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The “Ctrl+F" Problem

STRING MATCHING
Input: Strings T (text) and P (pattern) over an alphabet ¥ s.t. |P|, |[Z| < |T|.

Task: Find all occurrences of Pin T.
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STRING MATCHING

Input: Strings T (text) and P (pattern) over an alphabet ¥ s.t. |P|, |[Z| < |T|.

Task: Find all occurrences of Pin T.

Example:
Y. = {a,b,c} P = cbc

P occurs in T at positions 1, 7, and 9.
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The “Ctrl+F" Problem

STRING MATCHING
Input: Strings T (text) and P (pattern) over an alphabet ¥ s.t. |P|, |[Z| < |T|.

Task: Find all occurrences of Pin T.

Example:
Y. = {a,b,c} P = cbc T=1[cbclcabfcbhecbcachb
M @ @@ 6 6@ 6 O a2 )
P occurs in T at positions 1, 7, and 9. c bc c bc
T T c bc
A
. . (1) (7) (9)
Applications:

B Searching a text document / e-book.
B Searching a particular pattern in a DNA sequence.
B Internet search engines: determine whether a page is relavent to the user query.



Notation

We assume T and P to be encoded as arrays with n = |T| entries T|1|, T|2],...,
and m = |P| entries P|1], P|2],..., P|m]|, respectively.
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Notation

We assume T and P to be encoded as arrays with n = |T| entries T|1|, T|2]
P|m]|, respectively.

and m = |P| entries P|1], P|2]

T3]

T = c blc
1 ) @)

T|i,j] with 1 <i < j < n denotes the substring of T formed by T|i], T|i + 1]
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Each substring T|i, j] is called an infix of T.
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Notation

We assume T and P to be encoded as arrays with n = |T| entries T[1], T|2], ..., T|n]

and m = |P| entries P|1], P|2],..., P|m]|, respectively.

T3] T[6, 11]

T= c blc|lc alb e b cbclacb
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T|i,j] with 1 <i < j < n denotes the substring of T formed by T|i], T|i + 1]

Each substring T|i, j] is called an infix of T.
If i =1, then T|i, ] is also called prefix of T.
If | = n, then T|[i, j] is also called suffix of T.

prefix suffix

T=1|c b c|lc alb ¢c blc blc a ¢ b
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Algorithmic Complexity

Occurrences of (prefixes of ) P may overlap.
= A simple left-to-right traversal of T is not sufficient to find all occurrences of P!
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Algorithmic Complexity

Occurrences of (prefixes of ) P may overlap.
= A simple left-to-right traversal of T is not sufficient to find all occurrences of P!

l

T= cbccalbcbocbcalchb
M @ @) @ 6 (6 @ 6 ©]@) 1) 12)|13) (14)

P

Observation. STRING MATCHING can be solved in O(nm) time.

Theorem. STRING MATCHING can be solved in O(n + m) time, and this time bound
is optimal. [Knuth, Morris, Pratt'77]

Often, many queries Py1, P>, P3, ... are performed on the same text T.

Our goal: Design a data structure to store T such that each query P; can be
answered in time independent of n.

We will see two such data structures: suffix trees and suffix arrays.



Suffix Trees (I) T=abcababca

Idea: Represent T as a search tree.




Suffix Trees (1)

Idea: Represent T as a search tree.
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Suffix Trees (I) T=abcababca

Idea: Represent T as a search tree.

A >-tree is a rooted tree S = (V, E) whose edges are
labeled with strings over X such that for eachv € V
B the labels of the edges that lead to the children

of v start with pairwise distinct elements of X;
B if v is not the root, then v has # 1 children.

Notation:

B 0 = concatenation of the labels encountered
on the path from the root to v;

B d(v) = || is the string depth of v;

B S contains a string « if there is a v € V and S contains &« =|b a b| since
a (maybe empty) string B such that 7 = af3; thereisa v € V with 7 = aff

B words(S) = set of all strings contained in S. where B =c a|
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A suffix tree S of T is a 2-tree that contains exactly the infixes of T,
that is, words(S) = {T[i,j] |1 <i<j<n}.
Lemma. For each leaf v of S, the infix ¥ is a suffix of T.

Proof. Denote 7 = T|i, j| and assume j < n.

v is a prefix of T|i,n]. Let u be a vertex such that T|i, n] is a prefix of u.

= the path from the root to v is a subpath of the path from the root to u.

= v Is not a leaf; a contradiction.
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Suffix Trees (Il)

A suffix tree S of T is a 2-tree that contains exactly the infixes of T,
that is, words(S) = {T[i,j] |1 <i<j<n}.

Lemma. For each leaf v of S, the infix ¥ is a suffix of T.

Remark. The converse is not true since a suffix can be a prefix of another suffix.

Fix: Append a symbol $ € X to T = the leaves correspond bijectively to the suffixes.

Let i denote the leaf of S where i = T[i, n].

Let S; denote
B the i-th suffix T|i, n| of T;
B the path from the root of S to 1.

57
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Implementation details:

B Each edge is labeled with an infix T|i, j|. It suffices to store the indices i and j.
= S requires O(n) space since #leaves = #suffixes = n.
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Suffix Trees (Il

Implementation details:

B Each edge is labeled with an infix T|i, j|. It suffices to store the indices i and j.
= S requires O(n) space since #leaves = #suffixes = n.

B At each vertex v with k children, the edges leading to these children are stored in
an array of length k sorted by the first letter of their labels.

— allows for binary search!




Searching in Suffix Trees

T=abcababca

SEARCH(S,P)
u < root of S
1+ 1
while u is not a leaf do
Search edge e = (u,v) whose label B starts with P|i].
if e does not exist then
| return “no match”
Compare B with Pli, m|
if P[i, m] is prefix of B then
|_ return the indices of all leaves in the subtree rooted at v

else if P[i,j| = B for some j < m then
Li+j+1

U<—17°

else
|_ return “no match*

Beispiel: P=a b c
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return “no match”



Searching in Suffix Trees

T=abcababca

SEARCH(S,P) s U
u < root of S
1+ 1
while u is not a leaf do
Search edge e = (u,v) whose label B starts with P|i].
if e does not exist then

| return “no match”
Compare B with Pli, m|
if P[i, m] is prefix of B then

|_ return the indices of all leaves in the subtree rooted at v

else if P[i,j| = B for some j < m then
Li+j+1
U<

else
|_ return “no match*

Beispiel: P=a b c
123

return “no match”



Searching in Suffix Trees

T=abcababca
SEARCH(S,P) s U
u < root of S
1+ 1
while u is not a leaf do
Search edge e = (u,v) whose label B starts with P|i].
if e does not exist then
| return “no match”
Compare B with Pli, m|
if P[i, m] is prefix of B then
|_ return the indices of all leaves in the subtree rooted at v

else if P[i,j| = B for some j < m then

Li+j+1
U< 0
else -
|_ return “no match" Beispiel: P = l2) c

a
1
return “no match” i



Searching in Suffix Trees

T=abcababca
SEARCH(S,P) s U
u < root of S
1+ 1
while u is not a leaf do
Search edge e = (u,v) whose label B starts with P|i].
if e does not exist then
| return “no match”
Compare B with Pli, m|
if P[i, m] is prefix of B then
|_ return the indices of all leaves in the subtree rooted at v

else if P[i,j| = B for some j < m then

Li+j+1
U< 0
else -
|_ return “no match" Beispiel: P = l2) c

a
1
return “no match” i



Searching in Suffix Trees

SEARCH(S, P)

