Advanced Algorithms

Succinct Data Structures
 Indexable Dictionaries and Trees

Johannes Zink WS22
|1ा|II

Data Structures - Informal Definition

Data Structures - Informal Definition

A data structure is a concept to

- store,
- organize, and
- manage data.

Data Structures - Informal Definition

A data structure is a concept to
■ store,

- organize, and

■ manage data.
As such, it is a collection of
■ data values,
■ their relations, and

- the operations that be can applied to the data.

Data Structures - Informal Definition

A data structure is a concept to
■ store,

- organize, and

■ manage data.
As such, it is a collection of
■ data values,

- their relations, and
\square the operations that be can applied to the data.

Remarks.

- We look at data structures as a designer/implementer (and not necessarily as a user).
■ To define a data structure and to implement it are two different tasks.

Data Structures - Informal Definition

A data structure is a concept to
■ store,

- organize, and

■ manage data.
As such, it is a collection of
■ data values,

- their relations, and
- What do we represent?
- How much space is required?
$\Rightarrow \quad \square$ Dynamic or static?
- Which operations are defined?

■ How fast are they?

■ the operations that be can applied to the data.

Remarks.

- We look at data structures as a designer/implementer (and not necessarily as a user).
- To define a data structure and to implement it are two different tasks.

Succinct Data Structures

Goal.

■ Use space "close" to information-theoretical minimum,
■ but still support time-efficient operations.

Succinct Data Structures

Goal.

■ Use space "close" to information-theoretical minimum,

- but still support time-efficient operations.

Let L be the information-theoretical lower bound to represent a class of objects.
Then a data structure, which still supports
time-efficient operations, is called
■ implicit, if it takes $L+O(1)$ bits of space;

Succinct Data Structures

Goal.

■ Use space "close" to information-theoretical minimum,

- but still support time-efficient operations.

Let L be the information-theoretical lower bound to represent a class of objects.
Then a data structure, which still supports
time-efficient operations, is called
■ implicit, if it takes $L+O(1)$ bits of space;
■ succinct, if it takes $L+o(L)$ bits of space;

Succinct Data Structures

Goal.

■ Use space "close" to information-theoretical minimum,

- but still support time-efficient operations.

Let L be the information-theoretical lower bound to represent a class of objects.
Then a data structure, which still supports time-efficient operations, is called

■ implicit, if it takes $L+O(1)$ bits of space;
$■$ succinct, if it takes $L+o(L)$ bits of space;
■ compact, if it takes $O(L)$ bits of space.

Succinct Data Structures

Goal.

■ Use space "close" to information-theoretical minimum,

- but still support time-efficient operations.

Let L be the information-theoretical lower bound to represent a class of objects.
Then a data structure, which still supports time-efficient operations, is called

■ implicit, if it takes $L+O(1)$ bits of space;
■ succinct, if it takes $L+o(L)$ bits of space;
■ compact, if it takes $O(L)$ bits of space.

Examples for Implicit Data Structures

Examples for Implicit Data Structures

■ arrays to represent lists

- but why not linked lists?

Examples for Implicit Data Structures

- arrays to represent lists

■ but why not linked lists?

- 1-dim arrays to represent multi-dimensional arrays

Examples for Implicit Data Structures

- arrays to represent lists

■ but why not linked lists?

- 1-dim arrays to represent multi-dimensional arrays
\square sorted arrays to represent sorted lists
■ but why not binary search trees?

Examples for Implicit Data Structures

■ arrays to represent lists
■ but why not linked lists?

- 1-dim arrays to represent multi-dimensional arrays

■ sorted arrays to represent sorted lists
■ but why not binary search trees?
■ arrays to represent complete binary trees and heaps

Examples for Implicit Data Structures

■ arrays to represent lists
■ but why not linked lists?

- 1-dim arrays to represent multi-dimensional arrays

■ sorted arrays to represent sorted lists
■ but why not binary search trees?
■ arrays to represent complete binary trees and heaps

Examples for Implicit Data Structures

■ arrays to represent lists
■ but why not linked lists?

- 1-dim arrays to represent multi-dimensional arrays

■ sorted arrays to represent sorted lists
■ but why not binary search trees?
■ arrays to represent complete binary trees and heaps

$$
\begin{aligned}
& \operatorname{leftChild}(i)=2 i \\
& \operatorname{rightChild}(i)=2 i+1
\end{aligned}
$$

And unbalanced trees?

Succinct Indexable Dictionary

Represent a subset $S \subseteq\{1,2, \ldots, n\}$ and support the following operations in $O(1)$ time:
\square member (i) returns if $i \in S$
■ $\operatorname{rank}(i)=$ number of elements in S that are less or equal to i

- select $(j)=j$-th element in S
- predecessor (i)
- successor (i)

Succinct Indexable Dictionary

Represent a subset $S \subseteq\{1,2, \ldots, n\}$ and support the following operations in $O(1)$ time:
\square member (i) returns if $i \in S$
■ $\operatorname{rank}(i)=$ number of elements in S that are less or equal to i

- select $(j)=j$-th element in S
- predecessor (i)
- successor (i)

How many different subsets of $\{1,2, \ldots, n\}$ are there?
How many bits of space do we need to distinguish them?

