
1

Advanced Algorithms

Indexable Dictionaries and Trees
Succinct Data Structures

Johannes Zink · WS22
10

1110

110

110

10

10

0 0 0

0

0

2 - 1

Data Structures – Informal Definition

2 - 2

Data Structures – Informal Definition

A data structure is a concept to
� store,
� organize, and
� manage data.

2 - 3

Data Structures – Informal Definition

A data structure is a concept to
� store,
� organize, and
� manage data.

As such, it is a collection of
� data values,
� their relations, and
� the operations that be can applied to the data.

2 - 4

Data Structures – Informal Definition

A data structure is a concept to
� store,
� organize, and
� manage data.

Remarks.
� We look at data structures as a designer/implementer

(and not necessarily as a user).

� To define a data structure and to implement it are two different tasks.

As such, it is a collection of
� data values,
� their relations, and
� the operations that be can applied to the data.

2 - 5

Data Structures – Informal Definition

A data structure is a concept to
� store,
� organize, and
� manage data.

Remarks.
� We look at data structures as a designer/implementer

(and not necessarily as a user).

� To define a data structure and to implement it are two different tasks.

� What do we represent?

� How much space is required?

� Dynamic or static?

� Which operations are defined?

� How fast are they?

⇒
As such, it is a collection of
� data values,
� their relations, and
� the operations that be can applied to the data.

3 - 1

Succinct Data Structures

Goal.
� Use space “close” to information-theoretical minimum,

� but still support time-efficient operations.

3 - 2

Succinct Data Structures

Goal.
� Use space “close” to information-theoretical minimum,

� but still support time-efficient operations.

Let L be the information-theoretical lower bound
to represent a class of objects.
Then a data structure, which still supports
time-efficient operations, is called

� implicit, if it takes L + O(1) bits of space;

3 - 3

Succinct Data Structures

Goal.
� Use space “close” to information-theoretical minimum,

� but still support time-efficient operations.

Let L be the information-theoretical lower bound
to represent a class of objects.
Then a data structure, which still supports
time-efficient operations, is called

� implicit, if it takes L + O(1) bits of space;

� succinct, if it takes L + o(L) bits of space;

3 - 4

Succinct Data Structures

Goal.
� Use space “close” to information-theoretical minimum,

� but still support time-efficient operations.

Let L be the information-theoretical lower bound
to represent a class of objects.
Then a data structure, which still supports
time-efficient operations, is called

� implicit, if it takes L + O(1) bits of space;

� succinct, if it takes L + o(L) bits of space;

� compact, if it takes O(L) bits of space.

3 - 5

Succinct Data Structures

Goal.
� Use space “close” to information-theoretical minimum,

� but still support time-efficient operations.

Let L be the information-theoretical lower bound
to represent a class of objects.
Then a data structure, which still supports
time-efficient operations, is called

� implicit, if it takes L + O(1) bits of space;

� succinct, if it takes L + o(L) bits of space;

� compact, if it takes O(L) bits of space.
Examples?

4 - 1

Examples for Implicit Data Structures

4 - 2

Examples for Implicit Data Structures

� arrays to represent lists
� but why not linked lists?

4 - 3

Examples for Implicit Data Structures

� arrays to represent lists
� but why not linked lists?

� 1-dim arrays to represent multi-dimensional arrays

4 - 4

Examples for Implicit Data Structures

� arrays to represent lists
� but why not linked lists?

� sorted arrays to represent sorted lists
� but why not binary search trees?

� 1-dim arrays to represent multi-dimensional arrays

4 - 5

Examples for Implicit Data Structures

� arrays to represent lists
� but why not linked lists?

� sorted arrays to represent sorted lists
� but why not binary search trees?

� arrays to represent complete binary trees and heaps

leftChild(i) = 2i

rightChild(i) = 2i + 1
parent(i) = b i

2c

1 2 3 4 5 6 . . .7

� 1-dim arrays to represent multi-dimensional arrays

4 - 6

Examples for Implicit Data Structures

� arrays to represent lists
� but why not linked lists?

� sorted arrays to represent sorted lists
� but why not binary search trees?

� arrays to represent complete binary trees and heaps

leftChild(i) = 2i

rightChild(i) = 2i + 1
parent(i) = b i

2c

1 2 3 4 5 6 . . .7

� 1-dim arrays to represent multi-dimensional arrays

4 - 7

Examples for Implicit Data Structures

� arrays to represent lists
� but why not linked lists?

