
Advanced Algorithms

An introduction
Randomized Algorithms

Johannes Zink · WS22

73 3 3 3 318 2

Basic Definitions

A discrete probability space (Ω, Pr) is used to model random experiments.

Ω is a countable set of elementary events (= outcomes of the experiment).

Pr : Ω −→ [0, 1] assigns a probability Pr(ω) to each ω ∈ Ω s.t. ∑ω∈Ω Pr(ω) = 1.

A set A ⊆ Ω is called event. The probability of A is Pr[A] = ∑ω∈A Pr(ω).

Example. Rolling a red and a blue fair six-sided die.

Ω = {(1, 1), (1, 2), (1, 3), . . . , (6, 6)}, Pr((i, j)) = 1
6 ·

1
6 = 1

36 for each (i, j) ∈ Ω

A = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)} = rolling a double

Pr(A) = 6 · 1
36 = 1

6

Basic Definitions

A random variable is a function X : Ω −→ R.

For each x ∈ R we define an event (X = x) = {ω ∈ Ω | X(ω) = x}.
The expected value of X is E[X] = ∑x∈X(Ω) x · Pr[(X = x)].

X((i, j)) = max{i, j}

Pr[(X = 1)] = 1
36 , Pr[(X = 2)] = 3

36 , Pr[(X = 3)] = 5
36 , ... , Pr[(X = 6)] = 11

36

E[X] = 1 · 1
36 + 2 · 3

36 + 3 · 5
36 + · · ·+ 6 · 1136 ≈ 4.5

Example. Rolling a red and a blue fair six-sided die.

Ω = {(1, 1), (1, 2), (1, 3), . . . , (6, 6)}, Pr((i, j)) = 1
6 ·

1
6 = 1

36 for each (i, j) ∈ Ω

Linearity of Expectation

For each set of random variables X1, X2, . . . , Xn : Ω −→ R,
we define a random variable (X1 + X2 + · · ·+ Xn) : Ω −→ R with
(X1 + X2 + · · ·+ Xn)(ω) = X1(ω) + X2(ω) + · · ·+ Xn(ω) for each ω ∈ Ω.

Linearity of expectation: E[(X1 + X2 + · · ·+ Xn)] = E[X1] + E[X2] + · · ·+ E[Xn]

Proof of correctness:

E[(X1 + X2 + · · ·+ Xn)] = ∑
ω∈Ω

Pr[ω] ·
n

∑
i=1

Xi(ω) = ∑
ω∈Ω

n

∑
i=1

Pr[ω] · Xi(ω)

=
n

∑
i=1

∑
ω∈Ω

Pr[ω] · Xi(ω) =
n

∑
i=1

E[Xi]

Using Indicator Random Variables (I)

Let A be an array filled with n pairwise distinct integers. FindMax(A)

m := A[1]
for i = 2, 3, . . . , n
if A[i] > m

m := A[i]
return m

How often is the maximum m updated? O(n) times

Assume that the integers in A are randomly permuted.

Let X denote the random varibale that counts the
number of times m is updated. We define n random variables

Xi =
1 , if m is updated in iteration i
0 , otherwise{

Pr[(Xi = 1)] = 1
i ⇒ E[Xi] = 0 + 1 · 1i = 1

i

E[X] = E[X1] + E[X2] + · · ·+ E[Xn] = 1 + 1
2 + · · ·+ 1

n = Hn ∈ Θ(log n)

Observation. X = (X1 + X2 + · · ·+ Xn) Hn is the n-th harmonic number;

ln(n + 1) ≤ Hn ≤ ln(n) + 1.

linearity of expectation

indicator random variable

Playing until You Win

A Bernoulli experiment has only two outcomes Ω = {failure, success}.

Suppose we repeat such an experiment multiple times.
Assume the outcomes are independent from each other.

Let X be the random variable that counts the number of rounds until we succeed for
the first time.

Pr[(X = j)] = qj−1p

Let p = Pr(success) be the success probability.

q = Pr(failure) = 1− p is the failure probability.

⇒ E[X] =
∞
∑

j=0
j · qj−1p = p · d

dq

(
∞
∑

j=0
qj

)
= p · 1

(1−q)2 = p · 1
p2 = 1

pp · d
dq

(
1

1−q

)
=

⇒

geometric series

This experiment has a
geometric distribution

Using Indicator Random Variables (II)

⇒ E[X] = E[X1] + E[X2] + · · ·+ E[Xn] = n · (1n + 1
n−1 + · · ·+ 1

2 + 1) ∈ Θ(n log n)

Each time you buy groceries at your local supermarket for more than 10 Euro you get
a random toy for free. The number of pairwise distinct toys is n.

How often do you have to shop to obtain a toy of each type? → random variable X

Xi = number of times you have to shop to obtain the i-th type of toy when you
already have i− 1 types of toys

Observation. Suppose you have already obtained i− 1 types of toys. Now you
continue shopping until you receive a new type of toy. This experiment has a

geometric probability distribution! The success probability is pi =
n−(i−1)

n .

⇒ E[Xi] =
1
pi
= n

n−(i−1)

Finding a Large Number

Given: An array A of n pairwise distinct natural numbers.