U < root of S

1+ 1

while u is not a leaf do

Li+j+1
U<—10°

else
|_ return “no match*

return “no match”

else if P[i,j| = B for some j < m then

Search edge e = (u,v) whose label B starts with P|i].
if e does not exist then
| return “no match”
Compare B with Pli, m|
if P|i, m] is prefix of B then
|_ return the indices of all leaves in the subtree rooted at v
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Searching in Suffix Trees

T=abcababca

SEARCH(S, P)
u < root of S
1+ 1
while u is not a leaf do
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Search edge e = (u,v) whose label B starts with P|i].
if e does not exist then
| return “no match”
Compare B with Pli, m|
if P|i, m] is prefix of B then
|_ return the indices of all leaves in the subtree rooted at v

else if P[i,j| = B for some j < m then

Liej+1
U7
else )
y y partial e Beispiel: P=a b c

B |_ return “no match match match match P 123

et o match® BOODIT] |BCDm |BLICM--- !
I I N l

PLIT] PLCITIT] |PCLMAA- - -

1 m 1 ] m 1




Searching in Suffix Trees

T=abcababca

SEARCH(S, P)
u < root of S
1+ 1
while u is not a leaf do
Search edge e = (u,v) whose label B starts with P|i].
if e does not exist then
| return “no match”
Compare B with Pli, m|
if P|i, m] is prefix of B then
|_ return the indices of all leaves in the subtree rooted at v

else if P[i,j| = B for some j < m then

Liej+1
U7
else )
y y partial e Beispiel: P =la b ¢

B |_ return “no match match match match P 123
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Searching in Suffix Trees

T=abcababca

SEARCH(S,P)
u < root of S
1+ 1
while u is not a leaf do
Search edge e = (u,v) whose label B starts with P|i].
if e does not exist then
| return “no match”
Compare B with Pli, m|
if P[i, m] is prefix of B then
|_ return the indices of all leaves in the subtree rooted at v

else if P[i,j| = B for some j < m then
Li+j+1
U<

else
|_ return “no match*

return “no match”




Searching in Suffix Trees

T—abcababca
SEARCH(S,P) 51 56
u < root of S S
1+ 1
while u is not a leaf do
Search edge e = (u,v) whose label B starts with P|i].
if e does not exist then
| return “no match”
Compare B with Pli, m|
if P[i, m] is prefix of B then
|_ return the indices of all leaves in the subtree rooted at v

else if P[i,j| = B for some j < m then
Li+j+1
U<

else
|_ return “no match*

return “no match”




Searching in Suffix Trees

T—abcababca
SEARCH(S,P) 51 56
u < root of S S
1+ 1
while u is not a leaf do
Search edge e = (u,v) whose label B starts with P|i].
if e does not exist then
| return “no match”
Compare B with Pli, m|
if P[i, m] is prefix of B then
|_ return the indices of all leaves in the subtree rooted at v

else if P[i,j| = B for some j < m then
Li+j+1
U<

else
|_ return “no match*

return “no match”

Correctness. Each occurrence of P is a prefix of exactly one suffix of T. We report all suffixes with P as a prefix.



Searching in Suffix Trees

T—abcababca

SEARCH(S,P) 51 56

u < root of S S

1+ 1

while u is not a leaf do
Search edge ¢ = (u,v) whose label B starts with P[i].| O(log |Z|)
if e does not exist then

| return “no match”
Compare B with Pli, m|
if P[i, m] is prefix of B then

|_ return the indices of all leaves in the subtree rooted at v

else if P[i,j| = B for some j < m then
Li+j+1
U<

else
|_ return “no match*

return “no match”

Correctness. Each occurrence of P is a prefix of exactly one suffix of T. We report all suffixes with P as a prefix.



Searching in Suffix Trees

IT'=abcababca
SEARCH(S,P) 51 56
u < root of S S
141
while u is not a leaf do
Search edge ¢ = (u,v) whose label B starts with P[i].| O(log |Z|)

if ¢ does not exist then
| return “no match”

Compare B with Pli, m|
if P[i, m] is prefix of B then
|_ return the indices of all leaves in the subtree rooted at v

else if P[i, j] = B for some j < m then O(k) in total
Li+j+1

U<—17°

else
|_ return “no match*

return “no match”

Correctness. Each occurrence of P is a prefix of exactly one suffix of T. We report all suffixes with P as a prefix.



Searching in Suffix Trees

T—abcababca

SEARCH(S,P) 51 56

u < root of S S

1+ 1

while u is not a leaf do
Search edge ¢ = (u,v) whose label B starts with P[i].| O(log |Z|)
if e does not exist then

| return “no match”
Compare B with P[i, m]| m comparisons in total
if P|i,m| is prefix of B then
|_ return the indices of all leaves in the subtree rooted at v

else if P[i, j] = B for some j < m then O(k) in total
Li+j+1

U<—17°

else
|_ return “no match*

return “no match”

Correctness. Each occurrence of P is a prefix of exactly one suffix of T. We report all suffixes with P as a prefix.



Searching in Suffix Trees

T—abcababca
SEARCH(S,P) o1 $ %6
u < root of S < m iterations |

1+ 1
while u is not a leaf do / \

Search edge ¢ = (u,v) whose label B starts with P[i].| O(log |Z|)

if ¢ does not exist then
| return “no match”

Compare B with P[i, m]| m comparisons in total
if P|i,m| is prefix of B then
|_ return the indices of all leaves in the subtree rooted at v

else if P[i,j] = B for some j < m then O(k) in total
L i< j+1

U<—17°

else
|_ return “no match*

return “no match”

Correctness. Each occurrence of P is a prefix of exactly one suffix of T. We report all suffixes with P as a prefix.



Searching in Suffix Trees

T—abcababca
SEARCH(S,P) o1 $ %6
u < root of S < m iterations |

1+ 1
while u is not a leaf do / \

Search edge ¢ = (u,v) whose label B starts with P[i].| O(log |Z|)

if ¢ does not exist then
| return “no match”

Compare B with P[i, m]| m comparisons in total
if P|i,m| is prefix of B then
|_ return the indices of all leaves in the subtree rooted at v

else if P[i,j] = B for some j < m then O(k) in total
L i< j+1
U<—70

else
|_ return “no match*

return “no match”

Correctness. Each occurrence of P is a prefix of exactly one suffix of T. We report all suffixes with P as a prefix.

Running time. O(mlog |X| 4+ k) where k is the number of leaves in the subtree rooted at v.



Searching in Suffix Trees

T—abcababca
SEARCH(S,P) o1 $ %6
u < root of S < m iterations |

1+ 1
while u is not a leaf do / \

Search edge ¢ = (u,v) whose label B starts with P[i].| O(log |Z|)
if ¢ does not exist then
| return “no match”
Compare B with P[i, m]| m comparisons in total
if P|i,m| is prefix of B then
|_ return the indices of all leaves in the subtree rooted at v

else if P[i,j] = B for some j < m then O(k) in total
L i< j+1
U0
else
| return “no match” c
— This is a parameterized, output-sensitive algorithm! A
return “no match” i

Correctness. Each occurrence of P is a prefix of exactly one suffix of T. We report all suffixes with P as a prefix.

Running time. O(mlog |X| 4+ k) where k is the number of leaves in the subtree rooted at v.



Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.
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Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.
Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, 5o, ..., S;.
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Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, So, ..., S;.
Initialization. Ny consists of a single edge labeled S;.
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Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, So, ..., S;.

Initialization. Ny consists of a single edge labeled S;.