� sorted arrays to represent sorted lists
� but why not binary search trees?

� arrays to represent complete binary trees and heaps

leftChild(i) = 2i

rightChild(i) = 2i + 1
parent(i) = b i

2c

1 2 3 4 5 6 . . .
And unbalanced

trees?

7

� 1-dim arrays to represent multi-dimensional arrays

5 - 1

Succinct Indexable Dictionary

Represent a subset S ⊆ {1, 2, . . . , n} and support the following operations in O(1) time:

� member(i) returns if i ∈ S

� rank(i) = number of elements in S that are less or equal to i

� select(j) = j-th element in S

� predecessor(i)

� successor(i)

5 - 2

Succinct Indexable Dictionary

Represent a subset S ⊆ {1, 2, . . . , n} and support the following operations in O(1) time:

� member(i) returns if i ∈ S

� rank(i) = number of elements in S that are less or equal to i

� select(j) = j-th element in S

� predecessor(i)

� successor(i)

How many bits of space do we need to distinguish them?

How many different subsets of {1, 2, . . . , n} are there?

5 - 3

Succinct Indexable Dictionary

Represent a subset S ⊆ {1, 2, . . . , n} and support the following operations in O(1) time:

� member(i) returns if i ∈ S

� rank(i) = number of elements in S that are less or equal to i

� select(j) = j-th element in S

� predecessor(i)

� successor(i)

How many bits of space do we need to distinguish them?

How many different subsets of {1, 2, . . . , n} are there? 2n

5 - 4

Succinct Indexable Dictionary

Represent a subset S ⊆ {1, 2, . . . , n} and support the following operations in O(1) time:

� member(i) returns if i ∈ S

� rank(i) = number of elements in S that are less or equal to i

� select(j) = j-th element in S

� predecessor(i)

� successor(i)

How many bits of space do we need to distinguish them?

How many different subsets of {1, 2, . . . , n} are there? 2n

log 2n = n bits
our logarithms are all to basis 2, i.e., log2

6 - 1

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

6 - 2

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b

6 - 3

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b

member(i) can trivially be answered in O(1) time
(assuming that we can access any entry in constant time)

6 - 4

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plus o(n)-space structures to answer in O(1) time

b

� rank(i) = # 1s at or before position i

� select(j) = position of j-th 1 bit

member(i) can trivially be answered in O(1) time
(assuming that we can access any entry in constant time)

6 - 5

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plus o(n)-space structures to answer in O(1) time

b

select(5) =

� rank(i) = # 1s at or before position i

� select(j) = position of j-th 1 bit

member(i) can trivially be answered in O(1) time
(assuming that we can access any entry in constant time)

6 - 6

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plus o(n)-space structures to answer in O(1) time

b

select(5) = 9

� rank(i) = # 1s at or before position i

� select(j) = position of j-th 1 bit

member(i) can trivially be answered in O(1) time
(assuming that we can access any entry in constant time)

6 - 7

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plus o(n)-space structures to answer in O(1) time

b

select(5) = 9

rank(9) =

� rank(i) = # 1s at or before position i

� select(j) = position of j-th 1 bit

member(i) can trivially be answered in O(1) time
(assuming that we can access any entry in constant time)

6 - 8

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plus o(n)-space structures to answer in O(1) time

b

select(5) = 9

rank(9) = 5

� rank(i) = # 1s at or before position i

� select(j) = position of j-th 1 bit

member(i) can trivially be answered in O(1) time
(assuming that we can access any entry in constant time)

6 - 9

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plus o(n)-space structures to answer in O(1) time

b

select(5) = 9

� rank(i) = # 1s at or before position i

� select(j) = position of j-th 1 bit

rank(9) = 5 = rank(12)

member(i) can trivially be answered in O(1) time
(assuming that we can access any entry in constant time)

6 - 10

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plus o(n)-space structures to answer in O(1) time

b

select(5) = 9

� rank(i) = # 1s at or before position i

� select(j) = position of j-th 1 bit

rank(15) =

rank(9) = 5 = rank(12)

member(i) can trivially be answered in O(1) time
(assuming that we can access any entry in constant time)

6 - 11

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plus o(n)-space structures to answer in O(1) time

b

select(5) = 9

� rank(i) = # 1s at or before position i

� select(j) = position of j-th 1 bit

rank(15) = 6

rank(9) = 5 = rank(12)

member(i) can trivially be answered in O(1) time
(assuming that we can access any entry in constant time)

6 - 12

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plus o(n)-space structures to answer in O(1) time

b

select(5) = 9

� rank(i) = # 1s at or before position i

� select(j) = position of j-th 1 bit

rank(15) = 6

rank(9) = 5 = rank(12)

Exercise: Use these methods to
answer predecessor(i) and
successor(i) in O(1) time.