Succinct Indexable Dictionary

Represent a subset $S \subseteq\{1,2, \ldots, n\}$ and support the following operations in $O(1)$ time:
\square member (i) returns if $i \in S$
■ $\operatorname{rank}(i)=$ number of elements in S that are less or equal to i

- select $(j)=j$-th element in S
- predecessor (i)
- successor (i)

How many different subsets of $\{1,2, \ldots, n\}$ are there?
How many bits of space do we need to distinguish them?

Succinct Indexable Dictionary

Represent a subset $S \subseteq\{1,2, \ldots, n\}$ and support the following operations in $O(1)$ time:
\square member (i) returns if $i \in S$
■ $\operatorname{rank}(i)=$ number of elements in S that are less or equal to i

- select $(j)=j$-th element in S
- predecessor (i)
- successor (i)

How many different subsets of $\{1,2, \ldots, n\}$ are there? 2^{n}
How many bits of space do we need to distinguish them?

$$
\log 2^{n}=n \text { bits }
$$

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where

$$
b[i]= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { otherwise }\end{cases}
$$

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where

$$
b[i]= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { otherwise }\end{cases}
$$

$$
S=\{3,4,6,8,9,14\} \text { where } n=15
$$

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where

$$
b[i]= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { otherwise }\end{cases}
$$

$$
S=\{3,4,6,8,9,14\} \text { where } n=15
$$

member (i) can trivially be answered in $O(1)$ time (assuming that we can access any entry in constant time)

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where

$$
b[i]= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { otherwise }\end{cases}
$$

plus $o(n)$-space structures to answer in $O(1)$ time

- $\operatorname{rank}(i)=\# 1 \mathrm{~s}$ at or before position i
$\square \operatorname{select}(j)=$ position of j-th 1 bit

$$
S=\{3,4,6,8,9,14\} \text { where } n=15
$$

member (i) can trivially be answered in $O(1)$ time (assuming that we can access any entry in constant time)

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where

$$
b[i]= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { otherwise }\end{cases}
$$

plus $o(n)$-space structures to answer in $O(1)$ time

- $\operatorname{rank}(i)=\# 1 \mathrm{~s}$ at or before position i
$\square \operatorname{select}(j)=$ position of j-th 1 bit

$$
\begin{aligned}
& S=\{3,4,6,8,9,14\} \text { where } n=15
\end{aligned}
$$

member (i) can trivially be answered in $O(1)$ time (assuming that we can access any entry in constant time)

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where

$$
b[i]= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { otherwise }\end{cases}
$$

plus $o(n)$-space structures to answer in $O(1)$ time

- $\operatorname{rank}(i)=\# 1 \mathrm{~s}$ at or before position i
$\square \operatorname{select}(j)=$ position of j-th 1 bit

\[

\]

member (i) can trivially be answered in $O(1)$ time (assuming that we can access any entry in constant time)

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where

$$
b[i]= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { otherwise }\end{cases}
$$

plus $o(n)$-space structures to answer in $O(1)$ time

- $\operatorname{rank}(i)=\# 1 \mathrm{~s}$ at or before position i
$\square \operatorname{select}(j)=$ position of j-th 1 bit

\[

\]

$$
\operatorname{select}(5)=9
$$

$$
\operatorname{rank}(9)=
$$

member (i) can trivially be answered in $O(1)$ time (assuming that we can access any entry in constant time)

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where

$$
b[i]= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { otherwise }\end{cases}
$$

plus $o(n)$-space structures to answer in $O(1)$ time

- $\operatorname{rank}(i)=\# 1 \mathrm{~s}$ at or before position i
$\square \operatorname{select}(j)=$ position of j-th 1 bit

\[

\]

$$
\operatorname{select}(5)=9
$$

$$
\operatorname{rank}(9)=5
$$

member (i) can trivially be answered in $O(1)$ time (assuming that we can access any entry in constant time)

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where

$$
b[i]= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { otherwise }\end{cases}
$$

plus $o(n)$-space structures to answer in $O(1)$ time

- $\operatorname{rank}(i)=\# 1 \mathrm{~s}$ at or before position i
$\square \operatorname{select}(j)=$ position of j-th 1 bit

$$
\begin{aligned}
& S=\{3,4,6,8,9,14\} \text { where } n=15 \\
& b \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 \\
\hline 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{select}(5)=9 \\
& \operatorname{rank}(9)=5=\operatorname{rank}(12)
\end{aligned}
$$

member (i) can trivially be answered in $O(1)$ time (assuming that we can access any entry in constant time)

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where

$$
b[i]= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { otherwise }\end{cases}
$$

plus $o(n)$-space structures to answer in $O(1)$ time

- $\operatorname{rank}(i)=\# 1 \mathrm{~s}$ at or before position i
$\square \operatorname{select}(j)=$ position of j-th 1 bit

$$
\begin{aligned}
& S=\{3,4,6,8,9,14\} \text { where } n=15 \\
& b \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline
\end{array}
\end{aligned}
$$

member (i) can trivially be answered in $O(1)$ time (assuming that we can access any entry in constant time)

$$
\begin{aligned}
& \operatorname{select}(5)=9 \\
& \operatorname{rank}(9)=5=\operatorname{rank}(12) \\
& \operatorname{rank}(15)=
\end{aligned}
$$