Constructing N;, 1 from N;. Search the longest prefix P of S;, 1 contained in N;.
Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.
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Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, S»,...,5;.

Initialization. Ny consists of a single edge labeled S;.

Constructing N;, 1 from N;. Search the longest prefix P of S;, 1 contained in N;.
Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.

pacPs
T=abcababca$ @M‘
5o

Next step:
Insert So = bcababcal:

B Matching ends at the root.
B — Case 2.



Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, S»,...,5;.

Initialization. Ny consists of a single edge labeled S;.

Constructing N;, 1 from N;. Search the longest prefix P of S;, 1 contained in N;.
Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.

T=abcababca}
S3

Next step:
Insert S3 = cababcal:

B Matching ends at the root.
B — Case 2.
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Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, S»,...,5;.

Initialization. Ny consists of a single edge labeled S;.

Constructing N;, 1 from N;. Search the longest prefix P of S;, 1 contained in N;.
Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.

T—=abcababca} $ac
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Next step:
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B Matching ends along S; after 2 symbols.
B — Case l.



Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, S»,...,5;.

Initialization. Ny consists of a single edge labeled S;.

Constructing N;, 1 from N;. Search the longest prefix P of S;, 1 contained in N;.
Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.

T=abcababca}
Ss

Next step:
Insert Ss = babca:

B Matching ends along S, after 1 symbol.
B — Case l.



Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, S»,...,5;.

Initialization. Ny consists of a single edge labeled S;.

Constructing N;, 1 from N;. Search the longest prefix P of S;, 1 contained in N;.
Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.

T=abcababca}
S6

Next step:
Insert S¢ = abcal:

B Matching ends along 51 after 4 symbols.
B — Case l.
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Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, S»,...,5;.

Initialization. Ny consists of a single edge labeled S;.

Constructing N;, 1 from N;. Search the longest prefix P of S;, 1 contained in N;.
Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.

T=abcababca}
57

Next step:
Insert S = b ca $:

B Matching ends along S, after 3 symbols.
B — Case l.
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Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.
Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, S»,...,5;.
Initialization. Ny consists of a single edge labeled S;.

Constructing N;, 1 from N;. Search the longest prefix P of S;, 1 contained in N;.

Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.

T=abcababca}

Proceed similarly with
581 Sg, and 510.




Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, So, ..., S;.
Initialization. Ny consists of a single edge labeled S;.
Constructing N;, 1 from N;. Search the longest prefix P of S;, 1 contained in N;.

Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.
$
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Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, So, ..., S;.

Initialization. Ny consists of a single edge labeled S;.

Constructing N;, 1 from N;. Search the longest prefix P of S;, 1 contained in N;.
Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.

Running time.

O(((n — 1)+ n—2)+---+1)log |Z] +n\§l\) C O(n?log |Z|)

searching P re-sorting neighbors of v
(via BUCKET SORT)




Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, So, ..., S;.

Initialization. Ny consists of a single edge labeled S;.

Constructing N;, 1 from N;. Search the longest prefix P of S;, 1 contained in N;.
Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.

Running time.

O(((n —1)4+(n—=2)+---+1)log|X] +n\2\) C O(n?log |Z|)



Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, So, ..., S;.

Initialization. Ny consists of a single edge labeled S;.

Constructing N;, 1 from N;. Search the longest prefix P of S;, 1 contained in N;.
Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.

Running time.
O(((n —1)4+(n—=2)+---+1)log|X] +n\2\) C O(n?log |Z|)

It is also possible to construct suffix trees in O(n) time

B directly, e.g., with an algorithm by Farach (1997); or

B indirectly, by first constructing a suffix array, e.g., with an algorithm by
Karkkainen and Sanders (2003).



Suffix Arrays I'=abcababcas

A =1[009]4]6]1]5]7]2]8]3

A suffix array A of a text T with n = |T| baaaabbbec

_ o b baccaa

stores a permutation of the indices {1,2,...,n} accbaash

s.t. S, is the i-th smallest suffix of T in >ingh e

lexicographical order. g | s b b b é
Saji—1] < Sap foreach 1 <i<mn é S

Convention. $ is the smallest letter.

Properties.
B The entries of A correspond to a

lexicographical sorting of the suffixes of T.




Suffix Arrays I'=abcababcas

A =1[009]4]6]1]5]7]2]8]3

A suffix array A of a text T with n = |T| baaaabbbec

_ o b baccaa

stores a permutation of the indices {1,2,...,n} accbaash

s.t. 5ap;) is the i-th smallest suffix of T'in ? s ba o o

lexicographical order. g | s b b b é
Saji—1] < Sap foreach 1 <i<mn é S

Convention. $ is the smallest letter.

Properties.

B The entries of A correspond to a
lexicographical sorting of the suffixes of T.

B The entries of A corresponds to the order in
which the leaves of a suffix tree S of T are
encoutered by a DFS that chooses the next
edge according to the lexicographical order.




Suffix Arrays I'=abcababcas

A =1[009]4]6]1]5]7]2]8]3

A suffix array A of a text T with n = |T| g22aaabbbcc

_ o b baccaa

stores a permutation of the indices {1,2,...,n} accbaash

s.t. 5ap;) is the i-th smallest suffix of T'in ? s ba o o

lexicographical order. g | s b b b é
Saji—1] < Sap foreach 1 <i<mn é S

Convention. $ is the smallest letter.

Properties.

B The entries of A correspond to a
lexicographical sorting of the suffixes of T.

B The entries of A corresponds to the order in
which the leaves of a suffix tree S of T are
encoutered by a DFS that chooses the next
edge according to the lexicographical order.




Suffix Arrays I'=abcababcas

A =1[009]4]6]1]5]7]2]8]3

A suffix array A of a text T with n = |T| SP222abbbec

_ o b baccaa

stores a permutation of the indices {1,2,...,n} accbaash

s.t. 5ap;) is the i-th smallest suffix of T'in ? s ba o o

lexicographical order. g | s b b b é
Saji—1] < Sap foreach 1 <i<mn é S

Convention. $ is the smallest letter.

Properties.

B The entries of A correspond to a
lexicographical sorting of the suffixes of T.

B The entries of A corresponds to the order in
which the leaves of a suffix tree S of T are
encoutered by a DFS that chooses the next
edge according to the lexicographical order.




Suffix Arrays I'=abcababcas

A =1[009]4]6]1]5]7]2]8]3

A suffix array A of a text T with n = |T| baBaabbbec

_ o b baccaa

stores a permutation of the indices {1,2,...,n} accbaash

s.t. 5ap;) is the i-th smallest suffix of T'in f s ba o o

lexicographical order. g | g b b é
Saji—1] < Sap foreach 1 <i<mn é S

Convention. $ is the smallest letter.

Properties.

B The entries of A correspond to a
lexicographical sorting of the suffixes of T.

B The entries of A corresponds to the order in
which the leaves of a suffix tree S of T are
encoutered by a DFS that chooses the next
edge according to the lexicographical order.




Suffix Arrays I'=abcababcas

A =1[009]4]6]1]5]7]2]8]3

A suffix array A of a text T with n = |T| baaf@abbbecc

_ o b baccaa

stores a permutation of the indices {1,2,...,n} accbaash

s.t. 5ap;) is the i-th smallest suffix of T'in ? s ha o o

lexicographical order. g | s b b b é
Saji—1] < Sap foreach 1 <i<mn é S

Convention. $ is the smallest letter.

Properties.

B The entries of A correspond to a
lexicographical sorting of the suffixes of T.

