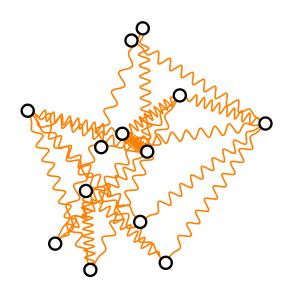


Visualization of Graphs

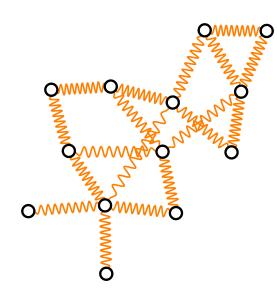
Lecture 2:

Force-Directed Drawing Algorithms

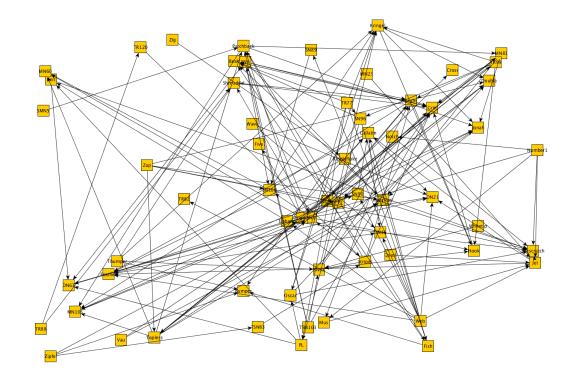


Part I: Spring Embedders

Johannes Zink

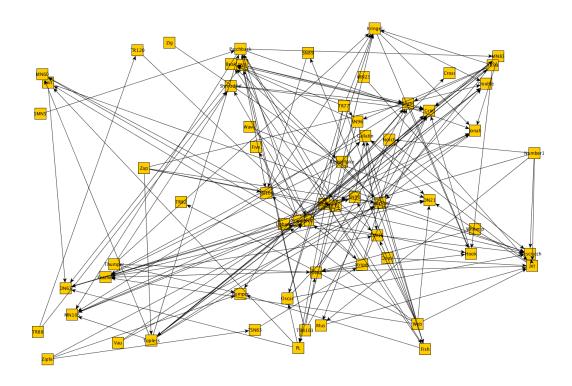


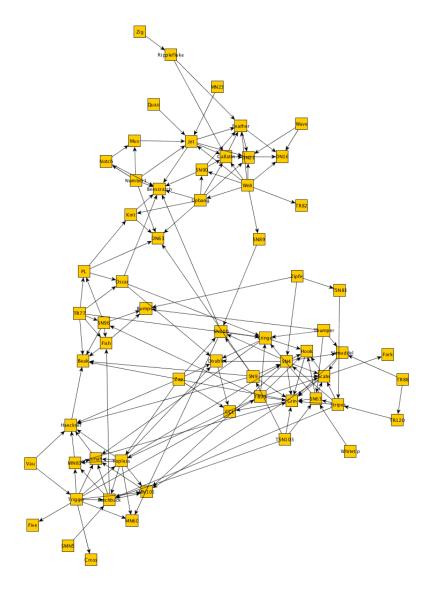
Input: Graph G



Input: Graph G

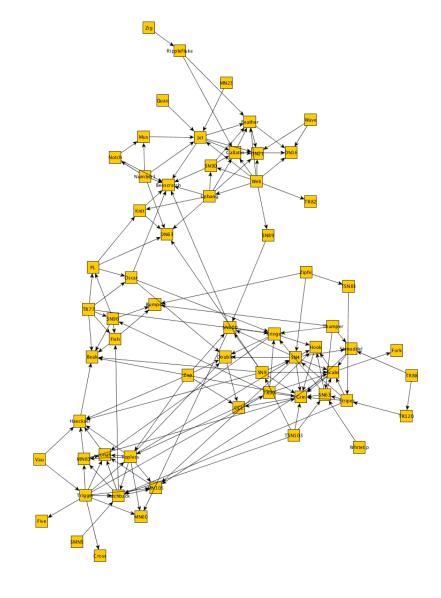
Output: Clear and readable straight-line drawing of G





Input: Graph G

Output: Clear and readable straight-line drawing of G

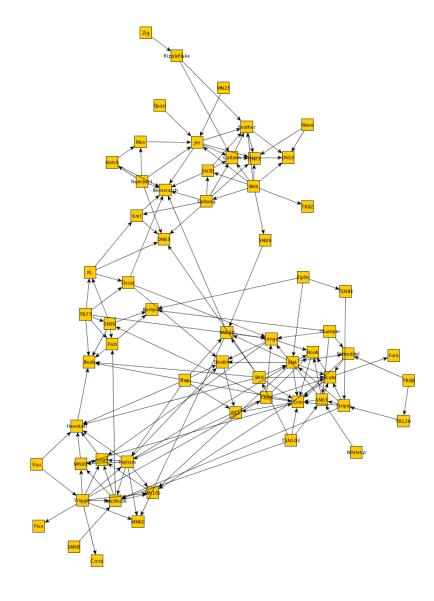


Input: Graph G

Output: Clear and readable straight-line drawing of G

Drawing aesthetics to optimize:

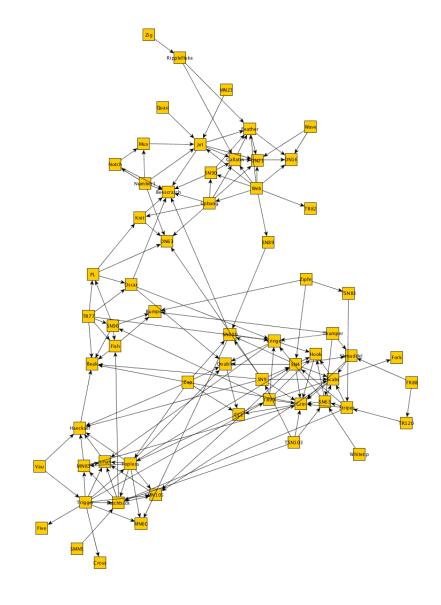
adjacent vertices are close



Input: Graph G

Output: Clear and readable straight-line drawing of G

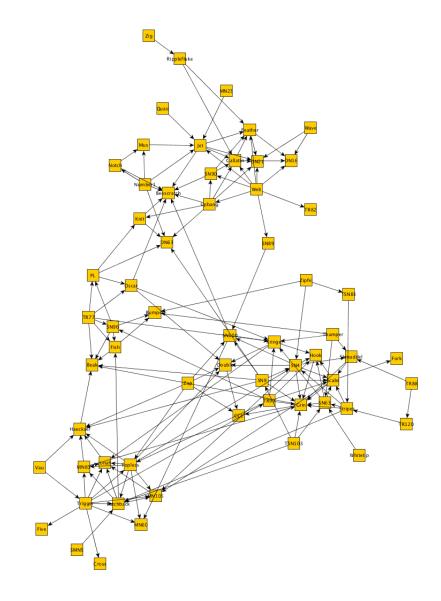
- adjacent vertices are close
- non-adjacent vertices are far apart



Input: Graph G

Output: Clear and readable straight-line drawing of G

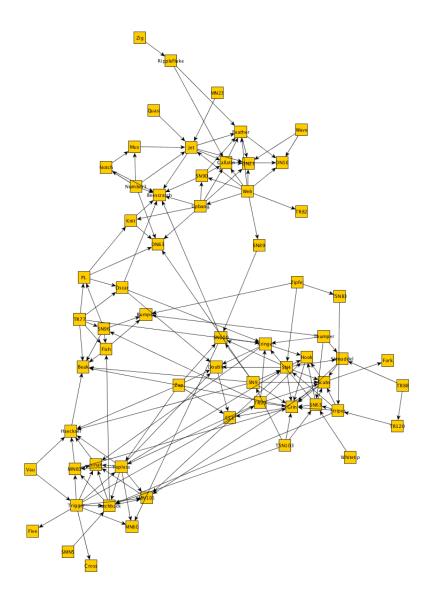
- adjacent vertices are close
- non-adjacent vertices are far apart
- edges short, straight-line, similar length



Input: Graph G

Output: Clear and readable straight-line drawing of G

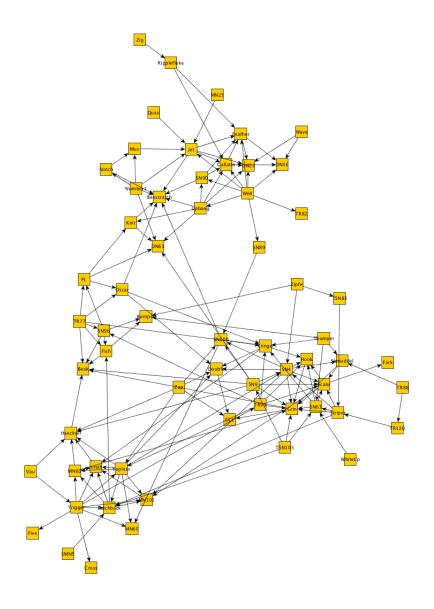
- adjacent vertices are close
- non-adjacent vertices are far apart
- edges short, straight-line, similar length
- densely connected parts (clusters) form communities



Input: Graph G

Output: Clear and readable straight-line drawing of G

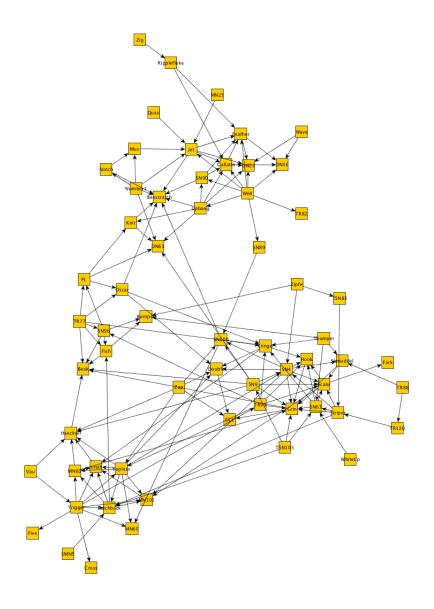
- adjacent vertices are close
- non-adjacent vertices are far apart
- edges short, straight-line, similar length
- densely connected parts (clusters) form communities
- as few crossings as possible



Input: Graph G

Output: Clear and readable straight-line drawing of G

- adjacent vertices are close
- non-adjacent vertices are far apart
- edges short, straight-line, similar length
- densely connected parts (clusters) form communities
- as few crossings as possible
- nodes distributed evenly



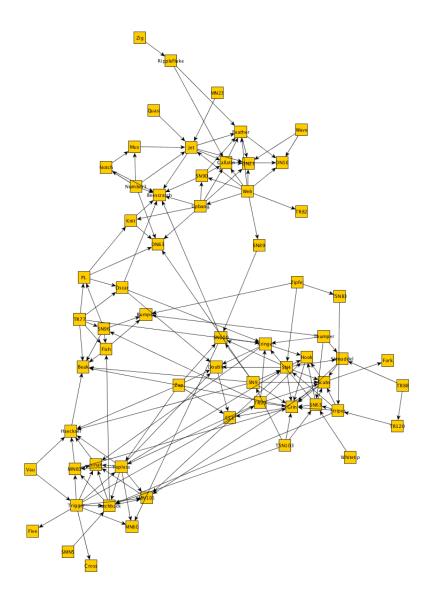
Input: Graph G

Output: Clear and readable straight-line drawing of G

Drawing aesthetics to optimize:

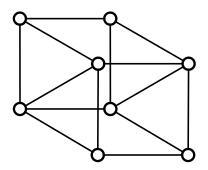
- adjacent vertices are close
- non-adjacent vertices are far apart
- edges short, straight-line, similar length
- densely connected parts (clusters) form communities
- as few crossings as possible
- nodes distributed evenly

Optimization criteria partially contradict each other.

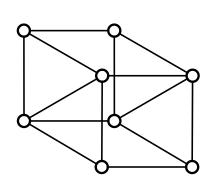


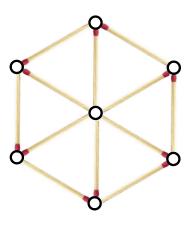
Input: Graph G = (V, E), required edge length $\ell(e)$ for each $e \in E$.

Input: Graph G = (V, E), required edge length $\ell(e)$ for each $e \in E$.

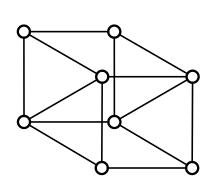


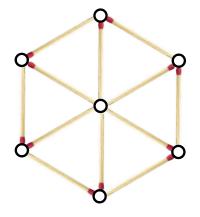
Input: Graph G = (V, E), required edge length $\ell(e)$ for each $e \in E$.

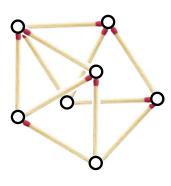




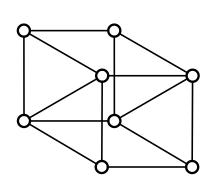
Input: Graph G = (V, E), required edge length $\ell(e)$ for each $e \in E$.

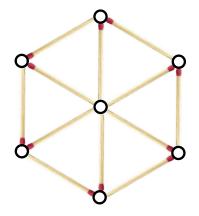


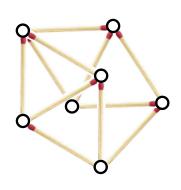


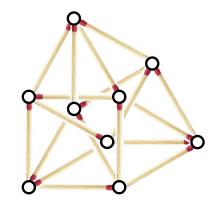


Input: Graph G = (V, E), required edge length $\ell(e)$ for each $e \in E$.



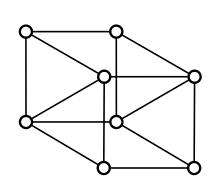


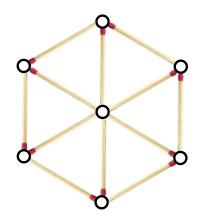


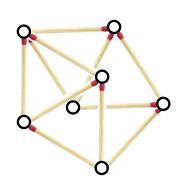


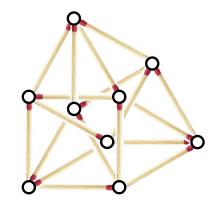
Input: Graph G = (V, E), required edge length $\ell(e)$ for each $e \in E$.

Output: Drawing of G that realizes the given edge lengths.





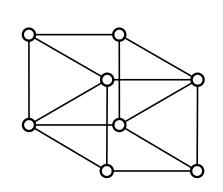


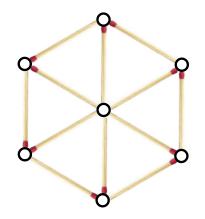


NP-hard for

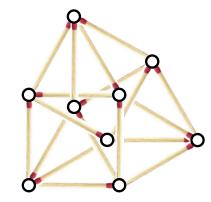
Input: Graph G = (V, E), required edge length $\ell(e)$ for each $e \in E$.

Output: Drawing of G that realizes the given edge lengths.







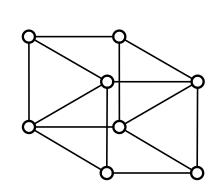


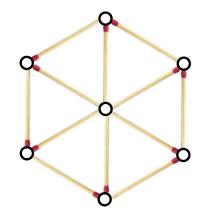
NP-hard for

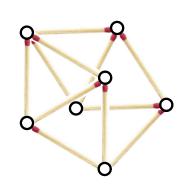
uniform edge lengths in any dimension [Johnson '82]

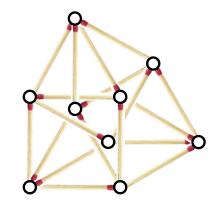
Input: Graph G = (V, E), required edge length $\ell(e)$ for each $e \in E$.

Output: Drawing of G that realizes the given edge lengths.







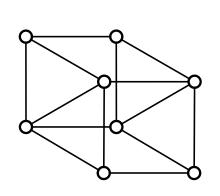


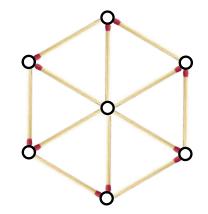
NP-hard for

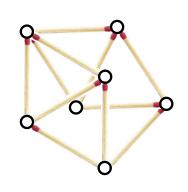
- uniform edge lengths in any dimension [Johnson '82]
- uniform edge lengths in planar drawings [Eades, Wormald '90]

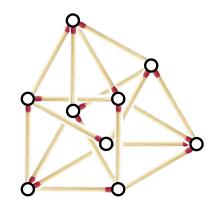
Input: Graph G = (V, E), required edge length $\ell(e)$ for each $e \in E$.

Output: Drawing of G that realizes the given edge lengths.









NP-hard for

- uniform edge lengths in any dimension [Johnson '82]
- uniform edge lengths in planar drawings [Eades, Wormald '90]
- \blacksquare edge lengths $\{1,2\}$ [Saxe '80]

Idea.

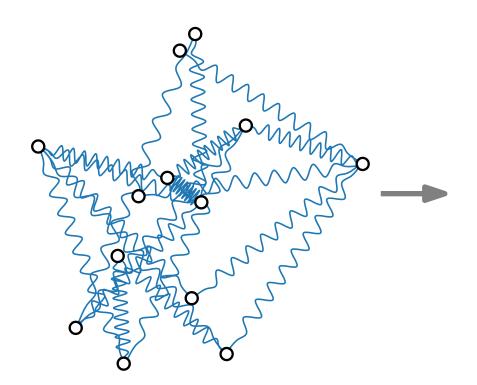
[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system ...

Idea.

[Eades '84]

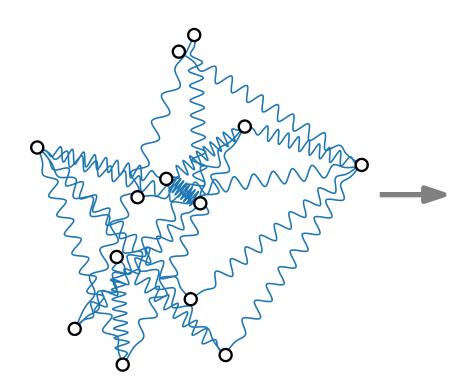
"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system ...



Idea.

[Eades '84]

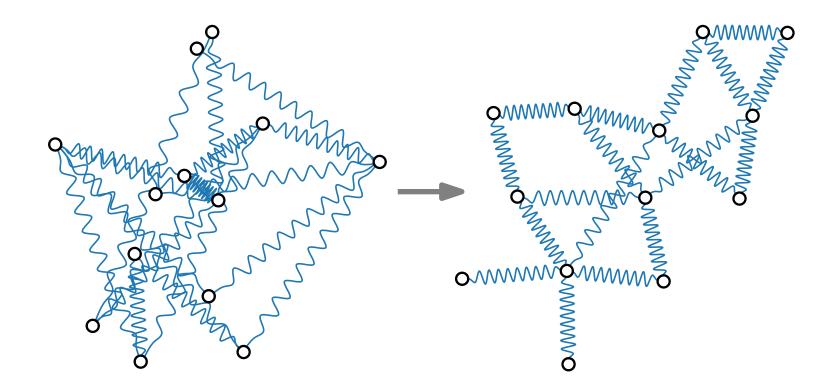
"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."



Idea.

[Eades '84]

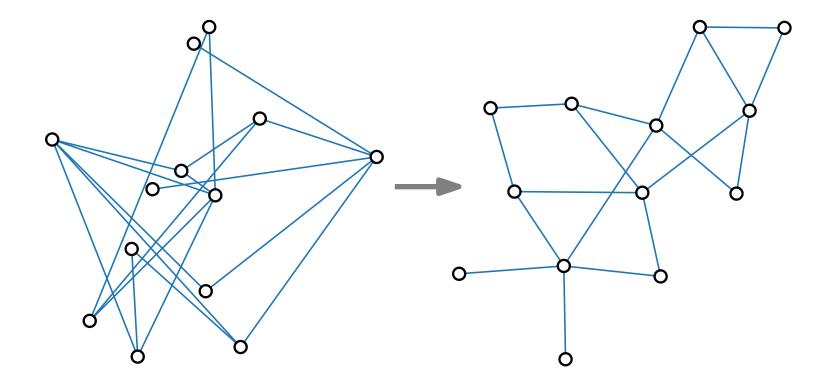
"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."



Idea.

[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system . . . The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

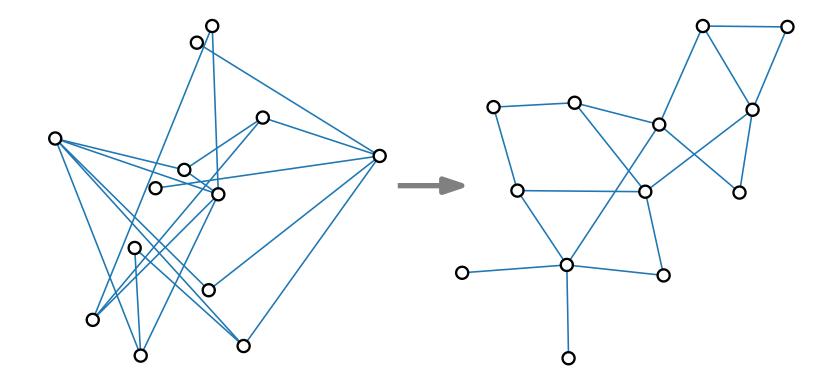


Idea.

[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

Attractive forces.



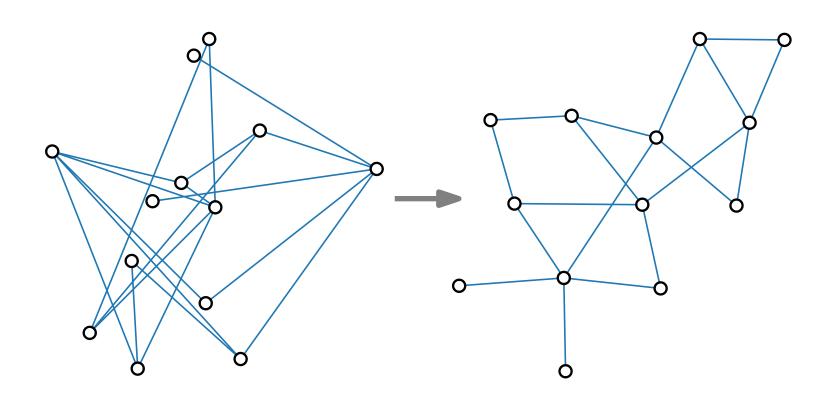
Idea.

[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

Attractive forces.

pairs $\{u, v\}$ of adjacent vertices:



Idea.

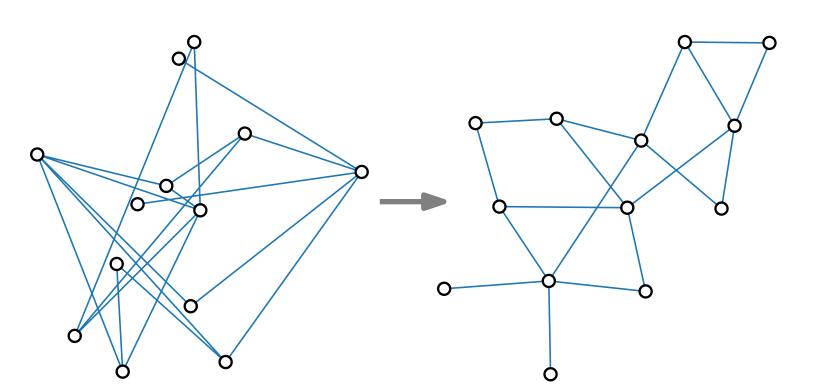
[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

Attractive forces.

pairs $\{u, v\}$ of adjacent vertices:

u owwwo v f_{attr}



Idea.

[Eades '84]

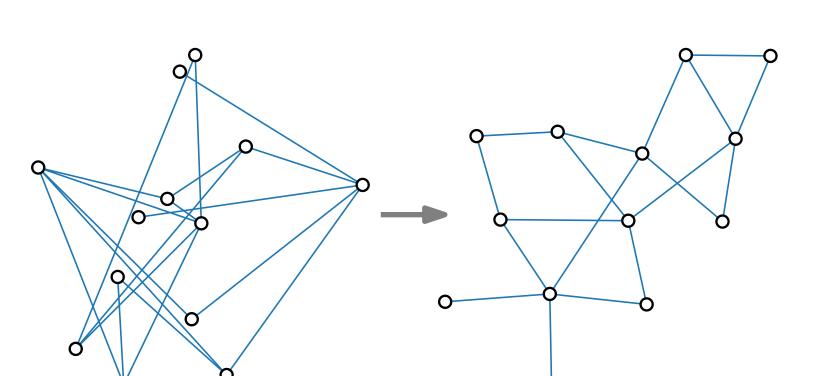
"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

Attractive forces.

pairs $\{u, v\}$ of adjacent vertices:

u owwwo v f_{attr}

Repulsive forces.



Idea.

[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

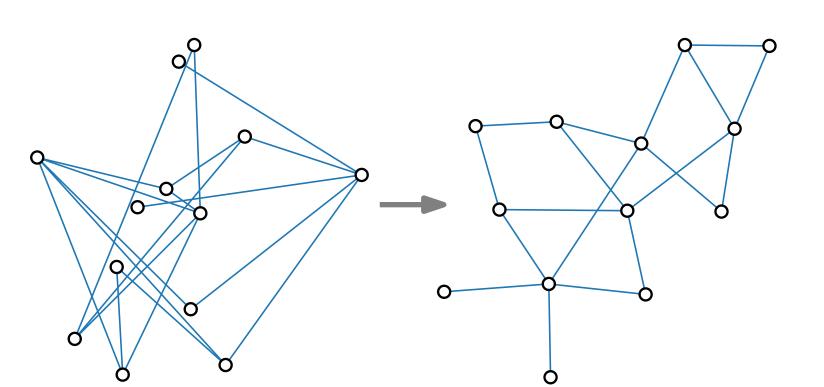
Attractive forces.

pairs $\{u, v\}$ of adjacent vertices:

$$u$$
 ommo v f_{attr}

Repulsive forces.

any pair $\{x, y\}$ of vertices:



Idea.

[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

Attractive forces.

pairs $\{u, v\}$ of adjacent vertices:

$$u$$
 ommo v f_{attr}

Repulsive forces.

any pair $\{x, y\}$ of vertices:

Idea.

[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

So-called spring-embedder algorithms that work according to this or similar principles are among the most frequently used graph-drawing methods in practice.

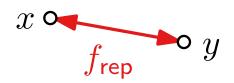
Attractive forces.

pairs $\{u, v\}$ of adjacent vertices:

$$u$$
 ommo v f_{attr}

Repulsive forces.

any pair $\{x, y\}$ of vertices:



ForceDirected $(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})$

return p

initial layout; may be randomly chosen positions

ForceDirected
$$(G=(V,E), p=(p_v)_{v\in V}, \varepsilon>0, K\in\mathbb{N})$$

return p

initial layout; may be randomly chosen positions

ForceDirected
$$(G=(V,E), p=(p_v)_{v\in V}, \varepsilon>0, K\in\mathbb{N})$$

return p

end layout

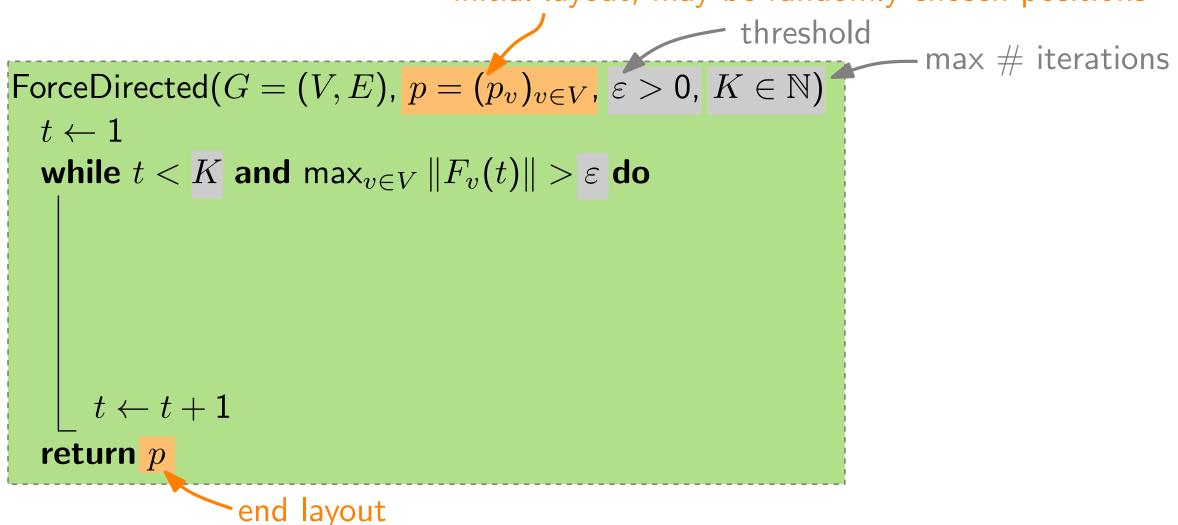
initial layout; may be randomly chosen positions

threshold ForceDirected $(G=(V,E), p=(p_v)_{v\in V}, \varepsilon>0, K\in\mathbb{N})$ return p end layout

initial layout; may be randomly chosen positions

ForceDirected $(G=(V,E), p=(p_v)_{v\in V}, \varepsilon>0, K\in\mathbb{N})$ max # iterations return p

end layout

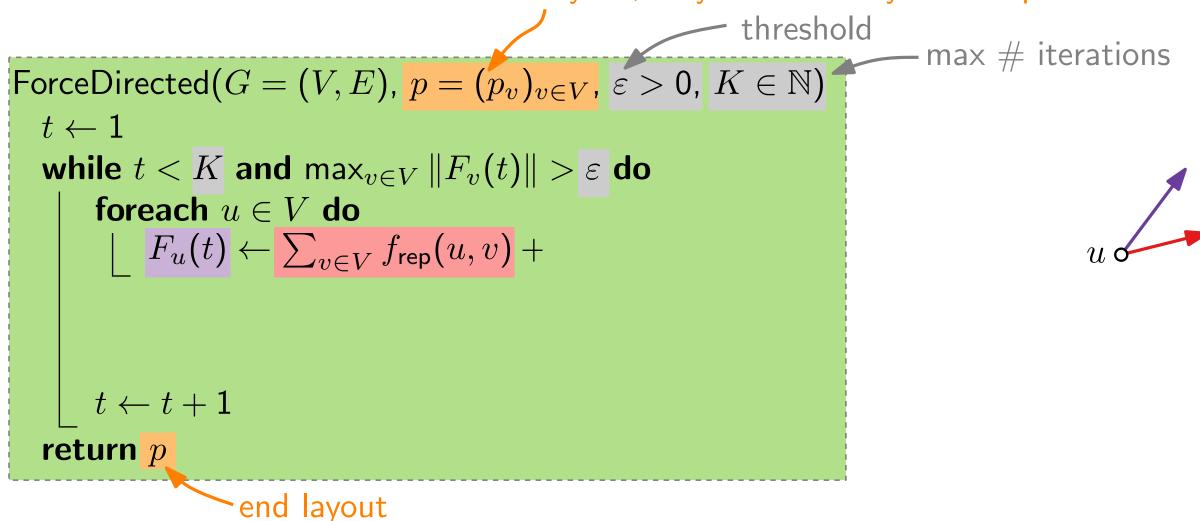


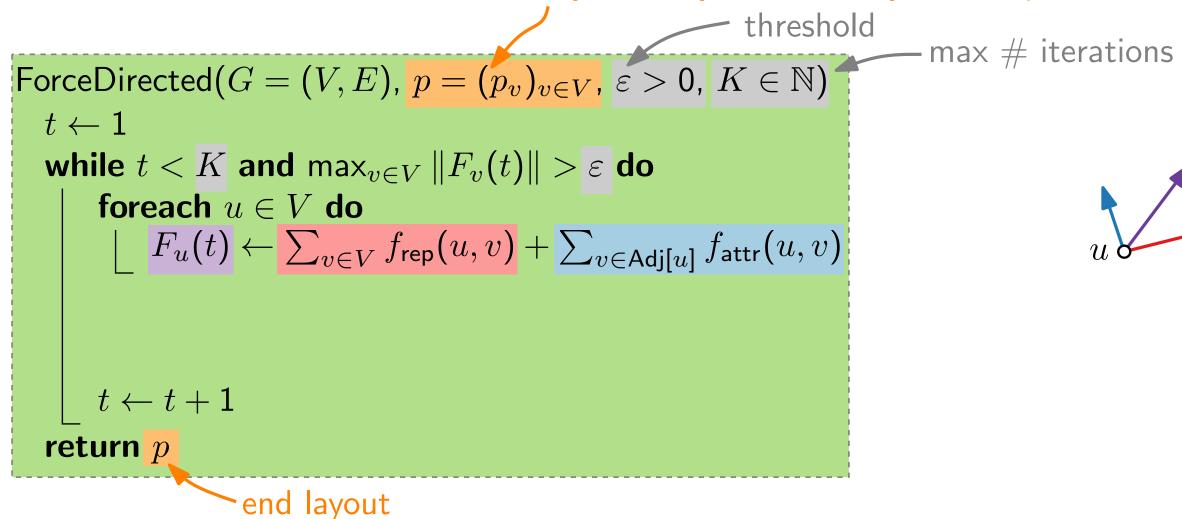
end layout

initial layout; may be randomly chosen positions ___ max # iterations ForceDirected $(G=(V,E), p=(p_v)_{v\in V}, \varepsilon>0, K\in\mathbb{N})$ $t \leftarrow 1$ while t < K and $\max_{v \in V} ||F_v(t)|| > \varepsilon$ do foreach $u \in V$ do return p