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where

$$
b[i]= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { otherwise }\end{cases}
$$

plus $o(n)$-space structures to answer in $O(1)$ time

- $\operatorname{rank}(i)=\# 1 \mathrm{~s}$ at or before position i
$\square \operatorname{select}(j)=$ position of j-th 1 bit

$$
\begin{aligned}
& S=\{3,4,6,8,9,14\} \text { where } n=15 \\
& b \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline
\end{array}
\end{aligned}
$$

member (i) can trivially be answered in $O(1)$ time (assuming that we can access any entry in constant time)

$$
\begin{aligned}
& \operatorname{select}(5)=9 \\
& \operatorname{rank}(9)=5=\operatorname{rank}(12) \\
& \operatorname{rank}(15)=6
\end{aligned}
$$

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where

$$
b[i]= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { otherwise }\end{cases}
$$

plus $o(n)$-space structures to answer in $O(1)$ time

- $\operatorname{rank}(i)=\# 1 \mathrm{~s}$ at or before position i

Exercise: Use these methods to
\Rightarrow answer predecessor (i) and successor (i) in $O(1)$ time.

$$
\begin{aligned}
& \operatorname{select}(5)=9 \\
& \operatorname{rank}(9)=5=\operatorname{rank}(12) \\
& \operatorname{rank}(15)=6
\end{aligned}
$$

member (i) can trivially be answered in $O(1)$ time

Rank in $o(n)$ Bits
b

1. Split into $\left(\log ^{2} n\right)$-bit chunks and store cumulative rank: each needs $\leq \log n$ bits

2. Split into $\left(\log ^{2} n\right)$-bit chunks and store cumulative rank: each needs $\leq \log n$ bits

Rank in $o(n)$ Bits

1. Split into $\left(\log ^{2} n\right)$-bit chunks and store cumulative rank: each needs $\leq \log n$ bits

$$
\Rightarrow O(\underbrace{\frac{n}{\log ^{2} n}}_{\# \text { chunks }} \underbrace{\log n}_{\text {rank }})=O\left(\frac{n}{\log n}\right) \subseteq o(n) \text { bits }
$$

Rank in $o(n)$ Bits
$\log ^{2} n=(\log n)^{2}$

1. Split into $\left(\log ^{2} n\right)$-bit chunks and store cumulative rank: each needs $\leq \log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log ^{2} n} \log n\right)=O\left(\frac{n}{\log n}\right) \subseteq o(n) \text { bits }
$$

2. Split chunks into $\left(\frac{1}{2} \log n\right)$-bit subchunks and store cumulative rank within chunk:

3. Split into $\left(\log ^{2} n\right)$-bit chunks and store cumulative rank: each needs $\leq \log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log ^{2} n} \log n\right)=O\left(\frac{n}{\log n}\right) \subseteq o(n) \text { bits }
$$

2. Split chunks into $\left(\frac{1}{2} \log n\right)$-bit subchunks and store cumulative rank within chunk:

3. Split into $\left(\log ^{2} n\right)$-bit chunks and store cumulative rank: each needs $\leq \log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log ^{2} n} \log n\right)=O\left(\frac{n}{\log n}\right) \subseteq o(n) \text { bits }
$$

2. Split chunks into $\left(\frac{1}{2} \log n\right)$-bit subchunks and store cumulative rank within chunk: each needs $\leq \log \log ^{2} n=2 \log \log n$ bits

3. Split into $\left(\log ^{2} n\right)$-bit chunks and store cumulative rank: each needs $\leq \log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log ^{2} n} \log n\right)=O\left(\frac{n}{\log n}\right) \subseteq o(n) \text { bits }
$$

2. Split chunks into $\left(\frac{1}{2} \log n\right)$-bit subchunks and store cumulative rank within chunk: each needs $\leq \log \log ^{2} n=2 \log \log n$ bits

$$
\Rightarrow O(\underbrace{\frac{n}{\log n}}_{\# \text { subch. }} \underbrace{\log \log n}_{\text {rel. rank }}) \subseteq o(n) \text { bits }
$$

1. Split into $\left(\log ^{2} n\right)$-bit chunks and store cumulative rank: each needs $\leq \log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log ^{2} n} \log n\right)=O\left(\frac{n}{\log n}\right) \subseteq o(n) \text { bits }
$$

2. Split chunks into $\left(\frac{1}{2} \log n\right)$-bit subchunks and store cumulative rank within chunk: each needs $\leq \log \log ^{2} n=2 \log \log n$ bits

$$
\Rightarrow O\left(\frac{\bar{n}}{\log n} \log \log n\right) \subseteq o(n) \text { bits }
$$

3. Use lookup table for bitstrings of length $\left(\frac{1}{2} \log n\right)$:

4. Split into $\left(\log ^{2} n\right)$-bit chunks and store cumulative rank: each needs $\leq \log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log ^{2} n} \log n\right)=O\left(\frac{n}{\log n}\right) \subseteq o(n) \text { bits }
$$

2. Split chunks into $\left(\frac{1}{2} \log n\right)$-bit subchunks and store cumulative rank within chunk: each needs $\leq \log \log ^{2} n=2 \log \log n$ bits

$$
\Rightarrow O\left(\frac{\bar{n}}{\log n} \log \log n\right) \subseteq o(n) \text { bits }
$$