B The entries of A corresponds to the order in
which the leaves of a suffix tree S of T are
encoutered by a DFS that chooses the next
edge according to the lexicographical order.
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A =1[009]4]6]1]5]7]2]8]3

A suffix array A of a text T with n = |T| baaa@bbbecc

_ o b baccaa

stores a permutation of the indices {1,2,...,n} accbaash

s.t. 5ap;) is the i-th smallest suffix of T'in ? s ha o &

lexicographical order. g | : B b b é
Saji—1] < Sap foreach 1 <i<mn é S

Convention. $ is the smallest letter.

Properties.

B The entries of A correspond to a
lexicographical sorting of the suffixes of T.

B The entries of A corresponds to the order in
which the leaves of a suffix tree S of T are
encoutered by a DFS that chooses the next
edge according to the lexicographical order.




Suffix Arrays I'=abcababcas

A =1[009]4]6]1]5]7]2]8]3

A suffix array A of a text T with n = |T| baaaabbbec

_ o b baccaa

stores a permutation of the indices {1,2,...,n} accbaash

s.t. 5ap;) is the i-th smallest suffix of T'in ? s ba o o

lexicographical order. g | s b b b é
Saji—1] < Sap foreach 1 <i<mn é S

Convention. $ is the smallest letter.

Properties.

B The entries of A correspond to a
lexicographical sorting of the suffixes of T.

B The entries of A corresponds to the order in
which the leaves of a suffix tree S of T are
encoutered by a DFS that chooses the next
edge according to the lexicographical order.




Searching in Suffix Arrays

Observation. The occurrences of a pattern P in T form an interval in A.

T=abcababca}
A = L09l4]6]1]5]7[2]8]3
$ aaaabbbcc
$ bbbaccaa
accbaa$gohbp
baac$b a
c$ba a b
a a$ b g

$ b c
C a $

a $

$




Searching in Suffix Arrays

Observation. The occurrences of a pattern P in T form an interval in A.
Idea. Find the left and the right boundary of the interval via two binary searches.

Report all entries in the intervall T=abcababcab}

A = 109[4]6
$ a
$
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Searching in Suffix Arrays

Observation. The occurrences of a pattern P in T form an interval in A.
Idea. Find the left and the right boundary of the interval via two binary searches.

Report all entries in the intervall T=abcababcab}
FINDLEFTBOUNDARY(P, A) A = 10(9]4]6]1[5]7]2]8]3
¢ <1 // left index of candidates $ aaaabbbcec
r < A.length // right index of candidates $bbbaccaa
while ¢ < 7 do gggbgz$b
i<+ [(r—2¢)/2] 2 s bg : E
if P > SA[Z][].,TH] then a a $ b C
< i+1// continue w/ right half $ b g g
— C
else g $
r<1// continue w/ left half
- P=ab
if P is no prefix of A[/] then
| return “no match”

return /



Searching in Suffix Arrays

Observation. The occurrences of a pattern P in T form an interval in A.
Idea. Find the left and the right boundary of the interval via two binary searches.

Report all entries in the intervall T=abcababcab}
FINDLEFTBOUNDARY(P, A) A = 1009]4[6]1[5]7]2]8]3
¢ <1 // left index of candidates $ aaaabbbcec
r < A.length // right index of candidates $bbbaccaa
while ¢ < r do gggbgz$b
i 04 |(r—10)/2] S ba s b
if P> SA[Z][].,TH] then a a $ b C
< i+1// continue w/ right half $ b g g
— C
else g $
r<1// continue w/ left half
- P=ab
if P is no prefix of A[/] then
| return “no match”

return /



Searching in Suffix Arrays

Observation. The occurrences of a pattern P in T form an interval in A.
Idea. Find the left and the right boundary of the interval via two binary searches.

Report all entries in the intervall T=abcababcab}
FINDLEFTBOUNDARY(P, A) A = 10[9]4]6]1[5]7]2]8]3
V<1 // left index of candidates $ aaaabbbecoc
r < A.length // right index of candidates $bbbaccaa
while ¢ < 7 do accbaasghp
i 04 [(r—0)/2] beactb a
if P> SA[Z][].,TH] then a a $ b C
| < i+1// continue w/ right half $ (t:) g g
else a $
r<1// continue w/ left half $
- P=ab
if P is no prefix of A[/] then
return “no match”

return /
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Searching in Suffix Arrays

Observation. The occurrences of a pattern P in T form an interval in A.
Idea. Find the left and the right boundary of the interval via two binary searches.

Report all entries in the intervall T=abcababcab}
FINDRIGHTBOUNDARY(A, P) A = 10(9]4]6]1[5]7]2]8]3
¢ <1 // left index of candidates $ aaaabbbcc
r < A.length // right index of candidates $bbbaccaa
while r > ¢ do gggbgz$b
i< L+ [(r—20)/2] 25 b a . b
if P< SA[Z][l,m] then 3 a $ b C
r<1—1// continue w/ left half $ b g g
— C
else g $
¢ < i// continue w/ right half
L & P=ab
if P is no prefix of A[r| then
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Searching in Suffix Arrays

Observation. The occurrences of a pattern P in T form an interval in A.
Idea. Find the left and the right boundary of the interval via two binary searches.

Report all entries in the intervall T=abcababcab}
FINDRIGHTBOUNDARY(A, P) A = 10(9]4]6]1[5]7]2]8]3
¢ <1 // left index of candidates $ aaaabbbcc
r < A.length // right index of candidates $bbbaccaa
while r > ¢ do gggbgz$b
i< L+ [(r—20)/2] 25 b a . b
if P <S,p[1,m] then 2 a$ b ¢
r<1—1// continue w/ left half $ b g g
— C
else g $
¢ < 1i// continue w/ right half
L & P=ab
if P is no prefix of A[r| then
return “no match”

- Each lexicographic comparison can be done in time O(m).

return r
= The k occurrences of P can be found in O(mlogn + k) time.



Constructing Suffix Arrays — First Attempt

Task. Given a string T with n = |T| over alphabet X, construct a suffix array A for T.
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Idea.

B If n € O(1) use brute-force.

Otherwise, dissect T into triples.

nterpret the triples as letters over an alphabet ¥/ C 3.
nterpret T as a string R over ¥/ with |R| = [n/3].
Recurse!
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Constructing Suffix Arrays — First Attempt

Task. Given a string T with n = |T| over alphabet X, construct a suffix array A for T.

Idea.

B If n € O(1) use brute-force.

Otherwise, dissect T into triples.

nterpret the triples as letters over an alphabet ¥/ C 3.

nterpret T as a string R over ¥/ with |R| = [n/3].