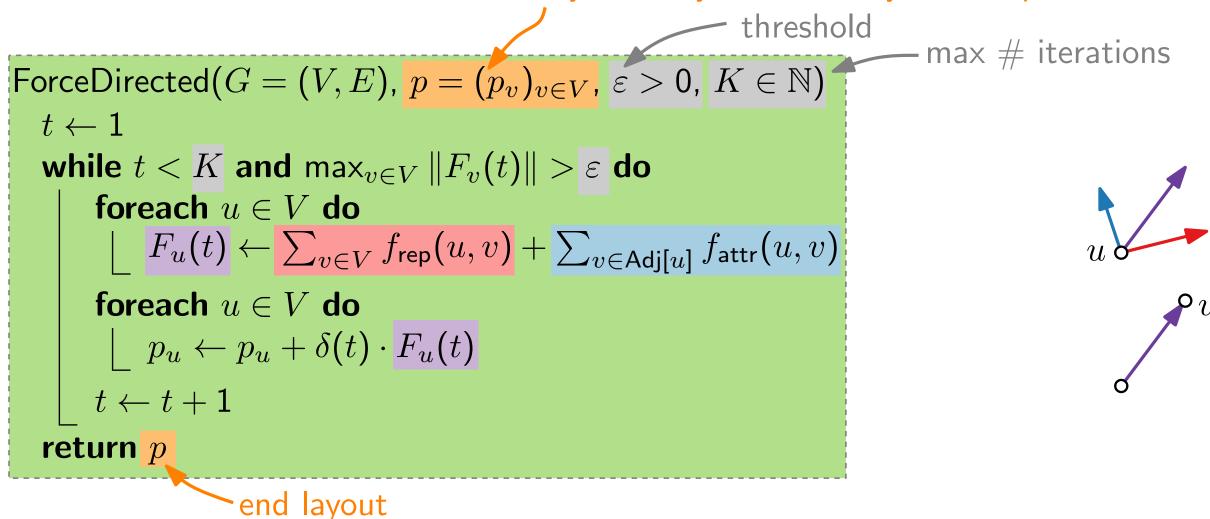
initial layout; may be randomly chosen positions — max # iterations ForceDirected $(G=(V,E), p=(p_v)_{v\in V}, \varepsilon>0, K\in\mathbb{N})$ $t \leftarrow 1$ while t < K and $\max_{v \in V} ||F_v(t)|| > \varepsilon$ do foreach $u \in V$ do $F_u(t) \leftarrow$ return p

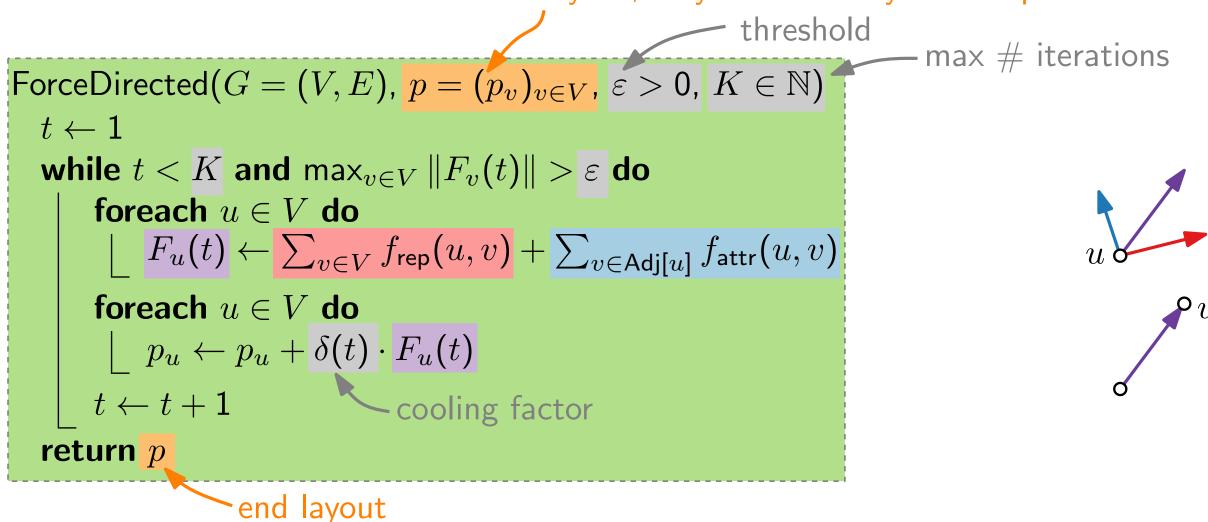
end layout

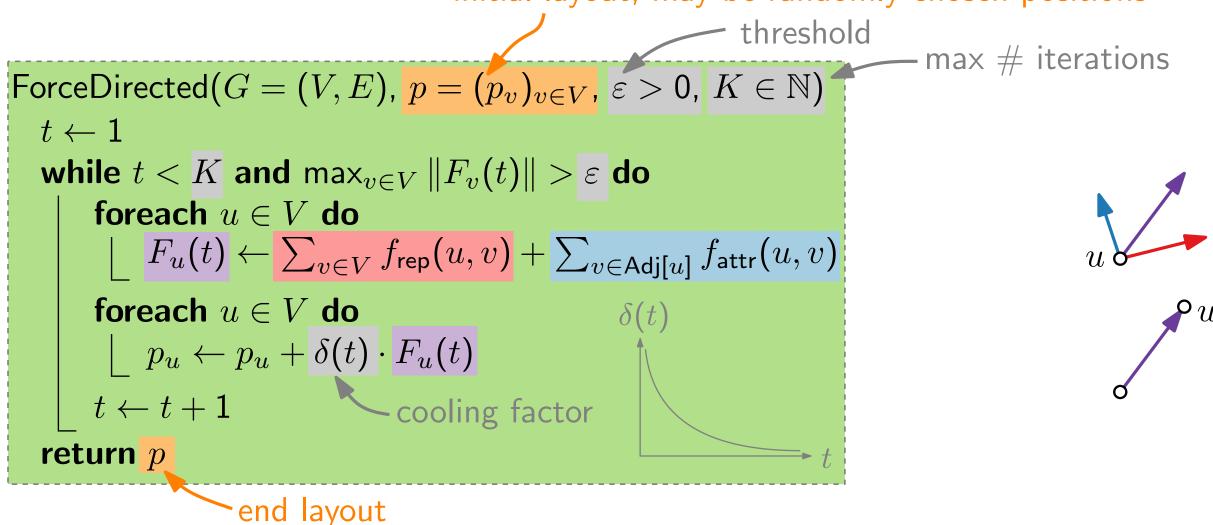


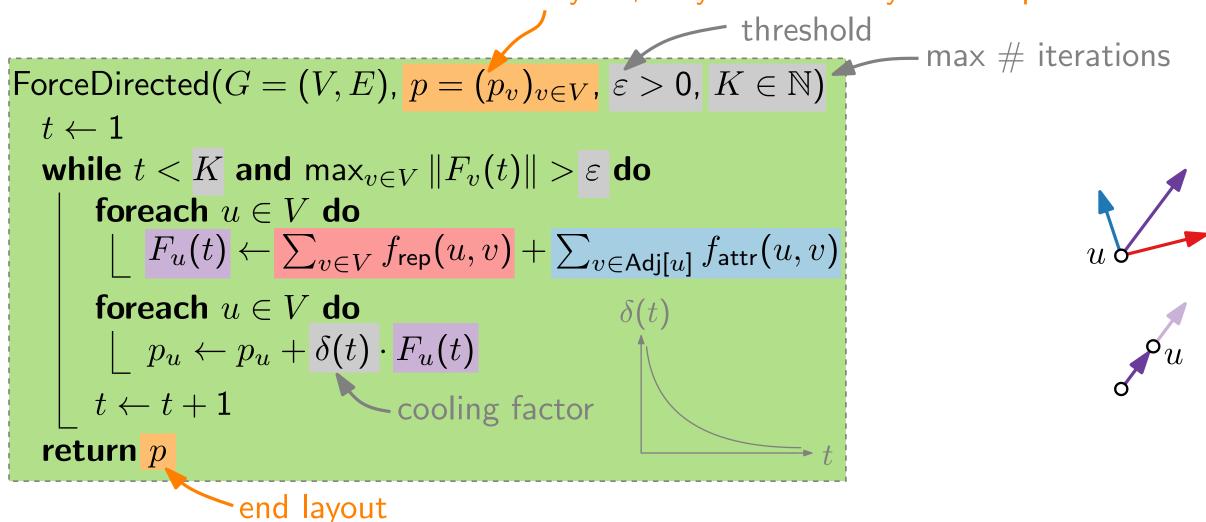


```
ForceDirected(G=(V,E),\ p=(p_v)_{v\in V},\ \varepsilon>0,\ K\in\mathbb{N}) max \# iterations
   t \leftarrow 1
   while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
       foreach u \in V do
        F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)
       foreach u \in V do
      return p
                   end layout
```









```
ForceDirected(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})
  t \leftarrow 1
  while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
       foreach u \in V do
         F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)
       foreach u \in V do
       return p
```

Repulsive forces

Attractive forces

Resulting displacement vector

$$F_u = \sum_{v \in V} f_{\mathsf{rep}}(u,v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u,v)$$

Repulsive forces

$$f_{\mathsf{rep}}(u,v) = \frac{c_{\mathsf{rep}}}{\|p_v - p_u\|^2} \cdot \overrightarrow{p_v p_u}$$

Attractive forces

Resulting displacement vector

$$F_u = \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)$$

Repulsive forces

$$f_{\mathsf{rep}}(u,v) = \frac{c_{\mathsf{rep}}}{\|p_v - p_u\|^2} \cdot \overrightarrow{p_v p_u}$$

Attractive forces

Resulting displacement vector

$$F_u = \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)$$

```
ForceDirected(G=(V,E),\ p=(p_v)_{v\in V},\ \varepsilon>0,\ K\in\mathbb{N}) t\leftarrow 1 while t< K and \max_{v\in V}\|F_v(t)\|>\varepsilon do foreach u\in V do \sum_{v\in V}f_{\operatorname{rep}}(u,v)+\sum_{v\in\operatorname{Adj}[u]}f_{\operatorname{attr}}(u,v) foreach u\in V do \sum_{v\in V}f_{\operatorname{rep}}(v,v)+\sum_{v\in\operatorname{Adj}[u]}f_{\operatorname{attr}}(v,v) t\leftarrow t+1 return p
```

Notation.

 $\overrightarrow{p_u p_v} = \text{unit vector}$ pointing from u to v

Repulsive forces repulsion constant (e.g., 2.0) $f_{\text{rep}}(u,v) = \frac{c_{\text{rep}}}{\|p_v - p_u\|^2} \cdot \overline{p_v p_u}$

Attractive forces

Resulting displacement vector

$$F_u = \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)$$

```
\begin{aligned} & \text{ForceDirected}(G = (V, E), \ p = (p_v)_{v \in V}, \ \varepsilon > 0, \ K \in \mathbb{N}) \\ & t \leftarrow 1 \\ & \textbf{while} \ t < K \ \textbf{and} \ \max_{v \in V} \|F_v(t)\| > \varepsilon \ \textbf{do} \\ & \quad \left[ F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v) \right] \\ & \quad \left[ F_u(t) \leftarrow V \ \textbf{do} \right] \\ & \quad \left[ F_u(t) \leftarrow F_u(t) \cdot F_u(t) \right] \\ & \quad t \leftarrow t + 1 \end{aligned}
```

Notation.

 $\overrightarrow{p_u p_v} = \text{unit vector}$ pointing from u to v

Repulsive forces repulsion constant (e.g., 2.0) $f_{\text{rep}}(u,v) = \frac{c_{\text{rep}}}{\|p_v - p_u\|^2} \cdot \overline{p_v p_u}$

Attractive forces

Resulting displacement vector

$$F_u = \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)$$

- $\overrightarrow{p_up_v} = \text{unit vector}$ pointing from u to v
- $||p_v p_u|| =$ Euclidean distance between u and v

Repulsive forces repulsion constant (e.g., 2.0) $f_{\text{rep}}(u,v) = \frac{c_{\text{rep}}}{\|p_v - p_u\|^2} \cdot \overline{p_v p_u}$

Attractive forces

$$f_{\mathsf{spring}}(u,v) = c_{\mathsf{spring}} \cdot \log \frac{\|p_v - p_u\|}{\ell} \cdot \overrightarrow{p_u p_v}$$

Resulting displacement vector

$$F_u = \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)$$

- $\overrightarrow{p_u p_v} = \text{unit vector}$ pointing from u to v
- $||p_v p_u|| =$ Euclidean distance between u and v

Repulsive forces repulsion constant (e.g., 2.0) $f_{\text{rep}}(u,v) = \frac{c_{\text{rep}}}{\|p_v - p_u\|^2} \cdot \overline{p_v p_u}$

■ Attractive forces spring constant (e.g., 1.0)

$$f_{\mathsf{spring}}(u,v) = c_{\mathsf{spring}} \cdot \log \frac{\|p_v - p_u\|}{\ell} \cdot \overrightarrow{p_u p_v}$$

Resulting displacement vector

$$F_u = \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)$$

- $\overrightarrow{p_up_v} = \text{unit vector}$ pointing from u to v
- $||p_v p_u|| =$ Euclidean distance between u and v

Repulsive forces repulsion constant (e.g., 2.0) $f_{\text{rep}}(u,v) = \frac{c_{\text{rep}}}{\|p_v - p_u\|^2} \cdot \overline{p_v p_u}$

■ Attractive forces spring constant (e.g., 1.0)

$$f_{\text{spring}}(u, v) = c_{\text{spring}} \cdot \log \frac{\|p_v - p_u\|}{\ell} \cdot \overrightarrow{p_u p_v}$$

Resulting displacement vector

$$F_u = \sum_{v \in V} f_{\mathsf{rep}}(u,v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u,v)$$

- $\overrightarrow{p_u p_v} = \text{unit vector}$ pointing from u to v
- $||p_v p_u|| =$ Euclidean distance between u and v
- ℓ = ideal spring length for edges

Repulsive forces repulsion constant (e.g., 2.0) $f_{\text{rep}}(u,v) = \frac{c_{\text{rep}}}{\|p_v - p_u\|^2} \cdot \overrightarrow{p_v p_u}$

■ Attractive forces spring constant (e.g., 1.0)

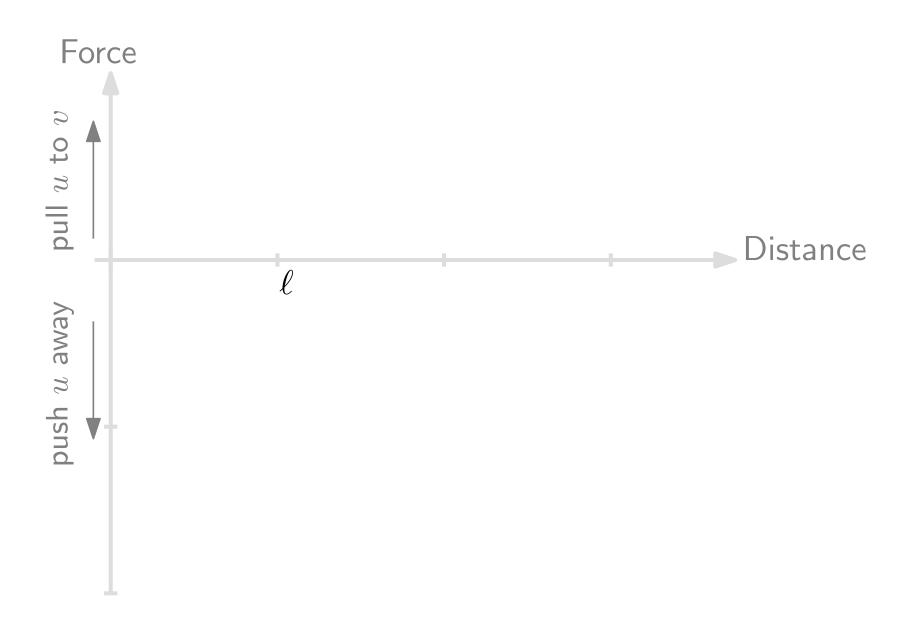
$$f_{\mathsf{spring}}(u,v) = c_{\mathsf{spring}} \cdot \log \frac{\|p_v - p_u\|}{\ell} \cdot \overrightarrow{p_u p_v}$$

$$f_{\mathsf{attr}}(u,v) = f_{\mathsf{spring}}(u,v) - f_{\mathsf{rep}}(u,v)$$

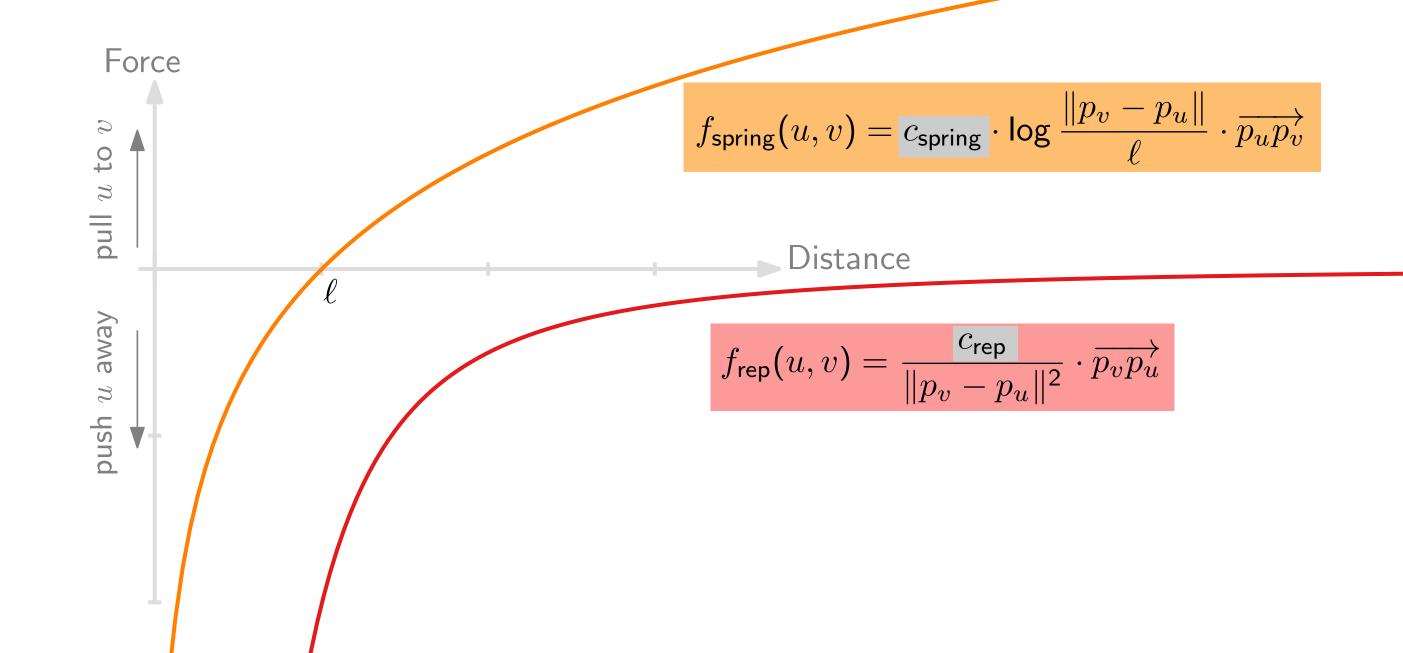
Resulting displacement vector

$$F_u = \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)$$

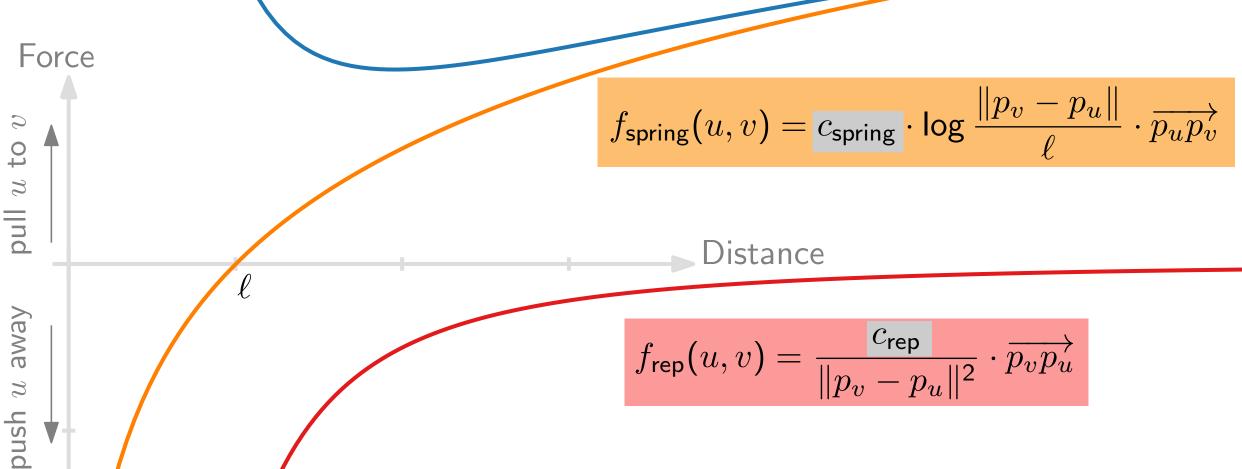
- $\overrightarrow{p_u p_v} = \text{unit vector}$ pointing from u to v
- $\|p_v p_u\| =$ Euclidean distance between u and v
- ℓ = ideal spring length for edges





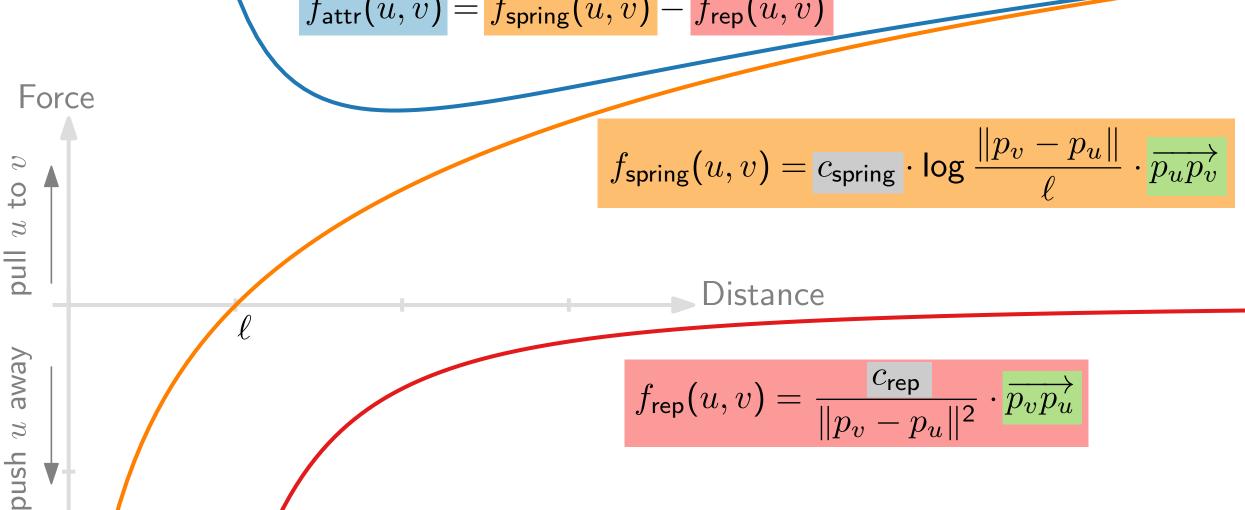


$$f_{\mathsf{attr}}(u,v) = f_{\mathsf{spring}}(u,v) - f_{\mathsf{rep}}(u,v)$$



$$f_{\text{rep}}(u,v) = \frac{c_{\text{rep}}}{\|p_v - p_u\|^2} \cdot \overrightarrow{p_v p_u}$$

$$f_{\mathsf{attr}}(u,v) = f_{\mathsf{spring}}(u,v) - f_{\mathsf{rep}}(u,v)$$



Advantages.

Advantages.

very simple algorithm

Advantages.

- very simple algorithm
- good results for small and medium-sized graphs

Advantages.

- very simple algorithm
- good results for small and medium-sized graphs
- empirically good representation of symmetry and structure

Advantages.

- very simple algorithm
- good results for small and medium-sized graphs
- empirically good representation of symmetry and structure

Disadvantages.

Advantages.

- very simple algorithm
- good results for small and medium-sized graphs
- empirically good representation of symmetry and structure

Disadvantages.

System may not be stable at the end.

Advantages.

- very simple algorithm
- good results for small and medium-sized graphs
- empirically good representation of symmetry and structure

Disadvantages.

- System may not be stable at the end.
- Converges to local minima.

Advantages.

- very simple algorithm
- good results for small and medium-sized graphs
- empirically good representation of symmetry and structure

Disadvantages.

- System may not be stable at the end.
- Converges to local minima.
- Computing f_{spring} is in $\mathcal{O}(|E|)$ time and computing f_{rep} is in $\mathcal{O}(|V|^2)$ time.

Advantages.

- very simple algorithm
- good results for small and medium-sized graphs
- empirically good representation of symmetry and structure

Disadvantages.

- System may not be stable at the end.
- Converges to local minima.
- Computing f_{spring} is in $\mathcal{O}(|E|)$ time and computing f_{rep} is in $\mathcal{O}(|V|^2)$ time.

Influence.

Advantages.

- very simple algorithm
- good results for small and medium-sized graphs
- empirically good representation of symmetry and structure

Disadvantages.

- System may not be stable at the end.
- Converges to local minima.
- Computing f_{spring} is in $\mathcal{O}(|E|)$ time and computing f_{rep} is in $\mathcal{O}(|V|^2)$ time.

Influence.

lacktriangle original paper by Peter Eades [Eades '84] got pprox 2000 citations

Spring Embedder by Eades – Discussion

Advantages.

- very simple algorithm
- good results for small and medium-sized graphs
- empirically good representation of symmetry and structure

Disadvantages.

- System may not be stable at the end.
- Converges to local minima.
- Computing f_{spring} is in $\mathcal{O}(|E|)$ time and computing f_{rep} is in $\mathcal{O}(|V|^2)$ time.

Influence.

- lacktriangle original paper by Peter Eades [Eades '84] got pprox 2000 citations
- basis for many further ideas

Variant by Fruchterman & Reingold

Repulsive forces

orces repulsion constant (e.g. 2.0)
$$f_{\mathsf{rep}}(u,v) = \frac{c_{\mathsf{rep}}}{\|p_v - p_u\|^2} \cdot \overline{p_v p_u}$$

Attractive forces

spring constant (e.g. 1.0)
$$f_{\mathsf{spring}}(u,v) = c_{\mathsf{spring}} \cdot \log \frac{\|p_v - p_u\|}{\ell} \cdot \overline{p_u p_v}$$

$$f_{\mathsf{attr}}(u,v) = f_{\mathsf{spring}}(u,v) - f_{\mathsf{rep}}(u,v)$$

Resulting displacement vector

$$F_u = \sum_{v \in V} f_{\mathsf{rep}}(u,v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u,v)$$

Notation.

- $\|p_u p_v\| =$ Euclidean distance between u and v
- $\overrightarrow{p_u p_v} = \text{unit vector}$ pointing from u to v
- ℓ = ideal spring length for edges

Variant by Fruchterman & Reingold

Repulsive forces

$$f_{\mathsf{rep}}(u,v) = \frac{\ell^2}{\|p_v - p_u\|} \cdot \overrightarrow{p_v p_u}$$

Attractive forces

$$f_{\mathsf{spring}}(u,v) = c_{\mathsf{spring}} \cdot \log \frac{\|p_v - p_u\|}{\ell} \cdot \overrightarrow{p_u p_v}$$

$$f_{\mathsf{attr}}(u,v) = f_{\mathsf{spring}}(u,v) - f_{\mathsf{rep}}(u,v)$$

Resulting displacement vector

$$F_u = \sum_{v \in V} f_{\mathsf{rep}}(u,v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u,v)$$

Notation.