3. Use lookup table for bitstrings of length $\left(\frac{1}{2} \log n\right): \quad 2^{\frac{1}{2} \log n}=\sqrt{n}$ entries

4. Split into $\left(\log ^{2} n\right)$-bit chunks and store cumulative rank: each needs $\leq \log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log ^{2} n} \log n\right)=O\left(\frac{n}{\log n}\right) \subseteq o(n) \text { bits }
$$

2. Split chunks into $\left(\frac{1}{2} \log n\right)$-bit subchunks and store cumulative rank within chunk: each needs $\leq \log \log ^{2} n=2 \log \log n$ bits

$$
\Rightarrow O\left(\frac{\bar{n}}{\log n} \log \log n\right) \subseteq o(n) \text { bits }
$$

3. Use lookup table for bitstrings of length $\left(\frac{1}{2} \log n\right): \quad 2^{\frac{1}{2} \log n}=\sqrt{n}$ entries

$$
\Rightarrow O(\underbrace{\sqrt{n}}_{\# \text { bitstrings }} \underbrace{\log n}_{\text {query } i} \underbrace{\log \log n)}_{\text {answer }} \subseteq o(n) \text { bits }
$$

		1	1	11					

1. Split into $\left(\log ^{2} n\right)$-bit chunks and store cumulative rank: each needs $\leq \log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log ^{2} n} \log n\right)=O\left(\frac{n}{\log n}\right) \subseteq o(n) \text { bits }
$$

2. Split chunks into $\left(\frac{1}{2} \log n\right)$-bit subchunks
and store cumulative rank within chunk: each needs $\leq \log \log ^{2} n=2 \log \log n$ bits

$$
\Rightarrow O\left(\frac{\bar{n}}{\log n} \log \log n\right) \subseteq o(n) \text { bits }
$$

3. Use lookup table for bitstrings of length $\left(\frac{1}{2} \log n\right): \quad 2^{\frac{1}{2} \log n}=\sqrt{n}$ entries

$$
\Rightarrow O(\sqrt{n} \log n \log \log n) \subseteq o(n) \text { bits }
$$

4. $\operatorname{rank}(i)=$ rank of chunk

+ relative rank of subchunk within chunk
+ relative rank of element i within subchunk

Rank in $o(n)$ Bits $+O(1)$ Time

1. Split into $\left(\log ^{2} n\right)$-bit chunks and store cumulative rank: each needs $\leq \log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log ^{2} n} \log n\right)=O\left(\frac{n}{\log n}\right) \subseteq o(n) \text { bits }
$$

2. Split chunks into $\left(\frac{1}{2} \log n\right)$-bit subchunks
and store cumulative rank within chunk: each needs $\leq \log \log ^{2} n=2 \log \log n$ bits

$$
\Rightarrow O\left(\frac{\bar{n}}{\log n} \log \log n\right) \subseteq o(n) \text { bits }
$$

3. Use lookup table for bitstrings of length $\left(\frac{1}{2} \log n\right): \quad 2^{\frac{1}{2} \log n}=\sqrt{n}$ entries

$$
\Rightarrow O(\sqrt{n} \log n \log \log n) \subseteq o(n) \text { bits }
$$

4. $\operatorname{rank}(i)=\operatorname{rank}$ of chunk

+ relative rank of subchunk within chunk
$\Rightarrow O(1)$ time
+ relative rank of element i within subchunk

Select in $o(n)$ Bits

$$
b
$$

Select in $o(n)$ Bits

$\log n \log \log n$ 1s

1. Store indices of every $(\log n \log \log n)$-th 1 bit in array

Select in $o(n)$ Bits

$\log n \log \log n$ 1s

1. Store indices of every $(\log n \log \log n)$-th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{\log n \log \log n} \log n\right)=O\left(\frac{n}{\log \log n}\right) \subseteq o(n) \text { bits }
$$

Select in $o(n)$ Bits

1. Store indices of every $(\log n \log \log n)$-th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{\log n \log \log n} \log n\right)=O\left(\frac{n}{\log \log n}\right) \subseteq o(n) \text { bits }
$$

2. Within group of $(\log n \log \log n) 1$ bits of length r bits:

Select in $o(n)$ Bits

1. Store indices of every $(\log n \log \log n)$-th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{\log n \log \log n} \log n\right)=O\left(\frac{n}{\log \log n}\right) \subseteq o(n) \text { bits }
$$

2. Within group of $(\log n \log \log n) 1$ bits of length r bits:
```
if }r\geq(\operatorname{log}n\operatorname{log}\operatorname{log}n\mp@subsup{)}{}{2
```

then store indices of 1 bits in group in array

$$
\Rightarrow O(\underbrace{\frac{n}{(\log n \log \log n)^{2}}}_{\# \text { groups }}(\underbrace{\log n \log \log n)}_{\# 1 \text { bits }} \underbrace{\log n}_{\text {index }}) \subseteq O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

Select in $o(n)$ Bits

1. Store indices of every $(\log n \log \log n)$-th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{\log n \log \log n} \log n\right)=O\left(\frac{n}{\log \log n}\right) \subseteq o(n) \text { bits }
$$

