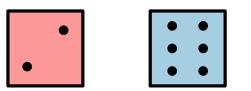
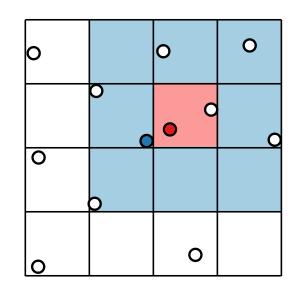


Advanced Algorithms Randomized Algorithms

An introduction

Johannes Zink · WS22





Basic Definitions

A discrete probability space (Ω, \Pr) is used to model random experiments. Ω is a countable set of elementary events (= outcomes of the experiment). $\Pr: \Omega \longrightarrow [0, 1]$ assigns a probability $\Pr(\omega)$ to each $\omega \in \Omega$ s.t. $\sum_{\omega \in \Omega} \Pr(\omega) = 1$. A set $A \subseteq \Omega$ is called event. The probability of A is $\Pr[A] = \sum_{\omega \in A} \Pr(\omega)$.

Example. Rolling a red and a blue fair six-sided die.

•

 $\Omega = \{(1, 1), (1, 2), (1, 3), \dots, (6, 6)\}, \quad \Pr((i, j)) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36} \text{ for each } (i, j) \in \Omega$ $A = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)\} = \text{rolling a double}$ $\Pr(A) = 6 \cdot \frac{1}{36} = \frac{1}{6}$

Basic Definitions

A random variable is a function $X : \Omega \longrightarrow \mathbb{R}$. For each $x \in \mathbb{R}$ we define an event $(X = x) = \{\omega \in \Omega \mid X(\omega) = x\}$.

The expected value of X is $E[X] = \sum_{x \in X(\Omega)} x \cdot Pr[(X = x)].$

Example. Rolling a red and a blue fair six-sided die.

 $\Omega = \{(1,1), (1,2), (1,3), \dots, (6,6)\}, \quad \Pr((i,j)) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36} \text{ for each } (i,j) \in \Omega$ $X((i,j)) = \max\{i,j\}$ $\Pr[(X=1)] = \frac{1}{36}, \Pr[(X=2)] = \frac{3}{36}, \Pr[(X=3)] = \frac{5}{36}, \dots, \Pr[(X=6)] = \frac{11}{36}$ $\mathsf{E}[X] = 1 \cdot \frac{1}{36} + 2 \cdot \frac{3}{36} + 3 \cdot \frac{5}{36} + \dots + 6 \cdot \frac{11}{36} \approx 4.5$

Linearity of Expectation

For each set of random variables $X_1, X_2, \ldots, X_n : \Omega \longrightarrow \mathbb{R}$, we define a random variable $(X_1 + X_2 + \cdots + X_n) : \Omega \longrightarrow \mathbb{R}$ with $(X_1 + X_2 + \cdots + X_n)(\omega) = X_1(\omega) + X_2(\omega) + \cdots + X_n(\omega)$ for each $\omega \in \Omega$.

Linearity of expectation: $E[(X_1 + X_2 + \cdots + X_n)] = E[X_1] + E[X_2] + \cdots + E[X_n]$ Proof of correctness:

$$E[(X_1 + X_2 + \dots + X_n)] = \sum_{\omega \in \Omega} \Pr[\omega] \cdot \sum_{i=1}^n X_i(\omega) = \sum_{\omega \in \Omega} \sum_{i=1}^n \Pr[\omega] \cdot X_i(\omega)$$
$$= \sum_{i=1}^n \sum_{\omega \in \Omega} \Pr[\omega] \cdot X_i(\omega) = \sum_{i=1}^n E[X_i]$$

Using Indicator Random Variables (I)

Let A be an array filled with n pairwise distinct integers. How often is the maximum m updated? O(n) times

Assume that the integers in A are randomly permuted.

Let X denote the random varibale that counts the number of times m is updated. We define n random variables

 $X_i = \begin{cases} 1 & \text{if } m \text{ is updated in iteration } i \\ 0 & \text{otherwise} \end{cases}$ indicat

FINDMAX(A) m := A[1]for i = 2, 3, ..., nif A[i] > m m := A[i]return m

indicator random variable

Observation. $X = (X_1 + X_2 + \dots + X_n)$ $Pr[(X_i = 1)] = \frac{1}{i} \Rightarrow E[X_i] = 0 + 1 \cdot \frac{1}{i} = \frac{1}{i}$ $E[X] = E[X_1] + E[X_2] + \dots + E[X_n] = 1 + \frac{1}{2} + \dots + \frac{1}{n} = H_n \in \Theta(\log n)$ linearity of expectation

Playing until You Win

A **Bernoulli experiment** has only two outcomes $\Omega = \{\text{failure, success}\}$. Let $p = \Pr(\text{success})$ be the **success probability**. $\Rightarrow q = \Pr(\text{failure}) = 1 - p$ is the **failure probability**.

Suppose we repeat such an experiment multiple times. This experiment has a Assume the outcomes are independent from each other. This experiment has a

Let X be the random variable that counts the number of rounds until we succeed for the first time.

$$\Pr[(X = j)] = q^{j-1}p \qquad \text{geometric series}$$

$$\Rightarrow \mathsf{E}[X] = \sum_{j=0}^{\infty} j \cdot q^{j-1}p = p \cdot \frac{\mathsf{d}}{\mathsf{d}q} \left(\sum_{j=0}^{\infty} q^j\right) \stackrel{\checkmark}{=} p \cdot \frac{\mathsf{d}}{\mathsf{d}q} \left(\frac{1}{1-q}\right) = p \cdot \frac{1}{(1-q)^2} = p \cdot \frac{1}{p^2} = \frac{1}{p}$$

Using Indicator Random Variables (II)

Each time you buy groceries at your local supermarket for more than 10 Euro you get a random toy for free. The number of pairwise distinct toys is n.

