

Visualization of Graphs

Lecture 2:

Force-Directed Drawing Algorithms

Part I: Spring Embedders

Johannes Zink

General Layout Problem

Input: Graph G

Output: Clear and readable straight-line drawing of G

General Layout Problem

Input: Graph G

Output: Clear and readable straight-line drawing of G

Drawing aesthetics to optimize:

- adjacent vertices are close
- non-adjacent vertices are far apart
- edges short, straight-line, similar length
- densely connected parts (clusters) form communities
- as few crossings as possible
- nodes distributed evenly

Optimization criteria partially contradict each other.

Fixed Edge Lengths?

Input: Graph G = (V, E), required edge length $\ell(e)$ for each $e \in E$.

Output: Drawing of G that realizes the given edge lengths.

NP-hard for

- uniform edge lengths in any dimension [Johnson '82]
- uniform edge lengths in planar drawings [Eades, Wormald '90]
- \blacksquare edge lengths $\{1,2\}$ [Saxe '80]

Physical Analogy

Idea.

[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

Physical Analogy

Idea.

[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system . . . The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

Physical Analogy

Idea.

[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

So-called spring-embedder algorithms that work according to this or similar principles are among the most frequently used graph-drawing methods in practice.

Attractive forces.

pairs $\{u, v\}$ of adjacent vertices:

$$u$$
 ommo v f_{attr}

Repulsive forces.

any pair $\{x, y\}$ of vertices:

Force-Directed Algorithms

initial layout; may be randomly chosen positions

Spring Embedder by Eades – Model

Repulsive forces repulsion constant (e.g., 2.0) $f_{\text{rep}}(u,v) = \frac{c_{\text{rep}}}{\|p_v - p_u\|^2} \cdot \overrightarrow{p_v p_u}$

■ Attractive forces spring constant (e.g., 1.0)

$$f_{\mathsf{spring}}(u,v) = c_{\mathsf{spring}} \cdot \log \frac{\|p_v - p_u\|}{\ell} \cdot \overrightarrow{p_u p_v}$$

$$f_{\mathsf{attr}}(u,v) = f_{\mathsf{spring}}(u,v) - f_{\mathsf{rep}}(u,v)$$

Resulting displacement vector

$$F_u = \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)$$

Notation.

- $\overrightarrow{p_up_v} = \text{unit vector}$ pointing from u to v
- $\|p_v p_u\| =$ Euclidean distance between u and v
- ℓ = ideal spring length for edges

Spring Embedder by Eades – Force Diagram

$$f_{\mathsf{attr}}(u,v) = f_{\mathsf{spring}}(u,v) - f_{\mathsf{rep}}(u,v)$$

Spring Embedder by Eades – Discussion

Advantages.

- very simple algorithm
- good results for small and medium-sized graphs
- empirically good representation of symmetry and structure

Disadvantages.

- System may not be stable at the end.
- Converges to local minima.
- Computing f_{spring} is in $\mathcal{O}(|E|)$ time and computing f_{rep} is in $\mathcal{O}(|V|^2)$ time.

Influence.

- lacktriangle original paper by Peter Eades [Eades '84] got pprox 2000 citations
- basis for many further ideas

Variant by Fruchterman & Reingold

Repulsive forces

$$f_{\mathsf{rep}}(u,v) = \frac{\ell^2}{\|p_v - p_u\|} \cdot \overrightarrow{p_v p_u}$$

■ Attractive forces

$$f_{\mathsf{attr}}(u,v) = \frac{\|p_v - p_u\|^2}{\ell} \cdot \overrightarrow{p_u p_v}$$

Resulting displacement vector

$$F_u = \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)$$

```
ForceDirected(G=(V,E),\ p=(p_v)_{v\in V},\ \varepsilon>0,\ K\in\mathbb{N}) t\leftarrow 1 while t< K and \max_{v\in V}\|F_v(t)\|>\varepsilon do foreach u\in V do \sum_{v\in V}f_{\mathsf{rep}}(u,v)+\sum_{v\in\mathsf{Adj}[u]}f_{\mathsf{attr}}(u,v) foreach u\in V do \sum_{v\in V}f_{\mathsf{rep}}(v,v)+\sum_{v\in\mathsf{Adj}[u]}f_{\mathsf{attr}}(v,v) f_{\mathsf{rep}}(v,v) foreach f_{\mathsf{rep}}(v,v) fo
```

Notation.