Deterministic approach: Go through all elements, return maximum.

(Actually, it suffices to go through bn/2c+ 1 elements.)

FindLarge has error probability ≤ 1
2k .

Set k = c log2 n for some constant c > 1.

⇒ Error probability ≤ 1
nc

runtime
Θ(n)

Task: Determine an integer A[j] that is at least as large as the median.

FindLarge(A, k ∈N)

for i = 1, 2, . . . , k

if A[r] > `

` := A[r]
return `

randomly choose r ∈ {1, 2, . . . , n}

` := 0

Randomized approach:

runtime O(log n)

Remark. We traded correctness for running time.

Finding a Repeated Element

Sort the array, then perform a linear sweep.

Compute and report the median.

Θ(n log n) time

Θ(n) time

while true do
randomly choose i ∈ {1, . . . , n}

if A[i] = A[j] then return A[i]

FindRepeated(A)
Success probability in each step

≥ n/2

n
· (n/2)− 1

n− 1
≈ 1

4

⇒ Expected number of steps ≈ 4

Given: An array A of n natural numbers such that
d n
2 e of them are identical and b n

2 c of them are pairwise distinct.

Task: Find the repeated element.

Deterministic approaches:

Randomized approach:

randomly choose j ∈ {1, . . . , n} \ {i}

73 3 3 3 318 2

Compare each element with every predecessor Θ(n2) time

Remark. The algorithm only returns
correct answers, but may run forever.

Las Vegas and Monte Carlo Algorithms

Las Vegas algorithm. Returns a correct result, but the running time (and possibly
the required space) are random variables.

Monte Carlo algorithm. Returns incorrect result or fails with a certain (small)
probability. The running time may be a random variable.

Examples. FindRepeated, RandomizedQuicksort

Examples. FindLarge, Karger’s randomized MinCut algorithm

Remark. A Monte Carlo algorithm can often be turned into a Las Vegas algorithm
and vice versa.

Closest Pair

Given: (multi-)set of points P = {p1, p2, . . . , pn} ⊆ R2.

Deterministic approaches:

Brute-force

Element Uniqueness: Given numbers a1, a2, . . . , an. Are they pairwise distinct?

There is no o(n log n) time algorithm for Element Uniqueness.
(under some assumption concerning the arithmetic model)

(under the same assumption concerning the arithmetic model)

Task: Find a pair of distinct elements pa, pb ∈ P such that the
Euclidean distance δ = ||pa, pb|| is minimum.

Θ(n2)

Divide and conquer (recall from ADS) Θ(n log n)
Lower bound:

There is no o(n log n) time algorithm for Closest pair.⇒

Reduction: map each ai to a point (ai, ai) and test if the minimum distance is 0.

A Randomized Incremental Algorithm for Closest Pair

Define Pi = {p1, p2, . . . , pi} and let δi be the distance of a closest pair in Pi.

Idea: δ2 = ||p1, p2||. Compute δ3, δ4, . . . , δn by adding the points iteratively.

Suppose we have already determined δi−1.

Consider a square grid with cells of size δi−1 × δi−1.

Add the point pi. If δi < δi−1, then pi must be part
of each closest pair pi, pj.

Moreover, pj must lie in the cell of pi or one of the
adjacent cells.

Each of these cells contains at most O(1) points of Pi−1 (⇐ packing argument).

The coordinates of the cell of pi can be determined in O(1) time assuming the floor
function can be computed in O(1) time.

The test δi < δi−1 can be performed in O(1) time assuming Pi−1 is stored in a suitable
dictionary for the nonempty cells (implementable via dynamic perfect hashing).

⇒

(simple)
exercise

Backwards Analysis

How many points p in Pi have the property
that the minimum distance in Pi \ {p} is larger than in Pi?

Let X = (X1 + · · ·+ Xn) be the total running time used by the algorithm.

Let Xi be the running time used for adding pi.

⇒ E[Xi] ≤ 2
i · O(i) +

i−2
i · O(1) = O(1)

⇒ E[X] = O(n)∈E[X1] + · · ·+ E[Xn]

If δi = δi−1, we add pi to the dictionary in O(1) time.

If δi < δi−1, the cell size changes and we have to rebuild the dictionary in O(i) time.

⇒ total runtime O(n2).

Randomization: In the beginning, randomly permute the point set P.

Probability that adding pi to Pi−1 decreases the minimum distance

= Probability that deleting pi from Pi increases the minimum distance

≤ 2 points

Discussion

� are faster or use less space than deterministic algorithms in practice,

� have expected runtimes beyond deterministic lower bounds,

� are easier to implement/more elegant than deterministic strategies,

� allow for trading runtime against output quality,

� provide a good strategy for games or search in unknown environments.

Randomized algorithms (often)

	Basic Definitions
	Linearity of Expectation
	Using Indicator Random Variables (I)
	Playing until You Win
	Using Indicator Random Variables (II)
	Finding a Large Number
	Finding a Repeated Element
	Las Vegas and Monte Carlo Algorithms
	\textsc{Closest Pair}
	A Randomized Incremental Algorithm for \textsc{Closest Pair}
	Backwards Analysis
	Discussion