2. Within group of $(\log n \log \log n) 1$ bits of length r bits:
if $r \geq(\log n \log \log n)^{2}$
then store indices of 1 bits in group in array

$$
\Rightarrow O\left(\frac{n}{(\log n \log \log n)^{2}}(\log n \log \log n) \log n\right) \subseteq O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

else problem is reduced to bitstrings of length $r<(\log n \log \log n)^{2}$

Select in $o(n)$ Bits

1. Store indices of every $(\log n \log \log n)$-th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{\log n \log \log n} \log n\right)=O\left(\frac{n}{\log \log n}\right) \subseteq o(n) \text { bits }
$$

2. Within group of $(\log n \log \log n) 1$ bits of length r bits:

$$
\text { if } r \geq(\log n \log \log n)^{2}
$$

then store indices of 1 bits in group in array

$$
\Rightarrow O\left(\frac{n}{(\log n \log \log n)^{2}}(\log n \log \log n) \log n\right) \subseteq O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

else problem is reduced to bitstrings of length $r<(\log n \log \log n)^{2}$
3. Repeat 1. and 2. on reduced bitstrings

Select in $o(n)$ Bits

$\log n \log \log n$ 1s

3. Repeat 1. and 2. on reduced bitstrings $\left(r<(\log n \log \log n)^{2}\right)$:

Select in $o(n)$ Bits

$\log n \log \log n$ 1s $(\log \log n)^{2} 1 \mathrm{~s}$

3. Repeat 1. and 2. on reduced bitstrings $\left(r<(\log n \log \log n)^{2}\right)$:
1^{\prime} Store relative indices of every $(\log \log n)^{2}$-th 1 bit in array

Select in $o(n)$ Bits

$\log n \log \log n$ 1s $(\log \log n)^{2}$ 1s
b

3. Repeat 1. and 2. on reduced bitstrings $\left(r<(\log n \log \log n)^{2}\right)$:

1' Store relative indices of every $(\log \log n)^{2}$-th 1 bit in array

$$
\Rightarrow O(\underbrace{\frac{n}{(\log \log n)^{2}}}_{\# \text { subgroups }} \underbrace{\left.\log \log n)=O\left(\frac{n}{\log \log n}\right) \text { bits } \text {. }{ }^{\log }\right)=O}_{\text {rel. index }}
$$

Select in $o(n)$ Bits

3. Repeat 1. and 2. on reduced bitstrings $\left(r<(\log n \log \log n)^{2}\right)$:

1' Store relative indices of every $(\log \log n)^{2}$-th 1 bit in array
$\Rightarrow O\left(\frac{n}{(\log \log n)^{2}} \log \log n\right)=O\left(\frac{n}{\log \log n}\right)$ bits
2^{\prime} Within group of $(\log \log n)^{2} 1$ bits of length r^{\prime} bits:

Select in $o(n)$ Bits

b

3. Repeat 1. and 2. on reduced bitstrings $\left(r<(\log n \log \log n)^{2}\right)$:
1^{\prime} Store relative indices of every $(\log \log n)^{2}$-th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{(\log \log n)^{2}} \log \log n\right)=O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

2^{\prime} Within group of $(\log \log n)^{2} 1$ bits of length r^{\prime} bits: if $r^{\prime} \geq(\log \log n)^{4}$
then store relative indices of 1 bits in subgroup in array

Select in $o(n)$ Bits

3. Repeat 1. and 2. on reduced bitstrings $\left(r<(\log n \log \log n)^{2}\right)$:
1^{\prime} Store relative indices of every $(\log \log n)^{2}$-th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{(\log \log n)^{2}} \log \log n\right)=O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

2^{\prime} Within group of $(\log \log n)^{2} 1$ bits of length r^{\prime} bits:

```
if \mp@subsup{r}{}{\prime}\geq(\operatorname{log}\operatorname{log}n\mp@subsup{)}{}{4}
```

then store relative indices of 1 bits in subgroup in array

$$
\Rightarrow O(\underbrace{\frac{n}{(\log \log n)^{4}}}_{\# \text { subgroups }} \underbrace{(\log \log n)^{2}}_{\# 1 \text { bits }} \underbrace{\log \log n}_{\text {rel. index }})=O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

Select in $o(n)$ Bits

b

3. Repeat 1. and 2. on reduced bitstrings $\left(r<(\log n \log \log n)^{2}\right)$:
1^{\prime} Store relative indices of every $(\log \log n)^{2}$-th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{(\log \log n)^{2}} \log \log n\right)=O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

2^{\prime} Within group of $(\log \log n)^{2} 1$ bits of length r^{\prime} bits:
if $r^{\prime} \geq(\log \log n)^{4}$
then store relative indices of 1 bits in subgroup in array

$$
\Rightarrow O\left(\frac{n}{(\log \log n)^{4}}(\log \log n)^{2} \log \log n\right)=O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

else problem is reduced to bitstrings of length $r^{\prime}<(\log \log n)^{4}$

Select in $o(n)$ Bits

3. Repeat 1. and 2. on reduced bitstrings $\left(r<(\log n \log \log n)^{2}\right)$:

1' Store relative indices of every $(\log \log n)^{2}$-th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{(\log \log n)^{2}} \log \log n\right)=O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