- $\|p_u p_v\| =$ Euclidean distance between u and v
- $\overrightarrow{p_up_v} = \text{unit vector}$ pointing from u to v
- ℓ = ideal spring length for edges

Variant by Fruchterman & Reingold

Repulsive forces

$$f_{\mathsf{rep}}(u,v) = \frac{\ell^2}{\|p_v - p_u\|} \cdot \overrightarrow{p_v p_u}$$

■ Attractive forces

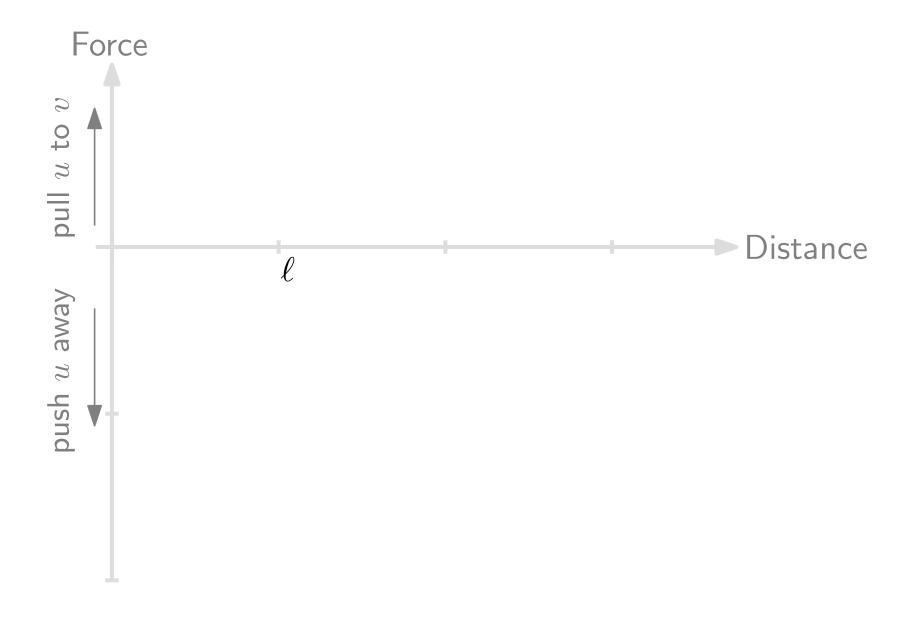
$$f_{\mathsf{attr}}(u,v) = \frac{\|p_v - p_u\|^2}{\ell} \cdot \overrightarrow{p_u p_v}$$

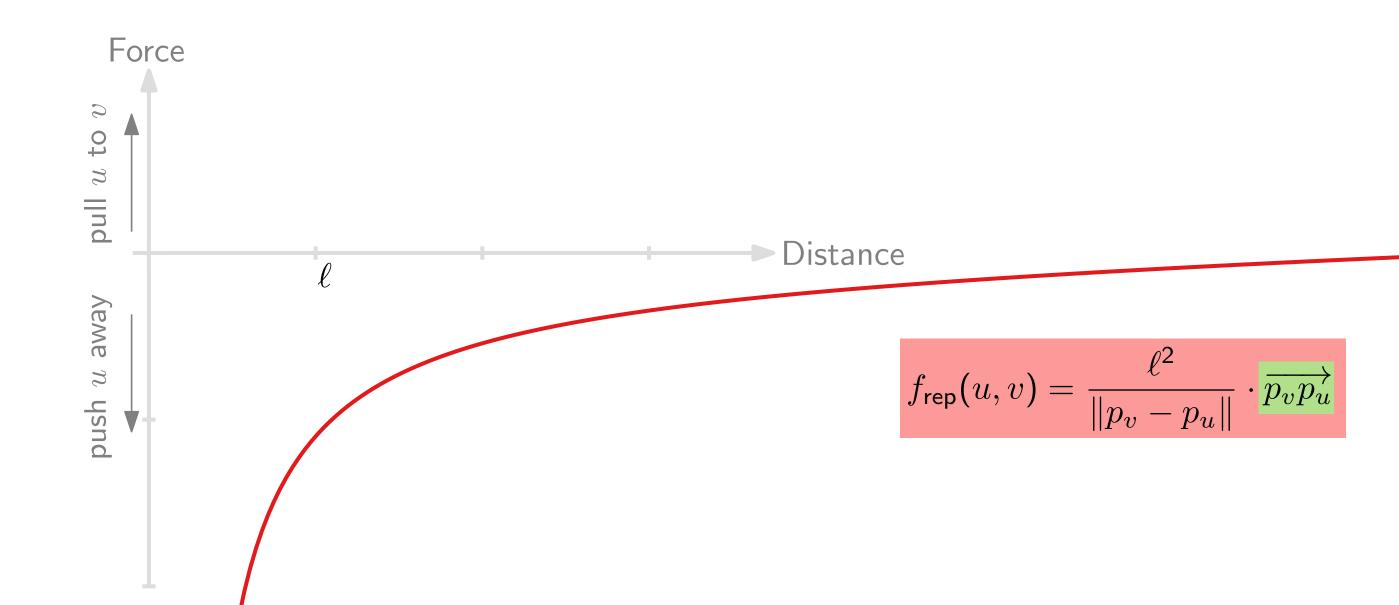
Resulting displacement vector

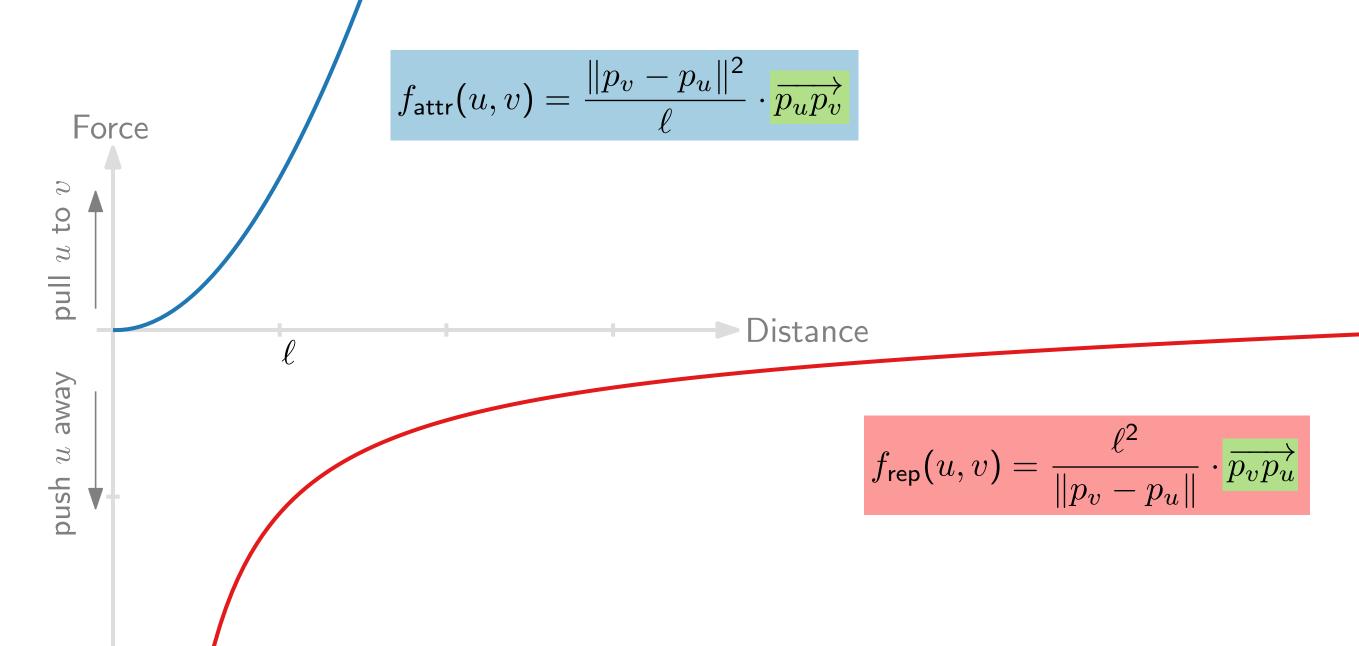
$$F_u = \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)$$

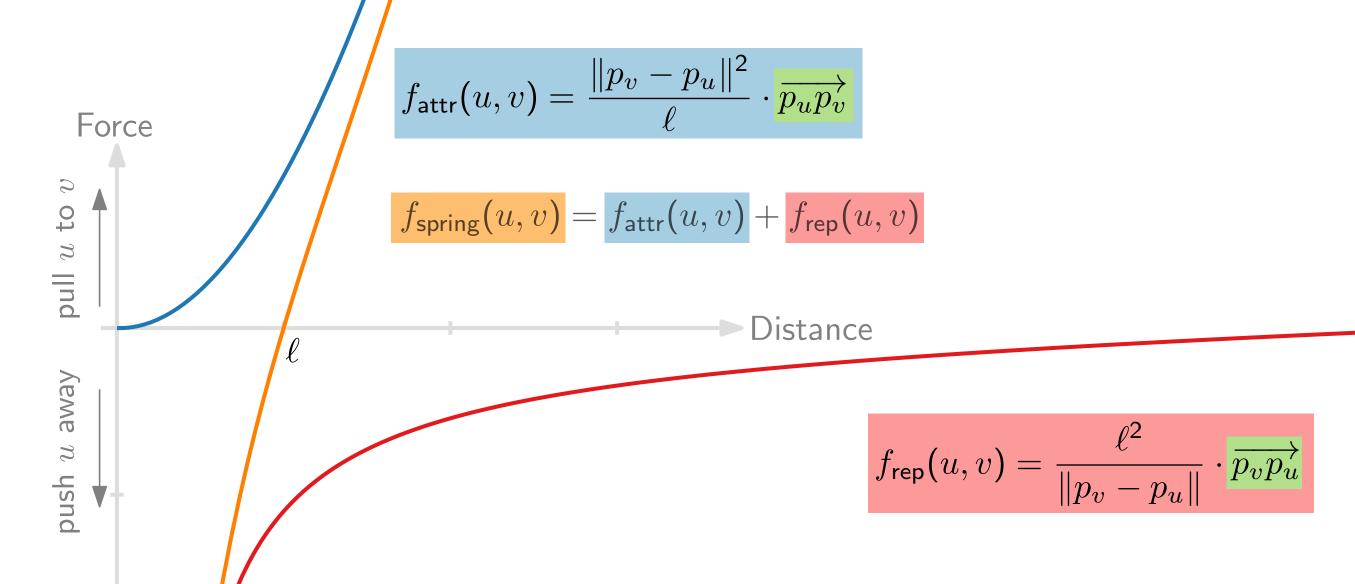
Notation.

- $\|p_u p_v\| =$ Euclidean distance between u and v
- $\overrightarrow{p_u p_v} = \text{unit vector}$ pointing from u to v
- ℓ = ideal spring length for edges









Inertia. ("Trägheit")

- Define vertex mass $\Phi(v) = 1 + \deg(v)/2$
- Set $f_{\mathsf{attr}}(p_u, p_v) \leftarrow f_{\mathsf{attr}}(p_u, p_v) \cdot 1/\Phi(v)$

Inertia. ("Trägheit")

- Define vertex mass $\Phi(v) = 1 + \deg(v)/2$
- Set $f_{\mathsf{attr}}(p_u, p_v) \leftarrow f_{\mathsf{attr}}(p_u, p_v) \cdot 1/\Phi(v)$

Gravitation.

- Define centroid $\sigma_V = 1/|V| \cdot \sum_{v \in V} p_v$
- $\blacksquare \text{ Add force } f_{\mathsf{grav}}(p_v) = c_{\mathsf{grav}} \cdot \Phi(v) \cdot \overrightarrow{p_v \sigma_V}$

Inertia. ("Trägheit")

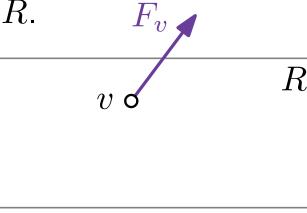
- Define vertex mass $\Phi(v) = 1 + \deg(v)/2$
- Set $f_{\mathsf{attr}}(p_u, p_v) \leftarrow f_{\mathsf{attr}}(p_u, p_v) \cdot 1/\Phi(v)$

Gravitation.

- Define centroid $\sigma_V = 1/|V| \cdot \sum_{v \in V} p_v$
- lacksquare Add force $f_{\mathsf{grav}}(p_v) = c_{\mathsf{grav}} \cdot \Phi(v) \cdot \overrightarrow{p_v \sigma_V}$

Restricted drawing area.

If F_v points beyond area R, clip vector appropriately at the border of R.



Inertia. ("Trägheit")

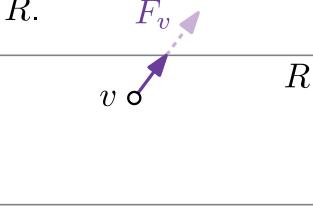
- Define vertex mass $\Phi(v) = 1 + \deg(v)/2$
- Set $f_{\mathsf{attr}}(p_u, p_v) \leftarrow f_{\mathsf{attr}}(p_u, p_v) \cdot 1/\Phi(v)$

Gravitation.

- Define centroid $\sigma_V = 1/|V| \cdot \sum_{v \in V} p_v$
- Add force $f_{\mathsf{grav}}(p_v) = c_{\mathsf{grav}} \cdot \Phi(v) \cdot \overrightarrow{p_v \sigma_V}$

Restricted drawing area.

If F_v points beyond area R, clip vector appropriately at the border of R.



Inertia. ("Trägheit")

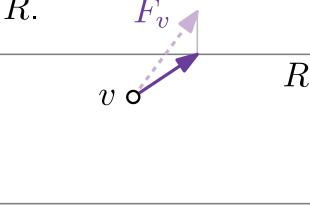
- Define vertex mass $\Phi(v) = 1 + \deg(v)/2$
- Set $f_{\mathsf{attr}}(p_u, p_v) \leftarrow f_{\mathsf{attr}}(p_u, p_v) \cdot 1/\Phi(v)$

Gravitation.

- Define centroid $\sigma_V = 1/|V| \cdot \sum_{v \in V} p_v$
- lacksquare Add force $f_{\mathsf{grav}}(p_v) = c_{\mathsf{grav}} \cdot \Phi(v) \cdot \overrightarrow{p_v \sigma_V}$

Restricted drawing area.

If F_v points beyond area R, clip vector appropriately at the border of R.



Inertia. ("Trägheit")

- Define vertex mass $\Phi(v) = 1 + \deg(v)/2$
- Set $f_{\mathsf{attr}}(p_u, p_v) \leftarrow f_{\mathsf{attr}}(p_u, p_v) \cdot 1/\Phi(v)$

Gravitation.

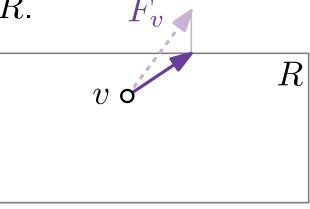
- Define centroid $\sigma_V = 1/|V| \cdot \sum_{v \in V} p_v$
- Add force $f_{\mathsf{grav}}(p_v) = c_{\mathsf{grav}} \cdot \Phi(v) \cdot \overrightarrow{p_v \sigma_V}$

Restricted drawing area.

If F_v points beyond area R, clip vector appropriately at the border of R.

And many more...

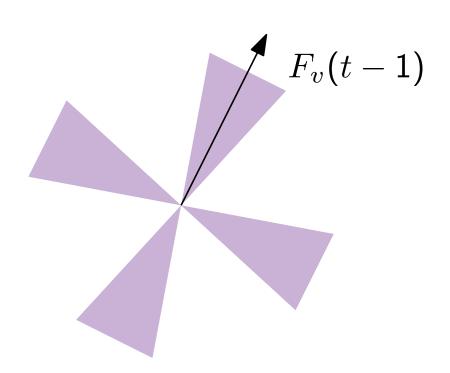
- magnetic orientation of edges [GD Ch. 10.4]
- other energy models
- planarity preserving
- speed-ups



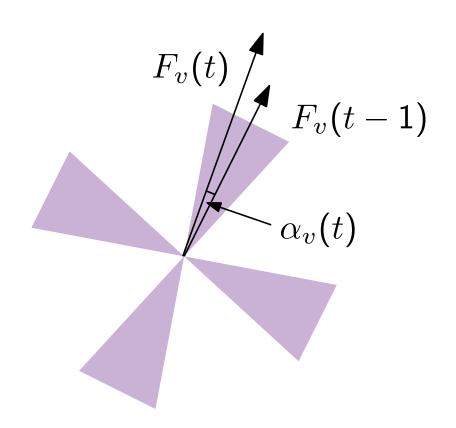
```
ForceDirected(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})
   t \leftarrow 1
   while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
         foreach u \in V do
          F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)
        foreach u \in V do
        p_u \leftarrow p_u + \delta(t) \cdot F_u(t)
t \leftarrow t + 1
   return p
```

```
ForceDirected(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})
  t \leftarrow 1
  while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
       foreach u \in V do
        F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)
      foreach u \in V do
      return p
```

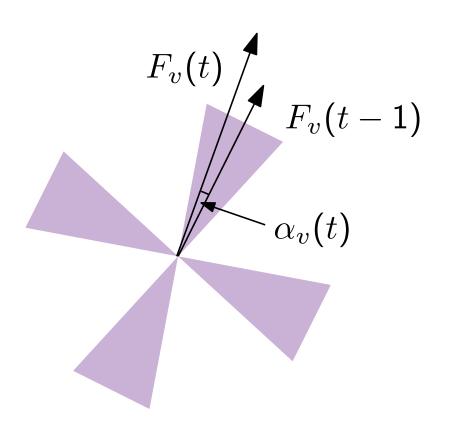
[Frick, Ludwig, Mehldau '95]



[Frick, Ludwig, Mehldau '95]



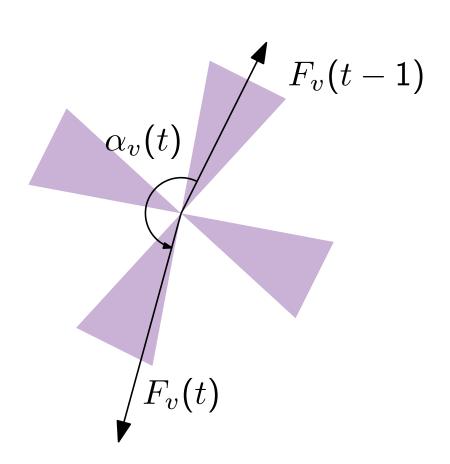
[Frick, Ludwig, Mehldau '95]



Same direction.

 \rightarrow increase temperature $\delta_v(t)$

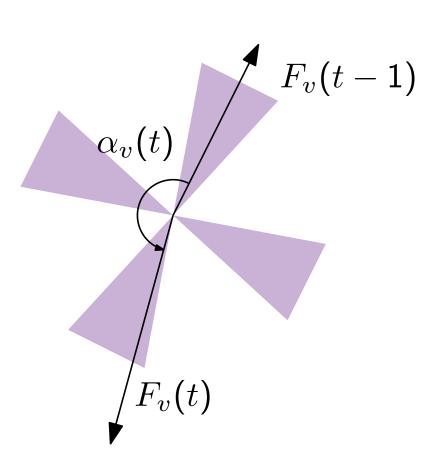
[Frick, Ludwig, Mehldau '95]



Same direction.

 \rightarrow increase temperature $\delta_v(t)$

[Frick, Ludwig, Mehldau '95]



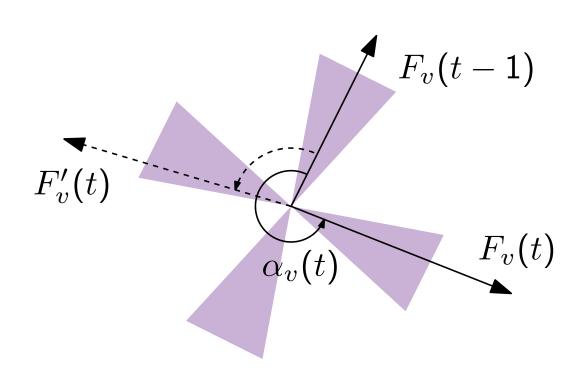
Same direction.

 \rightarrow increase temperature $\delta_v(t)$

Oscillation.

 \rightarrow decrease temperature $\delta_v(t)$

[Frick, Ludwig, Mehldau '95]



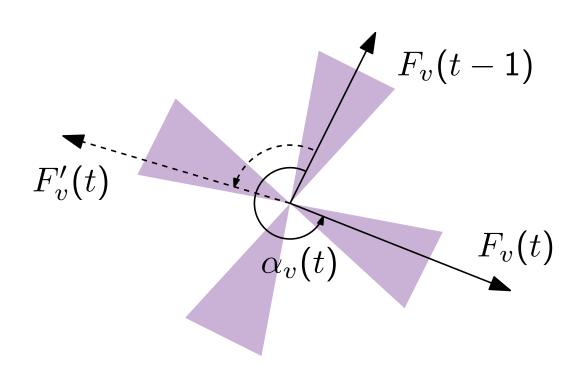
Same direction.

 \rightarrow increase temperature $\delta_v(t)$

Oscillation.

 \rightarrow decrease temperature $\delta_v(t)$

[Frick, Ludwig, Mehldau '95]



Same direction.

 \rightarrow increase temperature $\delta_v(t)$

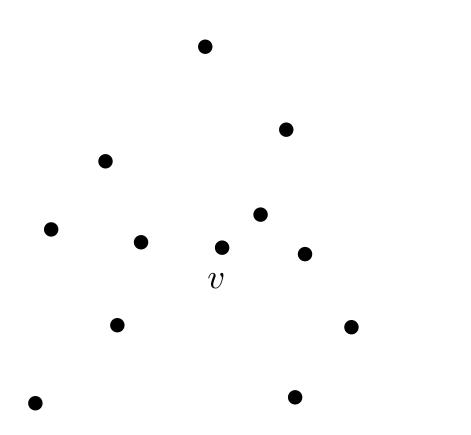
Oscillation.

 \rightarrow decrease temperature $\delta_v(t)$

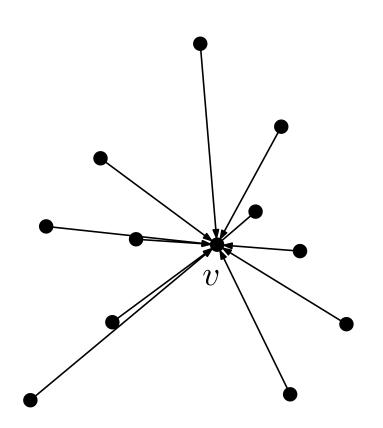
Rotation.

- count rotations
- if applicable
- \rightarrow decrease temperature $\delta_v(t)$

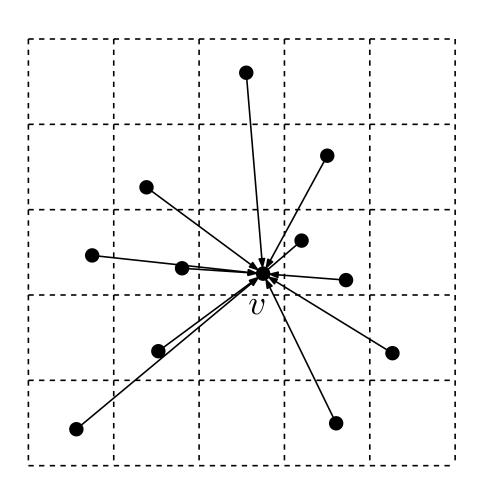
[Fruchterman & Reingold '91]



[Fruchterman & Reingold '91]

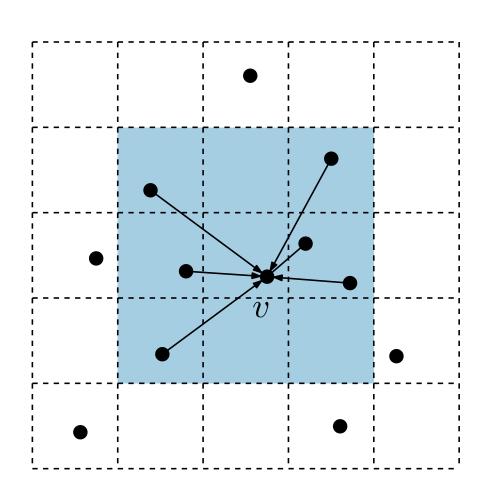


[Fruchterman & Reingold '91]



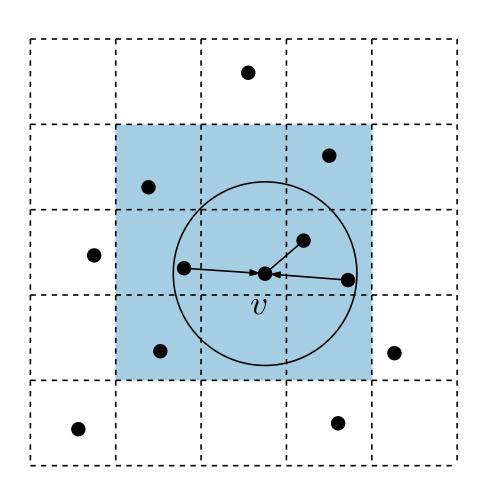
divide plane into a grid

[Fruchterman & Reingold '91]



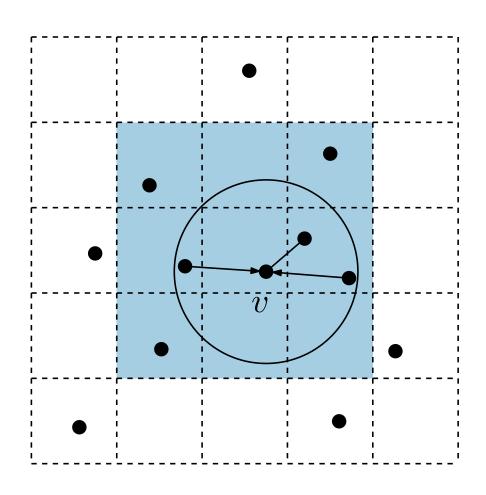
- divide plane into a grid
- consider repulsive forces only to vertices in neighboring cells

[Fruchterman & Reingold '91]



- divide plane into a grid
- consider repulsive forces only to vertices in neighboring cells
- and only if the distance is less than some threshold

[Fruchterman & Reingold '91]

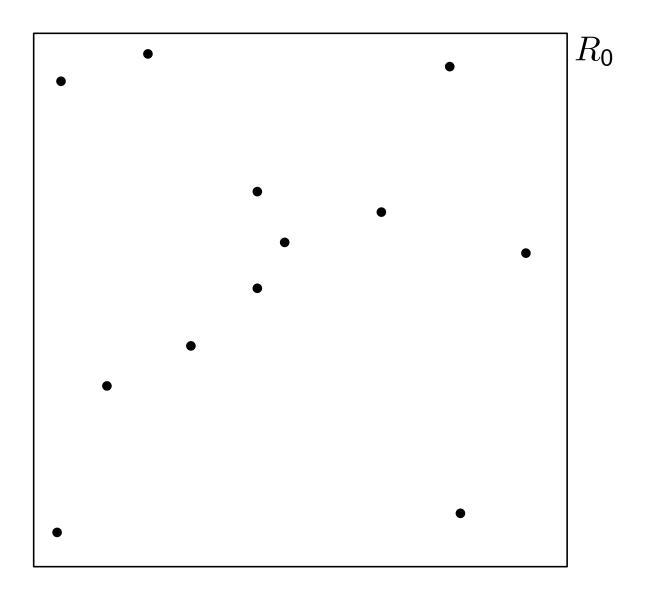


- divide plane into a grid
- consider repulsive forces only to vertices in neighboring cells
- and only if the distance is less than some threshold

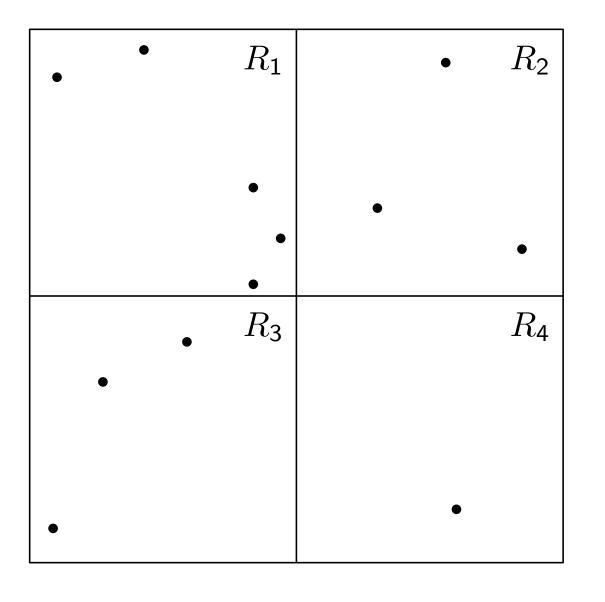
Discussion.

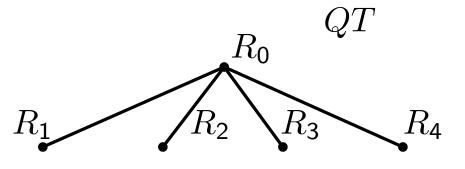
- good idea to improve actual runtime
- asymptotic runtime does not improve
- might introduce oscillation and thus a quality loss

[Barnes, Hut '86]

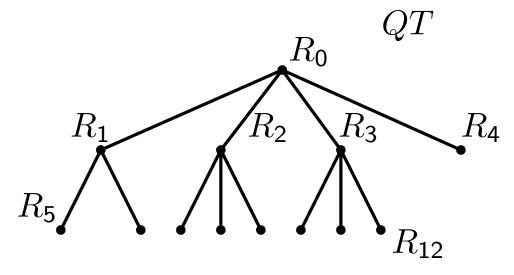


 R_0 QT

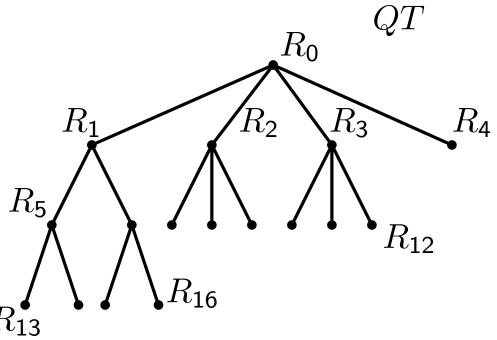


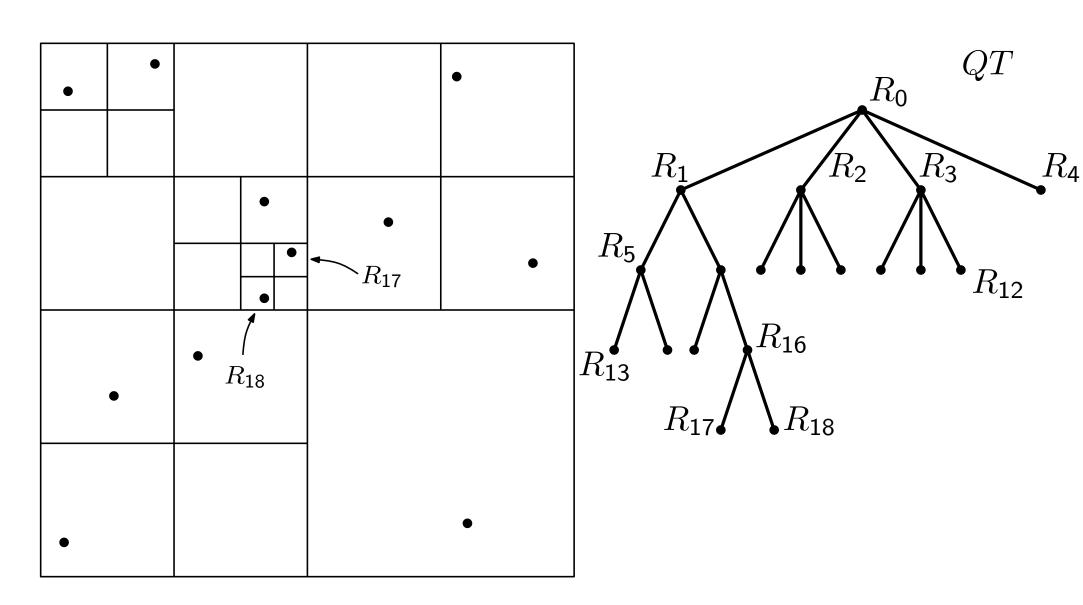


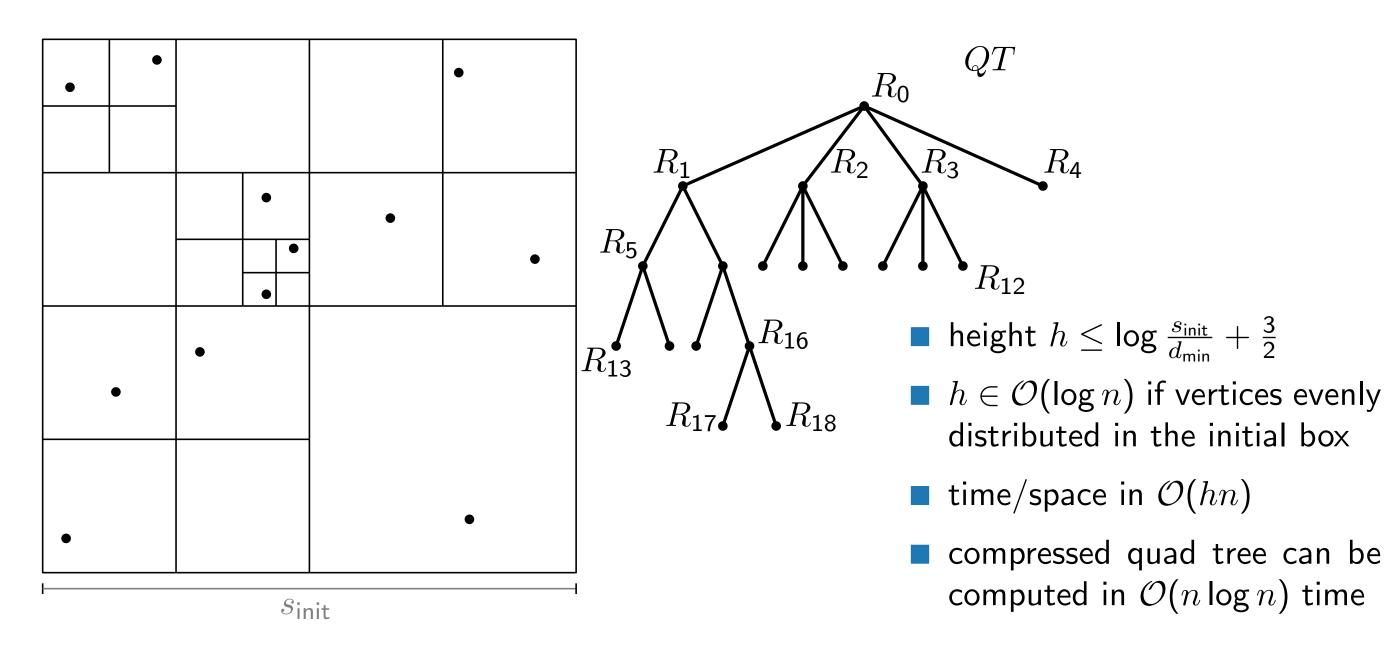
•				•	R_7
R_{5}					
		•	R_8		R_9
		•			•
	R_{6}	•			
R_{10}		R_{11}			
•					
R_{12}					
				•	
•					

