Evms.m
WURZBURG
Visualization of Graphs

Lecture 2:
Force-Directed Drawing Algorithms

Part |-
Spring Embedders

Johannes Zink

General Layout Problem

Input: Graph G
Output: Clear and readable straight-line drawing of G

M
N P ———aa 7
\/l\ h‘é\\““v'i@"@//%’%/'/"“
'\ - S
AL W

) 4
\
V = v

A
N
BHE7 X
.,%'il&!'/A

A~
KK N \\F
: -'!’ﬁég/‘\\\“!‘-]

A —B% ‘\v

V%

General Layout Problem

Input: Graph G
Output: Clear and readable straight-line drawing of G

Drawing aesthetics to optimize:
adjacent vertices are close
non-adjacent vertices are far apart

edges short, straight-line, similar length

]
[]
]
B densely connected parts (clusters) form communities
B as few crossings as possible

]

nodes distributed evenly

Optimization criteria partially contradict each other.

Fixed Edge Lengths?

Input: Graph G = (V, F), required edge length /(e) for each e € E.
Output: Drawing of GG that realizes the given edge lengths.

o8
o8
o 0 xR
& e X ©
0 © & ¥o)

NP-hard for
B uniform edge lengths in any dimension [Johnson '82]

B uniform edge lengths in planar drawings [Eades, \Wormald "90)]

B edge lengths {1,2} [Saxe '80]

Physical Analogy

Idea. |[Eades '84]

“To embed a graph we replace the vertices by steel rings and replace each edge with
a spring to form a mechanical system ... The vertices are placed in some initial
layout and let go so that the spring forces on the rings move the system to a minimal

energy state.”

Physical Analogy

Idea. |[Eades '84]

“To embed a graph we replace the vertices by steel rings and replace each edge with
a spring to form a mechanical system ... The vertices are placed in some initial
layout and let go so that the spring forces on the rings move the system to a minimal

energy state.”

Physical Analogy

Idea. |[Eades '84]

“To embed a graph we replace the vertices by steel rings and replace each edge with
a spring to form a mechanical system ... The vertices are placed in some initial
layout and let go so that the spring forces on the rings move the system to a minimal

energy state. Attractive forces.

pairs {u, v} of adjacent vertices:

fattr
Repulsive forces.
So-called spring-embedder algorithms that any pair {z,y} of vertices:
work according to this or similar principles are
x
among the most frequently used graph-drawing O‘f\bo Y
rep

methods in practice.

Force-Directed Algorithms

initial layout; may be randomly chosen positions

threshold _ _
max # Iterations

V-
P

end layout

-15

Spring Embedder by Eades — Model

B Repulsive forces repulsic;n/constant (e.g., 2.0)
C —
frep(u7 ”U) — - 5 PvPu
[Py — pu|

B Attractive forces .
spring constant (e.g., 1.0)

7 pe = pal

fspring(ua U) — Cspring |0g / * PuPv

fattr(ua U) — fspring(ua U) — frep(ua U)

B Resulting displacement vector

Fu = Z frep(u,?}) + Z fater (0, v)

veV veAdj[u]

EForceDirected(G = (V,E), p= (pv)vev, € >0, K €N) ,
Cte1 '
+ while t < K and max,cv [|Fy(t)[| > € do

foreach v € V do

| Ful)) & ey Feept0) + X cnaipug Farer(u v)

foreach v € V do
Lpu <_pu‘|‘5(t) F (t)
t+—t+1

1 —
. return p

Notation.

O pupva = unit vector

pointing from u to v

B ||p, — pu|| = Euclidean
distance between u and v

B / = ideal spring length
for edges

Spring Embedder by Eades — Force Diagram
fater (0, v) = fspring(ua v) — frep(ua v)

Force

— D

-

; A fspring(u7 ?}) — Cspring - |og /
3

= .

= Distance

>

: frep(tv) = 75 - D,
: P T lpy —pul? P
&

-]

o

Spring Embedder by Eades — Discussion

Advantages.
B very simple algorithm

B good results for small and medium-sized graphs

B empirically good representation of symmetry and structure

Disadvantages.
B System may not be stable at the end.

m Converges to local minima.

B Computing fspring is in O(|E|) time and computing frep is in O(]V|?) time.

Influence.
B original paper by Peter Eades [Eades '84| got &~ 2000 citations

B basis for many further ideas

- 11

Variant by Fruchterman & Reingold

B Repulsive forces
62
[Py — pul|

frep(u U) * PuPu

B Attractive forces

2
Pv — P ¢
fattr(u U) H - ; UH * PuPv

B Resulting displacement vector

— Z frep(u,) + Z fater (1, v)

veV veAdj[u]

EForceDirected(G = (V,E), p= (pv)vev, € >0, K €N) ,
Cte1 '
+ while t < K and max,cv [|Fy(t)[| > € do

foreach v € V do '
| Fult) < ey frep(u,0) + X e ndijug Sarer (4 'U)
foreach u € V do
L Du < Du + 5(t) : Fu(t)
t—t+1

1 —
. return p

Notation.

