Visualization of Graphs

Lecture 2:
 Force-Directed Drawing Algorithms

Part I:
Spring Embedders

Johannes Zink

General Layout Problem

Input: Graph G
Output: Clear and readable straight-line drawing of G

General Layout Problem

Input: Graph G

Output: Clear and readable straight-line drawing of G
Drawing aesthetics to optimize:
■ adjacent vertices are close

- non-adjacent vertices are far apart
- edges short, straight-line, similar length
- densely connected parts (clusters) form communities
- as few crossings as possible

■ nodes distributed evenly
Optimization criteria partially contradict each other.

Fixed Edge Lengths?

Input: Graph $G=(V, E)$, required edge length $\ell(e)$ for each $e \in E$.
Output: Drawing of G that realizes the given edge lengths.

NP-hard for

- uniform edge lengths in any dimension [Johnson '82]

■ uniform edge lengths in planar drawings [Eades, Wormald '90]
■ edge lengths $\{1,2\}$ [Saxe '80]

Physical Analogy

Idea.

[Eades '84]
"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

Physical Analogy

Idea.

[Eades '84]
"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

Physical Analogy

Idea.

[Eades '84]
"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal
energy state."

So-called spring-embedder algorithms that work according to this or similar principles are among the most frequently used graph-drawing methods in practice.

Attractive forces. pairs $\{u, v\}$ of adjacent vertices:

Repulsive forces.
any pair $\{x, y\}$ of vertices:

Force-Directed Algorithms

initial layout; may be randomly chosen positions

Spring Embedder by Eades - Model

■ Repulsive forces

$$
f_{\text {rep }}(u, v)=\frac{c_{\text {rep }}}{\left\|p_{v}-p_{u}\right\|^{2}} \cdot \overrightarrow{p_{v} p_{u}}
$$

■ Attractive forces
spring constant (e.g., 1.0)

$$
f_{\text {spring }}(u, v)=c_{\text {spring }} \cdot \log \frac{\left\|p_{v}-p_{u}\right\|}{\ell} \cdot \overrightarrow{p_{u} p_{v}}
$$

$$
f_{\text {attr }}(u, v)=f_{\text {spring }}(u, v)-f_{\text {rep }}(u, v)
$$

ForceDirected $\left(G=(V, E), p=\left(p_{v}\right)_{v \in V}, \varepsilon>0, K \in \mathbb{N}\right)$ $t \leftarrow 1$
while $t<K$ and $\max _{v \in V}\left\|F_{v}(t)\right\|>\varepsilon$ do foreach $u \in V$ do
$F_{u}(t) \leftarrow \sum_{v \in V} f_{\text {rep }}(u, v)+\sum_{v \in \operatorname{Adj}[u]} f_{\text {attr }}(u, v)$

foreach $u \in V$ do

$\left\lfloor p_{u} \leftarrow p_{u}+\delta(t) \cdot F_{u}(t)\right.$
$t \leftarrow t+1$
return p

Notation.

- $\overrightarrow{p_{u} p_{v}}=$ unit vector pointing from u to v
$\square\left\|p_{v}-p_{u}\right\|=$ Euclidean distance between u and v
- $\ell=$ ideal spring length for edges

■ Resulting displacement vector

$$
F_{u}=\sum_{v \in V} f_{\text {rep }}(u, v)+\sum_{v \in \operatorname{Adj}[u]} f_{\text {attr }}(u, v)
$$

Spring Embedder by Eades - Force Diagram

$$
f_{\text {attr }}(u, v)=f_{\text {spring }}(u, v)-f_{\text {rep }}(u, v)
$$

Spring Embedder by Eades - Discussion

Advantages.

■ very simple algorithm
■ good results for small and medium-sized graphs
■ empirically good representation of symmetry and structure

Disadvantages.

\square System may not be stable at the end.
■ Converges to local minima.
$■$ Computing $f_{\text {spring }}$ is in $\mathcal{O}(|E|)$ time and computing $f_{\text {rep }}$ is in $\mathcal{O}\left(|V|^{2}\right)$ time.

Influence.

■ original paper by Peter Eades [Eades '84] got ≈ 2000 citations

- basis for many further ideas

Variant by Fruchterman \& Reingold

■ Repulsive forces

$$
f_{\mathrm{rep}}(u, v)=\frac{\ell^{2}}{\left\|p_{v}-p_{u}\right\|} \cdot \overrightarrow{p_{v} p_{u}}
$$

■ Attractive forces

$$
f_{\mathrm{attr}}(u, v)=\frac{\left\|p_{v}-p_{u}\right\|^{2}}{\ell} \cdot \overrightarrow{p_{u} p_{v}}
$$

■ Resulting displacement vector

$$
F_{u}=\sum_{v \in V} f_{\text {rep }}(u, v)+\sum_{v \in \operatorname{Adj}[u]} f_{\text {attr }}(u, v)
$$

```
ForceDirected (G=(V,E),p=(\mp@subsup{p}{v}{}\mp@subsup{)}{v\inV,}{},\varepsilon>0,K\in\mathbb{N})
while}t<K\mathrm{ and max }\mp@subsup{\operatorname{m}}{v}{}|V|\mp@subsup{F}{v}{}(t)|>\varepsilon\mathrm{ do
    foreach }u\inV\mathrm{ do
        F
    foreach u\inV do
        Lpu}\leftarrow\mp@subsup{p}{u}{}+\delta(t)\cdot\mp@subsup{F}{u}{}(t
    t\leftarrowt+1
return p
```

Notation.