2' Within group of $(\log \log n)^{2} 1$ bits of length r^{\prime} bits:
if $r^{\prime} \geq(\log \log n)^{4}$
then store relative indices of 1 bits in subgroup in array

$$
\Rightarrow O\left(\frac{n}{(\log \log n)^{4}}(\log \log n)^{2} \log \log n\right)=O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

else problem is reduced to bitstrings of length $r^{\prime}<(\log \log n)^{4}$
4. Use lookup table for bitstrings of length $r^{\prime} \leq(\log \log n)^{4} \leq \frac{1}{2} \log n$

$$
\Rightarrow O(\underbrace{\sqrt{n}}_{\# \text { bitstrings }} \underbrace{\log n}_{\text {query } j} \underbrace{\log \log n)}_{\text {answer }}=o(n) \text { bits }
$$

Select in $o(n)$ Bits $+O(1)$ Time $\underset{\log n}{ }$

3. Repeat 1. and 2. on reduced bitstrings $\left(r<(\log n \log \log n)^{2}\right)$:
1^{\prime} Store relative indices of every $(\log \log n)^{2}$-th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{(\log \log n)^{2}} \log \log n\right)=O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

2^{\prime} Within group of $(\log \log n)^{2} 1$ bits of length r^{\prime} bits:
if $r^{\prime} \geq(\log \log n)^{4}$
then store relative indices of 1 bits in subgroup in array

$$
\Rightarrow O\left(\frac{n}{(\log \log n)^{4}}(\log \log n)^{2} \log \log n\right)=O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

else problem is reduced to bitstrings of length $r^{\prime}<(\log \log n)^{4}$
4. Use lookup table for bitstrings of length $r^{\prime} \leq(\log \log n)^{4} \leq \frac{1}{2} \log n$

$$
\Rightarrow O(\underbrace{\sqrt{n}}_{\# \text { bitstrings }} \underbrace{\log n}_{\text {query } j} \underbrace{\log \log n)}_{\text {answer }}=o(n) \text { bits }
$$

Succinct Representation of Binary Trees

Number of binary trees on n vertices:

Succinct Representation of Binary Trees

Number of binary trees on n vertices: $C_{n}=\sum_{i=0}^{n-1} C_{i} \cdot C_{n-1-i}=\frac{(2 n)!}{(n+1)!n!}$

Succinct Representation of Binary Trees

Number of binary trees on n vertices: $C_{n}=\sum_{i=0}^{n-1} C_{i}$ is the n-th Catalan number $C_{n-1-i}=\frac{(2 n)!}{(n+1)!n!}$

$$
\log C_{n}=2 n+o(n) \text { (by Stirling's approximation) }
$$

Succinct Representation of Binary Trees

Number of binary trees on n vertices: $C_{n}=\sum_{i=0}^{n-1} C_{i} \cdot C_{n-1-i}=\frac{(2 n)!}{(n+1)!n!}$

$$
\log C_{n}=2 n+o(n) \text { (by Stirling's approximation) }
$$

\Rightarrow We can use $2 n+o(n)$ bits to represent binary trees.

Succinct Representation of Binary Trees

Number of binary trees on n vertices: $C_{n}=\sum_{i=0}^{n-1} C_{i} \cdot C_{n-1-i}=\frac{(2 n)!}{(n+1)!n!}$

$$
\log C_{n}=2 n+o(n) \text { (by Stirling's approximation) }
$$

\Rightarrow We can use $2 n+o(n)$ bits to represent binary trees.
Difficulty is when a binary tree is not full.

Succinct Representation of Binary Trees

Idea.

Succinct Representation of Binary Trees

Idea.

■ Add external nodes to have out-degree 2

Succinct Representation of Binary Trees

Idea.
■ Add external nodes to have out-degree 2

Succinct Representation of Binary Trees

Idea.
■ Add external nodes to have out-degree 2

- Read internal nodes as 1

■ Read external nodes as 0

Succinct Representation of Binary Trees

Size.

■ $2 n+1$ bits for b

- $o(n)$ for rank and select

Idea.

■ Add external nodes to have out-degree 2

- Read internal nodes as 1

■ Read external nodes as 0

Succinct Representation of Binary Trees

Size.

■ $2 n+1$ bits for b

- $o(n)$ for rank and select

Idea.

Operations.

■ Add external nodes to have out-degree 2

- Read internal nodes as 1

■ Read external nodes as 0
\square parent $(i)=$?
■ leftChild $(i)=$?
■ rightChild $(i)=$?

Succinct Representation of Binary Trees

Size.

■ $2 n+1$ bits for b

- $o(n)$ for rank and select

Idea.

Operations.

■ Add external nodes to have out-degree 2

- Read internal nodes as 1

■ Read external nodes as 0
■ Use rank and select

Succinct Representation of Binary Trees

Size.

- $2 n+1$ bits for b
- $o(n)$ for rank and select

Idea.

Operations.

■ Add external nodes to have out-degree 2
\square parent $(i)=$?

- Read internal nodes as 1

■ leftChild $(i)=$?
■ Read external nodes as 0
■ rightChild $(i)=$?
■ Use rank and select

Succinct Representation of Binary Trees

Size.

■ $2 n+1$ bits for b

- $o(n)$ for rank and select

Idea.

Operations.

■ Add external nodes to have out-degree 2
\square parent $(i)=$?

- Read internal nodes as 1

■ leftChild $(i)=$?
■ Read external nodes as 0
■ rightChild $(i)=$?
■ Use rank and select

Succinct Representation of Binary Trees

Size.