|puw — pol|| = Euclidean
distance between v and v

O pupvg = unit vector

pointing from u to v

B / = ideal spring length
for edges

Fruchterman &

Force

-

pull v to v

-«

push u away

ngold — Force Diagram

Foping(t:0) = Fare(:0) + frep(t:v)

Distance

10 -

Adaptability

Inertia. (“Tragheit”)

B Define vertex mass ®(v) = 1 4 deg(v)/2
B Set fartr(Dus Do) < fater(Pus Do) - 1/P ()
Gravitation.

m Define centroid oy = 1/|V|- >, o Do
B Add force fgrav(py) = Cgrav - P(v) . DoOV

Restricted drawing area.
If F, points beyond area R, clip vector appropriately at the border of R. F,

And many more... / R
B magnetic orientation of edges [GD Ch. 10.4] v

B other energy models

B planarity preserving

B speed-ups

Speeding up “Convergence” by Adaptive Displacement 9,(t)

ForceDirected(G = (V, E), p = (py)vev, € > 0, K € N)
<1
while ¢ < K and max,cy ||F,(t)|| > € do

foreach ©w € V do

L Fu(t) <= 2 vev Jrep(u, v) + ZveAdj[u] fater(u, v)
foreach © € V do
L Pu < Du ‘|‘M'Fu(t)
t+—t+1 0y (1)
re?turn p

12-5

Speeding up “Convergence” by Adaptive Displacement 9,(t)
[Frick, Ludwig, Mehldau '95]

Fy (1) Same direction.
F,(t—1) — increase temperature 6,(%)

12-7

Speeding up “Convergence” by Adaptive Displacement 9,(t)
[Frick, Ludwig, Mehldau '95]

Same direction.
F,(t—1) — increase temperature 6,(%)

o, (t) Oscillation.
— decrease temperature 9§, (%)

Fy(t)

Speeding up “Convergence” by Adaptive Displacement 9,(t)

[Frick, Ludwig, Mehldau '95]

Same direction.
— increase temperature 6,(%)

Oscillation.
— decrease temperature 9§, (%)

Rotation.

B count rotations

m if applicable

— decrease temperature 6§, (1)

12 -

Speeding up “Convergence” via Grids
[Fruchterman & Reingold '91]

""""""""""""""""""""""""""

B divide plane into a grid

B consider repulsive forces only
to vertices in neighboring cells

B and only if the distance is less
than some threshold

Discussion.

B good idea to improve actual runtime
B asymptotic runtime does not improve

B might introduce oscillation and thus
a quality loss

13 -

14 -

Speeding up with Quad Trees
[Barnes, Hut '86]

° [QT

B height h < log 7 + 2

B h € O(logn) if vertices evenly
distributed in the initial box

B time/space in O(hn)

B compressed quad tree can be
computed in O(nlogn) time

Sinit

14 - 11

Speeding up with Quad Trees
[Barnes, Hut '86]

(T
N : R @

™~

U,

number of points in the subtree R;

/ R13
Ra7 Rig / centroid of R; (pre-computed)

frep(Riapu) — |Rz|) frep(O-Rq;apu)

for each child R; of a vertex on path from u to root.

Evms.m
WURZBURG
Visualization of Graphs

Lecture 2:
Force-Directed Drawing Algorithms

Part |l
Tutte Embeddings

Johannes Zink

16 - 11

ldea

Consider a fixed triangle (a, b, ¢)
with a common neighbor v

Where would you place v?)

barycenter(a, b, ¢)

barycenter(z1, ..., x5) = S0 L Ti/k

1=

William T. Tutte
1917 — 2002

Idea.
Repeatedly place every vertex at barycenter of neighbors.

Tutte's Forces ForceDirected(G' = (V, E), p = (pv)vev, € >0, KEN)

t <1
Goal. ~ while t < K and max,cy || Fy,(t)|| > € do
Dy = barycenter(Adj [u]) foreach v € V do
= > veadifu) Pv/ deg(u) L Ful®) & Xy frep(,v) + 2endifuy Fater (1, 0):
foreach u € V do '
Fu(t) — Z'UEAdJ[U] pU/ deg() Pu L Pu < Pu T Ml Fu(t)
— ZvEAdJ[u] (pv pu)/ deg(u) t<+—t+1 I |
- Z 1w —po| ~ return p barycenter(z1,...,zx) = ,_; i/k
vEAdj[u] deg(u) Global minimum: p, = (0,0) Vu € V @
m Repulsive forces & (@) = 0 Solution: fix coordinates of outer face!
rep — @
B Attractive forces DuDv = unit vector pointing
, _ from u to v
Farer (1,) = (|)| | it u ﬁx_ed' |puw —pv|| = Euclidean distance
ZZIZg(ZQ)J pupvi otherwise. between u and v

18 - 34

System of Linear Equations

Goal. py = (2w, Yu) Az =b Ay=b b=(0),
pu = barycenter(Adjlu]) = >, cagjju) Po/ deg(u)

Ly = Z’UEAdj[u] T,/ deg(u) < deg(u) -z, = Z’UEAdj[u] T, < deg(u) - Ty — ZUEAdj[u] Ty =0
Ju = Z”EAdj[u] Yo/ deg(u) < deg(u) - yu = ZveAdj[U] Yo < deg(u) - yu — ZUEAdj[u] Yy = 0