- $\left\|p_{u}-p_{v}\right\|=$ Euclidean distance between u and v
- $\overrightarrow{p_{u} p_{v}}=$ unit vector pointing from u to v
■ $\ell=$ ideal spring length for edges

Fruchterman \& Reingold - Force Diagram

$$
f_{\text {rep }}(u, v)=\frac{\ell^{2}}{\left\|p_{v}-p_{u}\right\|} \cdot \overrightarrow{p_{v} p_{u}}
$$

Adaptability

Inertia. ("Trägheit")
■ Define vertex mass $\Phi(v)=1+\operatorname{deg}(v) / 2$
\square Set $f_{\text {attr }}\left(p_{u}, p_{v}\right) \leftarrow f_{\text {attr }}\left(p_{u}, p_{v}\right) \cdot 1 / \Phi(v)$

Gravitation.

■ Define centroid $\sigma_{V}=1 /|V| \cdot \sum_{v \in V} p_{v}$
■ Add force $f_{\operatorname{grav}}\left(p_{v}\right)=c_{\mathrm{grav}} \cdot \Phi(v) \cdot \overrightarrow{p_{v} \sigma_{V}}$

Restricted drawing area.

If F_{v} points beyond area R, clip vector appropriately at the border of R.

And many more...

■ magnetic orientation of edges [GD Ch. 10.4]

- other energy models
- planarity preserving

■ speed-ups

Speeding up "Convergence" by Adaptive Displacement $\delta_{v}(t)$

```
ForceDirected(G=(V,E),p=(pv}\mp@subsup{)}{v\inV}{},\varepsilon>0,K\in\mathbb{N}
    t\leftarrow1
    while}t<K\mathrm{ and max }\mp@subsup{\operatorname{meV}}{v\in|}{|}\mp@subsup{F}{v}{}(t)|>\varepsilon d
        foreach u\inV do
        F
    foreach u\inV do
        pu}\leftarrow\mp@subsup{p}{u}{}+\delta(t)\cdot\mp@subsup{F}{u}{}(t
        t\leftarrowt+1
    return p
```

Speeding up "Convergence" by Adaptive Displacement $\delta_{v}(t)$ [Frick, Ludwig, Mehldau '95]

Same direction.
\rightarrow increase temperature $\delta_{v}(t)$

Speeding up "Convergence" by Adaptive Displacement $\delta_{v}(t)$ [Frick, Ludwig, Mehldau '95]

Same direction.
\rightarrow increase temperature $\delta_{v}(t)$
Oscillation.
\rightarrow decrease temperature $\delta_{v}(t)$

Speeding up "Convergence" by Adaptive Displacement $\delta_{v}(t)$

[Frick, Ludwig, Mehldau '95]

Same direction.
\rightarrow increase temperature $\delta_{v}(t)$
Oscillation.
\rightarrow decrease temperature $\delta_{v}(t)$

Rotation.

- count rotations
- if applicable
\rightarrow decrease temperature $\delta_{v}(t)$

Speeding up "Convergence" via Grids

[Fruchterman \& Reingold '91]

■ divide plane into a grid
■ consider repulsive forces only to vertices in neighboring cells
\square and only if the distance is less than some threshold

Discussion.

■ good idea to improve actual runtime

- asymptotic runtime does not improve
- might introduce oscillation and thus a quality loss

Speeding up with Quad Trees

[Barnes, Hut '86]

$s_{\text {init }}$

\square height $h \leq \log \frac{s_{\text {init }}}{d_{\text {min }}}+\frac{3}{2}$

- $h \in \mathcal{O}(\log n)$ if vertices evenly distributed in the initial box
- time/space in $\mathcal{O}(h n)$
- compressed quad tree can be computed in $\mathcal{O}(n \log n)$ time

Speeding up with Quad Trees

[Barnes, Hut '86]

for each child R_{i} of a vertex on path from u to root.

Visualization of Graphs

Lecture 2:
 Force-Directed Drawing Algorithms

Idea

Consider a fixed triangle (a, b, c) with a common neighbor v

Where would you place $v ?$

$\operatorname{barycenter}\left(x_{1}, \ldots, x_{k}\right)=\sum_{i=1}^{k} x_{i} / k$
William T. Tutte

Idea.