- $\|p_u p_v\| =$ Euclidean distance between u and v
- $\overrightarrow{p_up_v} = \text{unit vector}$ pointing from u to v
- ℓ = ideal spring length for edges

Fruchterman & Reingold – Force Diagram

Adaptability

Inertia. ("Trägheit")

- Define vertex mass $\Phi(v) = 1 + \deg(v)/2$
- Set $f_{\mathsf{attr}}(p_u, p_v) \leftarrow f_{\mathsf{attr}}(p_u, p_v) \cdot 1/\Phi(v)$

Gravitation.

- Define centroid $\sigma_V = 1/|V| \cdot \sum_{v \in V} p_v$
- Add force $f_{\mathsf{grav}}(p_v) = c_{\mathsf{grav}} \cdot \Phi(v) \cdot \overrightarrow{p_v \sigma_V}$

Restricted drawing area.

If F_v points beyond area R, clip vector appropriately at the border of R.

And many more...

- magnetic orientation of edges [GD Ch. 10.4]
- other energy models
- planarity preserving
- speed-ups


```
ForceDirected(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})
  t \leftarrow 1
  while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
       foreach u \in V do
        F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)
      foreach u \in V do
      return p
```

[Frick, Ludwig, Mehldau '95]

Same direction.

 \rightarrow increase temperature $\delta_v(t)$

[Frick, Ludwig, Mehldau '95]

Same direction.

 \rightarrow increase temperature $\delta_v(t)$

Oscillation.

 \rightarrow decrease temperature $\delta_v(t)$

[Frick, Ludwig, Mehldau '95]

Same direction.

 \rightarrow increase temperature $\delta_v(t)$

Oscillation.

 \rightarrow decrease temperature $\delta_v(t)$

Rotation.

- count rotations
- if applicable
- \rightarrow decrease temperature $\delta_v(t)$

Speeding up "Convergence" via Grids

[Fruchterman & Reingold '91]

- divide plane into a grid
- consider repulsive forces only to vertices in neighboring cells
- and only if the distance is less than some threshold

Discussion.

- good idea to improve actual runtime
- asymptotic runtime does not improve
- might introduce oscillation and thus a quality loss

Speeding up with Quad Trees

[Barnes, Hut '86]

Speeding up with Quad Trees

[Barnes, Hut '86]

for each child R_i of a vertex on path from u to root.

Visualization of Graphs

Lecture 2:

Force-Directed Drawing Algorithms

Part II:
Tutte Embeddings

Johannes Zink

Idea

Consider a fixed triangle (a, b, c) with a common neighbor v

Where would you place v?

barycenter
$$(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$$

William T. Tutte 1917 – 2002

Idea.

Repeatedly place every vertex at barycenter of neighbors.

Tutte's Forces

Goal.

$$p_u = \text{barycenter}(Adj[u])$$

= $\sum_{v \in Adi[u]} p_v / \deg(u)$

$$egin{align} F_u(t) &= \sum_{v \in \mathsf{Adj}[u]} p_v / \deg(u) - p_u \ &= \sum_{v \in \mathsf{Adj}[u]} (p_v - p_u) / \deg(u) \ &= \sum_{v \in \mathsf{Adj}[u]} rac{\|p_u - p_v\|}{\deg(u)} \overline{p_u p_v} \ \end{aligned}$$

ForceDirected $(G=(V,E), p=(p_v)_{v\in V}, \varepsilon>0, K\in\mathbb{N})$ $t \leftarrow 1$ while t < K and $\max_{v \in V} ||F_v(t)|| > \varepsilon$ do foreach $u \in V$ do $F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{v \in \mathsf{Adj}[u]} f_{\mathsf{attr}}(u, v)$ foreach $u \in V$ do $p_u \leftarrow p_u + \delta (1 \cdot F_u(t))$

 $t \leftarrow t + 1$

return p

barycenter $(x_1,\ldots,x_k)=\sum_{i=1}^k x_i/k$

Global minimum: $p_u = (0,0) \ \forall u \in V$

Repulsive forces

$$f_{\mathsf{rep}}(u,v) = 0$$

Attractive forces

$$f_{\mathsf{attr}}(u,v) = \begin{cases} 0 & \text{if } u \text{ fixed,} \\ \frac{\|p_u - p_v\|}{\deg(u)} \overrightarrow{p_u p_v} & \text{otherwise.} \end{cases}$$

Solution: fix coordinates of outer face!