(VA U us Uy Usx Ug
u1

U1 (3 -1 -1 0 -1 o\ Ay = deg(uy)
) wl—-1 3 -1 -1 0 0 1w € E
uz | —1 -1 3 0 0 -1 Aij,z’;éj —{ B
w0 21 0 3 -1 -1 0 wiu; ¢
5 ws|—-1 0 0 —-1 2 0
w\ 0 0 -1 -1 0 2

s Laplacian matrix of G

n variables, n constraints, det(A4) =0
= no unique solution @

System of Linear Equations

‘Theorem.
Tutte's barycentric aIgorithm‘admits a unique solution.
It can be computed in polynomial time.

.

Ly = ZveAdj[u] Ty/ deg(u) < deg(u) -z
Yu = ZUEAdj[u] Yo/ deg(u) << deg(u) - yu

Goal. p, = (Tu,Yu)

pu = barycenter(Adjlu]) =

ui

u

u3

18 - 44

solve two systems of linear equations

\

Tutte drawing

J

U1 Uo us

(3—1—1
-1 3 -1
-1 -1 3
0 -1 0
-1 0 0
\ 0 0 -1

Laplacian matrix of G

0
—1
0
3
—1
—1

Uus

—1
0
0
—1
2
0

Up
0
0
—1
—1

0
2/

k variables, k constraints, det(A) >0
— unique solution

k = #free vertices

2 vendjiu] Tv = deg(u) - Tu = 3 e agiju) v = 0
ZvéAdj[u] Yo < deg(u) - yu — Z’UEAdj[’LL] Yo =0

U4

A B —1 Ui € E
UAFT 0 Ui Uy §é E

Solution: we don’t need to
change the fixed vertices &
constraints dependent on
fixed vertices are constant
and can be moved into b

3-Connected Planar Graphs

planar:

connected:

k-connected:

(G can be drawn in such a way
that no edges cross each other

1 u—v path for every vertex pair {u,v}.

G —{v1,...,Vvr_1} is connected
for any k£ — 1 vertices v1 ..., Vr_1.
Or (equivalently if G # Ky):
There are at least £ vertex-disjoint

u—v paths for every vertex pair {u, v}.

19 - 37

(up to the choice of the outer face and mirroring)

p
\ Every 3-connected planar graph

Jla?\‘unique planar embedding.)

Theorem. [Whitney 1933]

Proof sketch.

[1,[> embeddings of G.

Let (' be a face of 5, but not of ;.
w inside (' in 1, v outside (' in '
both on same side in [>5

Tutte's Theorem

g
Theorem.

| et G be a 3-connected planar graph, and
et (be a face of its unique embedding.

of GG is planar and all its faces are strictly convex.
.

[Tutte 1963])

f we fix (" on a strictly convex polygon, then the Tutte drawing

J

20 -

21 -13

Properties of Tutte Drawings

Property 1. Let v € V free, 7 line through v.
Juv € E on one side of / = Jvw € E on other side

Otherwise, all forces to same side . ..

Property 2. All free vertices lie inside (.

21-29

Properties of Tutte Drawings

Otherwise, all forces to same side . ..

v furthest away from ¢
Pick any vertex u € V;, £/ parallel to £ through u

G connected, v not on ¢ = 3 neighbor w € V;, of u on the same side of ¢/ as v
move ¢’ onto w and repeat = 3 path from u to v

Proof of Tutte's Theorem

‘Lemma. Let uv be a non-boundary edge, / line through uv.
Then the two faces /i, /> incident to uv lie
completely on opposite sides of /.

\

Property 1. Let v € V free, 7 line through v. T
Jxv € E on one side of / = Jvw € F on other|side o 9
Property 3. Let 7/ be any line. _UO_O—

Let V/, be the set of vertices on one side of /.
Then G[V/] is connected.

xv and vw on different sides of / = f1, f» have angles <

~
~

at v

(Lemma. All faces are strictly convex. J (Lemma. The drawing is planar. J

p inside two faces
Property 2. All free vertices lie inside (. D
= q in one face
jumping over edge
— #£faces the same
= p inside one face é
q

| iterature

Main sources:
m [GD Ch. 10] Force-Directed Methods

m [DG Ch. 4] Drawing on Physical Analogies

Original papers:

Eades 1984] A heuristic for graph drawing
Fruchterman, Reingold 1991] Graph drawing by force-directed placement

‘Tutte 1963] How to draw a graph

	Algorithmic Framework
	General Layout Problem

	Fixed Edge Lengths?
	Physical Analogy
	Force-Directed Algorithms Framework
	Model
	Force diagram
	Discussion
	Fruchterman \& Reingold
	Force diagram
	Adaptability
	Adaptive Displacement

	Speeding up ``Convergence'' via Grids
	Speeding up with Quad Trees

	Tutte Embedding
	Idea
	Tutte's Forces
	System of Linear Equations
	3-Connected Planar Graphs
	Tutte's Theorem
	Properties of Tutte Drawings
	Proof of Tutte's Theorem

	Literature