Recurse! padding

7

R= [y a b]J][b a dl[a b bl[a $ 9

Problem. But how can a suffix array for R be used to create a suffix array for 17



Constructing Suffix Arrays — Overview

Shortened notation: T = fgt1...t,;,_1

o 1 2 3 4 5 6 7 8 9 10 11
T vy a b b a d a b b a d o

S(T) = suffixes of T =

S0 yvabbadabbado
Sq abbadabbado
So bbadabbado
S3 badabbado

Sy adabbado

Ss dabbado

Se abbado

Sv bbado
Ss bado
Sq ado
510 do

511 O
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Constructing Suffix Arrays — Overview

Shortened notation: T = tgt1...t, 1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11 Sop = suffixes with index i = 0(3)
I'= y a b b a d a b b a d © S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)

CONSTRUCTSUFFIXARRAY(T) S(T) — suffixes of T
— SufTtrixes o =

if n € O(1) then go yabbadabbado
. . bbadabbad
| construct A in O(1) time. T e et et
S3 badabbado
else _ S4 adabbado
sort S1 U Sy into an array Aqp S |dabbado
use A1p to sort Sg into an array Ag S¢ | abbado
: S+ bbado
merge A1 with Ag e e
Sq ado
Sio0 | do
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Constructing Suffix Arrays — Overview

Shortened notation: T = tgt1...t, 1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11 Sop = suffixes with index i = 0(3)

I= y a b b a d a b b a d o S1 = suffixes with index i = 1(3)

S» = suffixes with index i = 2(3)

CONSTRUCTSUFFIXARRAY(T) S(T) — suffixes of T
— SufTtrixes o =

if n € O(1) then So | yabbadabbado

: . Sq abbadabbado
| construct A in O(1) time. o R e s et
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sort S1 U Ss into an array Aq» Ss | dabbado
use Ao to sort Sg into an array Ag S¢ | abbado
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merge A1 with Ag 5o | bado
- So ado

: .. Sio0 | do
For simplicity, we assume n = 0(3). Su | o




Constructing Suffix Arrays — Overview

Shortened notation: T = tgt1...t, 1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11
T vy a b b a d a b b a d o

CONSTRUCTSUFFIXARRAY(T)

if n € O(1) then using the idea from
‘_ construct A in O(1) time. the previous slide!

else J
sort S;1 US> into an array Aqp

use Ao to sort Sp into an array Ag
merge A1 with Ag

For simplicity, we assume n = 0(3).

Sop = suffixes with index i = 0(3)
S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)

S(T) = suffixes of T =

So yabbadabbado
Sq abbadabbado
So bbadabbado
S3 badabbado

Sa adabbado

Ss dabbado

Se abbado

S+ bbado
Ssg bado
Sq ado
Sio | do

511 (0]



Step 1: Sorting S1 U S5

Shortened notation: T = tgt1...t, 1 and x = z(y) is a shorthand for x mod y = z.

Sop = suffixes with index i = 0(3)
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S» = suffixes with index i = 2(3)

S(T) = suffixes of T =
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Step 1: Sorting S1 U S5

Shortened notation: T = tgt1...t, 1 and x = z(y) is a shorthand for x mod y = z.

Dissect &1 and S into triples and concatenate them:

t1tot3]

:t2t3t4:

:t4t5t6:...

tstety] ...

abb]|ada)

bba

dab)|

Sop = suffixes with index i = 0(3)
S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)

S(T) = suffixes of T =
So yabbadabbado

TS, |abbadabbado
/52 bbadabbado

S3 badabbado
Sa adabbado
Ss dabbado
Se abbado

S+ bbado
Ssg bado
Sq ado
Sio | do

511 o
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Step 1: Sorting S1 U S5

Shortened notation: T = tgt1...t, 1 and x = z(y) is a shorthand for x mod y = z.

Dissect &1 and S into triples and concatenate them: So = suffixes with index i = 0(3)
R= [abb][ada][bba][do$][bba][dab][bad][0$$] S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)
S(R)= S1(R) | [abb][ada][bba][do$][bba][dab][bad][c$$]
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Step 1: Sorting S1 U S5

Shortened notation: T = tgt1...t, 1 and x = z(y) is a shorthand for x mod y = z.

Dissect &1 and S into triples and concatenate them:

R= [abb][ada]

S(R)=
ada
bba]
do$
bbal]
dab]
bad]

c1 A W N -
AANAANANANANANAN

[abb][ada]
][bba]
[do$]
bba]
dab]
[bad]
059

N N N N N N NN
N e e N N N

N N N U I D U I
o ~N o

fo$$f

[bba]

][bbal
do$)]
bba]
dab]
[bad]
()]

[do$]

do$]
bbal
dab]
[bad]

bba]
bba]
dab]
[bad]

0$9]

dab]

dab]
bad]

fo$$i

bad]

[bad]

059

059

[0$%]
[0$9%]

Observation. S(R) corresponds bijectively to S1 U S»

Sop = suffixes with index i = 0(3)
S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)
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Sq abbadabbado
So bbadabbado
S3 badabbado

Sa adabbado

Ss dabbado

Se abbado

S+ bbado
Ssg bado
Sq ado
Sio | do

511 (0]



Step 1: Sorting S1 U S5

Shortened notation: T = tgt1...t, 1 and x = z(y) is a shorthand for x mod y = z.

Dissect &1 and S into triples and concatenate them:

R= [abb][ada]

S(R)=
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do$
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Observation. S(R) corresponds bijectively to S1 U S»

Sop = suffixes with index i = 0(3)
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Step 1: Sorting S1 U S5

Shortened notation: T = tgt1...t, 1 and x = z(y) is a shorthand for x mod y = z.

Dissect &1 and S into triples and concatenate them: So = suffixes with index i = 0(3)
R= [abb][ada][bba][do$][bba][dab][bad][0$$] S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)
S(R)= S1(R) | [abb][ada][bba][do$][bba][dab][bad][c$$]
S>(R) | [ada][bba][do$][bba][dab][bad][0$$] S(T) = suffixes of T =
53 (R) :bba: :d0$: :bba: :dab: :bad: O$$ SO y a bbadabbado
S4(R) | [do$][bba][dab][bad][0$$]
L= IR TR AL Sq abbadabbado
Ss(R) | [bba][dab][bad][0$$] ——
SNE R L —» 5 bbadabbado
MR LR 3 ada ado
57(R) bad| 0$9] \ S, sdabbado
58(R) | [o83)] Ss | dabbado
) y _ S6 abbado
Observation. S(R) corresponds bijectively to S1 U S5 & | Bhade
Ss bado
Sq ado
Sio0 | do
511 (0]




Step 1: Sorting S1 U S5

Shortened notation: T = tgt1...t, 1 and x = z(y) is a shorthand for x mod y = z.

Dissect &1 and S into triples and concatenate them: So = suffixes with index i = 0(3)
R= [abb][ada][bba][do$][bba][dab][bad][0$$] S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)
S(R)= S1(R) | [abb][ada][bba][do$][bba][dab][bad][c$$]
S>(R) | [ada][bba][do$][bba][dab][bad][0$$] S(T) = suffixes of T =
53 (R) :bba: :d0$: :bba: :dab: :bad: O$$ SO y a bbadabbado
S4(R) | [do$][bba][dab][bad][0$$]
L= IR TR AL Sq abbadabbado
Ss(R) | [bba][dab][bad][0$$] ——
SNE R L —» 5 bbadabbado
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MR LR 3 ada ado
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(R 5% Sy adabbado
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Sio | do
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Step 1: Sorting S1 U S5

Shortened notation: T = tgt1...t, 1 and x = z(y) is a shorthand for x mod y = z.

Dissect &1 and S into triples and concatenate them: So = suffixes with index i = 0(3)
R= [abb][ada][bba][do$][bba][dab][bad][0$$] S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)
S(R)= S1(R) | [abb][ada][bba][do$][bba][dab][bad][c$$]
S>(R) | [ada][bba][do$][bba][dab][bad][0$$] S(T) = suffixes of T =
53 (R) :bba: :d0$: :bba: :dab: :bad: O$$ SO y a bbadabbado
S4(R) | [do$][bba][dab][bad][0$$
- e =1 ol - : 51 abbadabbado
Ss(R) | [bba][dab][bad][0$$ ——
N i G So bbadabbado
S6(R)
57(R)
Ss(R)

- I L - -

:gagz :b§§; 0% A I S T

:;$;-° - Se | adabbado

o) S | dabbado
S

] L Se abbado
Observation. S(R) corresponds bijectively to &1 U S; | bbado
Ss bado
Si <> [titiv1tivolltiy3tivativs] ... 5 | ada
Sio | d
and a sorting of S(R) corresponds to a sorting of S; U S5. 512 o




Si<S]' p— Si$<5]‘$ p— Si$...<5]'$...