⇒

member(i) can trivially be answered in O(1) time
(assuming that we can access any entry in constant time)

7 - 1

Rank in o(n) Bits

b

7 - 2

Rank in o(n) Bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each needs ≤ log n bits

{ log2 n = (log n)2

7 - 3

Rank in o(n) Bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each needs ≤ log n bits

{
3 5

1 1 1 1 1

log2 n = (log n)2

7 - 4

Rank in o(n) Bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each needs ≤ log n bits

⇒ O(n
log2 n

log n) = O(n
log n) ⊆ o(n) bits

{
chunks rank

{ {

3 5

1 1 1 1 1

log2 n = (log n)2

7 - 5

Rank in o(n) Bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each needs ≤ log n bits

⇒ O(n
log2 n

log n) = O(n
log n) ⊆ o(n) bits

2. Split chunks into (12 log n)-bit subchunks

1
2 log n

and store cumulative rank within chunk:

{{

3 5

1 1 1 1 1

log2 n = (log n)2

7 - 6

Rank in o(n) Bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each needs ≤ log n bits

⇒ O(n
log2 n

log n) = O(n
log n) ⊆ o(n) bits

2. Split chunks into (12 log n)-bit subchunks

1
2 log n

and store cumulative rank within chunk:

{{

3 5

1 1 1 1 1 111
31

log2 n = (log n)2

7 - 7

Rank in o(n) Bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each needs ≤ log n bits

⇒ O(n
log2 n

log n) = O(n
log n) ⊆ o(n) bits

2. Split chunks into (12 log n)-bit subchunks

1
2 log n

and store cumulative rank within chunk: each needs ≤ log log2 n = 2 log log n bits

{{

3 5

1 1 1 1 1 111
31

log2 n = (log n)2

7 - 8

Rank in o(n) Bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each needs ≤ log n bits

⇒ O(n
log2 n

log n) = O(n
log n) ⊆ o(n) bits

2. Split chunks into (12 log n)-bit subchunks

1
2 log n

⇒ O(n
log n log log n) ⊆ o(n) bits

and store cumulative rank within chunk: each needs ≤ log log2 n = 2 log log n bits

{{

subch. rel. rank

{ {

3 5

1 1 1 1 1 111
31

log2 n = (log n)2

7 - 9

Rank in o(n) Bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each needs ≤ log n bits

⇒ O(n
log2 n

log n) = O(n
log n) ⊆ o(n) bits

2. Split chunks into (12 log n)-bit subchunks

1
2 log n

⇒ O(n
log n log log n) ⊆ o(n) bits

and store cumulative rank within chunk: each needs ≤ log log2 n = 2 log log n bits

3. Use lookup table for bitstrings of length (12 log n):

{{

3 5

1 1 1 1 1 111
31

log2 n = (log n)2

7 - 10

Rank in o(n) Bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each needs ≤ log n bits

⇒ O(n
log2 n

log n) = O(n
log n) ⊆ o(n) bits

2. Split chunks into (12 log n)-bit subchunks

1
2 log n

⇒ O(n
log n log log n) ⊆ o(n) bits

and store cumulative rank within chunk: each needs ≤ log log2 n = 2 log log n bits

3. Use lookup table for bitstrings of length (12 log n):

{{

3 5

1 1 1 1 1 111
31

log2 n = (log n)2

2
1
2 log n =

√
n entries

7 - 11

Rank in o(n) Bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each needs ≤ log n bits

⇒ O(n
log2 n

log n) = O(n
log n) ⊆ o(n) bits

2. Split chunks into (12 log n)-bit subchunks

1
2 log n

⇒ O(n
log n log log n) ⊆ o(n) bits

and store cumulative rank within chunk: each needs ≤ log log2 n = 2 log log n bits

3. Use lookup table for bitstrings of length (12 log n):
⇒ O(

√
n log n log log n) ⊆ o(n) bits

bitstrings query i answer

{{

{ { {

3 5

1 1 1 1 1 111
31

log2 n = (log n)2

2
1
2 log n =

√
n entries

7 - 12

Rank in o(n) Bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each needs ≤ log n bits