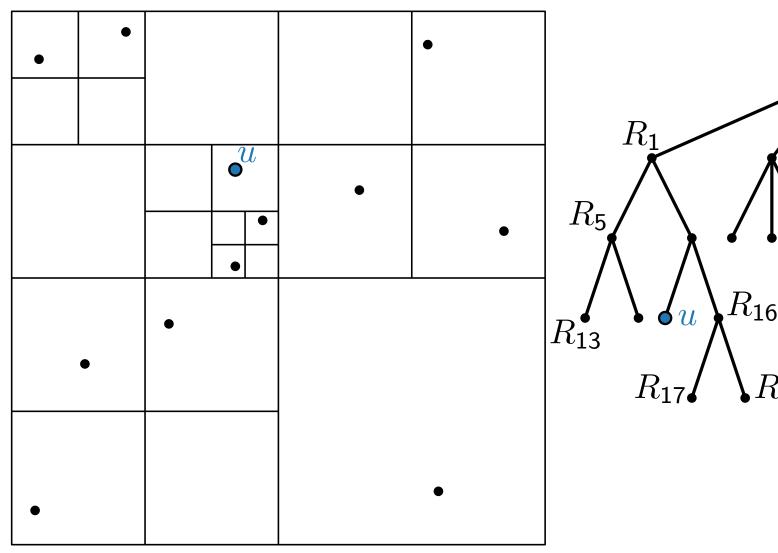


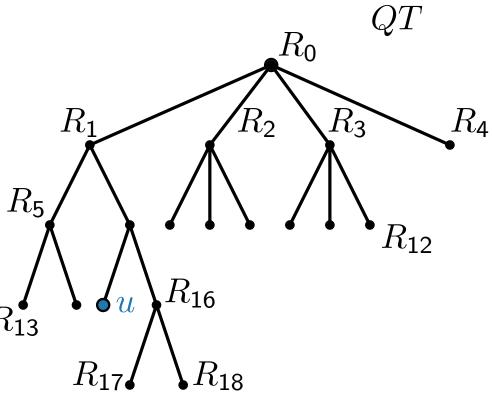
R ₁₃ •	• R ₁₄				•	
			R ₁₅ R ₁₆	•	•	
	•	•				I
•					•	







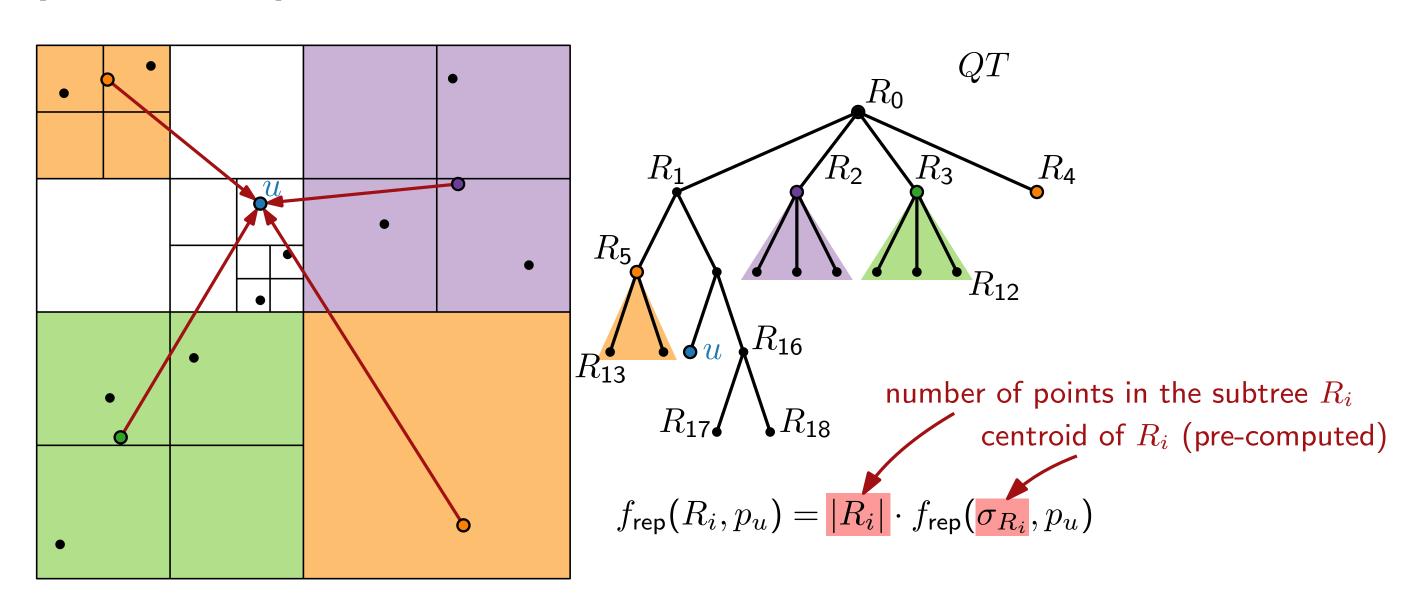




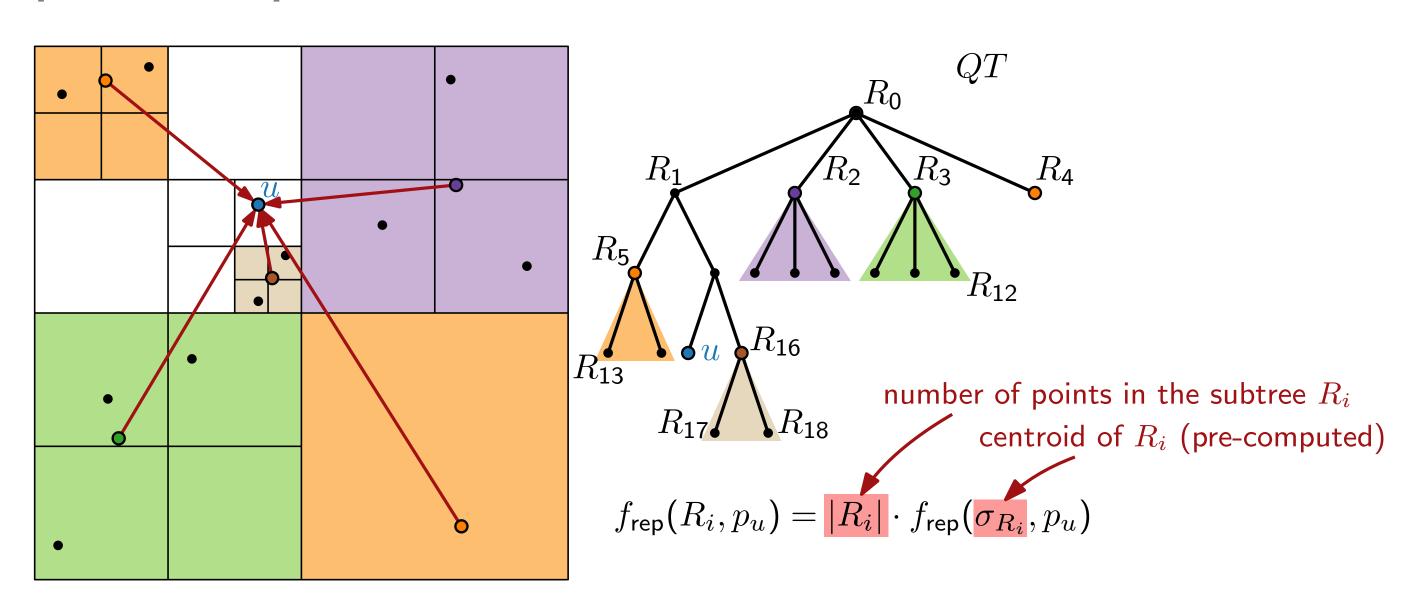
[Barnes, Hut '86]



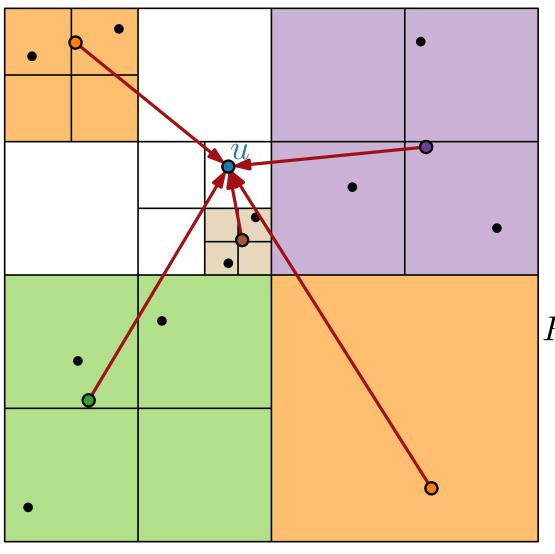
[Barnes, Hut '86]

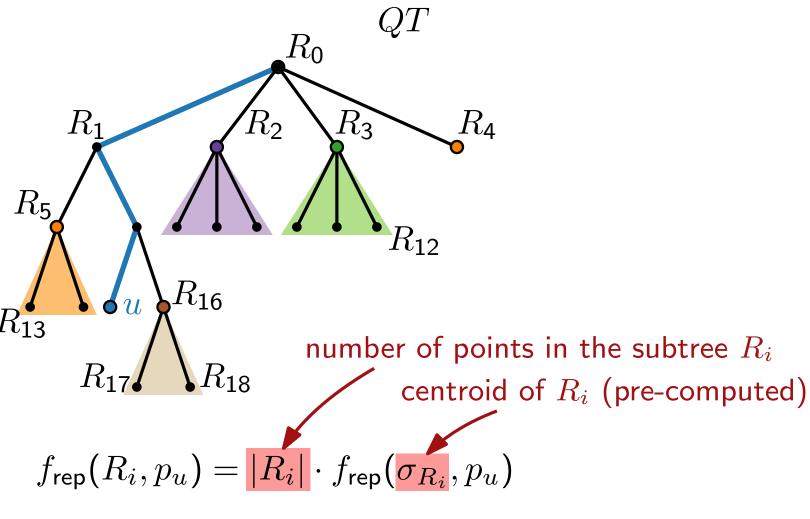


[Barnes, Hut '86]



[Barnes, Hut '86]



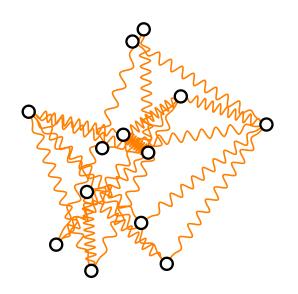


for each child R_i of a vertex on path from u to root.

Visualization of Graphs

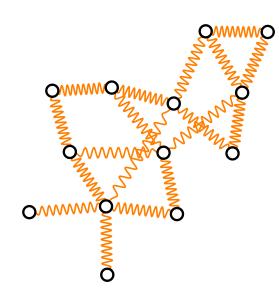
Lecture 2:

Force-Directed Drawing Algorithms



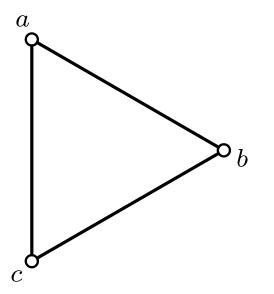
Part II:
Tutte Embeddings

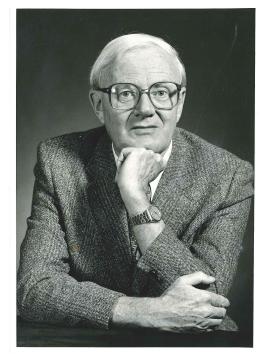
Johannes Zink



William T. Tutte 1917 - 2002

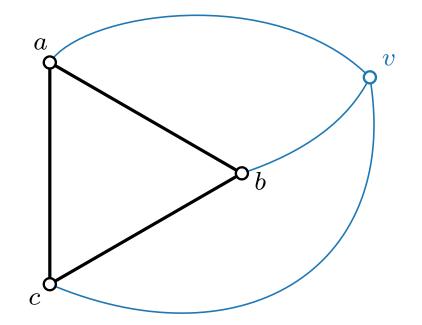
Consider a fixed triangle (a, b, c)

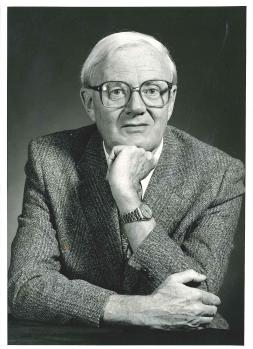




William T. Tutte 1917 – 2002

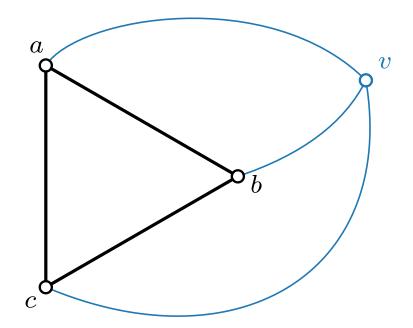
Consider a fixed triangle (a,b,c) with a common neighbor \emph{v}





William T. Tutte 1917 – 2002

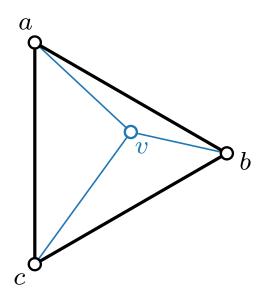
Consider a fixed triangle (a, b, c) with a common neighbor v

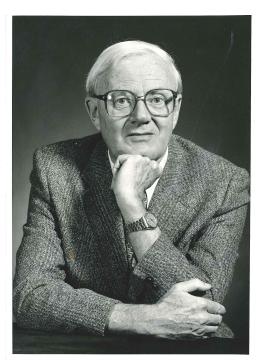




William T. Tutte 1917 – 2002

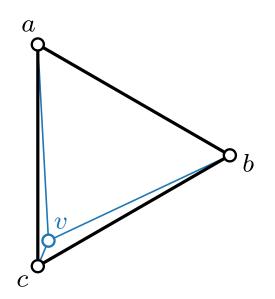
Consider a fixed triangle (a,b,c) with a common neighbor \boldsymbol{v}





William T. Tutte 1917 – 2002

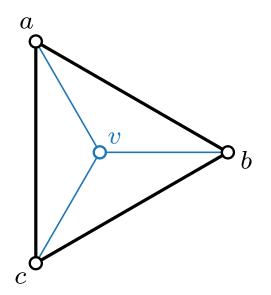
Consider a fixed triangle (a,b,c) with a common neighbor \boldsymbol{v}





William T. Tutte 1917 – 2002

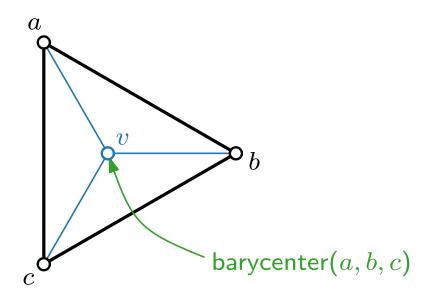
Consider a fixed triangle (a,b,c) with a common neighbor \boldsymbol{v}





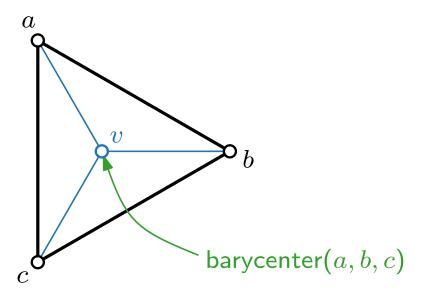
William T. Tutte 1917 – 2002

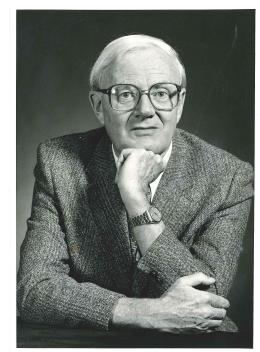
Consider a fixed triangle (a, b, c) with a common neighbor v



William T. Tutte 1917 – 2002

Consider a fixed triangle (a, b, c) with a common neighbor v

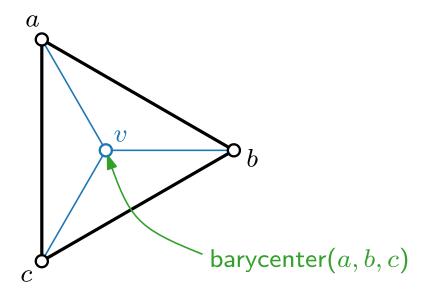




William T. Tutte 1917 – 2002

Consider a fixed triangle (a, b, c) with a common neighbor v

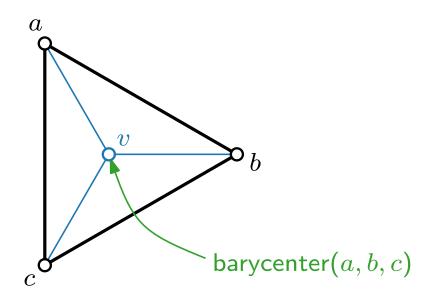
barycenter
$$(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$$



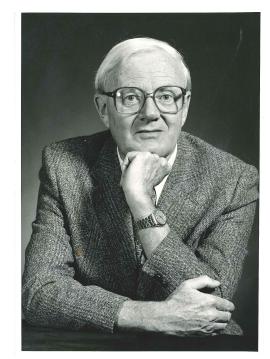
William T. Tutte 1917 – 2002

Consider a fixed triangle (a, b, c) with a common neighbor v

Where would you place v?



barycenter
$$(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$$



William T. Tutte 1917 – 2002

Idea.

Repeatedly place every vertex at barycenter of neighbors.

```
ForceDirected(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})
   t \leftarrow 1
  while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
       foreach u \in V do
         F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)
       foreach u \in V do
      return p
```

```
ForceDirected(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})
  t \leftarrow 1
  while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
       foreach u \in V do
        F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)
       foreach u \in V do
      return p
```

Goal.

 $p_u = \mathsf{barycenter}(\mathsf{Adj}[u])$

```
ForceDirected(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})
   t \leftarrow 1
   while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
        foreach u \in V do
          F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)
        foreach u \in V do
         p_u \leftarrow p_u + \delta(t) \cdot F_u(t)
                             barycenter(x_1,\ldots,x_k)=\sum_{i=1}^k x_i/k
   return p
```

```
p_u = \text{barycenter}(\text{Adj}[u])
= \sum_{v \in \text{Adj}[u]} p_v /
```

```
ForceDirected(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})
   t \leftarrow 1
   while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
        foreach u \in V do
          F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)
        foreach u \in V do
         p_u \leftarrow p_u + \delta (t) \cdot F_u(t)
                              barycenter(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k
   return p
```

```
p_u = \text{barycenter}(Adj[u])
= \sum_{v \in Adj[u]} p_v / \deg(u)
```

```
ForceDirected(G=(V,E), p=(p_v)_{v\in V}, \varepsilon>0, K\in\mathbb{N})
   t \leftarrow 1
   while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
        foreach u \in V do
          F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)
        foreach u \in V do
         p_u \leftarrow p_u + \delta(t) \cdot I \cdot F_u(t)
                             barycenter(x_1,\ldots,x_k)=\sum_{i=1}^k x_i/k
   return p
```

$$p_u = \text{barycenter}(Adj[u])$$

= $\sum_{v \in Adj[u]} p_v / \deg(u)$

$$F_u(t) = \sum_{v \in \mathsf{Adj}[u]} p_v / \mathsf{deg}(u) - p_u$$

```
ForceDirected(G=(V,E), p=(p_v)_{v\in V}, \varepsilon>0, K\in\mathbb{N})
   t \leftarrow 1
   while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
        foreach u \in V do
         F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)
        foreach u \in V do
         p_u \leftarrow p_u + \delta (t) \cdot F_u(t)
                             barycenter(x_1,\ldots,x_k)=\sum_{i=1}^k x_i/k
   return p
```

$$p_u = \text{barycenter}(Adj[u])$$

= $\sum_{v \in Adj[u]} p_v / \deg(u)$

$$F_u(t) = \sum_{v \in \mathsf{Adj}[u]} p_v / \deg(u) - p_u$$
$$= \sum_{v \in \mathsf{Adj}[u]} (p_v - p_u) / \deg(u)$$

```
ForceDirected(G=(V,E), p=(p_v)_{v\in V}, \varepsilon>0, K\in\mathbb{N})
   t \leftarrow 1
   while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
        foreach u \in V do
          F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)
        foreach u \in V do
         p_u \leftarrow p_u + \delta \approx 1 \cdot F_u(t)
       t \leftarrow t + 1
                              barycenter(x_1,\ldots,x_k)=\sum_{i=1}^k x_i/k
   return p
```

$$p_u = \text{barycenter}(Adj[u])$$

= $\sum_{v \in Adj[u]} p_v / \deg(u)$

$$egin{aligned} F_u(t) &= \sum_{v \in \mathsf{Adj}[u]} p_v / \deg(u) - p_u \ &= \sum_{v \in \mathsf{Adj}[u]} (p_v - p_u) / \deg(u) \ &= \sum_{v \in \mathsf{Adj}[u]} rac{||p_u - p_v||}{\deg(u)} \overline{p_u p_v} \end{aligned}$$

```
ForceDirected(G=(V,E), p=(p_v)_{v\in V}, \varepsilon>0, K\in\mathbb{N})
   t \leftarrow 1
   while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
        foreach u \in V do
          F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)
        foreach u \in V do
         p_u \leftarrow p_u + \delta (t) \cdot F_u(t)
      t \leftarrow t + 1
                             barycenter(x_1,\ldots,x_k)=\sum_{i=1}^k x_i/k
   return p
```

$$\overrightarrow{p_up_v} = \text{unit vector pointing}$$
 from u to v $||p_u-p_v|| = \text{Euclidean distance}$ between u and v

$$p_u = \text{barycenter}(Adj[u])$$

= $\sum_{v \in Adj[u]} p_v / \deg(u)$

$$F_{u}(t) = \sum_{v \in \mathsf{Adj}[u]} p_{v} / \deg(u) - p_{u}$$

$$= \sum_{v \in \mathsf{Adj}[u]} (p_{v} - p_{u}) / \deg(u)$$

$$= \sum_{v \in \mathsf{Adj}[u]} \frac{\|p_{u} - p_{v}\|}{\deg(u)} \overline{p_{u}p_{v}}$$

```
ForceDirected(G=(V,E), p=(p_v)_{v\in V}, \varepsilon>0, K\in\mathbb{N})
   t \leftarrow 1
   while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
        foreach u \in V do
          F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)
        foreach u \in V do
         p_u \leftarrow p_u + \delta (t) \cdot F_u(t)
      t \leftarrow t + 1
                             barycenter(x_1,\ldots,x_k)=\sum_{i=1}^k x_i/k
   return p
```

$$\overrightarrow{p_u}\overrightarrow{p_v} = \text{unit vector pointing}$$
 from u to v $||p_u-p_v|| = \text{Euclidean distance}$ between u and v

Goal.

$$p_u = \text{barycenter}(Adj[u])$$

= $\sum_{v \in Adj[u]} p_v / \deg(u)$

$$\begin{aligned} F_u(t) &= \sum_{v \in \mathsf{Adj}[u]} p_v / \deg(u) - p_u \\ &= \sum_{v \in \mathsf{Adj}[u]} (p_v - p_u) / \deg(u) \\ &= \sum_{v \in \mathsf{Adj}[u]} \frac{\|p_u - p_v\|}{\deg(u)} \overline{p_u p_v} \end{aligned}$$

ForceDirected $(G=(V,E), p=(p_v)_{v\in V}, \varepsilon>0, K\in\mathbb{N})$ $t \leftarrow 1$ while t < K and $\max_{v \in V} ||F_v(t)|| > \varepsilon$ do foreach $u \in V$ do $F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)$ foreach $u \in V$ do $p_u \leftarrow p_u + \delta (t) \cdot F_u(t)$ $t \leftarrow t + 1$ barycenter $(x_1,\ldots,x_k)=\sum_{i=1}^k x_i/k$ return p

Repulsive forces

$$f_{\mathsf{rep}}(u,v) = 0$$

$$\overrightarrow{p_up_v} = \text{unit vector pointing}$$
 from u to v $||p_u-p_v|| = \text{Euclidean distance}$ between u and v

Goal.

$$p_u = \text{barycenter}(Adj[u])$$

= $\sum_{v \in Adj[u]} p_v / \deg(u)$

$$F_u(t) = \sum_{v \in \mathsf{Adj}[u]} p_v / \deg(u) - p_u$$

$$= \sum_{v \in \mathsf{Adj}[u]} (p_v - p_u) / \deg(u)$$

$$= \sum_{v \in \mathsf{Adj}[u]} \frac{\|p_u - p_v\|}{\deg(u)} \overline{p_u p_v}$$

```
ForceDirected(G=(V,E), p=(p_v)_{v\in V}, \varepsilon>0, K\in\mathbb{N})
   t \leftarrow 1
   while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
        foreach u \in V do
         F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)
        foreach u \in V do
         p_u \leftarrow p_u + \delta (t) \cdot F_u(t)
     t \leftarrow t + 1
                             barycenter(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k
   return p
```

Repulsive forces

$$f_{\mathsf{rep}}(u,v) = 0$$

Attractive forces

$$f_{\mathsf{attr}}(u,v) = \frac{\|p_u - p_v\|}{\mathsf{deg}(u)} \overrightarrow{p_u p_v}$$

$$\overrightarrow{p_up_v} = \text{unit vector pointing}$$
 from u to v $||p_u-p_v|| = \text{Euclidean distance}$ between u and v

Goal.

$$p_u = \text{barycenter}(Adj[u])$$

= $\sum_{v \in Adi[u]} p_v / \deg(u)$

$$F_u(t) = \sum_{v \in \mathsf{Adj}[u]} p_v / \deg(u) - p_u$$

$$= \sum_{v \in \mathsf{Adj}[u]} (p_v - p_u) / \deg(u)$$

$$= \sum_{v \in \mathsf{Adj}[u]} \frac{||p_u - p_v||}{\deg(u)} \overrightarrow{p_u p_v}$$

Global minimum:
$$p_u = (0,0) \ \forall u \in V$$

Repulsive forces

$$f_{\mathsf{rep}}(u,v) = 0$$

Attractive forces

$$f_{\mathsf{attr}}(u,v) = \frac{\|p_u - p_v\|}{\mathsf{deg}(u)} \overrightarrow{p_u p_v}$$

$$\overrightarrow{p_up_v} = \text{unit vector pointing}$$
 from u to v $||p_u-p_v|| = \text{Euclidean distance}$ between u and v

Goal.

$$p_u = \text{barycenter}(\text{Adj}[u])$$

= $\sum_{v \in \text{Adi}[u]} p_v / \deg(u)$

$$egin{aligned} F_u(t) &= \sum_{v \in \mathsf{Adj}[u]} p_v / \deg(u) - p_u \ &= \sum_{v \in \mathsf{Adj}[u]} (p_v - p_u) / \deg(u) \ &= \sum_{v \in \mathsf{Adj}[u]} rac{\|p_u - p_v\|}{\deg(u)} \overline{p_u p_v} \end{aligned}$$

ForceDirected $(G=(V,E), p=(p_v)_{v\in V}, \varepsilon>0, K\in\mathbb{N})$ $t \leftarrow 1$ while t < K and $\max_{v \in V} ||F_v(t)|| > \varepsilon$ do

 $F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)$ foreach $u \in V$ do $p_u \leftarrow p_u + \delta (t) \cdot F_u(t)$

foreach $u \in V$ do

 $t \leftarrow t + 1$

return p

barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$

Global minimum: $p_u = (0,0) \ \forall u \in V$

Repulsive forces

$$f_{\mathsf{rep}}(u,v) = 0$$

Attractive forces

$$f_{\mathsf{attr}}(u,v) = \frac{\|p_u - p_v\|}{\mathsf{deg}(u)} \overrightarrow{p_u p_v}$$

Solution: fix coordinates of outer face!

 $\overrightarrow{p_u}\overrightarrow{p_v} = \text{unit vector pointing}$ from u to v $||p_u - p_v|| =$ Euclidean distance

between u and v

Goal.

$$p_u = \text{barycenter}(Adj[u])$$

= $\sum_{v \in Adi[u]} p_v / \deg(u)$

$$egin{align} F_u(t) &= \sum_{v \in \mathsf{Adj}[u]} p_v / \deg(u) - p_u \ &= \sum_{v \in \mathsf{Adj}[u]} (p_v - p_u) / \deg(u) \ &= \sum_{v \in \mathsf{Adj}[u]} rac{\|p_u - p_v\|}{\deg(u)} \overline{p_u p_v} \ \end{aligned}$$

ForceDirected $(G=(V,E), p=(p_v)_{v\in V}, \varepsilon>0, K\in\mathbb{N})$ $t \leftarrow 1$ while t < K and $\max_{v \in V} ||F_v(t)|| > \varepsilon$ do foreach $u \in V$ do $F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)$ foreach $u \in V$ do $p_u \leftarrow p_u + \delta (1 \cdot F_u(t))$

 $t \leftarrow t + 1$

return p

barycenter $(x_1,\ldots,x_k)=\sum_{i=1}^k x_i/k$

Global minimum: $p_u = (0,0) \ \forall u \in V$

Repulsive forces

$$f_{\mathsf{rep}}(u,v) = 0$$

Attractive forces

$$f_{\mathsf{attr}}(u,v) = \begin{cases} 0 & \text{if } u \text{ fixed,} \\ \frac{\|p_u - p_v\|}{\deg(u)} \overrightarrow{p_u p_v} & \text{otherwise.} \end{cases}$$

Solution: fix coordinates of outer face!