Step ]_: SOrtI ng 51 U 52 since the positions of the first $ symbols in the

strings Si(R) are pairwise distinct.

Shortened notation: T = tgt1...t, 1 and x = z(y) is a shorthand for x mod y = z.

Dissect &1 and S into triples and concatenate them: So = suffixes with index i = 0(3)
R= [abb][ada][bba][do$][bba][dab][bad][0$$] S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)
S(R)= S1(R) | [abb][ada][bba][do$][bba][dab][bad][c$$]
S>(R) | [ada][bba][do$][bba][dab][bad][0$$] S(T) = suffixes of T =
53 (R) :bba: :d0$: :bba: :dab: :bad: O$$ SO y a bbadabbado
S4(R) | [do$][bba][dab][bad][0$$
- e =1 ol - : 51 abbadabbado
Ss(R) | [bba][dab][bad][0$$ ——
1L G So bbadabbado
S6(R)
57(R)
Ss(R)

:gagz :b§§; 0% A I S T

:;$;-° - Se | adabbado

) S | dabbado
S

] L Se abbado
Observation. S(R) corresponds bijectively to &1 U S; | bbado
Ss bado
Si <> [titiv1tivolltiy3tivativs] ... 5 | ada
Sio | d
and a sorting of S(R) corresponds to a sorting of S; U S5. 512 o




Sorting S(R)

Sort the "letters” (= triples) of R via RADIXSORT. This can be done in time
O(3(3n+ %)) € On)

R= [abb][ada][bba][do$][bba][dab][bad][0$$]

Rank | triple S(R)= S;(R) | [abb][ada][bba][do$][bba][dab][bad][c$$]

1 abb) S>(R) | [ada][bba][do$][bba][dab][bad][0$9]

2 ada] S3(R) | [bba][do$][bba][dab][bad][0$9]

3 [bad| S4(R) | [do$][bba][dab][bad][0$$]

4 [bba] S5(R) | [bba][dab][bad][0$$

5 dab] S6(R) | [dab][bad][0$$]

6 [do$)] S7(R) | [bad][0$9]

7 0$9)] Ss(R) | [0%9]




Sorting S(R)

Sort the "letters” (= triples) of R via RADIXSORT. This can be done in time
O(3(3n+ |Z])) € O(n)

#digits
R= [abb][ada][bba][do$][bba][dab][bad][0$$]

Rank | triple S(R)= S;(R) | [abb][ada][bba][do$][bba][dab][bad][c$$]

1 abb) S>(R) | [ada][bba][do$][bba][dab][bad][0$9]

2 ada] S3(R) | [bba][do$][bba][dab][bad][0$9]

3 [bad| S4(R) | [do$][bba][dab][bad][0$$]

4 [bba] S5(R) | [bba][dab][bad][0$$

5 dab] S6(R) | [dab][bad][0$$]

6 [do$)] S7(R) | [bad][0$9]

7 0$9)] Ss(R) | [0%9]




Sorting S(R)

Sort the "letters” (= triples) of R via RADIXSORT. This can be done in time

O(3(3n+ |Z])) € O(n)

A
#digits  #objects

R= [abb][ada][bba][do$][bba][dab][bad][0$$]

Rank | triple S(R)= S;(R) | [abb][ada][bba][do$][bba][dab][bad][c$$]

1 abb) S>(R) | [ada][bba][do$][bba][dab][bad][0$9]

2 ada] S3(R) | [bba][do$][bba][dab][bad][0$9]

3 [bad| S4(R) | [do$][bba][dab][bad][0$$]

4 [bba] S5(R) | [bba][dab][bad][0$$

5 dab] S6(R) | [dab][bad][0$$]

6 [do$)] S7(R) | [bad][0$9]

7 0$9)] Ss(R) | [0%9]




Sorting S(R)

Sort the "letters” (= triples) of R via RADIXSORT. This can be done in time
O(3(3n+ |Z])) € O(n)

A
#digits  #objects  alphabet size

R= [abb][ada][bba][do$][bba][dab][bad][0$$]

Rank | triple S(R)= S;(R) | [abb][ada][bba][do$][bba][dab][bad][c$$]

1 abb) S>(R) | [ada][bba][do$][bba][dab][bad][0$9]

2 ada] S3(R) | [bba][do$][bba][dab][bad][0$9]

3 [bad| S4(R) | [do$][bba][dab][bad][0$$]

4 [bba] S5(R) | [bba][dab][bad][0$$

5 dab] S6(R) | [dab][bad][0$$]

6 [do$)] S7(R) | [bad][0$9]

7 0$9)] Ss(R) | [0%9]




Sorting S(R)

Sort the "letters” (= triples) of R via RADIXSORT. This can be done in time
O(3(3n+ |Z])) € O(n)

A
#digits  #objects  alphabet size

Replace each triple of R with its rank — string R’ with alphabet size < %n <n.
R= [abb][ada][bba][do$][bba][dab][bad][0$$] R=12464537
Rank | triple S(R)= S;(R) | [abb][ada][bba][do$][bba][dab][bad][c$$]
1 abb) S>(R) | [ada][bba][do$][bba][dab][bad][0$9]
2 ada] S3(R) | [bba][do$][bba][dab][bad][0$9]
3 [bad| S4(R) | [do$][bba][dab][bad][0$$]
4 [bba] S5(R) | [bba][dab][bad][0$$
5 dab] S6(R) | [dab][bad][0$$]
6 [do$)] S7(R) | [bad][0$9]
7 0% Ss(R) | [099]




Sorting S(R)

Sort the "letters” (= triples) of R via RADIXSORT. This can be done in time
O(3(3n+ |Z])) € O(n)

A
#digits  #objects  alphabet size

Replace each triple of R with its rank — string R’ with alphabet size < %n <n.
R= [abb][ada][bba][do$][bba][dab][bad][0$$] R=12464537
Rank | triple  S(R)= S1(R) | [abb][ada][bba][do$][bba][dab][bad][c$$] S(R') = Si(R') | 12464537
1 [abb S>(R) | [ada][bba][do$][bba][dab][bad][0$$] 52(R’) | 2464537
2 ada] S3(R) | [bba][do$][bba][dab][bad][0$$ S3(R’) | 464537
3 bad S4(R) | [do$][bba][dab][bad][0$$] S4(R’) | 64537
4 bba S5(R) | [bba][dab][bad][0$$] S5(R’) | 4537
5 dab Se(R) | [dab][bad][o$$] Se(R’) | 537
6 do$] S7(R) | [bad][0$$ S7(R") | 37
7 0$$ Sg(R) | [0$9] Ss(R) | 7




Sorting S(R)
Sort the "letters” (= triples) of R via RADIXSORT. This can be done in time
O(3(3n+ |Z])) € O(n)
A
#digits  #objects  alphabet size

Replace each triple of R with its rank — string R’ with alphabet size < %n <n.
A sorting of S(R") corresponds to a sorting of S(R) and can be obtained recursively.

