on
the current outer face

� mark(v) = true iff v has
received a number ≥ k

wp wq

outer face

vk// use list of candidates

// O(n) time in total
// O(m) = O(n) in total

Lemma.
Algorithm CanonicalOrder
computes a canonical order of
a plane graph in O(n) time.

(w1 = v1) (wt = v2)

wp+1 wq−1
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Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is at (0, 0), v2 is at (2k − 6, 0),

� boundary of Gk−1 (minus edge {v1, v2}) is
drawn x-monotone,

� each edge of the boundary of Gk−1
(except {v1, v2}) is drawn with slopes ±1.

v1 v2

Overlaps!
What could be the solution?

vk

(0, 0) (2k − 6, 0)

wp wqGk−1
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Shift Method – Idea

Drawing invariants:
Gk−1 is drawn such that

� v1 is at (0, 0), v2 is at (2k − 6, 0),

� boundary of Gk−1 (minus edge {v1, v2}) is
drawn x-monotone,

� each edge of the boundary of Gk−1
(except {v1, v2}) is drawn with slopes ±1.

L(vk)

vk

Yes, because wp and wq

have even Manhattan
distance ∆x+ ∆y.

wp wq

v1
(0, 0)

v2
(2k − 4, 0)

Gk−1

Will vk lie on the grid?

∆x

∆y
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Shift Method – Example

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6
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Shift Method – Example

L(10)

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6
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Shift Method – Example

L(11)

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6
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Shift Method – Example

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

L(13)
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Shift Method – Example

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

L(14)
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Shift Method – Example

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

L(15)
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Shift Method – Example

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6

L(16)
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Shift Method – Example

(0, 0) (2n− 4, 0)

(n− 2, n− 2)

12

13

14

15

16

+1 +2

2

3
7

8
5

11

10

4

9

1

6
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Shift Method – Planarity

w1 wt

Gk−1

Observations.

� Each internal vertex is covered exactly once.

� Covering relation defines a tree in G

� and a forest in Gi, 1 ≤ i ≤ n− 1.

w2

wp wq

wt−1

L(wi)

Proof by induction:
If Gk−1 is drawn planar and straight-line, then so is Gk.

vk

Lemma.
Let 0 ≤ δ1 ≤ δ2 ≤ · · · ≤ δt ∈ N,
s.t. δp+1 − δp ≥ 1, δq − δq−1 ≥ 1,
δq − δp ≥ 2 and even. If we shift
L(wi) by δi to the right, then we
get a planar straight-line drawing.

– New edges don’t intersect other edges (→ invariants).

– Edges within each L(wi) do not change.

– Other edges lie within triangles that only become
flatter without causing new intersections.

Ideas:
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Shift Method – Pseudocode

// O(n2) in total

for k = 1 to 3 do
L(vk)← {vk}

P (v1)← (0, 0);P (v2)← (2, 0), P (v3)← (1, 1)
for k = 4 to n do

Let ∂Gk−1 be v1 = w1, w2, . . . , wt−1, wt = v2.
Let wp, . . . , wq be the neighbors of vk.

foreach v ∈
⋃q−1

i=p+1 L(wi) do

x(v)← x(v) + 1

foreach v ∈
⋃t

i=q L(wi) do

x(v)← x(v) + 2

P (vk)← intersection of slope-±1 diagonals
through P (wp) and P (wq)

L(vk)←
⋃q−1

i=p+1 L(wi) ∪ {vk}

+1 +2// O(n2) in total

w1 wt

Gk−1
w2

wp wq

wt−1

vk

Running Time?

ShiftMethod(G = (V,E), (v1, v2, . . . , vn))
canonical order of V
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Shift Method – Linear-Time Implementation

Idea 1.
To compute x(vk) & y(vk),
we only need y(wp), y(wq), and x(wq)− x(wp)

(1) x(vk) =
1
2
(x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2
(x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2
(x(wq)− x(wp) + y(wq)− y(wp))

Idea 2.
Instead of storing explicit x-coordinates,
we store x-distances.

vk

Gk−1
w2

wp wq

wt−1

w1 wtAfter an x-distance is computed for each vk,
use preorder traversal to compute all x-coordinates.
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Shift Method – Linear-Time Implementation

(1) x(vk) =
1
2
(x(wq) + x(wp) + y(wq)− y(wp))

(2) y(vk) =
1
2
(x(wq)− x(wp) + y(wq) + y(wp))

(3) x(vk)− x(wp) =
1
2
(x(wq)− x(wp) + y(wq)− y(wp))

vk

Gk−1
w2

wp wq

wt−1

Relative x-distance tree.
For each vertex v store

� x-offset ∆x(v) from parent

root

Calculations.

� ∆x(wp+1)++, ∆x(wq)++

� ∆x(wp, wq) = ∆x(wp+1) + . . .+ ∆x(wq)

� ∆x(vk) by (3)

� ∆x(wq) = ∆x(wp, wq)−∆x(vk)

� ∆x(wp+1) = ∆x(wp+1)−∆x(vk)

Relative x distance tree.
For each vertex v store

� x-offset ∆x(v) from parent

� y(vk) by (2)
w1 wt

� y-coordinate y(v) wp+1

O(n) in total
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Literature

� [PGD Ch. 4.2] for detailed explanation of shift method

� [de Fraysseix, Pach, Pollack 1990] “How to draw a planar graph on a grid”
– original paper on the shift method
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