 $\overrightarrow{p_u p_v} = \text{unit vector pointing}$ from u to v $||p_u - p_v|| =$ Euclidean distance

between u and v

$$p_u = \mathsf{barycenter}(\mathsf{Adj}[u]) = \sum_{v \in \mathsf{Adj}[u]} p_v / \mathsf{deg}(u)$$

```
Goal. p_u = (x_u, y_u)

p_u = \text{barycenter}(\text{Adj}[u]) = \sum_{v \in \text{Adj}[u]} p_v / \deg(u)
```

```
Goal. p_u = (x_u, y_u)

p_u = \text{barycenter}(\text{Adj}[u]) = \sum_{v \in \text{Adj}[u]} p_v / \deg(u)

x_u = \sum_{v \in \text{Adj}[u]} x_v / \deg(u)

y_u = \sum_{v \in \text{Adj}[u]} y_v / \deg(u)
```

```
Goal. p_u = (x_u, y_u)

p_u = \text{barycenter}(\text{Adj}[u]) = \sum_{v \in \text{Adj}[u]} p_v / \deg(u)

x_u = \sum_{v \in \text{Adj}[u]} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{v \in \text{Adj}[u]} x_v

y_u = \sum_{v \in \text{Adj}[u]} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{v \in \text{Adj}[u]} y_v
```

```
Goal. p_u = (x_u, y_u)

p_u = \operatorname{barycenter}(\operatorname{Adj}[u]) = \sum_{v \in \operatorname{Adj}[u]} p_v / \operatorname{deg}(u)

x_u = \sum_{v \in \operatorname{Adj}[u]} x_v / \operatorname{deg}(u) \Leftrightarrow \operatorname{deg}(u) \cdot x_u = \sum_{v \in \operatorname{Adj}[u]} x_v \Leftrightarrow \operatorname{deg}(u) \cdot x_u - \sum_{v \in \operatorname{Adj}[u]} x_v = 0

y_u = \sum_{v \in \operatorname{Adj}[u]} y_v / \operatorname{deg}(u) \Leftrightarrow \operatorname{deg}(u) \cdot y_u = \sum_{v \in \operatorname{Adj}[u]} y_v \Leftrightarrow \operatorname{deg}(u) \cdot y_u - \sum_{v \in \operatorname{Adj}[u]} y_v = 0
```

Goal.
$$p_u = (x_u, y_u)$$

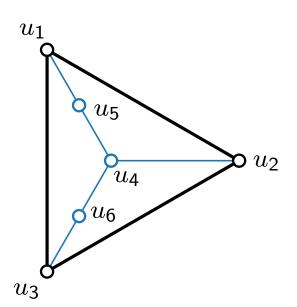
 $p_u = \text{barycenter}(\text{Adj}[u]) = \sum_{v \in \text{Adj}[u]} p_v / \deg(u)$ Two systems of linear equations:
 $x_u = \sum_{v \in \text{Adj}[u]} x_v / \deg(u) \Leftrightarrow \deg(u) \cdot x_u = \sum_{v \in \text{Adj}[u]} x_v \Leftrightarrow \deg(u) \cdot x_u - \sum_{v \in \text{Adj}[u]} x_v = 0$
 $y_u = \sum_{v \in \text{Adj}[u]} y_v / \deg(u) \Leftrightarrow \deg(u) \cdot y_u = \sum_{v \in \text{Adj}[u]} y_v \Leftrightarrow \deg(u) \cdot y_u - \sum_{v \in \text{Adj}[u]} y_v = 0$

Goal.
$$p_u = (x_u, y_u)$$
 $Ax = b$ $p_u = \operatorname{barycenter}(\operatorname{Adj}[u]) = \sum_{v \in \operatorname{Adj}[u]} p_v / \operatorname{deg}(u)$ Two systems of linear equations: $x_u = \sum_{v \in \operatorname{Adj}[u]} x_v / \operatorname{deg}(u) \Leftrightarrow \operatorname{deg}(u) \cdot x_u = \sum_{v \in \operatorname{Adj}[u]} x_v \Leftrightarrow \operatorname{deg}(u) \cdot x_u - \sum_{v \in \operatorname{Adj}[u]} x_v = 0$ $y_u = \sum_{v \in \operatorname{Adj}[u]} y_v / \operatorname{deg}(u) \Leftrightarrow \operatorname{deg}(u) \cdot y_u = \sum_{v \in \operatorname{Adj}[u]} y_v \Leftrightarrow \operatorname{deg}(u) \cdot y_u - \sum_{v \in \operatorname{Adj}[u]} y_v = 0$

Goal.
$$p_u = (x_u, y_u)$$
 $Ax = b$ $Ay = b$ $p_u = \text{barycenter}(\text{Adj}[u]) = \sum_{v \in \text{Adj}[u]} p_v / \deg(u)$ Two systems of linear equations: $x_u = \sum_{v \in \text{Adj}[u]} x_v / \deg(u) \Leftrightarrow \deg(u) \cdot x_u = \sum_{v \in \text{Adj}[u]} x_v \Leftrightarrow \deg(u) \cdot x_u - \sum_{v \in \text{Adj}[u]} x_v = 0$ $y_u = \sum_{v \in \text{Adj}[u]} y_v / \deg(u) \Leftrightarrow \deg(u) \cdot y_u = \sum_{v \in \text{Adj}[u]} y_v \Leftrightarrow \deg(u) \cdot y_u - \sum_{v \in \text{Adj}[u]} y_v = 0$

Goal.
$$p_u = (x_u, y_u)$$
 $Ax = b$ $Ay = b$ $b = (0)_n$ $p_u = \text{barycenter}(\text{Adj}[u]) = \sum_{v \in \text{Adj}[u]} p_v / \deg(u)$ Two systems of linear equations: $x_u = \sum_{v \in \text{Adj}[u]} x_v / \deg(u) \Leftrightarrow \deg(u) \cdot x_u = \sum_{v \in \text{Adj}[u]} x_v \Leftrightarrow \deg(u) \cdot x_u - \sum_{v \in \text{Adj}[u]} x_v = 0$ $y_u = \sum_{v \in \text{Adj}[u]} y_v / \deg(u) \Leftrightarrow \deg(u) \cdot y_u = \sum_{v \in \text{Adj}[u]} y_v \Leftrightarrow \deg(u) \cdot y_u - \sum_{v \in \text{Adj}[u]} y_v = 0$

Goal.
$$p_u = (x_u, y_u)$$
 $Ax = b$ $Ay = b$ $b = (0)_n$ $p_u = \text{barycenter}(\text{Adj}[u]) = \sum_{v \in \text{Adj}[u]} p_v / \deg(u)$ Two systems of linear equations: $x_u = \sum_{v \in \text{Adj}[u]} x_v / \deg(u) \Leftrightarrow \deg(u) \cdot x_u = \sum_{v \in \text{Adj}[u]} x_v \Leftrightarrow \deg(u) \cdot x_u - \sum_{v \in \text{Adj}[u]} x_v = 0$ $y_u = \sum_{v \in \text{Adj}[u]} y_v / \deg(u) \Leftrightarrow \deg(u) \cdot y_u = \sum_{v \in \text{Adj}[u]} y_v \Leftrightarrow \deg(u) \cdot y_u - \sum_{v \in \text{Adj}[u]} y_v = 0$



Goal.
$$p_u = (x_u, y_u)$$

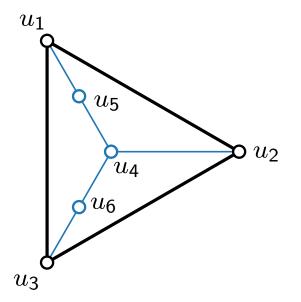
$$p_u = \mathsf{barycenter}(\mathsf{Adj}[u]) = \sum_{v \in \mathsf{Adj}[u]} p_v / \mathsf{deg}(u)$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

Two systems of linear equations:

$$x_u = \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \iff \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0$$

$$y_u = \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \iff \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0$$



A

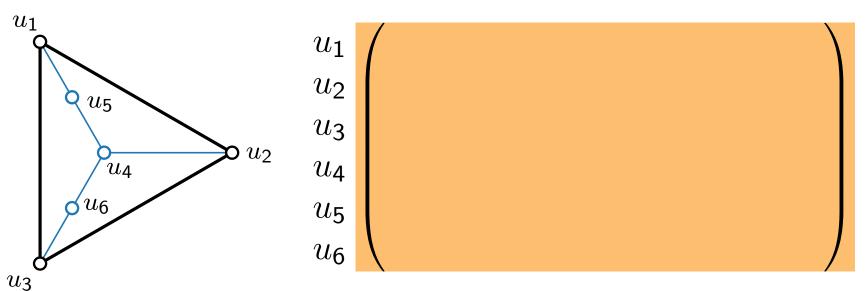
Goal.
$$p_u = (x_u, y_u)$$

 $p_u = \text{barycenter}(\text{Adj}[u]) = \sum_{v \in \text{Adj}[u]} p_v / \deg(u)$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

$$x_u = \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \iff \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0$$

$$y_u = \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \iff \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0$$



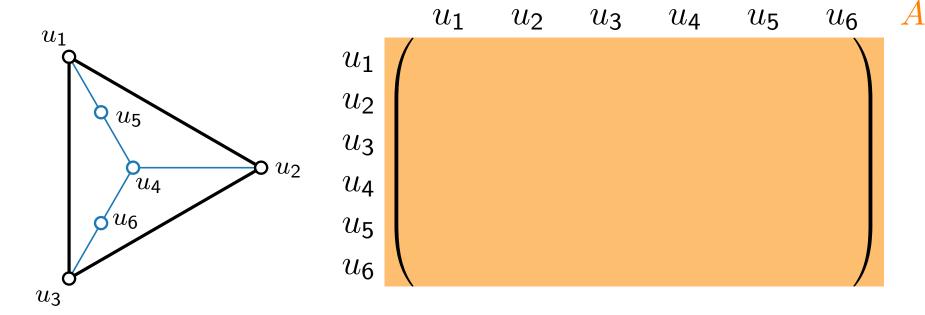
Goal.
$$p_u = (x_u, y_u)$$

 $p_u = \text{barycenter}(\text{Adj}[u]) = \sum_{v \in \text{Adj}[u]} p_v / \deg(u)$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

$$x_{u} = \sum_{v \in \mathsf{Adj}[u]} x_{v} / \deg(u) \iff \deg(u) \cdot x_{u} = \sum_{v \in \mathsf{Adj}[u]} x_{v} \iff \deg(u) \cdot x_{u} - \sum_{v \in \mathsf{Adj}[u]} x_{v} = 0$$

$$y_{u} = \sum_{v \in \mathsf{Adj}[u]} y_{v} / \deg(u) \iff \deg(u) \cdot y_{u} = \sum_{v \in \mathsf{Adj}[u]} y_{v} \iff \deg(u) \cdot y_{u} - \sum_{v \in \mathsf{Adj}[u]} y_{v} = 0$$



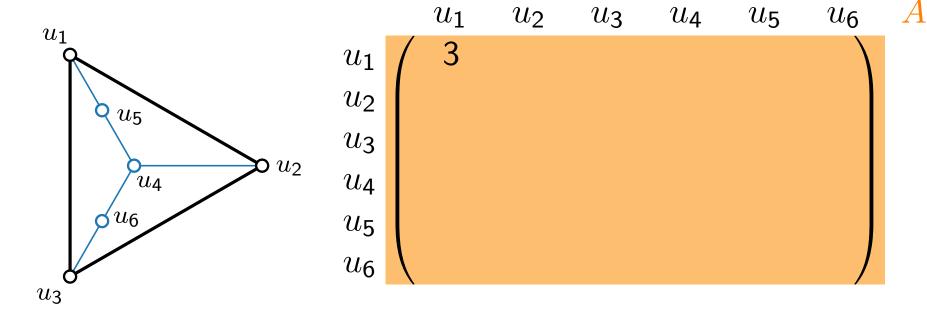
Goal.
$$p_u = (x_u, y_u)$$

$$p_u = \operatorname{barycenter}(\operatorname{Adj}[u]) = \sum_{v \in \operatorname{Adj}[u]} p_v / \operatorname{deg}(u)$$

$$x_{u} = \sum_{v \in \mathsf{Adj}[u]} x_{v} / \deg(u) \iff \deg(u) \cdot x_{u} = \sum_{v \in \mathsf{Adj}[u]} x_{v} \iff \deg(u) \cdot x_{u} - \sum_{v \in \mathsf{Adj}[u]} x_{v} = 0$$

$$y_{u} = \sum_{v \in \mathsf{Adj}[u]} y_{v} / \deg(u) \iff \deg(u) \cdot y_{u} = \sum_{v \in \mathsf{Adj}[u]} y_{v} \iff \deg(u) \cdot y_{u} - \sum_{v \in \mathsf{Adj}[u]} y_{v} = 0$$

$$y_u = \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) \ \Leftrightarrow \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \Leftrightarrow \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0$$



Ax = b Ay = b $b = (0)_n$ Two systems of linear equations:

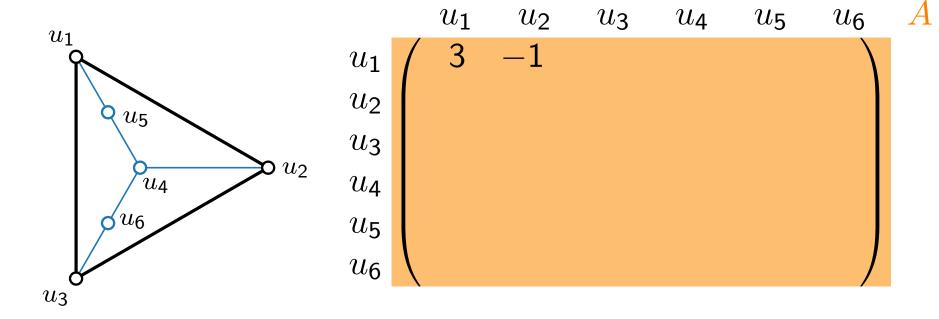
Goal.
$$p_u = (x_u, y_u)$$

 $p_u = \text{barycenter}(\text{Adj}[u]) = \sum_{v \in \text{Adj}[u]} p_v / \deg(u)$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

$$x_u = \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \iff \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0$$

$$y_u = \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \iff \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0$$

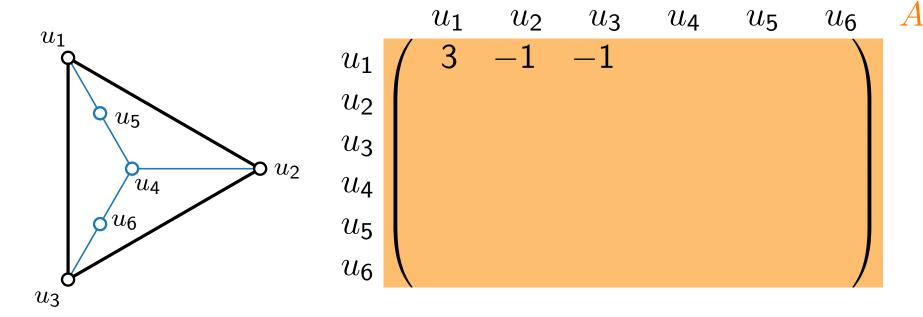


Goal.
$$p_u = (x_u, y_u)$$
 $p_u = \operatorname{barycenter}(\operatorname{Adj}[u]) = \sum_{v \in \operatorname{Adj}[u]} p_v / \operatorname{deg}(u)$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

$$x_u = \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \iff \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0$$

$$y_u = \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \iff \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0$$



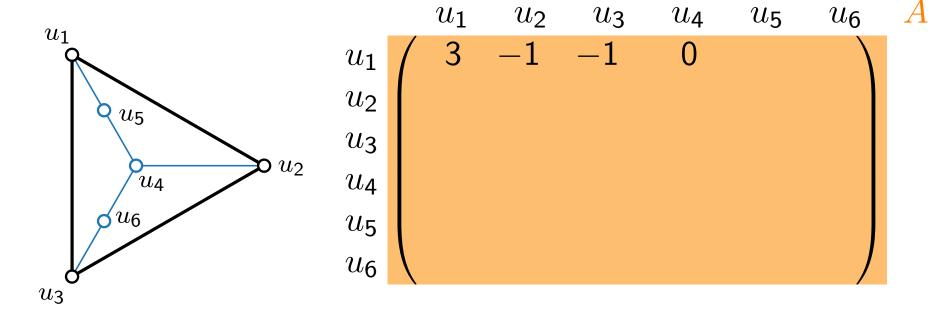
Goal.
$$p_u = (x_u, y_u)$$

 $p_u = \text{barycenter}(\text{Adj}[u]) = \sum_{v \in \text{Adj}[u]} p_v / \deg(u)$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

$$x_u = \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \iff \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0$$

$$y_u = \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \iff \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0$$



Goal.
$$p_u = (x_u, y_u)$$

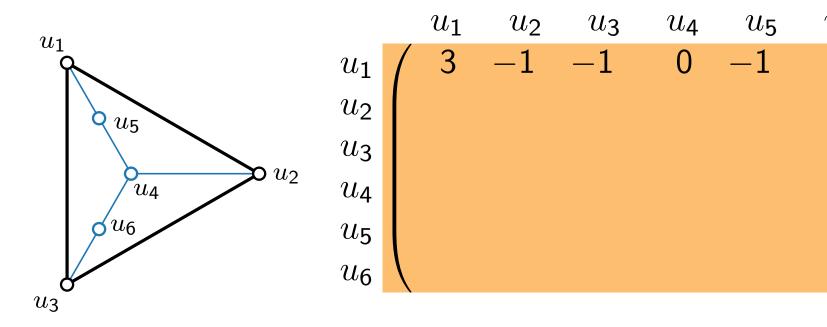
$$p_u = \mathsf{barycenter}(\mathsf{Adj}[u]) = \sum_{v \in \mathsf{Adj}[u]} p_v / \mathsf{deg}(u)$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

Two systems of linear equations:

$$x_{u} = \sum_{v \in \mathsf{Adj}[u]} x_{v} / \deg(u) \iff \deg(u) \cdot x_{u} = \sum_{v \in \mathsf{Adj}[u]} x_{v} \iff \deg(u) \cdot x_{u} - \sum_{v \in \mathsf{Adj}[u]} x_{v} = 0$$

$$y_{u} = \sum_{v \in \mathsf{Adj}[u]} y_{v} / \deg(u) \iff \deg(u) \cdot y_{u} = \sum_{v \in \mathsf{Adj}[u]} y_{v} \iff \deg(u) \cdot y_{u} - \sum_{v \in \mathsf{Adj}[u]} y_{v} = 0$$



A

Goal.
$$p_u = (x_u, y_u)$$

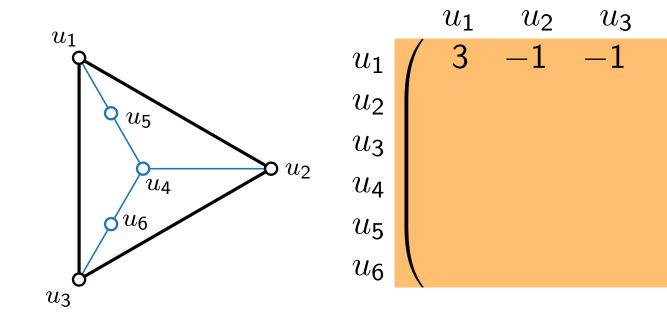
$$p_u = \mathsf{barycenter}(\mathsf{Adj}[u]) = \sum_{v \in \mathsf{Adj}[u]} p_v / \mathsf{deg}(u)$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

Two systems of linear equations:

$$x_u = \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \iff \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0$$

$$y_u = \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \iff \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0$$



A

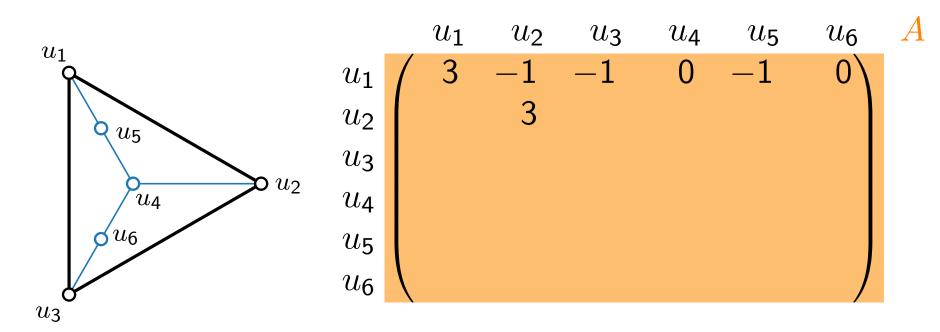
Goal.
$$p_u = (x_u, y_u)$$

 $p_u = \text{barycenter}(\text{Adj}[u]) = \sum_{v \in \text{Adj}[u]} p_v / \deg(u)$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

$$x_u = \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \iff \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0$$

$$y_u = \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \iff \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0$$



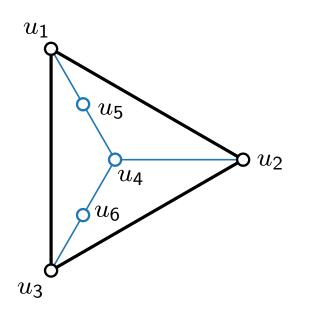
Goal.
$$p_u = (x_u, y_u)$$

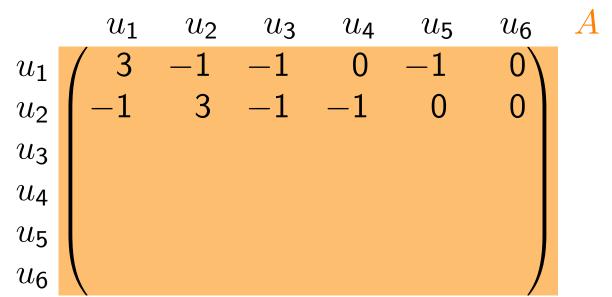
$$p_u = \mathsf{barycenter}(\mathsf{Adj}[u]) = \sum_{v \in \mathsf{Adj}[u]} p_v / \mathsf{deg}(u)$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

$$x_u = \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \iff \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0$$

$$y_u = \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \iff \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0$$





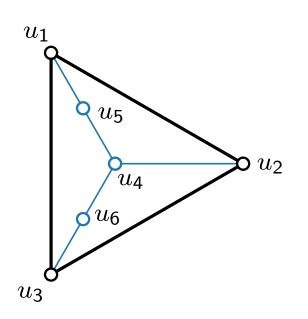
Goal.
$$p_u = (x_u, y_u)$$

$$p_u = \mathsf{barycenter}(\mathsf{Adj}[u]) = \sum_{v \in \mathsf{Adj}[u]} p_v / \mathsf{deg}(u)$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

$$x_u = \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \iff \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0$$

$$y_u = \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \iff \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0$$



Goal.
$$p_u = (x_u, y_u)$$

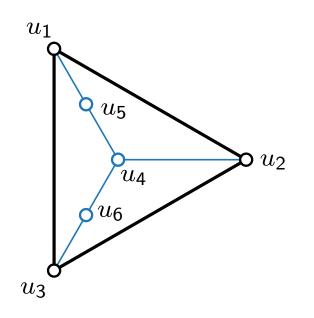
$$p_u = \mathsf{barycenter}(\mathsf{Adj}[u]) = \sum_{v \in \mathsf{Adj}[u]} p_v / \mathsf{deg}(u)$$

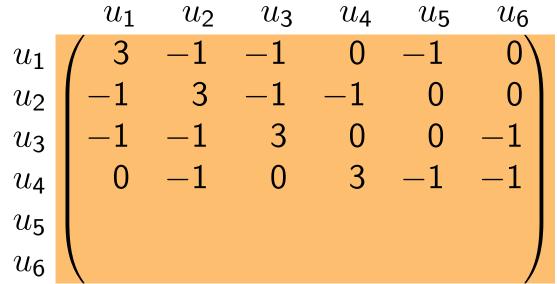
$$Ax = b$$
 $Ay = b$ $b = (0)_n$

Two systems of linear equations:

$$x_u = \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \iff \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0$$

$$y_u = \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \iff \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0$$





A

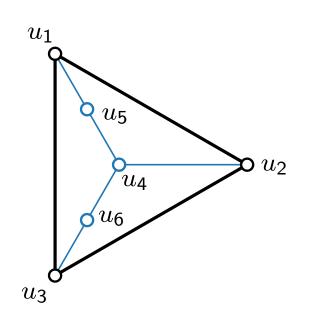
Goal.
$$p_u = (x_u, y_u)$$

$$p_u = \mathsf{barycenter}(\mathsf{Adj}[u]) = \sum_{v \in \mathsf{Adj}[u]} p_v / \mathsf{deg}(u)$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

$$x_{u} = \sum_{v \in \mathsf{Adj}[u]} x_{v} / \deg(u) \iff \deg(u) \cdot x_{u} = \sum_{v \in \mathsf{Adj}[u]} x_{v} \iff \deg(u) \cdot x_{u} - \sum_{v \in \mathsf{Adj}[u]} x_{v} = 0$$

$$y_{u} = \sum_{v \in \mathsf{Adj}[u]} y_{v} / \deg(u) \iff \deg(u) \cdot y_{u} = \sum_{v \in \mathsf{Adj}[u]} y_{v} \iff \deg(u) \cdot y_{u} - \sum_{v \in \mathsf{Adj}[u]} y_{v} = 0$$



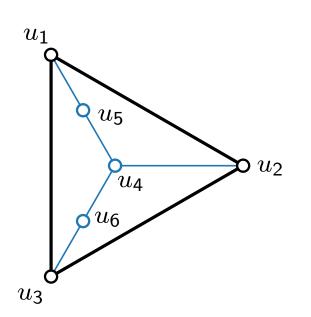
Goal.
$$p_u = (x_u, y_u)$$

$$p_u = \mathsf{barycenter}(\mathsf{Adj}[u]) = \sum_{v \in \mathsf{Adj}[u]} p_v / \mathsf{deg}(u)$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

$$x_u = \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \iff \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0$$

$$y_u = \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \iff \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0$$



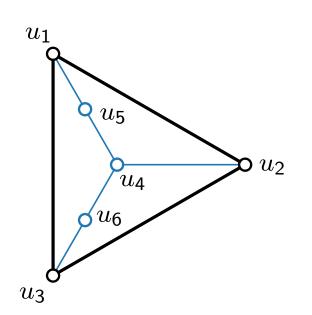
Goal.
$$p_u = (x_u, y_u)$$

$$p_u = \mathsf{barycenter}(\mathsf{Adj}[u]) = \sum_{v \in \mathsf{Adj}[u]} p_v / \mathsf{deg}(u)$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

$$x_u = \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \iff \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0$$

$$y_u = \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \iff \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0$$



$$A_{ii} = \deg(u_i)$$

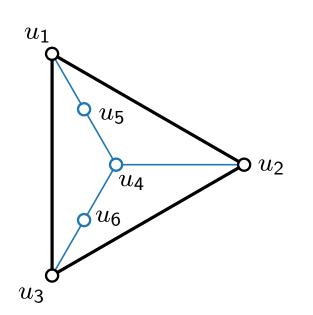
Goal.
$$p_u = (x_u, y_u)$$

$$p_u = \mathsf{barycenter}(\mathsf{Adj}[u]) = \sum_{v \in \mathsf{Adi}[u]} p_v / \mathsf{deg}(u)$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

$$x_u = \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \iff \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0$$

$$y_u = \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \iff \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0$$



$$A_{ii} = \deg(u_i)$$

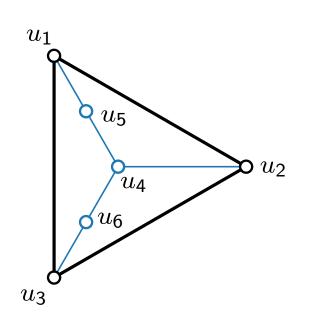
$$A_{ii} : u_i = \begin{cases} -1 & u_i u_j \\ \end{cases}$$

Goal.
$$p_u = (x_u, y_u)$$

$$p_u = \mathsf{barycenter}(\mathsf{Adj}[u]) = \sum_{v \in \mathsf{Adi}[u]} p_v / \mathsf{deg}(u)$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

$$\begin{aligned} x_u &= \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) &\Leftrightarrow \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \Leftrightarrow \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0 \\ y_u &= \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) &\Leftrightarrow \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \Leftrightarrow \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0 \end{aligned}$$



Laplacian matrix of
$$G$$

$$A_{ii} = \deg(u_i)$$

$$\int -1 \quad u_i u_i$$

$$A_{ij,i\neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_j \notin E \end{cases}$$

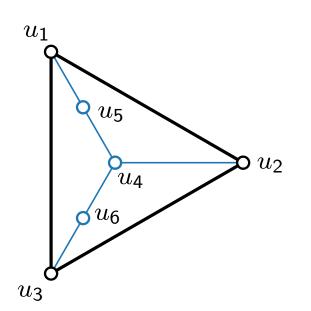
Goal.
$$p_u = (x_u, y_u)$$

$$p_u = \mathsf{barycenter}(\mathsf{Adj}[u]) = \sum_{v \in \mathsf{Adj}[u]} p_v / \mathsf{deg}(u)$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

Two systems of linear equations:

$$\begin{aligned} x_u &= \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) &\Leftrightarrow \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \Leftrightarrow \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0 \\ y_u &= \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) &\Leftrightarrow \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \Leftrightarrow \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0 \end{aligned}$$



Laplacian matrix of
$$G$$

$$A_{ii} = \deg(u_i)$$

$$A_{ij,i \neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_j \notin E \end{cases}$$

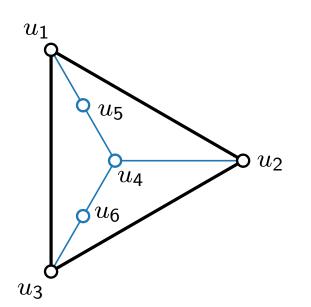
unique solution

Goal.
$$p_u = (x_u, y_u)$$

$$p_u = \mathsf{barycenter}(\mathsf{Adj}[u]) = \sum_{v \in \mathsf{Adi}[u]} p_v / \mathsf{deg}(u)$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

$$\begin{aligned} x_u &= \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) &\Leftrightarrow \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \Leftrightarrow \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0 \\ y_u &= \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) &\Leftrightarrow \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \Leftrightarrow \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0 \end{aligned}$$



Laplacian matrix of
$${\cal G}$$

variables, constraints,
$$\det(A) =$$
 unique solution

$$A_{ii} = \deg(u_i)$$

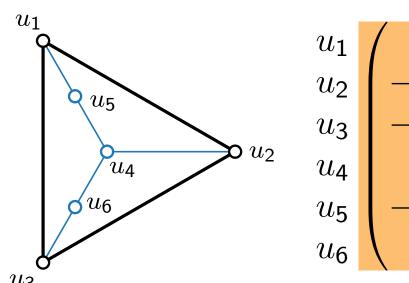
$$A_{ij,i\neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_j \notin E \end{cases}$$

Goal.
$$p_u = (x_u, y_u)$$

$$p_u = \mathsf{barycenter}(\mathsf{Adj}[u]) = \sum_{v \in \mathsf{Adi}[u]} p_v / \mathsf{deg}(u)$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

$$\begin{aligned} x_u &= \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) &\Leftrightarrow \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \Leftrightarrow \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0 \\ y_u &= \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) &\Leftrightarrow \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \Leftrightarrow \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0 \end{aligned}$$



Laplacian matrix of
$$G$$

$$n$$
 variables, constraints, $\det(A) =$ unique solution

$$A_{ii} = \deg(u_i)$$

$$A_{ij,i\neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_j \notin E \end{cases}$$

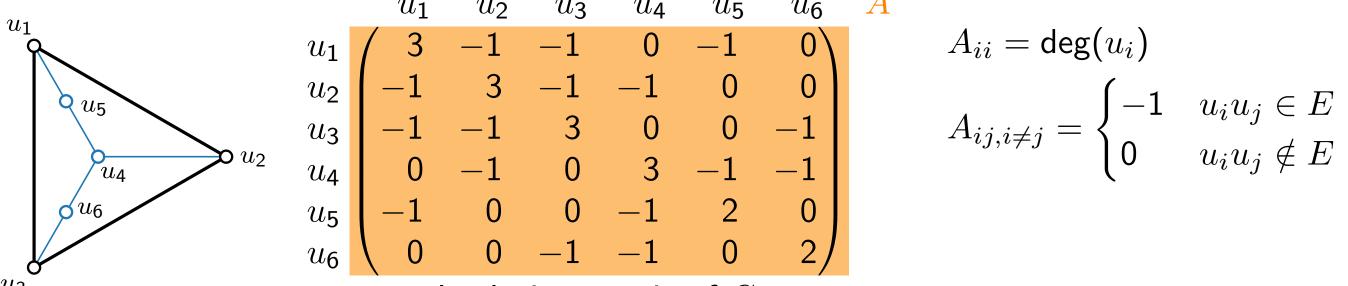
Goal.
$$p_u = (x_u, y_u)$$

$$p_u = \mathsf{barycenter}(\mathsf{Adj}[u]) = \sum_{v \in \mathsf{Adi}[u]} p_v / \mathsf{deg}(u)$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

Two systems of linear equations:

$$\begin{aligned} x_u &= \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) &\Leftrightarrow \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \Leftrightarrow \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0 \\ y_u &= \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) &\Leftrightarrow \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \Leftrightarrow \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0 \end{aligned}$$



$$A_{ii} = \deg(u_i)$$

$$A_{ij,i \neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_i \notin E \end{cases}$$