- $2 n+1$ bits for b
- $o(n)$ for rank and select

Idea.

Operations.

■ Add external nodes to have out-degree 2
\square parent $(i)=$?

- Read internal nodes as 1

■ leftChild $(i)=2 \operatorname{rank}(i)$
■ Read external nodes as 0
■ rightChild $(i)=2 \operatorname{rank}(i)+1$
■ Use rank and select

Succinct Representation of Binary Trees

Size.

- $2 n+1$ bits for b
- $o(n)$ for rank and select

Idea.

Operations.

■ Add external nodes to have out-degree 2
$\square \operatorname{parent}(i)=\operatorname{select}\left(\left\lfloor\frac{i}{2}\right\rfloor\right)$

- Read internal nodes as 1
- leftChild $(i)=2 \operatorname{rank}(i)$

■ Read external nodes as 0
■ $\operatorname{rightChild}(i)=2 \operatorname{rank}(i)+1$
■ Use rank and select

Succinct Representation of Binary Trees

Size.

- $2 n+1$ bits for b
- $o(n)$ for rank and select

Idea.

Succinct Representation of Binary Trees

Idea.

Operations.

Size.

■ $2 n+1$ bits for b

- $o(n)$ for rank and select

■ Add external nodes to have out-degree 2

- Read internal nodes as 1

■ Read external nodes as 0
■ Use rank and select
$\square \operatorname{parent}(i)=\operatorname{select}\left(\left\lfloor\frac{i}{2}\right\rfloor\right)$

- leftChild $(i)=2 \operatorname{rank}(i)$

■ $\operatorname{rightChild}(i)=2 \operatorname{rank}(i)+1$
rank (i) is index for extra storing array

Succinct Representation of Trees - LOUDS

LOUDS $=$ Level Order Unary Degree Sequence

Succinct Representation of Trees - LOUDS

LOUDS = Level Order Unary Degree Sequence

Succinct Representation of Trees - LOUDS

LOUDS = Level Order Unary Degree Sequence

■ unary decoding of outdegree

Succinct Representation of Trees - LOUDS

LOUDS $=$ Level Order Unary Degree Sequence

■ unary decoding of outdegree

Succinct Representation of Trees - LOUDS

LOUDS $=$ Level Order Unary Degree Sequence

■ unary decoding of outdegree

- gives LOUDS sequence

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :--- |

Succinct Representation of Trees - LOUDS

LOUDS $=$ Level Order Unary Degree Sequence

■ unary decoding of outdegree

- gives LOUDS sequence

Size.

- each vertex (except root) is represented twice, namely with a 1 and with a 0
$\square o(n)$ bits for rank and select

Succinct Representation of Trees - LOUDS

LOUDS $=$ Level Order Unary Degree Sequence

■ unary decoding of outdegree

- gives LOUDS sequence

Size.

■ each vertex (except root) is represented twice, namely with a 1 and with a 0

$$
\Rightarrow 2 n+o(n) \text { bits }
$$

$\square o(n)$ bits for rank and select

Succinct Representation of Trees - LOUDS

LOUDS $=$ Level Order Unary Degree Sequence

■ unary decoding of outdegree

- gives LOUDS sequence

Operations.

- Let i be index of 1 in LOUDS sequence.
- $\operatorname{rank}(i)$ is index for array storing vertex objects/values.

Succinct Representation of Trees - LOUDS

LOUDS $=$ Level Order Unary Degree Sequence

■ unary decoding of outdegree

- gives LOUDS sequence

execute select (j) on execute rank (i) on
the 0 s instead of the 1 s (the 1 s (as before)
\square firstChild $(i)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(i)\right)+1$

Succinct Representation of Trees - LOUDS

LOUDS $=$ Level Order Unary Degree Sequence

■ unary decoding of outdegree

- gives LOUDS sequence

execute select (j) on
execute rank(i) on
the 0 s instead of the 1 s (the 1 s (as before)
\square firstChild $(i)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(i)\right)+1$
firstChild(8) $=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(8)\right)+1$

Succinct Representation of Trees - LOUDS

LOUDS $=$ Level Order Unary Degree Sequence

■ unary decoding of outdegree

- gives LOUDS sequence

execute select (j) on execute rank (i) on
the 0 s instead of the 1 s (the 1 s (as before)
\square firstChild $(i)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(i)\right)+1$
firstChild(8) $=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(8)\right)+1$
$=\operatorname{select}_{0}(6)+1$

Succinct Representation of Trees - LOUDS

LOUDS $=$ Level Order Unary Degree Sequence

■ unary decoding of outdegree

- gives LOUDS sequence

execute select (j) on execute rank (i) on
the 0 s instead of the 1 s (the 1 s (as before)
■ firstChild $(i)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(i)\right)+1$
firstChild(8) $=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(8)\right)+1$
$=\operatorname{select}_{0}(6)+1=14+1=15$

Succinct Representation of Trees - LOUDS

LOUDS $=$ Level Order Unary Degree Sequence

■ unary decoding of outdegree

- gives LOUDS sequence

execute select (j) on execute $\operatorname{rank}(i)$ on
the 0 s instead of the 1 s (the 1 s (as before)
\square firstChild $(i)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(i)\right)+1$
firstChild(8) $=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(8)\right)+1$
$=\operatorname{select}_{0}(6)+1=14+1=15$
■ nextSibling $(i)=i+1$