Repeatedly place every vertex at barycenter of neighbors.

Tutte's Forces

Goal.

$$
\begin{aligned}
p_{u} & =\operatorname{barycenter}(\operatorname{Adj}[u]) \\
& =\sum_{v \in \operatorname{Adj}[u]} p_{v} / \operatorname{deg}(u)
\end{aligned}
$$

$$
F_{u}(t)=\sum_{v \in \operatorname{Adj}[u]} p_{v} / \operatorname{deg}(u)-p_{u}
$$

$$
=\sum_{v \in \operatorname{Adj}[u]}\left(p_{v}-p_{u}\right) / \operatorname{deg}(u)
$$

$$
=\sum_{v \in \operatorname{Adj}[u]} \frac{\left\|p_{u}-p_{v}\right\|}{\operatorname{deg}(u)} \overrightarrow{p_{u} p_{v}}
$$

ForceDirected $\left(G=(V, E), p=\left(p_{v}\right)_{v \in V}, \varepsilon>0, K \in \mathbb{N}\right)$ $t \leftarrow 1$
while $t<K$ and $\max _{v \in V}\left\|F_{v}(t)\right\|>\varepsilon$ do
foreach $u \in V$ do

$$
F_{u}(t) \leftarrow \sum_{v \in V} f_{\text {rep }}(u, v)+\sum_{v \in \operatorname{Adj}[u]} f_{\operatorname{attr}}(u, v)
$$

foreach $u \in V$ do

$$
p_{u} \leftarrow p_{u}+\delta \leftarrow 1 \cdot F_{u}(t)
$$

$$
t \leftarrow t+1
$$

return p

$$
\operatorname{barycenter}\left(x_{1}, \ldots, x_{k}\right)=\sum_{i=1}^{k} x_{i} / k
$$

Global minimum: $p_{u}=(0,0) \forall u \in V$

■ Repulsive forces

$$
f_{\text {rep }}(u, v)=0
$$

■ Attractive forces

$$
f_{\mathrm{attr}}(u, v)= \begin{cases}0 & \text { if } u \text { fixed } \\ \frac{\left\|p_{u}-p_{v}\right\|}{\operatorname{deg}(u)} \overrightarrow{p_{u} p_{v}} & \text { otherwise. }\end{cases}
$$

Solution: fix coordinates of outer face!
$\overrightarrow{p_{u} p_{v}}=$ unit vector pointing from u to v
$\left\|p_{u}-p_{v}\right\|=$ Euclidean distance between u and v

System of Linear Equations

Goal. $p_{u}=\left(x_{u}, y_{u}\right)$
$p_{u}=\operatorname{barycenter}(\operatorname{Adj}[u])=\sum_{v \in \operatorname{Adj}[u]} p_{v} / \operatorname{deg}(u)$

$$
A x=b \quad A y=b \quad b=(0)_{n}
$$

$$
\begin{aligned}
& x_{u}=\sum_{v \in \operatorname{Adj}[u]} x_{v} / \operatorname{deg}(u) \Leftrightarrow \operatorname{deg}(u) \cdot x_{u}=\sum_{v \in \operatorname{Adj}[u]} x_{v} \Leftrightarrow \operatorname{deg}(u) \cdot x_{u}-\sum_{v \in \operatorname{Adj}[u]} x_{v}=0 \\
& y_{u}=\sum_{v \in \operatorname{Adj}[u]} y_{v} / \operatorname{deg}(u) \Leftrightarrow \operatorname{deg}(u) \cdot y_{u}=\sum_{v \in \operatorname{Adj}[u]} y_{v} \Leftrightarrow \operatorname{deg}(u) \cdot y_{u}-\sum_{v \in \operatorname{Adj}[u]} y_{v}=0
\end{aligned}
$$

$\left.\begin{array}{l}u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \\ u_{5} \\ u_{6}\end{array} \begin{array}{rrrrrr}u_{1} & u_{2} & u_{3} & u_{4} & u_{5} & u_{6} \\ 3 & -1 & -1 & 0 & -1 & 0 \\ -1 & 3 & -1 & -1 & 0 & 0 \\ -1 & -1 & 3 & 0 & 0 & -1 \\ 0 & -1 & 0 & 3 & -1 & -1 \\ -1 & 0 & 0 & -1 & 2 & 0 \\ 0 & 0 & -1 & -1 & 0 & 2\end{array}\right)$.

$$
\begin{aligned}
& A_{i i}=\operatorname{deg}\left(u_{i}\right) \\
& A_{i j, i \neq j}= \begin{cases}-1 & u_{i} u_{j} \in E \\
0 & u_{i} u_{j} \notin E\end{cases}
\end{aligned}
$$

n variables, n constraints, $\operatorname{det}(A)=0$ \Rightarrow no unique solution

System of Linear Equations

Theorem.