Laplacian matrix of G

$$n$$
 variables, n constraints, $\det(A) =$ unique solution

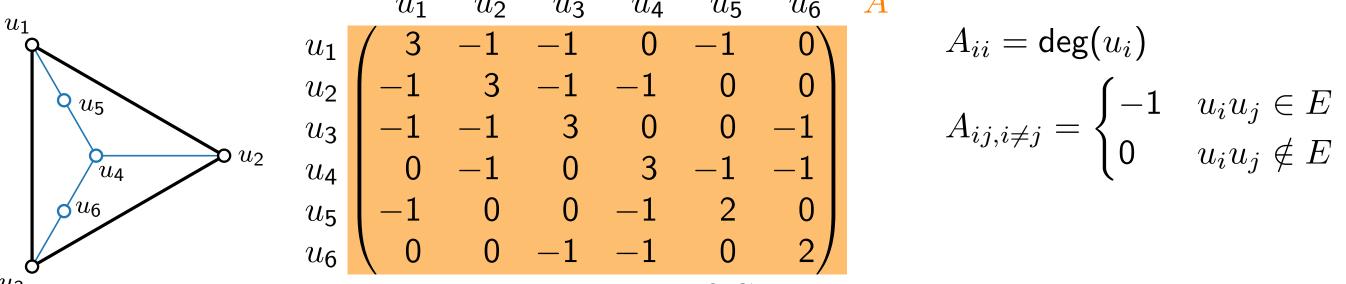
Goal.
$$p_u = (x_u, y_u)$$

$$p_u = \mathsf{barycenter}(\mathsf{Adj}[u]) = \sum_{v \in \mathsf{Adi}[u]} p_v / \mathsf{deg}(u)$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

Two systems of linear equations:

$$\begin{aligned} x_u &= \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) &\Leftrightarrow \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \Leftrightarrow \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0 \\ y_u &= \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) &\Leftrightarrow \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \Leftrightarrow \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0 \end{aligned}$$



Laplacian matrix of G

n variables, n constraints, det(A) = 0unique solution

$$A_{ii} = \deg(u_i)$$

$$A_{ij,i\neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_j \notin E \end{cases}$$

Goal.
$$p_u = (x_u, y_u)$$

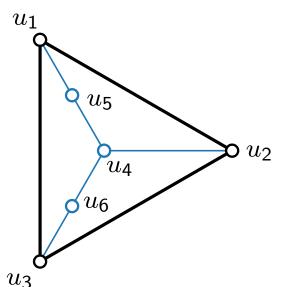
$$p_u = \mathsf{barycenter}(\mathsf{Adj}[u]) = \sum_{v \in \mathsf{Adi}[u]} p_v / \mathsf{deg}(u)$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

Two systems of linear equations:

$$x_u = \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \iff \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0$$

$$y_u = \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \iff \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0$$



$$A_{ii} = \deg(u_i)$$
 $A_{ij,i
eq j} = egin{cases} -1 & u_i u_j \in E \ 0 & u_i u_j
otin E \end{cases}$

Laplacian matrix of G

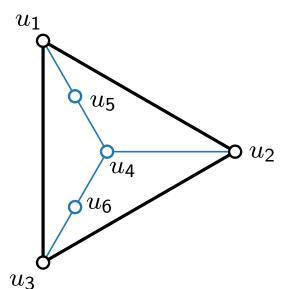
n variables, n constraints, det(A) = 0 \Rightarrow no unique solution

Goal.
$$p_u = (x_u, y_u)$$

$$p_u = \mathsf{barycenter}(\mathsf{Adj}[u]) = \sum_{v \in \mathsf{Adj}[u]} p_v / \mathsf{deg}(u)$$

$$x_u = \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \iff \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0$$

$$y_u = \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \iff \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0$$



Laplacian matrix of G

n variables, n constraints, det(A) = 0 \Rightarrow no unique solution

$$\log(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} v_v \in \mathsf{Adj}[u]$$

Ax = b Ay = b $b = (0)_n$

Two systems of linear equations:

$$A_{ii} = \deg(u_i)$$

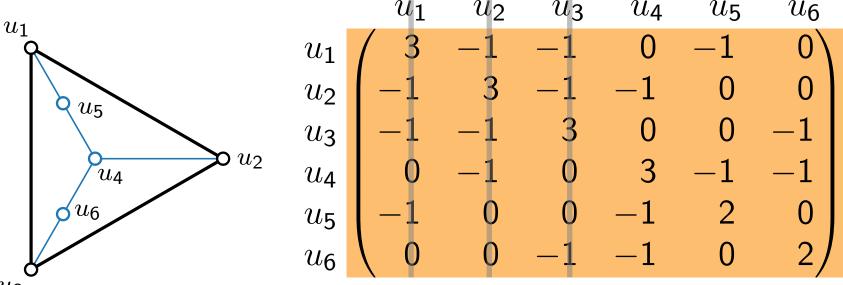
$$A_{ij,i\neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_j \notin E \end{cases}$$

Goal.
$$p_u = (x_u, y_u)$$

$$p_u = \mathsf{barycenter}(\mathsf{Adj}[u]) = \sum_{v \in \mathsf{Adj}[u]} p_v / \mathsf{deg}(u)$$

$$x_{u} = \sum_{v \in \mathsf{Adj}[u]} x_{v} / \deg(u) \iff \deg(u) \cdot x_{u} = \sum_{v \in \mathsf{Adj}[u]} x_{v} \iff \deg(u) \cdot x_{u} - \sum_{v \in \mathsf{Adj}[u]} x_{v} = 0$$

$$y_{u} = \sum_{v \in \mathsf{Adj}[u]} y_{v} / \deg(u) \iff \deg(u) \cdot y_{u} = \sum_{v \in \mathsf{Adj}[u]} y_{v} \iff \deg(u) \cdot y_{u} - \sum_{v \in \mathsf{Adj}[u]} y_{v} = 0$$



Laplacian matrix of G

$$n$$
 variables, n constraints, $\det(A) = 0$ \Rightarrow no unique solution

$$\Rightarrow \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0$$

 $\Rightarrow \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0$

Two systems of linear equations:

Ax = b Ay = b $b = (0)_n$

$$A_{ii} = \deg(u_i)$$

$$A_{ij,i\neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_j \notin E \end{cases}$$

Goal.
$$p_u = (x_u, y_u)$$

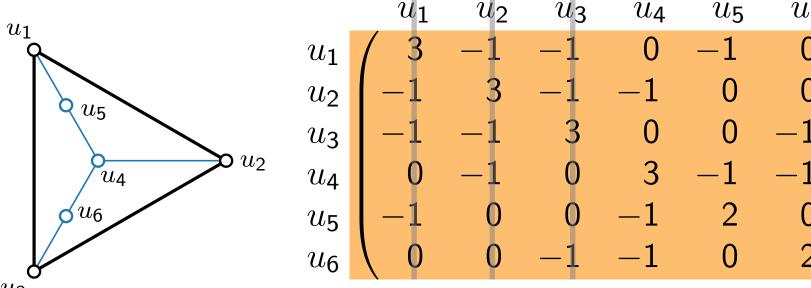
$$p_u = \mathsf{barycenter}(\mathsf{Adj}[u]) = \sum_{v \in \mathsf{Adj}[u]} p_v / \mathsf{deg}(u)$$

$$Ax = b \qquad Ay = b \qquad b = (0)_n$$

Two systems of linear equations:

$$x_u = \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \iff \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0$$

$$y_u = \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \iff \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0$$



Laplacian matrix of G

n variables, k constraints, $\det(A) = 0$ k = # free vertices \Rightarrow no unique solution

$$A_{ii} = \deg(u_i)$$

$$A_{ij,i \neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_j \notin E \end{cases}$$

Goal.
$$p_u = (x_u, y_u)$$

k = #free vertices

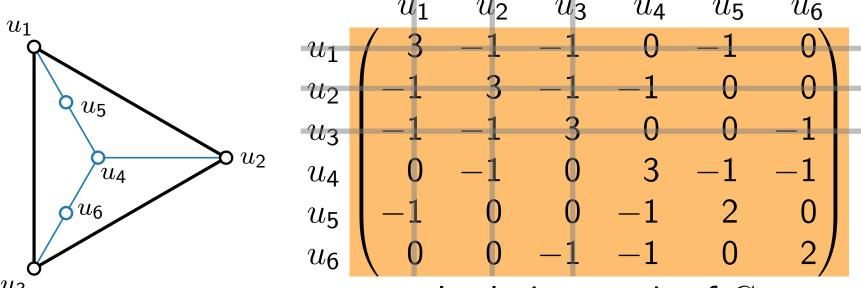
$$p_u = \mathsf{barycenter}(\mathsf{Adj}[u]) = \sum_{v \in \mathsf{Adj}[u]} p_v / \mathsf{deg}(u)$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

Two systems of linear equations:

$$x_u = \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \iff \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0$$

$$y_u = \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \iff \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0$$



Laplacian matrix of G

n variables, k constraints, det(A) = 0 \Rightarrow no unique solution

$$A_{ii} = \deg(u_i)$$

$$A_{ij,i \neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_j \notin E \end{cases}$$

Goal.
$$p_u = (x_u, y_u)$$

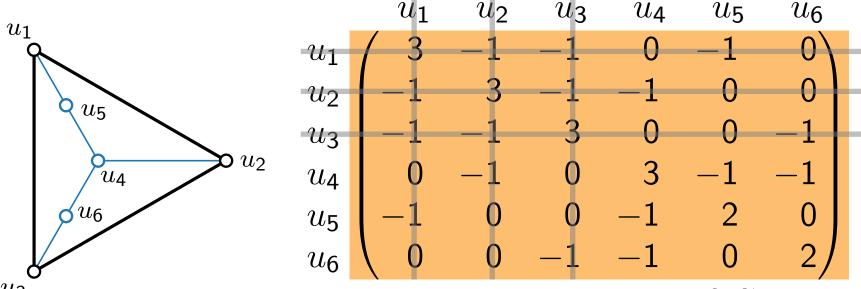
$$p_u = \mathsf{barycenter}(\mathsf{Adj}[u]) = \sum_{v \in \mathsf{Adj}[u]} p_v / \mathsf{deg}(u)$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

Two systems of linear equations:

$$x_u = \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \iff \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0$$

$$y_u = \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \iff \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0$$



Laplacian matrix of G

k variables, k constraints, det(A) = 0 \Rightarrow no unique solution k = #free vertices

$$A_{ii} = \deg(u_i)$$

$$A_{ij,i\neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_j \notin E \end{cases}$$

Goal.
$$p_u = (x_u, y_u)$$

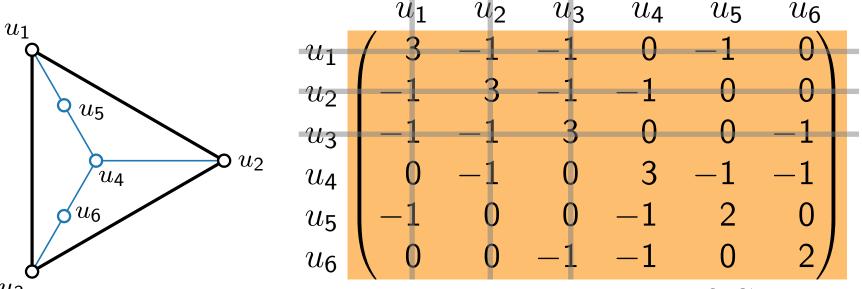
$$p_u = \text{barycenter}(Adj[u]) = \sum_{v \in Adj[u]} p_v / \deg(u)$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

Two systems of linear equations:

$$x_u = \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \iff \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0$$

$$y_u = \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \iff \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0$$



Laplacian matrix of G

k variables, k constraints, det(A) > 0 \Rightarrow no unique solution k = #free vertices

$$A_{ii} = \deg(u_i)$$

$$A_{ij,i \neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_j \notin E \end{cases}$$

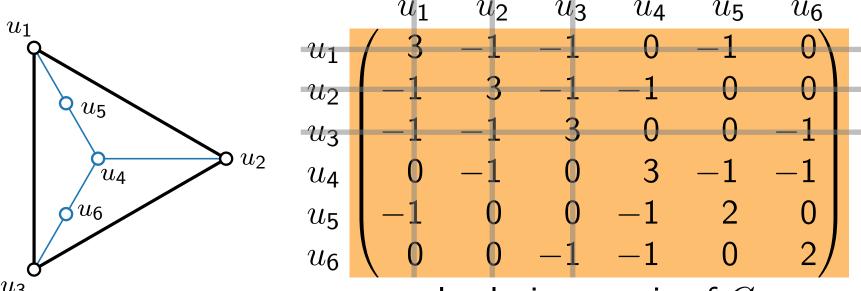
Goal.
$$p_u = (x_u, y_u)$$

$$p_u = \mathsf{barycenter}(\mathsf{Adj}[u]) = \sum_{v \in \mathsf{Adj}[u]} p_v / \mathsf{deg}(u)$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

Two systems of linear equations:

$$\begin{aligned} x_u &= \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) &\Leftrightarrow \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \Leftrightarrow \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0 \\ y_u &= \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) &\Leftrightarrow \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \Leftrightarrow \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0 \end{aligned}$$



Laplacian matrix of G

k variables, k constraints, $\det(A) > 0$

$$k = \#$$
free vertices

 \Rightarrow unique solution

$$A_{ii} = \deg(u_i)$$

$$A_{ij,i\neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_j \notin E \end{cases}$$

Goal. $p_u = (x_u, y_u)$ $p_u = \text{barycenter}(\text{Adj}[u]) =$

Theorem.

Tutte's barycentric algorithm admits a unique solution. It can be computed in polynomial time.

$$x_{u} = \sum_{v \in \mathsf{Adj}[u]} x_{v} / \deg(u) \iff \deg(u) \cdot x_{u} = \sum_{v \in \mathsf{Adj}[u]} x_{v} \iff \deg(u) \cdot x_{u} - \sum_{v \in \mathsf{Adj}[u]} x_{v} = 0$$

$$y_{u} = \sum_{v \in \mathsf{Adj}[u]} y_{v} / \deg(u) \iff \deg(u) \cdot y_{u} = \sum_{v \in \mathsf{Adj}[u]} y_{v} \iff \deg(u) \cdot y_{u} - \sum_{v \in \mathsf{Adj}[u]} y_{v} = 0$$



$$A_{ij,i\neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_j \notin E \end{cases}$$

 $A_{ii} = \deg(u_i)$

Solution: we don't need to change the fixed vertices & constraints dependent on fixed vertices are constant and can be moved into b

Laplacian matrix of G

k variables, k constraints, det(A) > 0

k = #free vertices

 \Rightarrow unique solution

System of Linear Equations

Goal. $p_u = (x_u, y_u)$ $p_u = \text{barycenter}(\text{Adj}[u]) =$

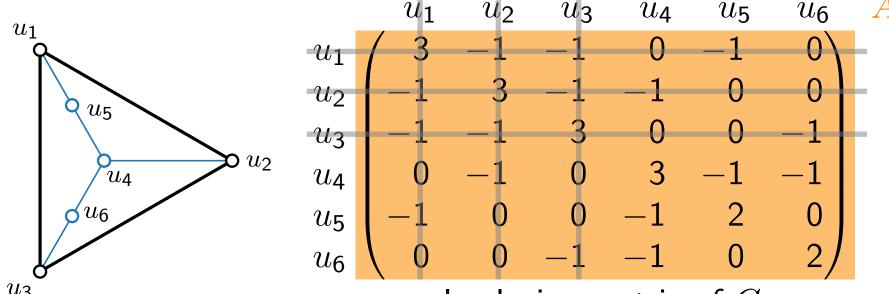
Theorem.

Tutte drawing

Tutte's barycentric algorithm admits a unique solution. It can be computed in polynomial time.

$$x_{u} = \sum_{v \in \mathsf{Adj}[u]} x_{v} / \deg(u) \iff \deg(u) \cdot x_{u} = \sum_{v \in \mathsf{Adj}[u]} x_{v} \iff \deg(u) \cdot x_{u} - \sum_{v \in \mathsf{Adj}[u]} x_{v} = 0$$

$$y_{u} = \sum_{v \in \mathsf{Adj}[u]} y_{v} / \deg(u) \iff \deg(u) \cdot y_{u} = \sum_{v \in \mathsf{Adj}[u]} y_{v} \iff \deg(u) \cdot y_{u} - \sum_{v \in \mathsf{Adj}[u]} y_{v} = 0$$



Laplacian matrix of G

k variables, k constraints, $\det(A) > 0$

$$k = \#$$
free vertices

 \Rightarrow unique solution

$$A_{ii} = \deg(u_i)$$

$$A_{ij,i \neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_j \notin E \end{cases}$$

Solution: we don't need to change the fixed vertices & constraints dependent on fixed vertices are constant and can be moved into b

System of Linear Equations

solve two systems of linear equations

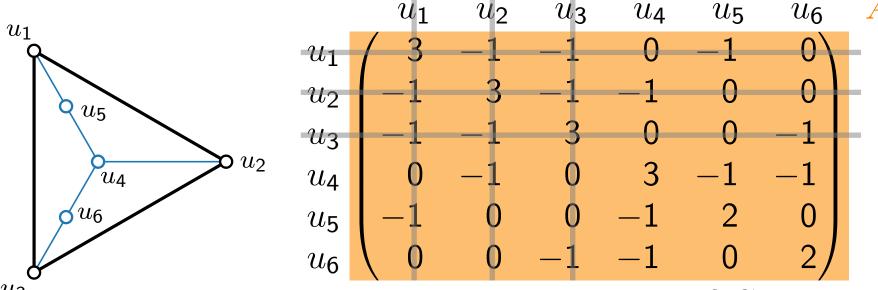
Theorem. Goal. $p_u = (x_u, y_u)$

 $p_u = \text{barycenter}(Adj[u]) =$

Tutte's barycentric algorithm admits a unique solution. It can be computed in polynomial time.

$$x_u = \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \iff \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0$$

$$y_u = \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \iff \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0$$



Laplacian matrix of G

k variables, k constraints, det(A) > 0

$$k = \#$$
free vertices

 \Rightarrow unique solution

$$A_{ii} = \deg(u_i)$$

$$A_{ij,i\neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_j \notin E \end{cases}$$

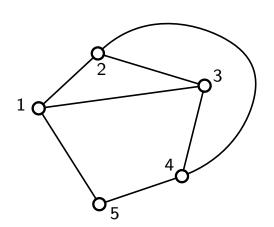
Tutte drawing

Solution: we don't need to change the fixed vertices & constraints dependent on fixed vertices are constant and can be moved into b

planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v \text{ path for every vertex pair } \{u, v\}.$

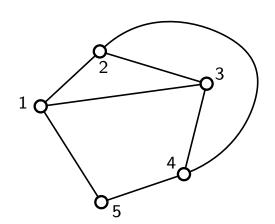


planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v \text{ path for every vertex pair } \{u, v\}.$

k-connected:



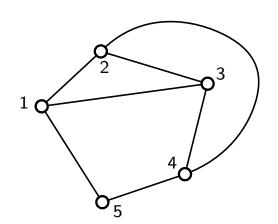
planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \ldots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .



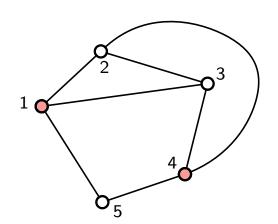
planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \ldots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .



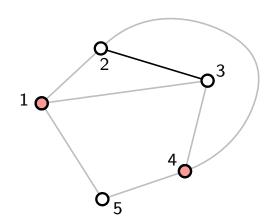
planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \ldots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \dots, v_{k-1} .



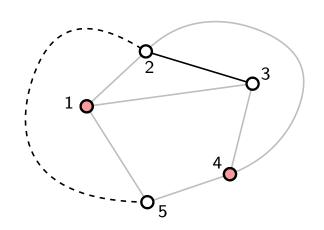
planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \ldots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .



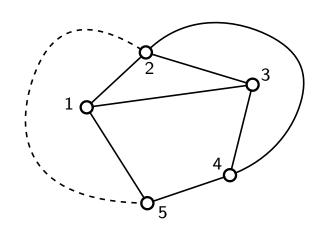
planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \ldots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .



planar: G can be drawn in such a way

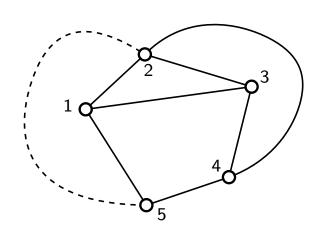
that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):



planar: G can be drawn in such a way

that no edges cross each other

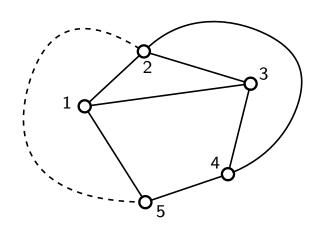
connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint



planar: G can be drawn in such a way

that no edges cross each other

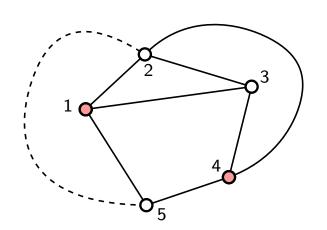
connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint



planar: G can be drawn in such a way

that no edges cross each other

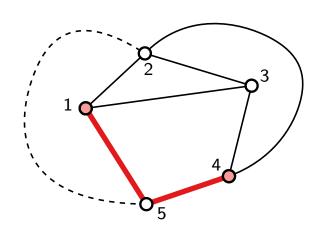
connected: $\exists u - v \text{ path for every vertex pair } \{u, v\}.$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint



planar: G can be drawn in such a way

that no edges cross each other

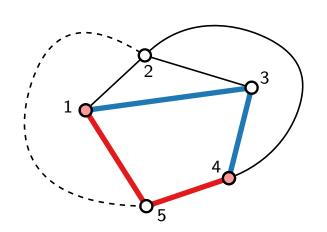
connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices $v_1 \ldots, v_{k-1}$.

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint



planar: G can be drawn in such a way

that no edges cross each other

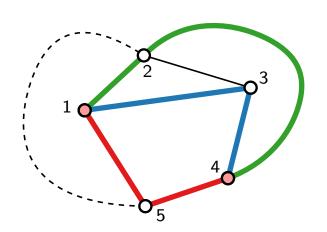
connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint



planar: G can be drawn in such a way

that no edges cross each other

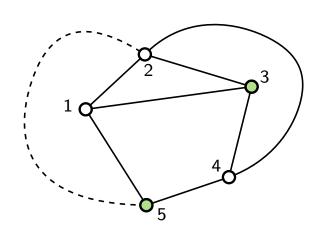
connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint



planar: G can be drawn in such a way

that no edges cross each other

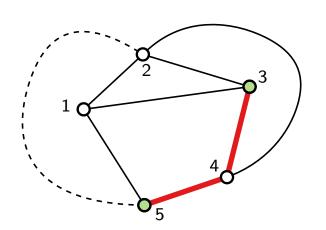
connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint



planar: G can be drawn in such a way

that no edges cross each other

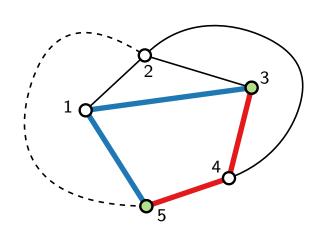
connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices $v_1 \ldots, v_{k-1}$.

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint



planar: G can be drawn in such a way

that no edges cross each other

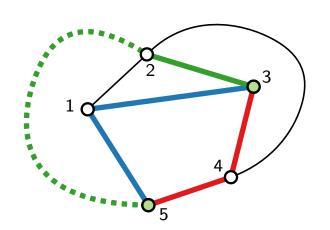
connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint



planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint

u–v paths for every vertex pair $\{u, v\}$.

Theorem.

[Whitney 1933]

Every 3-connected planar graph has a unique planar embedding.



(up to the choice of the outer face and mirroring)

planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices $v_1 \ldots, v_{k-1}$.

Or (equivalently if $G \neq K_k$):

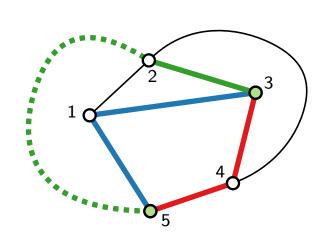
There are at least k vertex-disjoint

u–v paths for every vertex pair $\{u, v\}$.

Theorem.

[Whitney 1933]

Every 3-connected planar graph has a unique planar embedding.



(up to the choice of the outer face and mirroring)

planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint

u–v paths for every vertex pair $\{u, v\}$.

Theorem.

[Whitney 1933]

Every 3-connected planar graph has a unique planar embedding.

Proof sketch.



(up to the choice of the outer face and mirroring)

planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint

u–v paths for every vertex pair $\{u, v\}$.

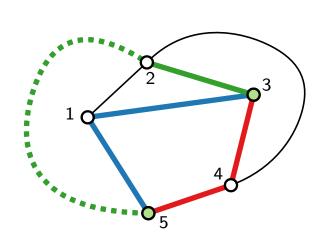
Theorem.

[Whitney 1933]

Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G.



(up to the choice of the outer face and mirroring)

planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint

u–v paths for every vertex pair $\{u, v\}$.

Theorem.

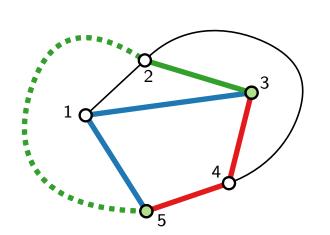
[Whitney 1933]

Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G.

Let C be a face of Γ_2 , but not of Γ_1 .



(up to the choice of the outer face and mirroring)

planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint

u–v paths for every vertex pair $\{u, v\}$.

Theorem.

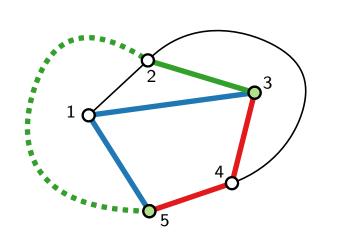
[Whitney 1933]

Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G.

Let C be a face of Γ_2 , but not of Γ_1 .



 Γ_1

(up to the choice of the outer face and mirroring)

planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint

u–v paths for every vertex pair $\{u, v\}$.

Theorem.

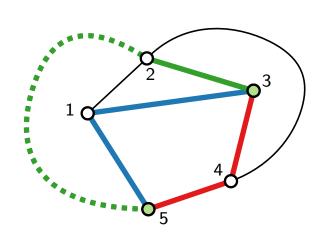
[Whitney 1933]

Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G.

Let C be a face of Γ_2 , but not of Γ_1 .



(up to the choice of the outer face and mirroring)

planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint

u–v paths for every vertex pair $\{u, v\}$.

Theorem.

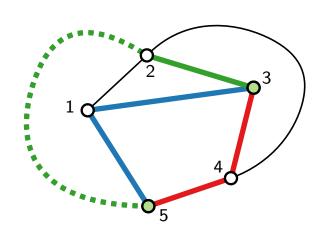
[Whitney 1933]

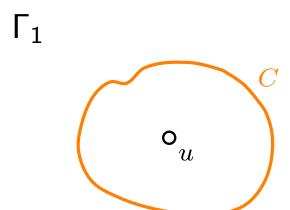
Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G.

Let C be a face of Γ_2 , but not of Γ_1 . u inside C in Γ_1





(up to the choice of the outer face and mirroring)

planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint

u–v paths for every vertex pair $\{u, v\}$.

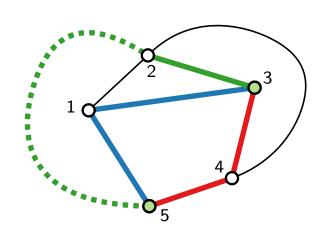
Theorem.

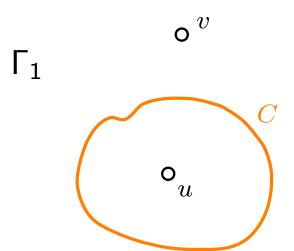
[Whitney 1933]

Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G.





(up to the choice of the outer face and mirroring)

planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint

u–v paths for every vertex pair $\{u, v\}$.

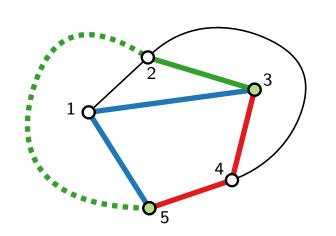
Theorem.

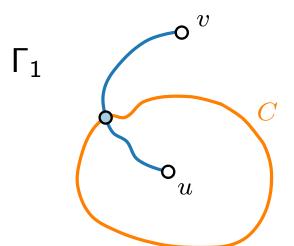
[Whitney 1933]

Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G.





(up to the choice of the outer face and mirroring)

planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint

u–v paths for every vertex pair $\{u, v\}$.

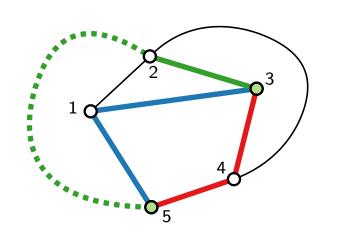
Theorem.

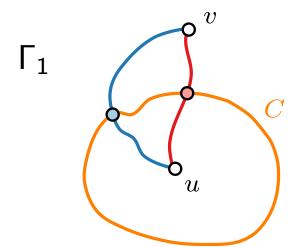
[Whitney 1933]

Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G.





(up to the choice of the outer face and mirroring)

planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint

u–v paths for every vertex pair $\{u, v\}$.

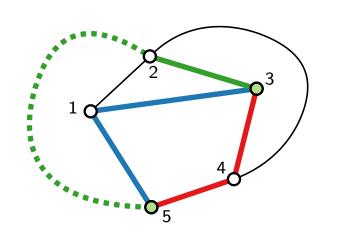
Theorem.

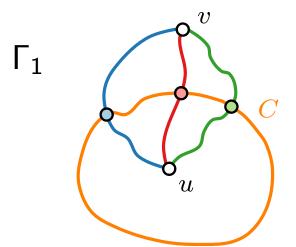
[Whitney 1933]

Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G.





(up to the choice of the outer face and mirroring)

planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint

u–v paths for every vertex pair $\{u, v\}$.

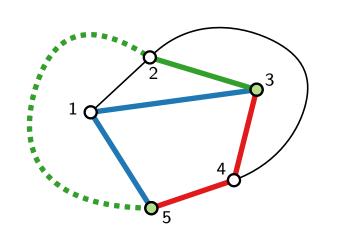
Theorem.

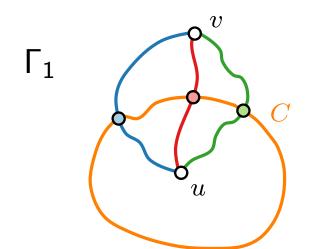
[Whitney 1933]

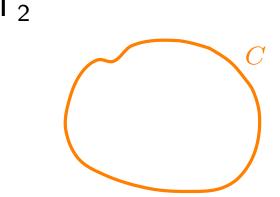
Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G.







(up to the choice of the outer face and mirroring)

planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \ldots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint

u–v paths for every vertex pair $\{u, v\}$.

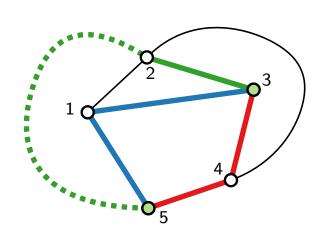
Theorem.

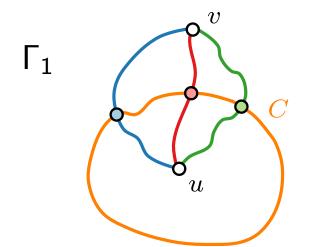
[Whitney 1933]

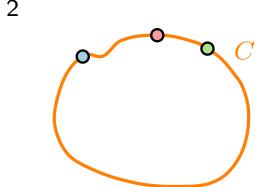
Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G.







(up to the choice of the outer face and mirroring)

planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \ldots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint

u-v paths for every vertex pair $\{u, v\}$.

Theorem.