R= [abb][ada][bba][do$%][bba][dab][bad][0$$] R'=12464537

Rank | triple  S(R)= S1(R) | [abb][ada][bba][do$][bba][dab][bad][c$$] S(R') = Si(R') | 12464537

1 [abb S>(R) | [ada][bba][do$][bba][dab][bad][0$$] 52(R’) | 2464537

2 ada] S3(R) | [bba][do$][bba][dab][bad][0$$ S3(R’) | 464537

3 bad S4(R) | [do$][bba][dab][bad][0$$] S4(R’) | 64537

4 bbal S5(R) | [bba][dab][bad][0$$] S5(R') | 4537

5 dab Se(R) | [dab][bad][o$$] Se(R’) | 537

6 do$] S7(R) | [bad][0$$ S7(R") | 37

7 0$$ Sg(R) | [0$9] Ss(R) | 7




Sorting S(R)

Sort the "letters” (= triples) of R via RADIXSORT. This can be done in time

O(3(3n+ |Z])) € O(n)

CONSTRUCTSUFFIXARRAY(R')

A
#digits  #objects  alphabet size
Replace each triple of R with its rank — string R’ with alphabet size < %n <n.
A sorting of S(R") corresponds to a sorting of S(R) and can be obtained recursively.

R= [abb][ada][bba][do$%][bba][dab][bad][0$$] R'=12464537

Rank | triple  S(R)= S1(R) | [abb][ada][bba][do$][bba][dab][bad][c$$] S(R') = Si(R') | 12464537

1 [abb S>(R) | [ada][bba][do$][bba][dab][bad][0$$] 52(R’) | 2464537

2 ada] S3(R) | [bba][do$][bba][dab][bad][0$$ S3(R’) | 464537

3 bad S4(R) | [do$][bba][dab][bad][0$$] S4(R’) | 64537

4 bbal S5(R) | [bba][dab][bad][0$$] S5(R') | 4537

5 dab Se(R) | [dab][bad][o$$] Se(R’) | 537

6 do$] S7(R) | [bad][0$$ S7(R") | 37

7 0$$ Sg(R) | [0$9] Ss(R) | 7




Rank | triple
1 [abb]
Summary of Step 1 I | [ebb
3 bad]
Full example. 4 bba]
S(T)= 5 :dab:
So | yabbadabbado 6 do$)]
S abbadabbado i |
S; bbadabbado S(R)= S(R') = 7 033)]
o e e S1(R) | [abb][ada][bba][do$][bba][dab][bad] [0$%] ——— S:(R') | 12464537
54 dabbad S2(R) | [ada][bba][do$][bba][dab][bad][0$$] <4— S5y(R') | 2464537
55 E b 3 ° S3(R) | [bba][do$][bba][dab][bad][0$$] <4— S53(R) | 464537
A I S4(R) | [do$][bba][dab][bad][0$$] <— S,(R) | 64537
s | bado S5(R) | [bba][dab][bad][0$S] <«— 5,(R) | 4537
Se | ado ¥ S6(R) | [dab][bad][0$S] <—— 5,(R) | 537
510 | do S7(R) | [bad][o8$] < 5;(R) | 37
5[l a—  Ss(R) | [039] <« SR | 7
A1
1| S abbadabbado | S1(R') 12464537
2 | S24 adabbado So(R') 2464537
3 | Ss bado S7(R") 37
4 | S bbadabbado S5(R") 4537
5| S bbado S3(R') 464537
6 | Ss dabbado S6(R') 537
4 510 do S4(R/) 64537
8 | Su o Sg(R") 7



Summary of Step 1

Full example.

O~NO OB~ WDN K

yabbadabbado
abbadabbado

bbadabbado S(R)=
badabbado

51(R)
adabbado

SQ(R)
dabbado

S3(R)
abbado

S4(R)
bbado S5(R)
bado
ado \gjgﬁg
do
o a— SR
A1o

Sq abbadabbado
Sy adabbado

Sg bado

So bbadabbado
S+ bbado

Ss dabbado

510 do

Si11 o

[abb][ada][bba][do$][bba][dab][bad][0$}] «@— S;
[ada][bba][do$][bba][dab][bad][0$$]

[bba][do$][bba][dab][bad][0$$]
[do$%][bba][dab][bad][0$$]

[bba][dab][bad][0$$]
[dab][bad][0$9]

[bad][0$9]

[0$9]

NS T~

\l
~

~~

~~

&~ O W
AAAAARAAA

~~

n 0N N U)é_ln n 0N I
N N NN NN NN
\/\-/V\-:V\/\_/v

oo

12464537
2464537

37
4537

464537

537

64537

2

Rank | triple
1 [abb]
2 ada)
3 [bad]
4 [bbal]
5 dab]
6 [do$)
7 059
S(R') = o
(R) | 12464537
<4— S,(R) | 2464537
<4— S53(R) | 464537
<€— S5,(R) | 64537
<4— S5(R) | 4537
4— S4(R') | 537
<+—— 5(R) | 37
44— S3(R) | 7

Running time.
T1(n) = O(n) 4+ T(5n)

where T(n) is the time to execute
CONSTRUCTSUFFIXARRAY on a

string of length n.



Construction of Suffix Arrays — Overview

Shortened notation: T = tgt1...t, 1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11 Sop = suffixes with index i = 0(3)

I= y a b b a d a b b a d o S1 = suffixes with index i = 1(3)

S» = suffixes with index i = 2(3)

CONSTRUCTSUFFIXARRAY(T) S(T) — suffixes of T
— SufTtrixes o =

if n € O(1) then So | yabbadabbado

: . Sq abbadabbado
| construct A in O(1) time. T el Bt

S3 badabbado
EIse . 54 adabbado
sort S1 U Ss into an array Aq» Ss | dabbado
use Ajo to sort Sg into an array Ag S¢ |abbado
: S+ bbado
merge A1 with Ag 5o | bado
Sq ado

: .. Sio0 | do
For simplicity, we assume n = 0(3). Su | o




Step 2: Sorting Sy

Shortened notation: T = tgt1...t, 1 and x = z(y) is a shorthand for x mod y = z.

T—=

0
y

1

3
b

4
a

5
d

6
a

7
b

o

Sop = suffixes with index i = 0(3)
S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)

S(T) = suffixes of T =

So yabbadabbado
Sq abbadabbado
So bbadabbado
S3 badabbado

Sa adabbado

Ss dabbado

Se abbado

S+ bbado
Ssg bado
Sq ado
Sio | do

511 (0]



Step 2: Sorting Sy

Shortened notation: T = tgt1...t, 1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11 Sop = suffixes with index i = 0(3)
I= y a b b a d a b b a d o S1 = suffixes with index i = 1(3)

_ S» = suffixes with index i = 2(3)
Each S; € Sp can be written as (£;,S;11) s.t. Sj11 € S1.
S(T) = suffixes of T =

So yabbadabbado
Sq abbadabbado
So bbadabbado
S3 badabbado

Sa adabbado

Ss dabbado

Se abbado

S+ bbado
Ssg bado
Sq ado
Sio | do

511 (0]



Step 2: Sorting Sy

Shortened notation: T = tgt1...t, 1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11 Sop = suffixes with index i = 0(3)
I'= y a b b a d a b b a d © S1 = suffixes with index i = 1(3)
_ S» = suffixes with index i = 2(3)
Each S; € Sp can be written as (£;,S;11) s.t. Sj11 € S1.
. _ _ S(T) = suffixes of T =
Observation. Let S;,5; € Sg. Then S; < S; if and only if So |yabbadabbado
W <tjor S |abbadabbado