Tate drawing
Goal. $p_{u}=\left(x_{u}, y_{u}\right)$
$p_{u}=\operatorname{barycenter}(\operatorname{Adj}[u])=$
Tutte's barycentric algorithm admits a unique solution.
It can be computed in polynomial time.
$x_{u}=\sum_{v \in \operatorname{Adj}[u]} x_{v} / \operatorname{deg}(u) \Leftrightarrow \operatorname{deg}(u) \cdot x_{u}=\sum_{v \in \operatorname{Adj}[u]} x_{v} \Leftrightarrow \operatorname{deg}(u) \cdot x_{u}-\sum_{v \in \operatorname{Adj}[u]} x_{v}=0$ $y_{u}=\sum_{v \in \operatorname{Adj}[u]} y_{v} / \operatorname{deg}(u) \Leftrightarrow \operatorname{deg}(u) \cdot y_{u}=\sum_{v \in \operatorname{Adj}[u]} y_{v} \Leftrightarrow \operatorname{deg}(u) \cdot y_{u}-\sum_{v \in \operatorname{Adj}[u]} y_{v}=0$

k variables, k constraints, $\operatorname{det}(A)>0$
$k=\#$ free vertices
\Rightarrow unique solution

$$
\begin{aligned}
& A_{i i}=\operatorname{deg}\left(u_{i}\right) \\
& A_{i j, i \neq j}= \begin{cases}-1 & u_{i} u_{j} \in E \\
0 & u_{i} u_{j} \notin E\end{cases}
\end{aligned}
$$

Solution: we don't need to change the fixed vertices \& constraints dependent on fixed vertices are constant and can be moved into b

3-Connected Planar Graphs

(up to the choice of the outer face and mirroring)

planar:

connected: $\quad \exists u-v$ path for every vertex pair $\{u, v\}$.
k-connected: $\quad G-\left\{v_{1}, \ldots, v_{k-1}\right\}$ is connected for any $k-1$ vertices $v_{1} \ldots, v_{k-1}$. Or (equivalently if $G \neq K_{k}$):
There are at least k vertex-disjoint $u-v$ paths for every vertex pair $\{u, v\}$.

Theorem.
 [Whitney 1933]

Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

Γ_{1}, Γ_{2} embeddings of G.
Let C be a face of Γ_{2}, but not of Γ_{1}. u inside C in Γ_{1}, v outside C in Γ_{1} both on same side in Γ_{2}

Tutte's Theorem

Theorem.

[Tutte 1963]
Let G be a 3-connected planar graph, and let C be a face of its unique embedding.
If we fix C on a strictly convex polygon, then the Tutte drawing of G is planar and all its faces are strictly convex.

Properties of Tutte Drawings

Property 1. Let $v \in V$ free, ℓ line through v.
$\exists u v \in E$ on one side of $\ell \Rightarrow \exists v w \in E$ on other side Otherwise, all forces to same side
Property 2. All free vertices lie inside

Properties of Tutte Drawings

Property 1. Let $v \in V$ free, ℓ line through v.
$\exists u v \in E$ on one side of $\ell \Rightarrow \exists v w \in E$ on other side Otherwise, all forces to same side
Property 2. All free vertices lie inside
Property 3. Let ℓ be any line.
Let V_{ℓ} be all vertices on one side of ℓ. Then $G\left[V_{\ell}\right]$ is connected.
v furthest away from ℓ

Proof of Tutte's Theorem

Lemma. Let $u v$ be a non-boundary edge, ℓ line through $u v$. Then the two faces f_{1}, f_{2} incident to $u v$ lie completely on opposite sides of ℓ.

Property 1. Let $v \in V$ free, ℓ line through v.
$\exists x v \in E$ on one side of $\ell \Rightarrow \exists v w \in E$ on other side
Property 3. Let ℓ be any line.
Let V_{ℓ} be the set of vertices on one side of ℓ. Then $G\left[V_{\ell}\right]$ is connected.
$x v$ and $v w$ on different sides of $\ell \Rightarrow f_{1}, f_{2}$ have angles $<\pi$ at \imath

Lemma. All faces are strictly convex.

Lemma. The drawing is planar.

p inside two faces
Property 2. All free vertices lie inside C. $\Rightarrow q$ in one face jumping over edge
\rightarrow \#faces the same
$\Rightarrow p$ inside one face

Literature

Main sources:
■ [GD Ch. 10] Force-Directed Methods
■ [DG Ch. 4] Drawing on Physical Analogies
Original papers:
■ [Eades 1984] A heuristic for graph drawing
■ [Fruchterman, Reingold 1991] Graph drawing by force-directed placement
■ [Tutte 1963] How to draw a graph