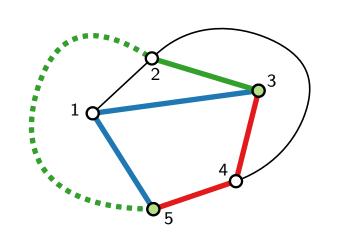
[Whitney 1933]

Every 3-connected planar graph has a unique planar embedding.

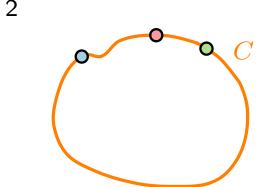
Proof sketch.

 Γ_1, Γ_2 embeddings of G.

Let C be a face of Γ_2 , but not of Γ_1 . u inside C in Γ_1 , v outside C in Γ_1 both on same side in Γ_2







(up to the choice of the outer face and mirroring)

planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint

u–v paths for every vertex pair $\{u, v\}$.

Theorem.

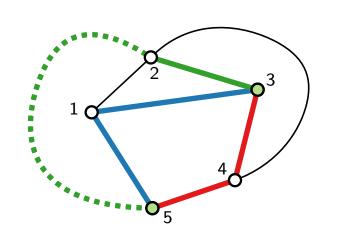
[Whitney 1933]

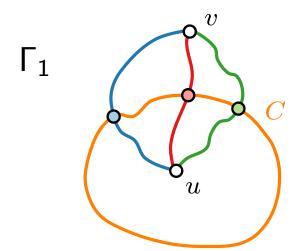
Every 3-connected planar graph has a unique planar embedding.

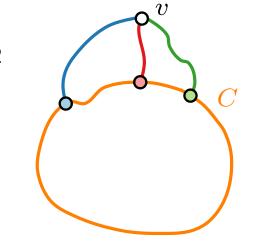
Proof sketch.

 Γ_1, Γ_2 embeddings of G.

Let C be a face of Γ_2 , but not of Γ_1 . u inside C in Γ_1 , v outside C in Γ_1 both on same side in Γ_2







(up to the choice of the outer face and mirroring)

planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint

u-v paths for every vertex pair $\{u, v\}$.

Theorem.

[Whitney 1933]

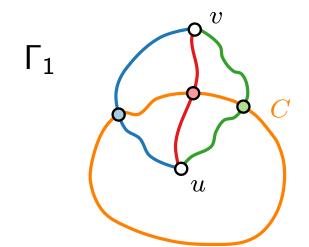
Every 3-connected planar graph has a unique planar embedding.

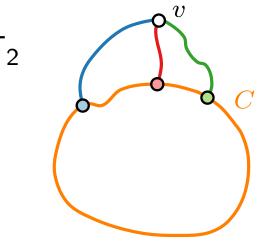
Proof sketch.

 Γ_1, Γ_2 embeddings of G.

Let C be a face of Γ_2 , but not of Γ_1 . u inside C in Γ_1 , v outside C in Γ_1 both on same side in Γ_2







(up to the choice of the outer face and mirroring)

planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint

u–v paths for every vertex pair $\{u, v\}$.

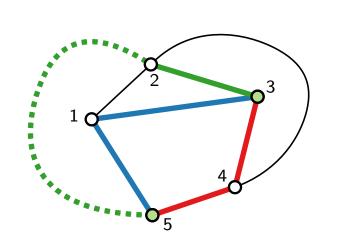
Theorem.

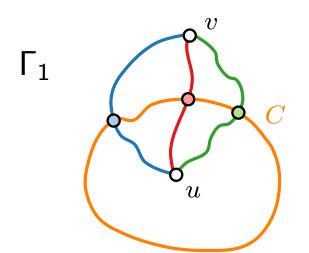
[Whitney 1933]

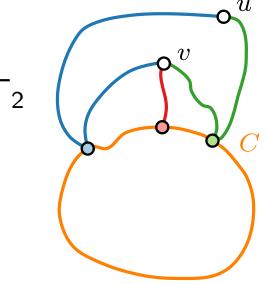
Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G.







(up to the choice of the outer face and mirroring)

planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint

u–v paths for every vertex pair $\{u, v\}$.

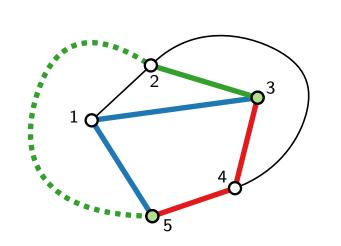
Theorem.

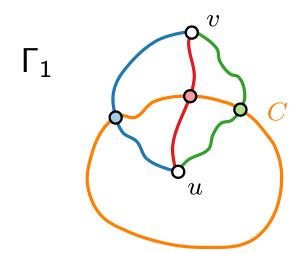
[Whitney 1933]

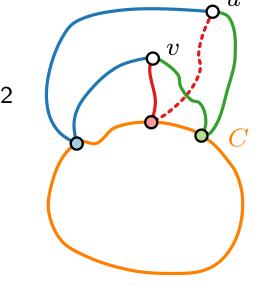
Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G.







(up to the choice of the outer face and mirroring)

planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint

u–v paths for every vertex pair $\{u, v\}$.

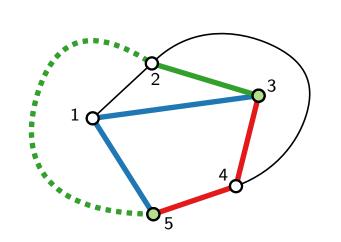
Theorem.

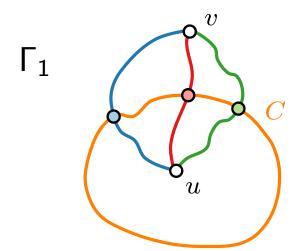
[Whitney 1933]

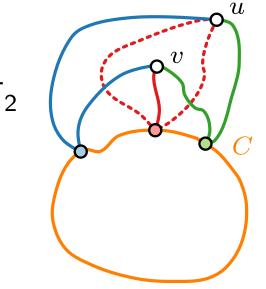
Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G.







(up to the choice of the outer face and mirroring)

planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint

u–v paths for every vertex pair $\{u, v\}$.

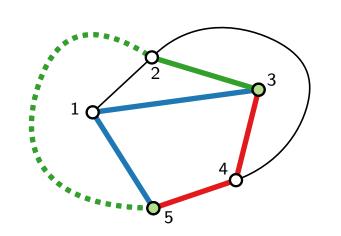
Theorem.

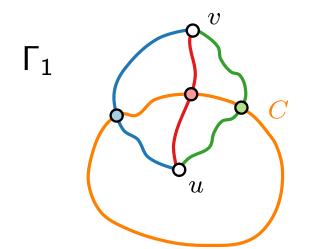
[Whitney 1933]

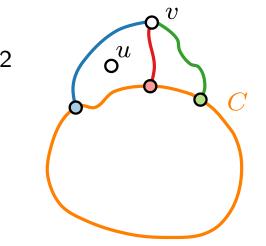
Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G.







(up to the choice of the outer face and mirroring)

planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint

u–v paths for every vertex pair $\{u, v\}$.

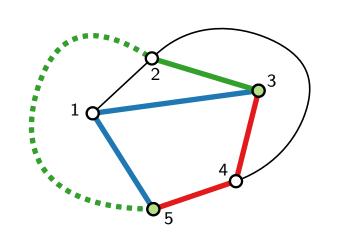
Theorem.

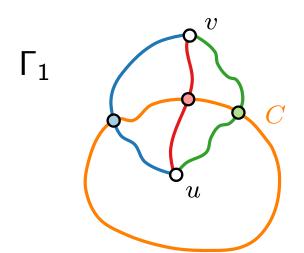
[Whitney 1933]

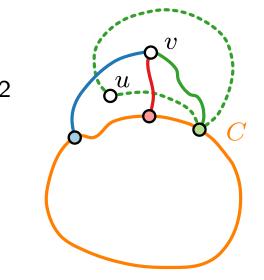
Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G.







(up to the choice of the outer face and mirroring)

planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint

u–v paths for every vertex pair $\{u, v\}$.

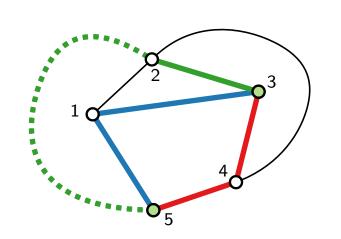
Theorem.

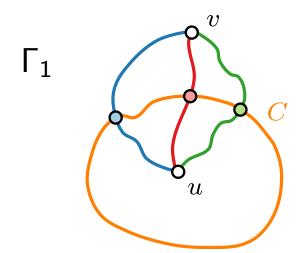
[Whitney 1933]

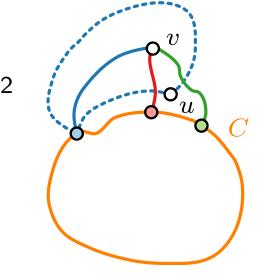
Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G.



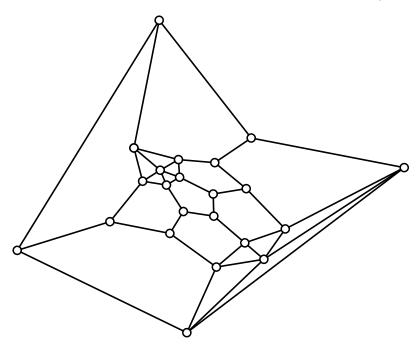




Theorem.

Let G be a 3-connected planar graph,

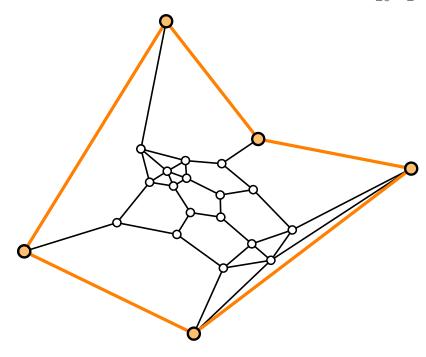
[Tutte 1963]



Theorem.

Let G be a 3-connected planar graph, and let C be a face of its unique embedding.

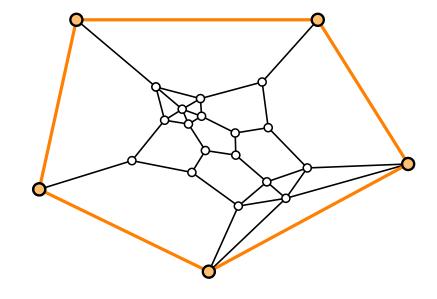
[Tutte 1963]



Theorem.

Let G be a 3-connected planar graph, and let G be a face of its unique embedding. If we fix G on a strictly convex polygon,

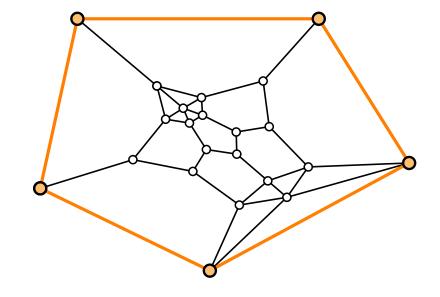
[Tutte 1963]



Theorem.

[Tutte 1963]

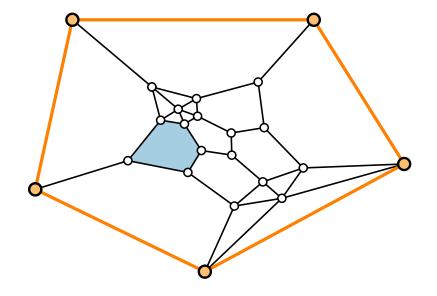
Let G be a 3-connected planar graph, and let G be a face of its unique embedding. If we fix G on a strictly convex polygon, then the Tutte drawing of G is planar



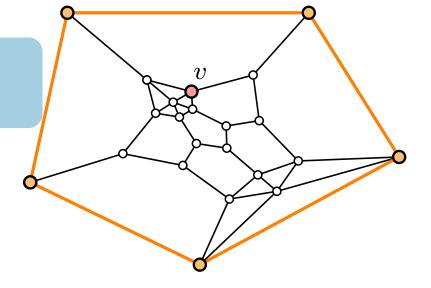
Theorem.

[Tutte 1963]

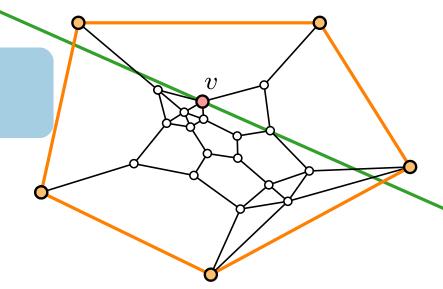
Let G be a 3-connected planar graph, and let G be a face of its unique embedding. If we fix G on a strictly convex polygon, then the Tutte drawing of G is planar and all its faces are strictly convex.



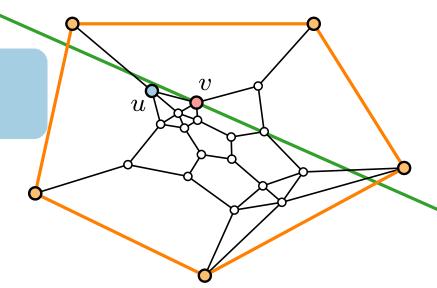
Property 1. Let $v \in V$ free,



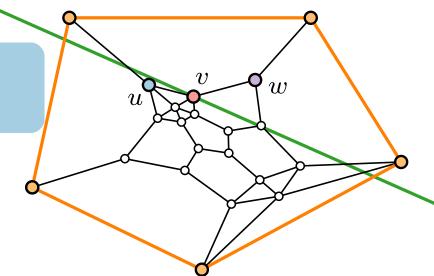
Property 1. Let $v \in V$ free, ℓ line through v.



Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of ℓ =



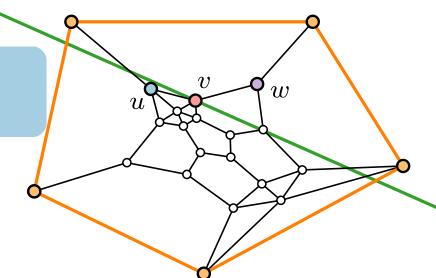
Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side



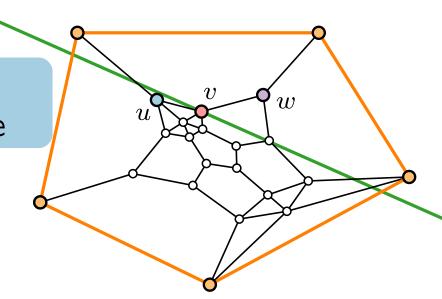
Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .



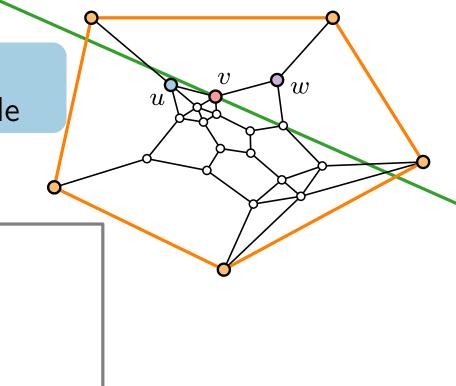
Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side Otherwise, all forces to same side . . .



Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

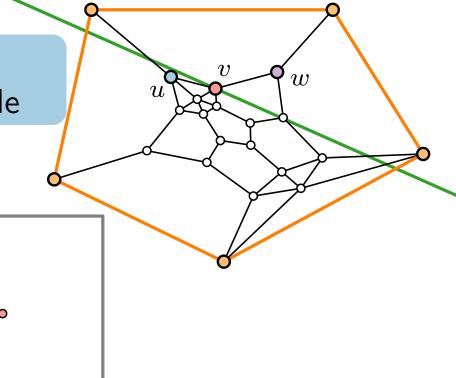
Otherwise, all forces to same side . . .



Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

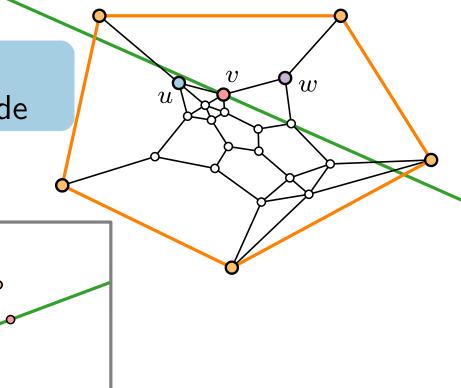
Otherwise, all forces to same side . . .



Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

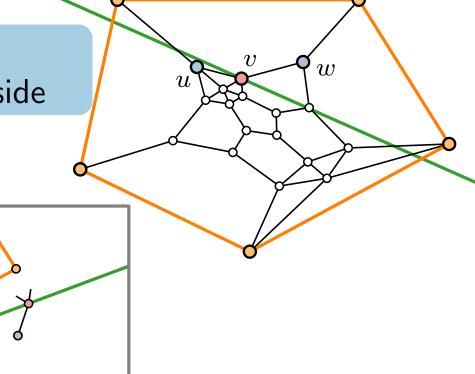
Otherwise, all forces to same side . . .



Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

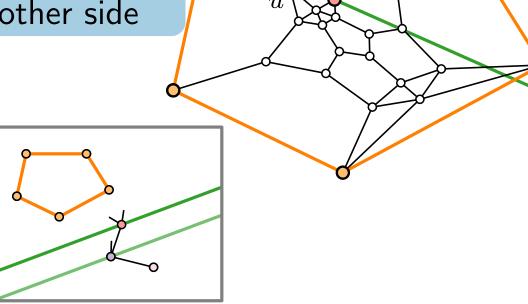
Otherwise, all forces to same side . . .



Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

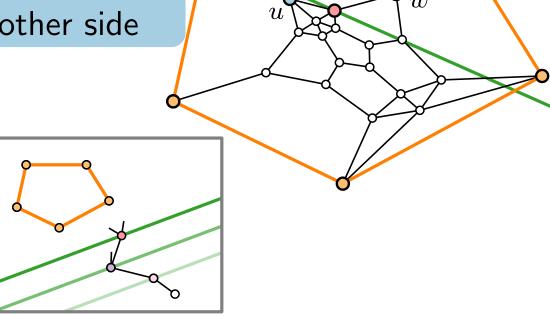
Otherwise, all forces to same side . . .



Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

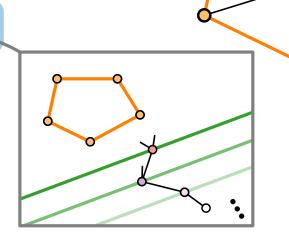
Otherwise, all forces to same side . . .



Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .



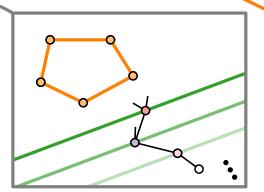
Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

Property 3. Let ℓ be any line.

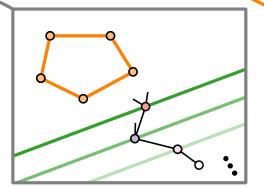


Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ .

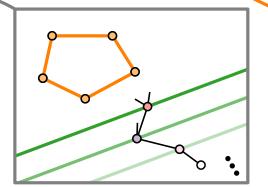


Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

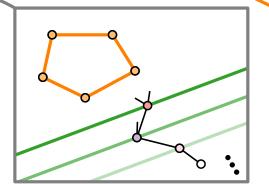
Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ .



Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

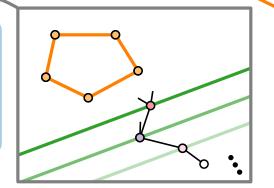
Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.



Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.



Property 1. Let $v \in V$ free, ℓ line through v.

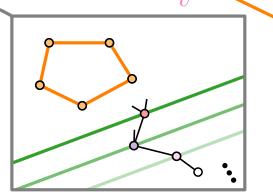
 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

v furthest away from ℓ



Property 1. Let $v \in V$ free, ℓ line through v.

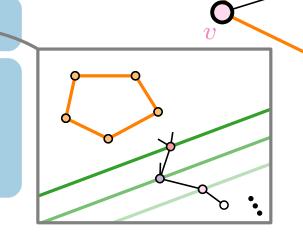
 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

> v furthest away from ℓ Pick any vertex $u \in V_{\ell}$



Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

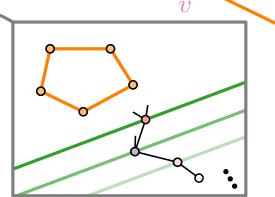
Property 3. Let ℓ be any line.

Let V_{ℓ} be all vertices on one side of ℓ .

Then $G[V_{\ell}]$ is connected.

 ${\color{red} v}$ furthest away from ℓ

Pick any vertex $u \in V_\ell$, ℓ' parallel to ℓ through u



Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

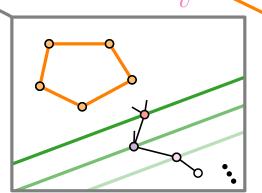
Property 3. Let ℓ be any line.

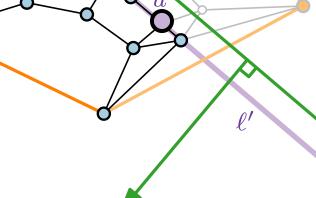
Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

 ${\color{red} v}$ furthest away from ℓ

Pick any vertex $u \in V_\ell$, ℓ' parallel to ℓ through u

G connected, v not on ℓ'





Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

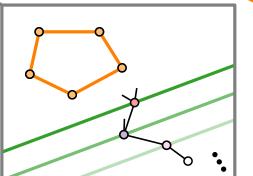
Property 3. Let ℓ be any line.

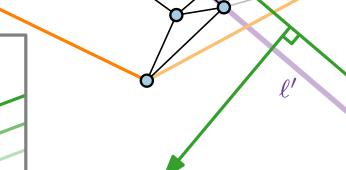
Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

v furthest away from ℓ

Pick any vertex $u \in V_\ell$, ℓ' parallel to ℓ through u

G connected, v not on $\ell'\Rightarrow\exists$ neighbor $w\in V_\ell$ of u on the same side of ℓ' as v





Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

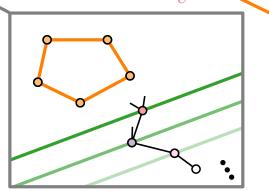
Property 3. Let ℓ be any line.

Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

 ${\color{red} v}$ furthest away from ℓ

Pick any vertex $u \in V_\ell$, ℓ' parallel to ℓ through u

G connected, v not on $\ell'\Rightarrow \exists$ neighbor $w\in V_\ell$ of u on the same side of ℓ' as v move ℓ' onto w and repeat $\Rightarrow \exists$ path from u to v



Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

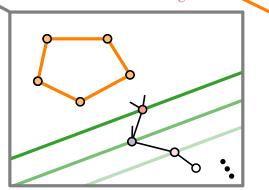
Property 3. Let ℓ be any line.

Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

 ${\color{red} v}$ furthest away from ℓ

Pick any vertex $u \in V_\ell$, ℓ' parallel to ℓ through u

G connected, v not on $\ell' \Rightarrow \exists$ neighbor $w \in V_{\ell}$ of u on the same side of ℓ' as v move ℓ' onto w and repeat $\Rightarrow \exists$ path from u to v



Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

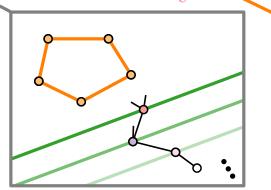
Property 3. Let ℓ be any line.

Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

 ${\color{red} v}$ furthest away from ℓ

Pick any vertex $u \in V_\ell$, ℓ' parallel to ℓ through u

G connected, v not on $\ell' \Rightarrow \exists$ neighbor $w \in V_{\ell}$ of u on the same side of ℓ' as v move ℓ' onto w and repeat $\Rightarrow \exists$ path from u to v



Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

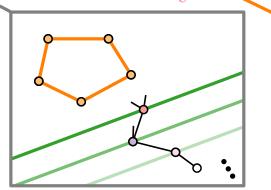
Property 3. Let ℓ be any line.

Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

 ${\color{red} v}$ furthest away from ℓ

Pick any vertex $u \in V_\ell$, ℓ' parallel to ℓ through u

G connected, v not on $\ell'\Rightarrow \exists$ neighbor $w\in V_\ell$ of u on the same side of ℓ' as v move ℓ' onto w and repeat $\Rightarrow \exists$ path from u to v



Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

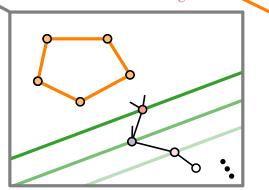
Property 3. Let ℓ be any line.

Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

 ${\color{red} v}$ furthest away from ℓ

Pick any vertex $u \in V_\ell$, ℓ' parallel to ℓ through u

G connected, v not on $\ell' \Rightarrow \exists$ neighbor $w \in V_{\ell}$ of u on the same side of ℓ' as v move ℓ' onto w and repeat $\Rightarrow \exists$ path from u to v



Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

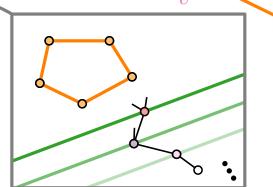
Property 3. Let ℓ be any line.

Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

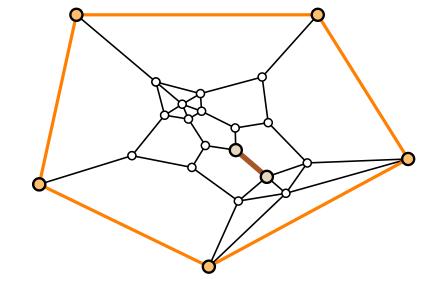
 ${\color{red} v}$ furthest away from ℓ

Pick any vertex $u \in V_\ell$, ℓ' parallel to ℓ through u

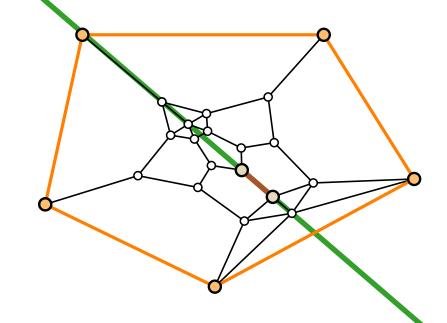
G connected, v not on $\ell' \Rightarrow \exists$ neighbor $w \in V_{\ell}$ of u on the same side of ℓ' as v move ℓ' onto w and repeat $\Rightarrow \exists$ path from u to v



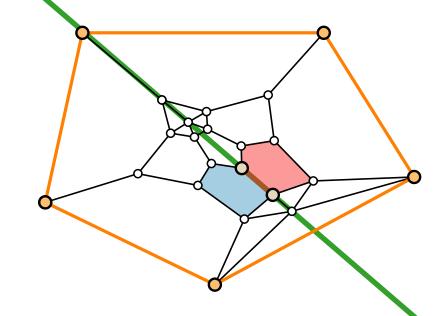
Lemma. Let uv be a non-boundary edge,



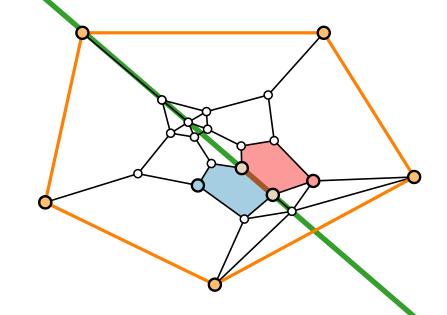
Lemma. Let uv be a non-boundary edge, ℓ line through uv.



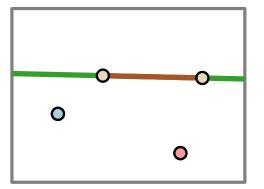
Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

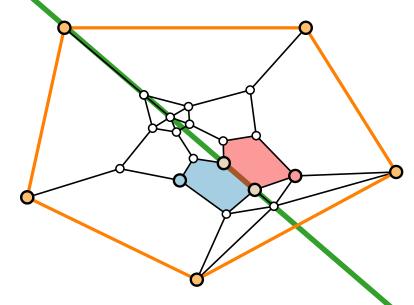


Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

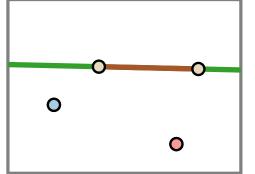


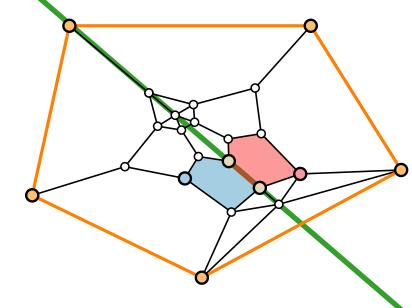
Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .



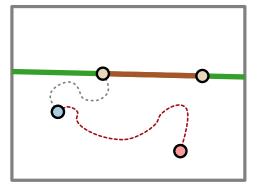


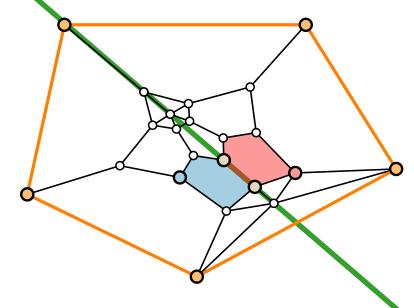
Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .





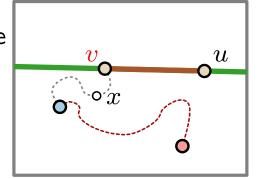
Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

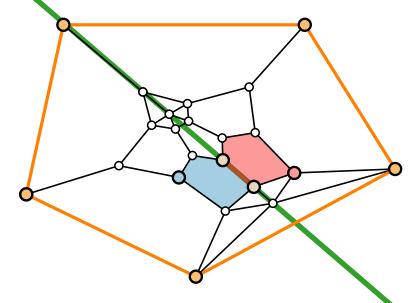




Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

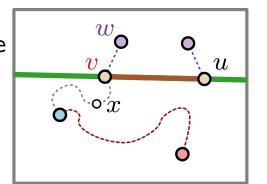
Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

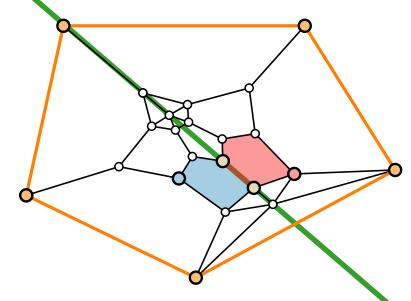




Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

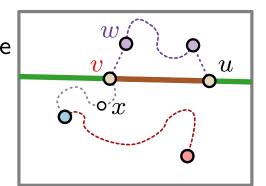
Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

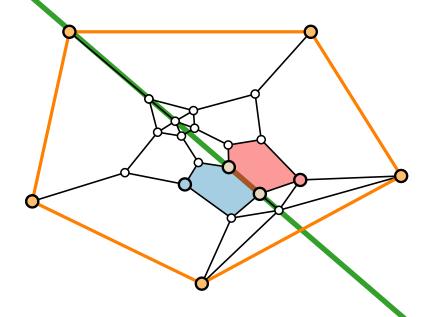




Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

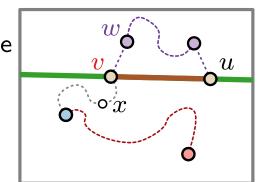
Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

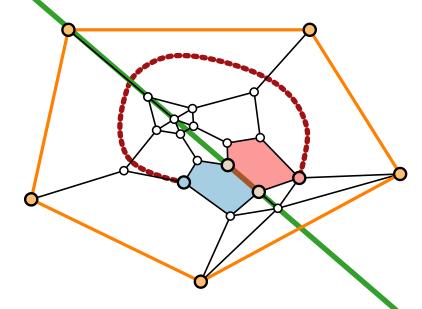




Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

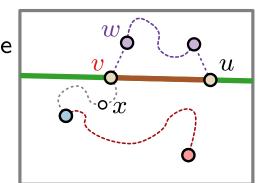
Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

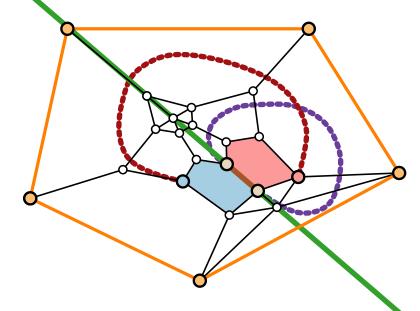




Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side



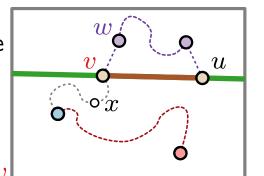


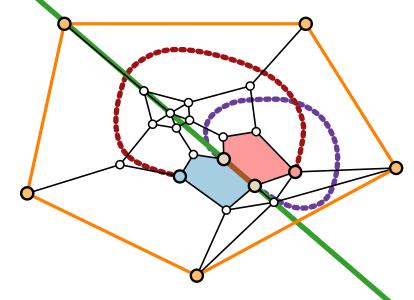
Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

x v and v w on different sides of $\ell \Rightarrow f_1, f_2$ have angles $< \pi$ at v



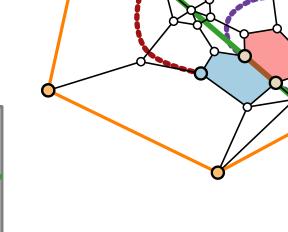


Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

x v and v w on different sides of $\ell \Rightarrow f_1, f_2$ have angles $< \pi$ at v

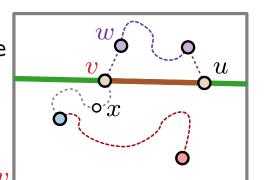


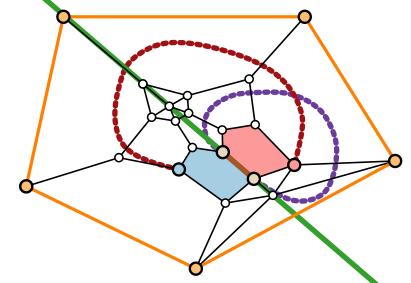
Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

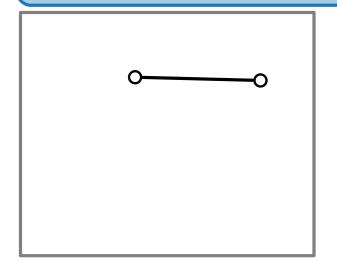
Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

x v and v w on different sides of $\ell \Rightarrow f_1, f_2$ have angles $< \pi$ at v





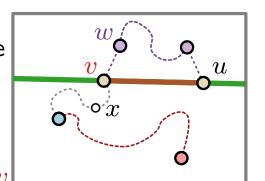


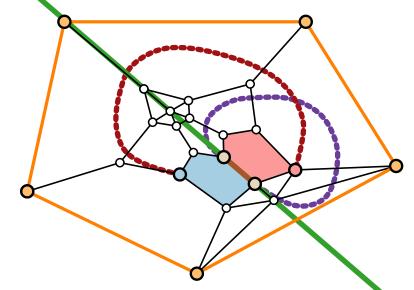
Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

x v and v w on different sides of $\ell \Rightarrow f_1, f_2$ have angles $<\pi$ at v



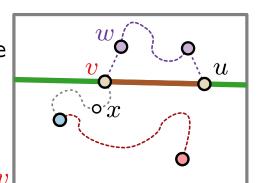


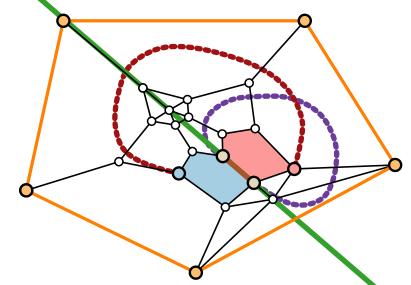
Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

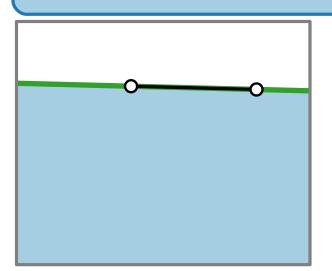
Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

x v and v w on different sides of $\ell \Rightarrow f_1, f_2$ have angles $< \pi$ at v





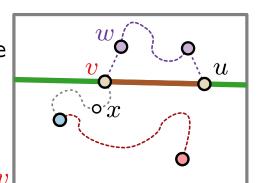


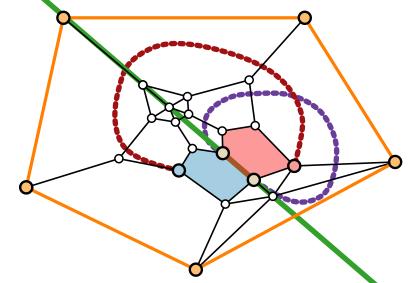
Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

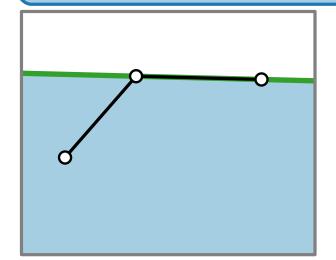
Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

x v and v w on different sides of $\ell \Rightarrow f_1, f_2$ have angles $< \pi$ at v





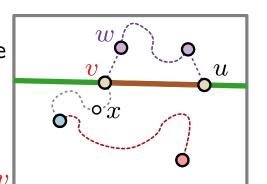


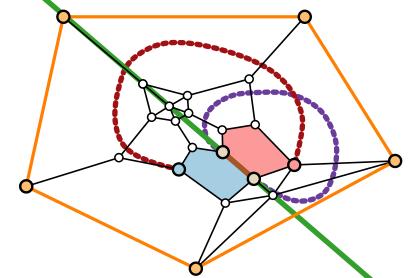
Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

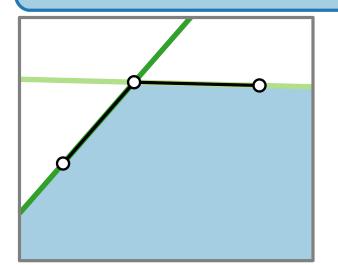
Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

x v and v w on different sides of $\ell \Rightarrow f_1, f_2$ have angles $< \pi$ at v







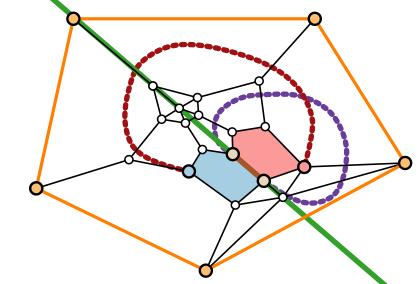
Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

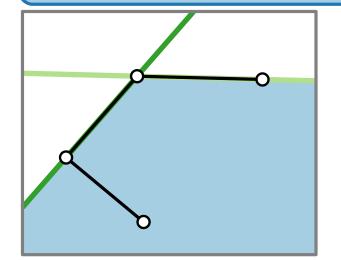
Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

x v and v w on different sides of $\ell \Rightarrow f_1, f_2$ have angles $< \pi$ at v





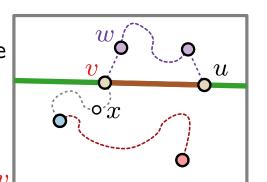


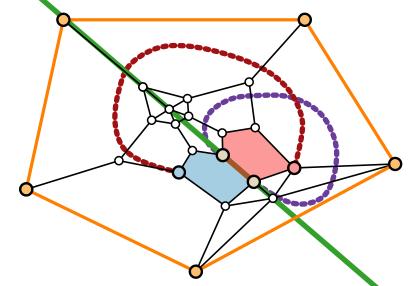
Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

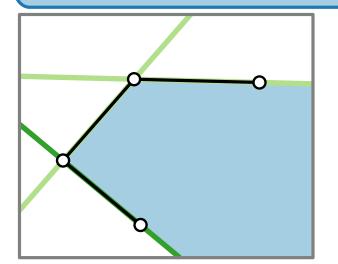
Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

x v and v w on different sides of $\ell \Rightarrow f_1, f_2$ have angles $< \pi$ at v





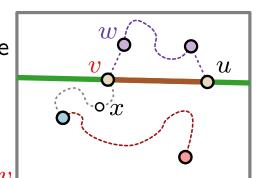


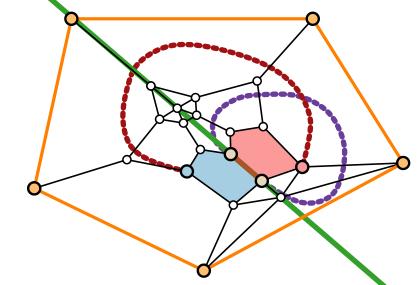
Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

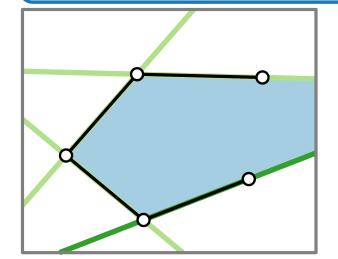
Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

x v and v w on different sides of $\ell \Rightarrow f_1, f_2$ have angles $< \pi$ at v





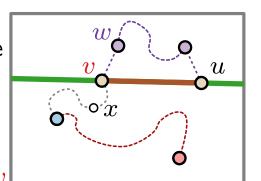


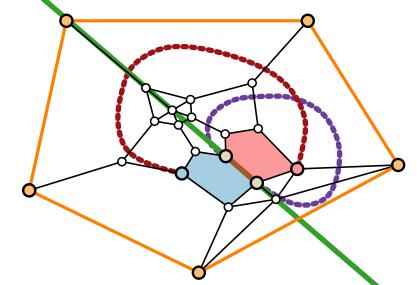
Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

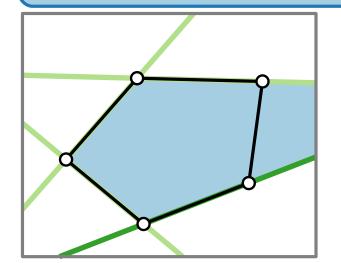
Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

x v and v w on different sides of $\ell \Rightarrow f_1, f_2$ have angles $< \pi$ at v





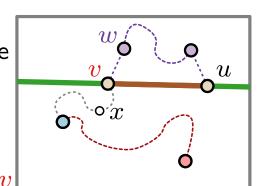


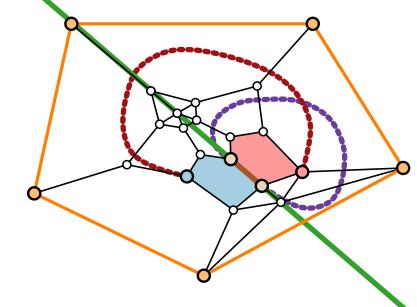
Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

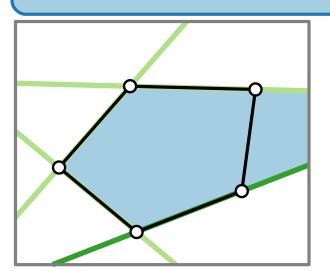
x v and v w on different sides of $\ell \Rightarrow f_1, f_2$ have angles $< \pi$ at v





Lemma. All faces are strictly convex.

Lemma. The drawing is planar.

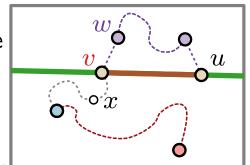


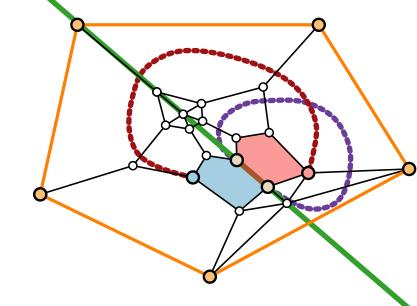
Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

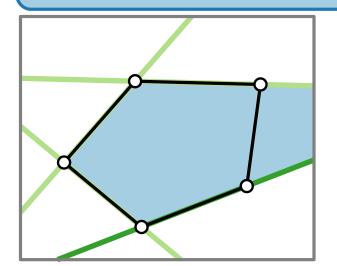
Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

x v and v w on different sides of $\ell \Rightarrow f_1, f_2$ have angles $< \pi$ at v

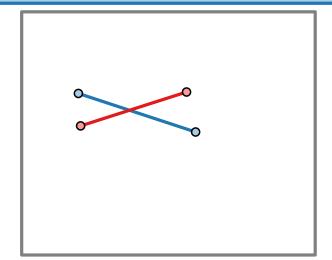




Lemma. All faces are strictly convex.



Lemma. The drawing is planar.

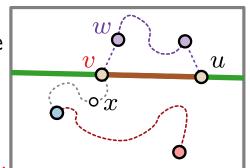


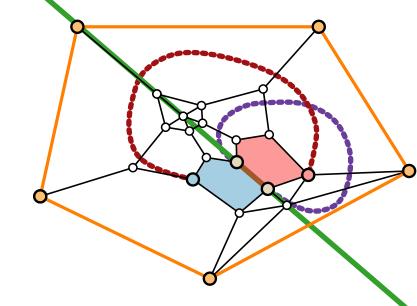
Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

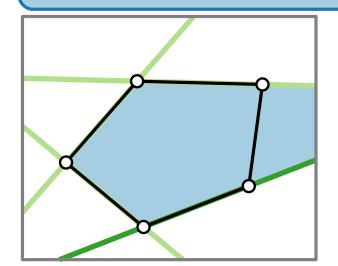
Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

x v and v w on different sides of $\ell \Rightarrow f_1, f_2$ have angles $< \pi$ at v

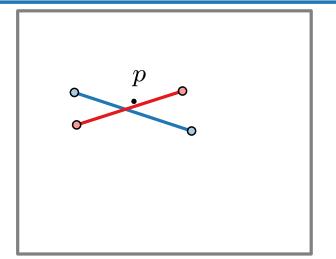




Lemma. All faces are strictly convex.



Lemma. The drawing is planar.

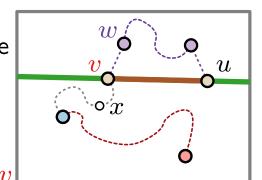


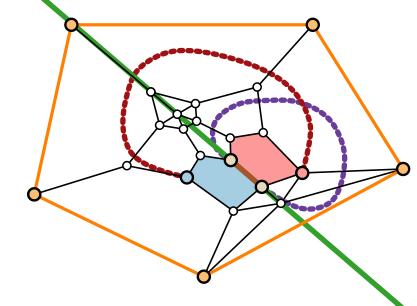
Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

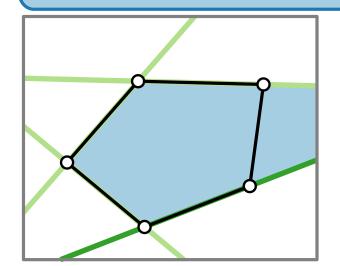
x v and v w on different sides of $\ell \Rightarrow f_1, f_2$ have angles $< \pi$ at v

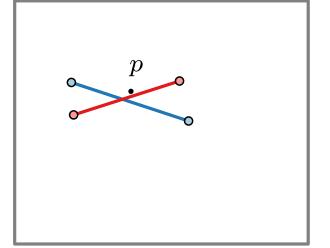




Lemma. All faces are strictly convex.

Lemma. The drawing is planar.



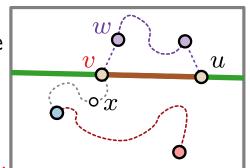


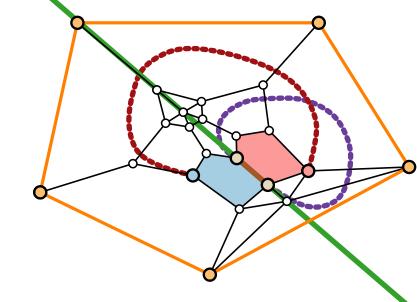
Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

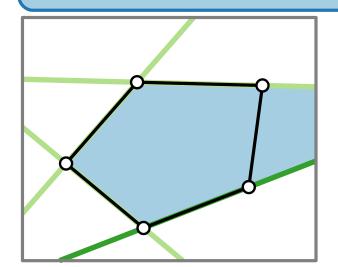
x v and v w on different sides of $\ell \Rightarrow f_1, f_2$ have angles $< \pi$ at v

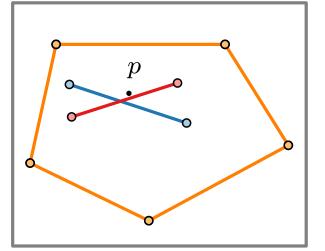




Lemma. All faces are strictly convex.

Lemma. The drawing is planar.





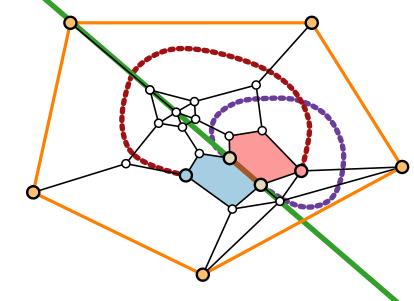
Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

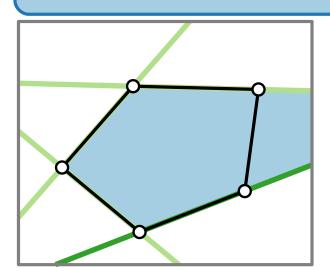
x v and v w on different sides of $\ell \Rightarrow f_1, f_2$ have angles $< \pi$ at v

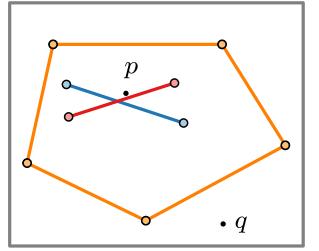




Lemma. All faces are strictly convex.

Lemma. The drawing is planar.



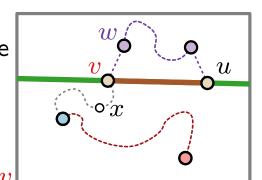


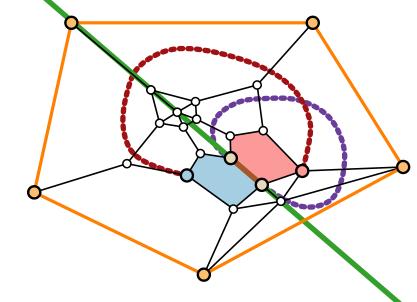
Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

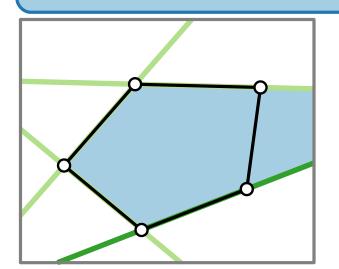
x v and v w on different sides of $\ell \Rightarrow f_1, f_2$ have angles $< \pi$ at v



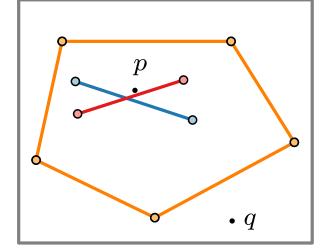


Lemma. All faces are strictly convex.

Lemma. The drawing is planar.



p inside two faces **Property 2.** All free vertices lie inside C.

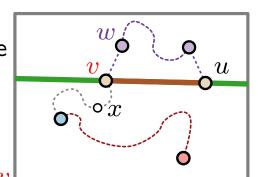


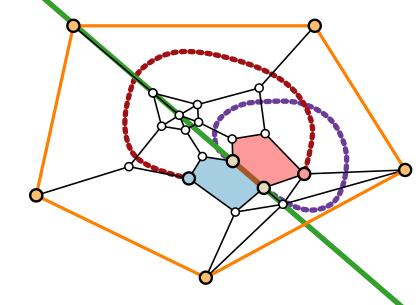
Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

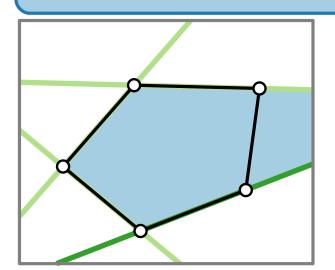
x v and v w on different sides of $\ell \Rightarrow f_1, f_2$ have angles $< \pi$ at v

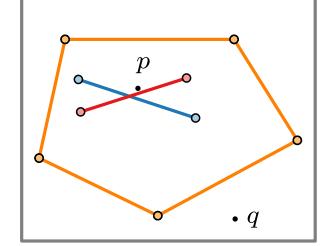




Lemma. All faces are strictly convex.

Lemma. The drawing is planar.



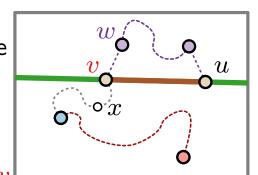


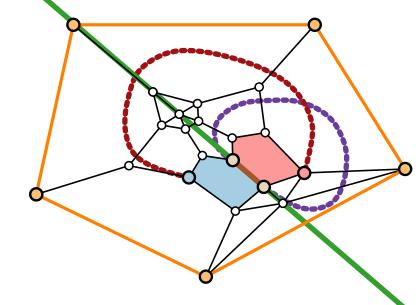
Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

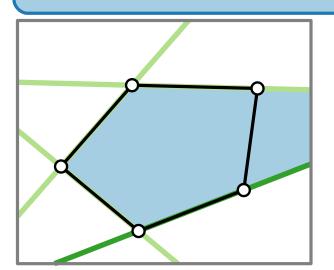
x v and v w on different sides of $\ell \Rightarrow f_1, f_2$ have angles $< \pi$ at v

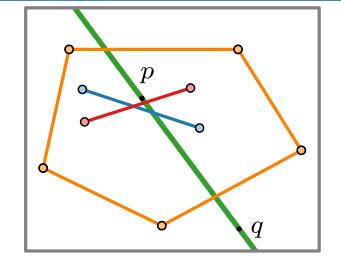




Lemma. All faces are strictly convex.

Lemma. The drawing is planar.



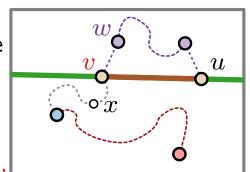


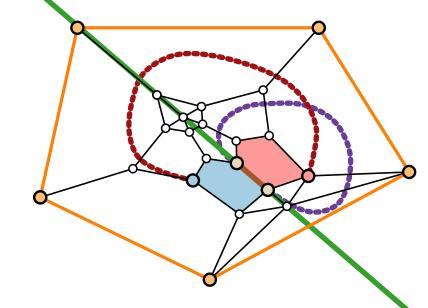
Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

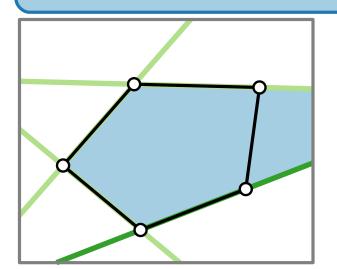
x v and v w on different sides of $\ell \Rightarrow f_1, f_2$ have angles $< \pi$ at v

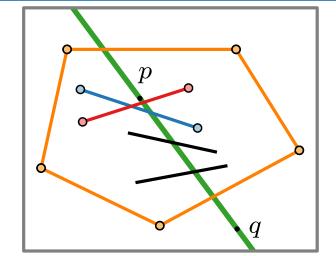




Lemma. All faces are strictly convex.

Lemma. The drawing is planar.





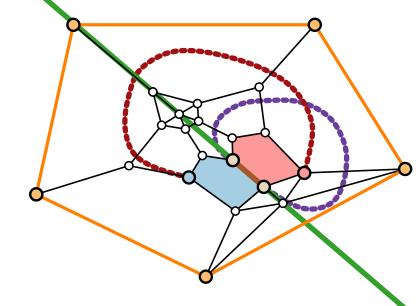
Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

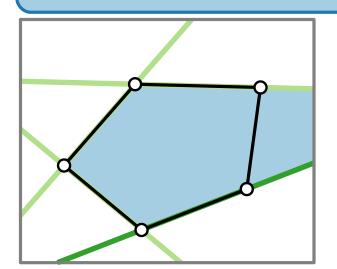
x v and v w on different sides of $\ell \Rightarrow f_1, f_2$ have angles $< \pi$ at v

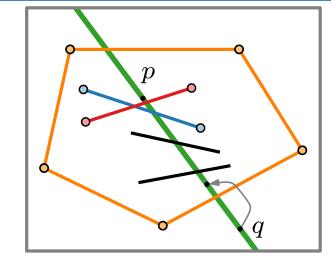




Lemma. All faces are strictly convex.

Lemma. The drawing is planar.





Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

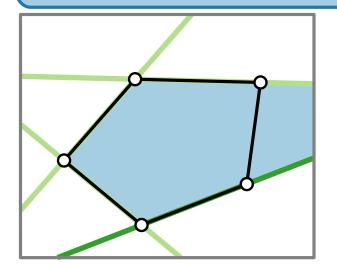
Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

 $x oldsymbol{v}$ and $oldsymbol{v} w$ on different sides of $\ell \Rightarrow f_1, f_2$ have angles $<\pi$ at $oldsymbol{v}$

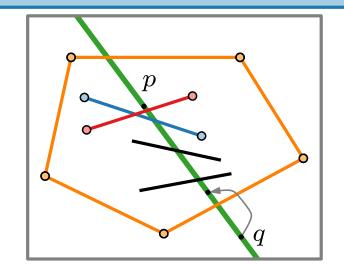
 $\frac{v}{v} = \frac{v}{v}$

Lemma. The drawing is planar.



Property 2. All free vertices lie inside C. $\Rightarrow q$ in one face

jumping over edge \rightarrow #faces the same



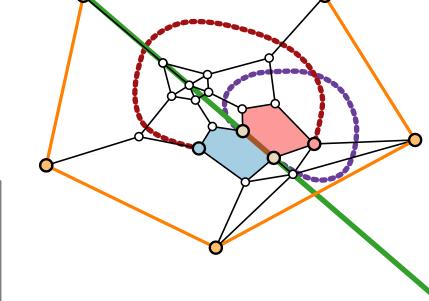
Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

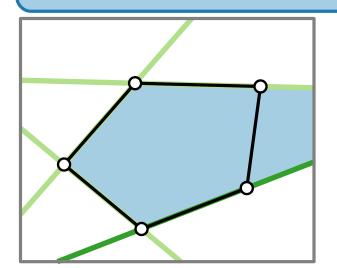
 $x oldsymbol{v}$ and $oldsymbol{v} w$ on different sides of $\ell \Rightarrow f_1, f_2$ have angles $<\pi$ at $oldsymbol{v}$

de v u



Lemma. All faces are strictly convex.

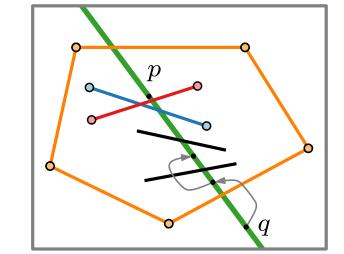
Lemma. The drawing is planar.



Property 2. All free vertices lie inside C. $\Rightarrow q$ in one face jumping over edge

p inside two faces

 \rightarrow #faces the same



Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

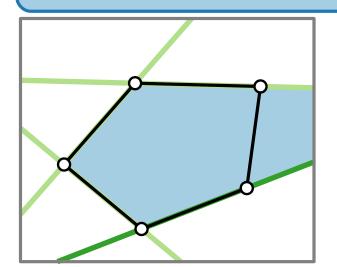
Property 1. Let $v \in V$ free, ℓ line through v. $\exists x v \in E$ on one side of $\ell \Rightarrow \exists v w \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

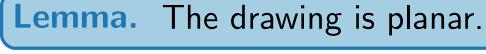
x v and v w on different sides of $\ell \Rightarrow f_1, f_2$ have angles $< \pi$ at v

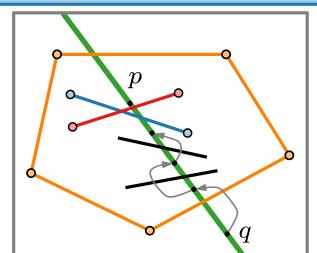
 $\circ x$

Lemma. All faces are strictly convex.



p inside two faces **Property 2.** All free vertices lie inside *C*. $\Rightarrow q$ in one face jumping over edge \rightarrow #faces the same





Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

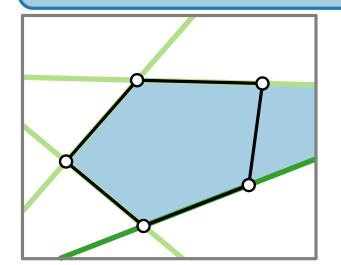
Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

 $x oldsymbol{v}$ and $oldsymbol{v} w$ on different sides of $\ell \Rightarrow f_1, f_2$ have angles $<\pi$ at $oldsymbol{v}$

de v u

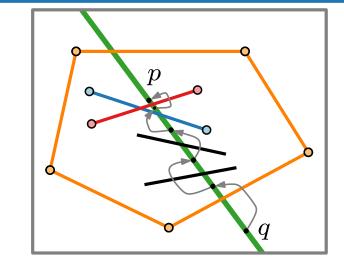
Lemma. The drawing is planar.

Lemma. All faces are strictly convex.



Property 2. All free vertices lie inside C. $\Rightarrow q$ in one face

jumping over edge \rightarrow #faces the same



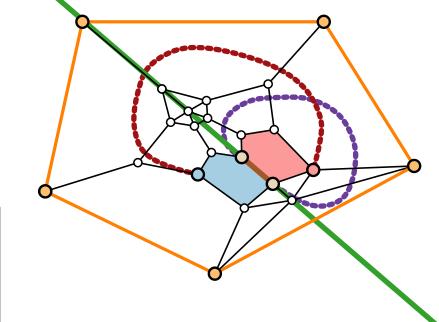
Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

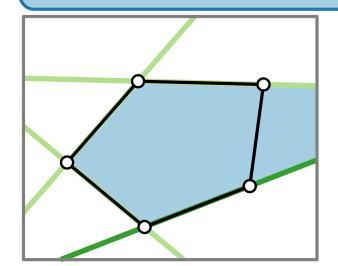
x v and v w on different sides of $\ell \Rightarrow f_1, f_2$ have angles $< \pi$ at v

de v u



Lemma. All faces are strictly convex.

Lemma. The drawing is planar.

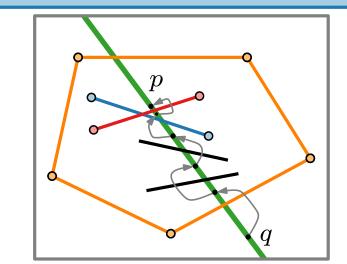


Property 2. All free vertices lie inside C. $\Rightarrow q$ in one face

 $\Rightarrow q$ in one face jumping over edge \rightarrow #faces the same

p inside two faces

 $\Rightarrow p$ inside one face



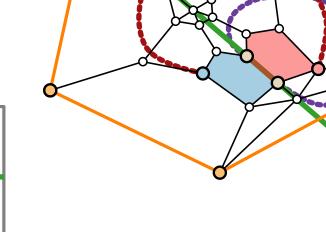
Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

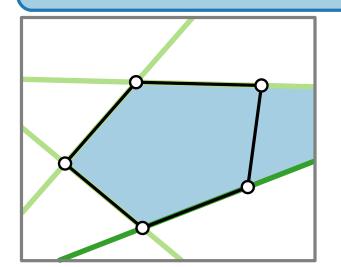
 $x oldsymbol{v}$ and $oldsymbol{v} w$ on different sides of $\ell \Rightarrow f_1, f_2$ have angles $<\pi$ at $oldsymbol{v}$

de v u



Lemma. All faces are strictly convex.

Lemma. The drawing is planar.



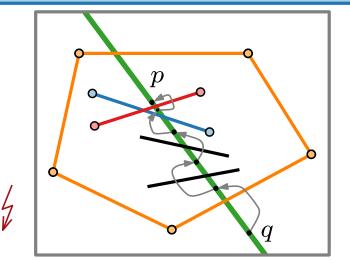
Property 2. All free vertices lie inside C. $\Rightarrow q$ in one face

 $\Rightarrow q$ in one face jumping over edge $\Rightarrow \#$ faces the same

p inside two faces

 \rightarrow #faces the same

 $\Rightarrow p$ inside one face



Literature

Main sources:

- [GD Ch. 10] Force-Directed Methods
- [DG Ch. 4] Drawing on Physical Analogies

Original papers:

- [Eades 1984] A heuristic for graph drawing
- [Fruchterman, Reingold 1991] Graph drawing by force-directed placement
- [Tutte 1963] How to draw a graph