Succinct Representation of Trees - LOUDS

LOUDS $=$ Level Order Unary Degree Sequence

■ unary decoding of outdegree

- gives LOUDS sequence

execute select (j) on execute $\operatorname{rank}(i)$ on
the 0 s instead of the 1 s (the 1 s (as before)
\square firstChild $(i)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(i)\right)+1$
firstChild(8) $=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(8)\right)+1$
$=\operatorname{select}_{0}(6)+1=14+1=15$
■ nextSibling $(i)=i+1$
Exercise: child (i, j) with validity check

Succinct Representation of Trees - LOUDS

LOUDS $=$ Level Order Unary Degree Sequence

■ unary decoding of outdegree

- gives LOUDS sequence

execute select (j) on

 execute rank(i) onthe 0 s instead of the 1 s (the 1 s (as before)
$\square \operatorname{firstChild}(i)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(i)\right)+1 \quad \square \operatorname{parent}(i)=\operatorname{select}_{1}\left(\operatorname{rank}_{0}(i)\right)$
firstChild(8) $=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(8)\right)+1$
$=\operatorname{select}_{0}(6)+1=14+1=15$
■ nextSibling $(i)=i+1$
Exercise: child (i, j) with validity check

Succinct Representation of Trees - LOUDS

LOUDS $=$ Level Order Unary Degree Sequence

■ unary decoding of outdegree

- gives LOUDS sequence

1	0		1	1	1	0	1	1	0	0	1	0	1	0	1	1	0	0	0	0	0

1	0	1	1	1	0	1	1	0	0	1	0	1	0	1	1	0	0	0	0	0

$\square \operatorname{firstChild}(i)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(i)\right)+1 \quad \square \operatorname{parent}(i)=\operatorname{select}_{1}\left(\operatorname{rank}_{0}(i)\right)$ $\operatorname{firstChild}(8)=\operatorname{select}\left(\operatorname{rank}_{1}(8)\right)+1 \quad \operatorname{parent}(8)=\operatorname{select}_{1}\left(\operatorname{rank}_{0}(8)\right)$
$=\operatorname{select}_{0}(6)+1=14+1=15$
■ nextSibling $(i)=i+1$
Exercise: child (i, j) with validity check
execute select (j) on
the 0 s instead of the 1 s
execute $\operatorname{rank}(i)$ on
the 1 s (as before)
$\operatorname{parent}(i)=\operatorname{select}_{1}\left(\operatorname{rank}_{0}(i)\right)$
$\operatorname{parent}(8)=\operatorname{select}_{1}\left(\operatorname{rank}_{0}(8)\right)$

Succinct Representation of Trees - LOUDS

LOUDS $=$ Level Order Unary Degree Sequence

■ unary decoding of outdegree

- gives LOUDS sequence

1	0	1	1	1	0	1	1	0	0	1	0	1	0	1	1	0	0	0	0	0

execute select (j) on
the 0 s instead of the 1 s (the 1 s (as before)
$\square \operatorname{firstChild}(i)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(i)\right)+1 \quad \square \operatorname{parent}(i)=\operatorname{select}{ }_{1}\left(\operatorname{rank}_{0}(i)\right)$ $\operatorname{firstChild}_{(8)}=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(8)\right)+1 \quad \operatorname{parent}(8)=\operatorname{select}_{1}\left(\operatorname{rank}_{0}(8)\right)$
$=\operatorname{select}_{0}(6)+1=14+1=15$

■ nextSibling $(i)=i+1$
Exercise: child (i, j) with validity check

Succinct Representation of Trees - LOUDS

LOUDS $=$ Level Order Unary Degree Sequence

■ unary decoding of outdegree

- gives LOUDS sequence

1	0	1	1	1	0	1	1	0	0	1	0	1	0	1	1	0	0	0	0	0

execute select (j) on
the 0 s instead of the 1 s (the 1 s (as before)
$\square \operatorname{firstChild}(i)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(i)\right)+1 \quad \square \operatorname{parent}(i)=\operatorname{select}_{1}\left(\operatorname{rank}_{0}(i)\right)$ $\operatorname{firstChild}(8)=\operatorname{select}\left(\operatorname{rank}_{1}(8)\right)+1 \quad \operatorname{parent}(8)=\operatorname{select}_{1}\left(\operatorname{rank}_{0}(8)\right)$
$=\operatorname{select}_{0}(6)+1=14+1=15$

■ nextSibling $(i)=i+1$
Exercise: child (i, j) with validity check

Discussion

■ Succinct data structures are

- space efficient
- support fast operations but
- are mostly static (dynamic at extra cost),
\square number of operations is limited,
- complex \rightarrow harder to implement

Discussion

■ Succinct data structures are

- space efficient
- support fast operations but
■ are mostly static (dynamic at extra cost),
- number of operations is limited,
- complex \rightarrow harder to implement

■ Rank and select form basis for many succinct representations

Literature

Main reference:
■ Lecture 17 of Advanced Data Structures (MIT, Fall'17) by Erik Demaine

■ [Jac '89] "Space efficient Static Trees and Graphs"
Recommendations:

- Lecture 18 of Demaine's course on compact \& succinct arrays \& trees