⇒ O(n
log2 n

log n) = O(n
log n) ⊆ o(n) bits

2. Split chunks into (12 log n)-bit subchunks

1
2 log n

⇒ O(n
log n log log n) ⊆ o(n) bits

and store cumulative rank within chunk: each needs ≤ log log2 n = 2 log log n bits

3. Use lookup table for bitstrings of length (12 log n):
⇒ O(

√
n log n log log n) ⊆ o(n) bits

4. rank(i) = rank of chunk
+ relative rank of subchunk within chunk
+ relative rank of element i within subchunk

{{

3 5

1 1 1 1 1 111
31

log2 n = (log n)2

2
1
2 log n =

√
n entries

7 - 13

Rank in o(n) Bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each needs ≤ log n bits

⇒ O(n
log2 n

log n) = O(n
log n) ⊆ o(n) bits

2. Split chunks into (12 log n)-bit subchunks

1
2 log n

⇒ O(n
log n log log n) ⊆ o(n) bits

and store cumulative rank within chunk: each needs ≤ log log2 n = 2 log log n bits

3. Use lookup table for bitstrings of length (12 log n):
⇒ O(

√
n log n log log n) ⊆ o(n) bits

4. rank(i) = rank of chunk
+ relative rank of subchunk within chunk
+ relative rank of element i within subchunk

{{
⇒ O(1) time

3 5

1 1 1 1 1 111
31

+ O(1) Time
log2 n = (log n)2

2
1
2 log n =

√
n entries

(assume read & write in O(1) time)

8 - 1

Select in o(n) Bits

b

8 - 2

Select in o(n) Bits

b

1. Store indices of every (log n log log n)-th 1 bit in array

log n log log n 1s{

8 - 3

Select in o(n) Bits

b

1. Store indices of every (log n log log n)-th 1 bit in array
⇒ O(n

log n log log n log n) = O(n
log log n) ⊆ o(n) bits

groups index

log n log log n 1s{

{{

8 - 4

Select in o(n) Bits

b

1. Store indices of every (log n log log n)-th 1 bit in array
⇒ O(n

log n log log n log n) = O(n
log log n) ⊆ o(n) bits

2. Within group of (log n log log n) 1 bits of length r bits:

log n log log n 1s{

8 - 5

Select in o(n) Bits

b

1. Store indices of every (log n log log n)-th 1 bit in array
⇒ O(n

log n log log n log n) = O(n
log log n) ⊆ o(n) bits

2. Within group of (log n log log n) 1 bits of length r bits:

if r ≥ (log n log log n)2

then store indices of 1 bits in group in array
⇒ O(n

(log n log log n)2 (log n log log n) log n) ⊆ O(n
log log n) bits

groups index# 1 bits

log n log log n 1s{
{ {{

8 - 6

Select in o(n) Bits

b

1. Store indices of every (log n log log n)-th 1 bit in array
⇒ O(n

log n log log n log n) = O(n
log log n) ⊆ o(n) bits

2. Within group of (log n log log n) 1 bits of length r bits:

if r ≥ (log n log log n)2

then store indices of 1 bits in group in array
⇒ O(n

(log n log log n)2 (log n log log n) log n) ⊆ O(n
log log n) bits

else problem is reduced to bitstrings of length r < (log n log log n)2

log n log log n 1s{

8 - 7

Select in o(n) Bits

b

1. Store indices of every (log n log log n)-th 1 bit in array
⇒ O(n

log n log log n log n) = O(n
log log n) ⊆ o(n) bits

2. Within group of (log n log log n) 1 bits of length r bits:

if r ≥ (log n log log n)2

then store indices of 1 bits in group in array
⇒ O(n

(log n log log n)2 (log n log log n) log n) ⊆ O(n
log log n) bits

else problem is reduced to bitstrings of length r < (log n log log n)2

3. Repeat 1. and 2. on reduced bitstrings

log n log log n 1s{

8 - 8

Select in o(n) Bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

log n log log n 1s{

8 - 9

Select in o(n) Bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2-th 1 bit in array

log n log log n 1s{

{(log log n)2 1s

8 - 10

Select in o(n) Bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2-th 1 bit in array

⇒ O(n
(log log n)2 log log n) = O(n

log log n) bits

subgroups rel. index

log n log log n 1s{

{(log log n)2 1s

{{

8 - 11

Select in o(n) Bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2-th 1 bit in array