1 _ , So bbadabbado
Sa adabbado
Ss dabbado

Se abbado

S+ bbado
Ssg bado
Sq ado
Sio | do

511 (0]



Step 2: Sorting Sy

Shortened notation: T = tgt1...t, 1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11 Sop = suffixes with index i = 0(3)
I'= y a b b a d a b b a d © S1 = suffixes with index i = 1(3)
_ S» = suffixes with index i = 2(3)
Each S; € Sp can be written as (£;,S;11) s.t. Sj11 € S1.
. _ _ S(T) = suffixes of T =
Observation. Let S;,5; € Sg. Then S; < S; if and only if So |yabbadabbado
W <tjor S |abbadabbado

1 _ , So bbadabbado

Sa adabbado

= S, can be sorted by sorting all tuples (¢;, S;11) with S: | dabbado
i = 0(3). This can be done via RADIXSORT in O(n) S¢ | abbado
. . . . . . 57 bbado
time since the ordering of the entries in &7 is already e | b
n n n n 8 a d O
implicit in Aqo. Sg | ado
Sio0 | do

511 (0]



Construction of Suffix Arrays — Overview

Shortened notation: T = tgt1...t, 1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11 Sop = suffixes with index i = 0(3)

I= y a b b a d a b b a d o S1 = suffixes with index i = 1(3)

S» = suffixes with index i = 2(3)

CONSTRUCTSUFFIXARRAY(T) S(T) — suffixes of T
— SufTtrixes o =

if n € O(1) then So | yabbadabbado

: . Sq abbadabbado
| construct A in O(1) time. T el Bt

S3 badabbado
EIse . 54 adabbado
sort S1 U Ss into an array Aq» Ss | dabbado
use Ao to sort Sg into an array Ag S¢ | abbado
. S+ bbado
merge A1 with Ag 5o | bado
- So ado

: .. Sio0 | do
For simplicity, we assume n = 0(3). Su | o




Step 3: Merging A1> and Ay

Shortened notation: T = tgt1...t, 1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11 Sop = suffixes with index i = 0(3)
T=— vy a b b a d a b

o
j05)
o
o

S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)

S(T) = suffixes of T =

So yabbadabbado
Sq abbadabbado
So bbadabbado
S3 badabbado

Sa adabbado

Ss dabbado

Se abbado

S+ bbado
Ssg bado
Sq ado
Sio | do

511 (0]



Step 3: Merging A1> and Ay

Shortened notation: T = tgt1...t, 1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11 Sop = suffixes with index i = 0(3)
I= y a b b a d a b b a d o S1 = suffixes with index i = 1(3)

_ S» = suffixes with index i = 2(3)
Each S; € Sp can be written as (t;,S;11) s.t. Sj11 € 51

and as (t;,ti+1,Si12) s.t. Sjio € So. S(T) = suffixes of T =
So yabbadabbado
Sq abbadabbado
So bbadabbado
S3 badabbado
Sa adabbado
Ss dabbado
Se abbado

S+ bbado
Ssg bado
Sq ado
Sio | do

511 (0]



Step 3: Merging A1> and Ay

Shortened notation: T = tgt1...t, 1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11
T— y a b b a d a b b a d o

Each S; € Sp can be written as (t;,S;11) s.t. Sj11 € 51
and as (t;,t;11,Si12) s.t. Sjio € 5o

Observation. Let S; € Sp.
B lLet S] € S§1. Then §; < S] if and only if
B < tj; or
m = t]' and S;1 < S]'+1 where S]'+1 c Sy,
B Let S; € Sp. Then S; < §; if and only if
mf< tj; or
Bt =tjand ;1 <fjpq50r

Bt = tjt]'—l—l and S;,o < S]'+2 where S]'+2 c S1.

Sop = suffixes with index i = 0(3)
S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)

S(T) = suffixes of T =

So yabbadabbado
Sq abbadabbado
So bbadabbado
S3 badabbado

Sa adabbado

Ss dabbado

Se abbado

S+ bbado
Ssg bado
Sq ado
Sio | do

511 (0]



Step 3: Merging A1> and Ay

Shortened notation: T = tgt1...t, 1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11 Sop = suffixes with index i = 0(3)
I'= y a b b a d a b b a d © S1 = suffixes with index i = 1(3)
_ S» = suffixes with index i = 2(3)
Each S; € Sp can be written as (t;,S;11) s.t. Sj11 € 51

and as (t;,t;11,Si12) s.t. Sjio € 5o

Observation. Let S; € Sp. Since the ordering of S1 US> is
W let5; € S1. Then §; < 5; it and only if already implicit in A1, we can
m ot <t or perform these comparisons in O(1)

m = t]' and S;1 < S]'+1 where Sj+1 c Sy, time.
B Let 5; € So. Then §; < §; if and only if

mf< t]'; or

Bt =tjand ;1 <fjpq50r

Bt = t]'t]'_H and S;,o < S]'+2 where S]'+2 c S1.



Step 3: Merging A1> and Ay

Shortened notation: T = tgt1...t, 1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11 Sop = suffixes with index i = 0(3)
I'= y a b b a d a b b a d © S1 = suffixes with index i = 1(3)
_ S» = suffixes with index i = 2(3)
Each S; € Sp can be written as (t;,S;11) s.t. Sj11 € 51

and as (t;,t;11,Si12) s.t. Sjio € 5o

Observation. Let S; € Sp. Since the ordering of S1 US> is
W let5; € S1. Then §; < 5; it and only if already implicit in A1, we can
m ot <t or perform these comparisons in O(1)

m = t]' and S;1 < S]'+1 where Sj+1 c Sy, time.
B Let 5; € So. Then §; < §; if and only if

mf< t]'; or

Bt =tjand ;1 <fjpq50r

Bt = t]'t]'_H and S;,o < S]'+2 where S]'+2 c S1.

= A1 and Ag can be merged as
in MERGESORT to obtain A.



Construction of Suffix Arrays — Summary

CONSTRUCTSUFFIXARRAY(T)

if n € O(1) then
| construct A in O(1) time.

else

sort S1 U Ss into an array Aqs

use Ajo to sort Sg into an array Ap
merge A1 with Ag

Total running time:
(O(1), if n = O(1)

T(1) —
(n) = O(n) + T(4n), otherwise

\

Master:'I;heorem T(n) - O(n)



Summary and Discussion

Let T be a string over an alphabet X where n = |T|.

Lemma. A suffix array for T can be used to compute an LCP (“longest common
prefix") array and a suffix tree of T in O(n) time. [without proof]



Summary and Discussion

Let T be a string over an alphabet X where n = |T|.

Lemma. A suffix array for T can be used to compute an LCP (“longest common
prefix") array and a suffix tree of T in O(n) time. [without proof]

Theorem. A suffix tree for T can computed in O(n) time and space. It can be used
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Summary and Discussion

Let T be a string over an alphabet X where n = |T|.

Lemma. A suffix array for T can be used to compute an LCP (“longest common
prefix") array and a suffix tree of T in O(n) time. [without proof]

Theorem. A suffix tree for T can computed in O(n) time and space. It can be used
to answer STRING MATCHING queries of length m in O(mlog |%| 4 k) time.

Theorem. A suffix array for T can computed in O(n) time and space. It can be used
to answer STRING MATCHING queries of length m in O(mlogn + k) time.

Remark. The suffix array is a simpler and more compact alternative to the suffix tree.

The suffix tree (and the suffix array + LCP array) have several additional applications:
B Finding the longest repeated substring

B Finding the longest common substring of two strings.

H ..
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