 $\overrightarrow{p_u p_v} = \text{unit vector pointing}$ from u to v $||p_u - p_v|| =$ Euclidean distance

between u and v

System of Linear Equations

Goal.
$$p_u = (x_u, y_u)$$

$$p_u = \mathsf{barycenter}(\mathsf{Adj}[u]) = \sum_{v \in \mathsf{Adi}[u]} p_v / \mathsf{deg}(u)$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

Two systems of linear equations:

$$x_u = \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \iff \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0$$

$$y_u = \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \iff \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0$$

$$A_{ii} = \deg(u_i)$$
 $A_{ij,i
eq j} = egin{cases} -1 & u_i u_j \in E \ 0 & u_i u_j
otin E \end{cases}$

Laplacian matrix of G

n variables, n constraints, det(A) = 0 \Rightarrow no unique solution

System of Linear Equations

solve two systems of linear equations

Theorem. Goal. $p_u = (x_u, y_u)$

 $p_u = \text{barycenter}(Adj[u]) =$

Tutte's barycentric algorithm admits a unique solution. It can be computed in polynomial time.

$$x_u = \sum_{v \in \mathsf{Adj}[u]} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{v \in \mathsf{Adj}[u]} x_v \iff \deg(u) \cdot x_u - \sum_{v \in \mathsf{Adj}[u]} x_v = 0$$

$$y_u = \sum_{v \in \mathsf{Adj}[u]} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{v \in \mathsf{Adj}[u]} y_v \iff \deg(u) \cdot y_u - \sum_{v \in \mathsf{Adj}[u]} y_v = 0$$

Laplacian matrix of G

k variables, k constraints, det(A) > 0

$$k = \#$$
free vertices

 \Rightarrow unique solution

$$A_{ii} = \deg(u_i)$$

$$A_{ij,i\neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_j \notin E \end{cases}$$

Tutte drawing

Solution: we don't need to change the fixed vertices & constraints dependent on fixed vertices are constant and can be moved into b

3-Connected Planar Graphs

(up to the choice of the outer face and mirroring)

planar: G can be drawn in such a way

that no edges cross each other

connected: $\exists u - v$ path for every vertex pair $\{u, v\}$.

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any k-1 vertices v_1, \ldots, v_{k-1} .

Or (equivalently if $G \neq K_k$):

There are at least k vertex-disjoint

u–v paths for every vertex pair $\{u, v\}$.

Theorem.

[Whitney 1933]

Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G.

Let C be a face of Γ_2 , but not of Γ_1 . u inside C in Γ_1 , v outside C in Γ_1 both on same side in Γ_2

Tutte's Theorem

Theorem.

[Tutte 1963]

Let G be a 3-connected planar graph, and let G be a face of its unique embedding. If we fix G on a strictly convex polygon, then the Tutte drawing of G is planar and all its faces are strictly convex.

Properties of Tutte Drawings

Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

Properties of Tutte Drawings

Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

Property 3. Let ℓ be any line.

Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

 ${\color{red} v}$ furthest away from ℓ

Pick any vertex $u \in V_\ell$, ℓ' parallel to ℓ through u

G connected, v not on $\ell' \Rightarrow \exists$ neighbor $w \in V_{\ell}$ of u on the same side of ℓ' as v move ℓ' onto w and repeat $\Rightarrow \exists$ path from u to v

Proof of Tutte's Theorem

Lemma. Let uv be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists xv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be the set of vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

 $x oldsymbol{v}$ and $oldsymbol{v} w$ on different sides of $\ell \Rightarrow f_1, f_2$ have angles $<\pi$ at $oldsymbol{v}$

de v u

Lemma. All faces are strictly convex.

Lemma. The drawing is planar.

Property 2. All free vertices lie inside C. $\Rightarrow q$ in one face

 $\Rightarrow q$ in one face jumping over edge $\Rightarrow \#$ faces the same

p inside two faces

 \rightarrow #faces the same

 $\Rightarrow p$ inside one face

Literature

Main sources:

- [GD Ch. 10] Force-Directed Methods
- [DG Ch. 4] Drawing on Physical Analogies

Original papers:

- [Eades 1984] A heuristic for graph drawing
- [Fruchterman, Reingold 1991] Graph drawing by force-directed placement
- [Tutte 1963] How to draw a graph