⇒ O(n
(log log n)2 log log n) = O(n

log log n) bits

2’ Within group of (log log n)2 1 bits of length r′ bits:

log n log log n 1s{

{(log log n)2 1s

8 - 12

Select in o(n) Bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2-th 1 bit in array

⇒ O(n
(log log n)2 log log n) = O(n

log log n) bits

2’ Within group of (log log n)2 1 bits of length r′ bits:

if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array

log n log log n 1s{

{(log log n)2 1s

8 - 13

Select in o(n) Bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2-th 1 bit in array

⇒ O(n
(log log n)2 log log n) = O(n

log log n) bits

2’ Within group of (log log n)2 1 bits of length r′ bits:

if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array

⇒ O(n
(log log n)4 (log log n)2 log log n) = O(n

log log n) bits

subgroups # 1 bits rel. index

log n log log n 1s{

{(log log n)2 1s

{ {{

8 - 14

Select in o(n) Bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2-th 1 bit in array

⇒ O(n
(log log n)2 log log n) = O(n

log log n) bits

2’ Within group of (log log n)2 1 bits of length r′ bits:

if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array

⇒ O(n
(log log n)4 (log log n)2 log log n) = O(n

log log n) bits

else problem is reduced to bitstrings of length r′ < (log log n)4

log n log log n 1s{

{(log log n)2 1s

8 - 15

Select in o(n) Bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2-th 1 bit in array

⇒ O(n
(log log n)2 log log n) = O(n

log log n) bits

2’ Within group of (log log n)2 1 bits of length r′ bits:

if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array

⇒ O(n
(log log n)4 (log log n)2 log log n) = O(n

log log n) bits

else problem is reduced to bitstrings of length r′ < (log log n)4

4. Use lookup table for bitstrings of length r′ ≤ (log log n)4 ≤ 1
2 log n

⇒ O(
√

n log n log log n) = o(n) bits

log n log log n 1s{

{(log log n)2 1s

bitstrings query j answer

{ { {

8 - 16

Select in o(n) Bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2-th 1 bit in array

⇒ O(n
(log log n)2 log log n) = O(n

log log n) bits

2’ Within group of (log log n)2 1 bits of length r′ bits:

if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array

⇒ O(n
(log log n)4 (log log n)2 log log n) = O(n

log log n) bits

else problem is reduced to bitstrings of length r′ < (log log n)4

4. Use lookup table for bitstrings of length r′ ≤ (log log n)4 ≤ 1
2 log n

⇒ O(
√

n log n log log n) = o(n) bits

log n log log n 1s{

{(log log n)2 1s
+ O(1) Time

bitstrings query j answer

{ { {

9 - 1

Succinct Representation of Binary Trees

Number of binary trees on n vertices: Cn =
n−1
∑

i=0
Ci · Cn−1−i =

(2n)!
(n+1)! n!

9 - 2

Succinct Representation of Binary Trees

Number of binary trees on n vertices: Cn =
n−1
∑

i=0
Ci · Cn−1−i =

(2n)!
(n+1)! n!

Cn is the n-th Catalan number and C0 = 1

9 - 3

Succinct Representation of Binary Trees

Number of binary trees on n vertices: Cn =
n−1
∑

i=0
Ci · Cn−1−i =

(2n)!
(n+1)! n!

log Cn = 2n + o(n) (by Stirling’s approximation)

Cn is the n-th Catalan number and C0 = 1

9 - 4

Succinct Representation of Binary Trees

Number of binary trees on n vertices: Cn =
n−1
∑

i=0
Ci · Cn−1−i =

(2n)!
(n+1)! n!

log Cn = 2n + o(n) (by Stirling’s approximation)

⇒ We can use 2n + o(n) bits to represent binary trees.

Cn is the n-th Catalan number and C0 = 1

9 - 5

Succinct Representation of Binary Trees

Number of binary trees on n vertices: Cn =
n−1
∑

i=0
Ci · Cn−1−i =

(2n)!
(n+1)! n!

log Cn = 2n + o(n) (by Stirling’s approximation)

⇒ We can use 2n + o(n) bits to represent binary trees.

Difficulty is when a binary tree is not full.

Cn is the n-th Catalan number and C0 = 1

9 - 6

Succinct Representation of Binary Trees

Idea.
� Add external nodes to have out-degree 2

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select

9 - 7

Succinct Representation of Binary Trees

Idea.
� Add external nodes to have out-degree 2

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select

9 - 8

Succinct Representation of Binary Trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b
Idea.
� Add external nodes to have out-degree 2

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select

9 - 9

Succinct Representation of Binary Trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

Idea.
� Add external nodes to have out-degree 2

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select

9 - 10

Succinct Representation of Binary Trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

Size.
� 2n + 1 bits for b

� o(n) for rank
and select

Idea.
� Add external nodes to have out-degree 2

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select

9 - 11

Succinct Representation of Binary Trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

Size.
� 2n + 1 bits for b

� o(n) for rank
and select

Operations.
� parent(i) = select(b i

2c)
� leftChild(i) = 2 rank(i)

� rightChild(i) = 2 rank(i) + 1

� rank(i) is index for extra storing array

Idea.
� Add external nodes to have out-degree 2

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select

?

?

?

9 - 12

Succinct Representation of Binary Trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

Size.
� 2n + 1 bits for b

� o(n) for rank
and select

Operations.
� parent(i) = select(b i

2c)
� leftChild(i) = 2 rank(i)

� rightChild(i) = 2 rank(i) + 1

� rank(i) is index for extra storing array

Idea.
� Add external nodes to have out-degree 2

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select

?

?

?

9 - 13

Succinct Representation of Binary Trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

Size.
� 2n + 1 bits for b

� o(n) for rank
and selectrank(7) = 6

Operations.
� parent(i) = select(b i

2c)
� leftChild(i) = 2 rank(i)

� rightChild(i) = 2 rank(i) + 1

� rank(i) is index for extra storing array

Idea.
� Add external nodes to have out-degree 2

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select

?

?

?

9 - 14

Succinct Representation of Binary Trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

Size.
� 2n + 1 bits for b

� o(n) for rank
and selectrank(7) = 6

rank(10) = 7

Operations.
� parent(i) = select(b i

2c)
� leftChild(i) = 2 rank(i)

� rightChild(i) = 2 rank(i) + 1

� rank(i) is index for extra storing array

Idea.
� Add external nodes to have out-degree 2

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select

?

?

?

9 - 15

Succinct Representation of Binary Trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

Size.
� 2n + 1 bits for b

� o(n) for rank
and selectrank(7) = 6

rank(10) = 7

Operations.
� parent(i) = select(b i

2c)
� leftChild(i) = 2 rank(i)

� rightChild(i) = 2 rank(i) + 1

� rank(i) is index for extra storing array

Idea.
� Add external nodes to have out-degree 2

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select

?

9 - 16

Succinct Representation of Binary Trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

Size.
� 2n + 1 bits for b

� o(n) for rank
and selectrank(7) = 6

rank(10) = 7

Operations.
� parent(i) = select(b i

2c)
� leftChild(i) = 2 rank(i)

� rightChild(i) = 2 rank(i) + 1

� rank(i) is index for extra storing array

Idea.
� Add external nodes to have out-degree 2

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select

9 - 17

Succinct Representation of Binary Trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

Size.
� 2n + 1 bits for b

� o(n) for rank
and selectrank(7) = 6

rank(10) = 7

Operations.
� parent(i) = select(b i

2c)
� leftChild(i) = 2 rank(i)

� rightChild(i) = 2 rank(i) + 1

� rank(i) is index for extra storing array

Idea.
� Add external nodes to have out-degree 2

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select

Proof is

exercise.

9 - 18

Succinct Representation of Binary Trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

Size.
� 2n + 1 bits for b

� o(n) for rank
and selectrank(7) = 6

rank(10) = 7

Operations.
� parent(i) = select(b i

2c)
� leftChild(i) = 2 rank(i)

� rightChild(i) = 2 rank(i) + 1

� rank(i) is index for extra storing array

Idea.
� Add external nodes to have out-degree 2

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select

Proof is

exercise.

10 - 1

Succinct Representation of Trees - LOUDS

LOUDS = Level Order Unary Degree Sequence

10 - 2

Succinct Representation of Trees - LOUDS

LOUDS = Level Order Unary Degree Sequence

10 - 3

Succinct Representation of Trees - LOUDS

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree

10 - 4

Succinct Representation of Trees - LOUDS

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

10 - 5

Succinct Representation of Trees - LOUDS

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
20 21

10 - 6

Succinct Representation of Trees - LOUDS

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
20 21

Size.
� each vertex (except root) is represented twice,

namely with a 1 and with a 0

� o(n) bits for rank and select

10 - 7

Succinct Representation of Trees - LOUDS

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
20 21

⇒ 2n + o(n) bits

Size.
� each vertex (except root) is represented twice,

namely with a 1 and with a 0

� o(n) bits for rank and select

10 - 8

Succinct Representation of Trees - LOUDS

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
20 21

Operations.
� Let i be index of 1 in LOUDS sequence.

� rank(i) is index for array storing
vertex objects/values.

10 - 9

Succinct Representation of Trees - LOUDS

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

execute select(j) on
the 0s instead of the 1s

execute rank(i) on
the 1s (as before)

10 - 10

Succinct Representation of Trees - LOUDS

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 14 + 1 = 15

11

execute select(j) on
the 0s instead of the 1s

execute rank(i) on
the 1s (as before)

10 - 11

Succinct Representation of Trees - LOUDS

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 14 + 1 = 15

11

execute select(j) on
the 0s instead of the 1s

execute rank(i) on
the 1s (as before)

10 - 12

Succinct Representation of Trees - LOUDS

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 14 + 1 = 15

11

1

execute select(j) on
the 0s instead of the 1s

execute rank(i) on
the 1s (as before)

10 - 13

Succinct Representation of Trees - LOUDS

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 14 + 1 = 15

11

� nextSibling(i) = i + 1

1

execute select(j) on
the 0s instead of the 1s

execute rank(i) on
the 1s (as before)

10 - 14

Succinct Representation of Trees - LOUDS

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 14 + 1 = 15

11

� nextSibling(i) = i + 1
Exercise: chil

d(i, j)

with validity check

1

execute select(j) on
the 0s instead of the 1s

execute rank(i) on
the 1s (as before)

10 - 15

Succinct Representation of Trees - LOUDS

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 14 + 1 = 15

11

� nextSibling(i) = i + 1
Exercise: chil

d(i, j)

with validity check

� parent(i) = select1(rank0(i))

1

execute select(j) on
the 0s instead of the 1s

execute rank(i) on
the 1s (as before)

10 - 16

Succinct Representation of Trees - LOUDS

1

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 14 + 1 = 15

11

� nextSibling(i) = i + 1
Exercise: chil

d(i, j)

with validity check

� parent(i) = select1(rank0(i))

parent(8) = select1(rank0(8))
= select1(2) = 3

1

1

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1 01

execute select(j) on
the 0s instead of the 1s

execute rank(i) on
the 1s (as before)

10 - 17

Succinct Representation of Trees - LOUDS

1

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 14 + 1 = 15

11

� nextSibling(i) = i + 1
Exercise: chil

d(i, j)

with validity check

� parent(i) = select1(rank0(i))

parent(8) = select1(rank0(8))
= select1(2) = 3

1

1

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1 01

execute select(j) on
the 0s instead of the 1s

execute rank(i) on
the 1s (as before)

10 - 18

Succinct Representation of Trees - LOUDS

1

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 14 + 1 = 15

11

� nextSibling(i) = i + 1
Exercise: chil

d(i, j)

with validity check

� parent(i) = select1(rank0(i))

parent(8) = select1(rank0(8))
= select1(2) = 3

1

1

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1 01

execute select(j) on
the 0s instead of the 1s

execute rank(i) on
the 1s (as before)

11 - 1

Discussion

� Succinct data structures are
� space efficient
� support fast operations
but
� are mostly static (dynamic at extra cost),
� number of operations is limited,
� complex → harder to implement

11 - 2

Discussion

� Succinct data structures are
� space efficient
� support fast operations
but
� are mostly static (dynamic at extra cost),
� number of operations is limited,
� complex → harder to implement

� Rank and select form basis for many succinct representations

12

Literature

Main reference:

� Lecture 17 of Advanced Data Structures (MIT, Fall’17) by
Erik Demaine

� [Jac ’89] “Space efficient Static Trees and Graphs”

Recommendations:

� Lecture 18 of Demaine’s course on compact & succinct
arrays & trees

	Title page
	Data Structures -- Informal Definition
	Succinct Data Structures
	Examples for implicit data structures

	Succinct indexable dictionary
	Idea
	Rank in o(n) bits and O(1) time
	Select in o(n) bits and O(1) time

	Succinct representation of binary trees
	Succinct representation of trees - LOUDS
	Discussion
	Literature