How often do you have to shop to obtain a toy of each type? \rightarrow random variable X

Observation. Suppose you have already obtained i - 1 types of toys. Now you continue shopping until you receive a new type of toy. This experiment has a geometric probability distribution! The success probability is $p_i = \frac{n - (i-1)}{n}$.

 X_i = number of times you have to shop to obtain the *i*-th type of toy when you already have i - 1 types of toys

$$\Rightarrow \mathsf{E}[X_i] = \frac{1}{p_i} = \frac{n}{n - (i - 1)}$$

$$\Rightarrow \mathsf{E}[X] = \mathsf{E}[X_1] + \mathsf{E}[X_2] + \dots + \mathsf{E}[X_n] = n \cdot (\frac{1}{n} + \frac{1}{n - 1} + \dots + \frac{1}{2} + 1) \in \Theta(n \log n)$$

Finding a Large Number

Given: An array A of n pairwise distinct natural numbers. **Task:** Determine an integer A[j] that is at least as large as the median. **Deterministic approach:** Go through all elements, return maximum. runtime

(Actually, it suffices to go through $\lfloor n/2 \rfloor + 1$ elements.)

Randomized approach:

```
FINDLARGE(A, k \in \mathbb{N})

\ell := 0

for i = 1, 2, ..., k

randomly choose r \in \{1, 2, ..., n\}

if A[r] > \ell

\ell := A[r]

return \ell

Remark.
```

FINDLARGE has error probability $\leq \frac{1}{2^k}$. Set $k = c \log_2 n$ for some constant c > 1. \Rightarrow Error probability $\leq \frac{1}{n^c}$ runtime $\mathcal{O}(\log n)$

 $\Theta(n)$

Remark. We traded correctness for running time.

Finding a Repeated Element

Given: An array A of n natural numbers such that $\lceil \frac{n}{2} \rceil$ of them are identical and $\lfloor \frac{n}{2} \rfloor$ of them are pairwise distinct. **Task:** Find the repeated element. 373338132 **Deterministic approaches:** Compare each element with every predecessor $\Theta(n^2)$ time Sort the array, then perform a linear sweep. $\Theta(n \log n)$ time

Compute and report the median.

Randomized approach:

FINDREPEATED(A) while true do randomly choose $i \in \{1, ..., n\}$ randomly choose $j \in \{1, ..., n\} \setminus \{i\}$ if A[i] = A[j] then return A[i] $\Theta(n)$ time

Success probability in each step

$$\geq \frac{n/2}{n} \cdot \frac{(n/2) - 1}{n - 1} \approx \frac{1}{4}$$

 \Rightarrow Expected number of steps \approx 4 **Remark.** The algorithm only returns correct answers, but may run forever.

Las Vegas and Monte Carlo Algorithms

Las Vegas algorithm. Returns a correct result, but the running time (and possibly the required space) are random variables.

Examples. FINDREPEATED, RANDOMIZEDQUICKSORT

Monte Carlo algorithm. Returns incorrect result or fails with a certain (small) probability. The running time *may* be a random variable.

Examples. FINDLARGE, Karger's randomized MinCut algorithm

Remark. A Monte Carlo algorithm can often be turned into a Las Vegas algorithm and vice versa.

CLOSEST PAIR

Given: (multi-)set of points $P = \{p_1, p_2, \dots, p_n\} \subseteq \mathbb{R}^2$. **Task:** Find a pair of distinct elements $p_a, p_b \in P$ such that the Euclidean distance $\delta = ||p_a, p_b||$ is minimum.

Deterministic approaches:

Brute-force

 $\Theta(n^2)$

0

Ο

Divide and conquer (recall from ADS) $\Theta(n \log n)$

Lower bound:

ELEMENT UNIQUENESS: Given numbers a_1, a_2, \ldots, a_n . Are they pairwise distinct?

There is no $o(n \log n)$ time algorithm for ELEMENT UNIQUENESS.

(under some assumption concerning the arithmetic model)

 \Rightarrow There is no $o(n \log n)$ time algorithm for CLOSEST PAIR.

(under the same assumption concerning the arithmetic model)

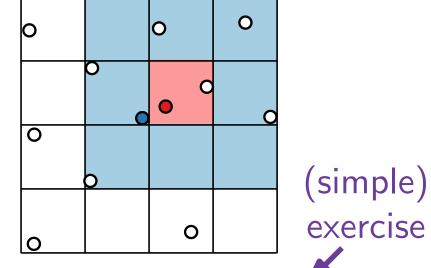
Reduction: map each a_i to a point (a_i, a_i) and test if the minimum distance is 0.

A Randomized Incremental Algorithm for $\rm CLOSEST\ PAIR$

Define $P_i = \{p_1, p_2, ..., p_i\}$ and let δ_i be the distance of a closest pair in P_i . **Idea:** $\delta_2 = ||p_1, p_2||$. Compute $\delta_3, \delta_4, ..., \delta_n$ by adding the points iteratively. Suppose we have already determined δ_{i-1} .

Consider a square grid with cells of size $\delta_{i-1} \times \delta_{i-1}$. Add the point p_i . If $\delta_i < \delta_{i-1}$, then p_i must be part of each closest pair p_i , p_j .

Moreover, p_j must lie in the cell of p_i or one of the adjacent cells.



Each of these cells contains at most $\mathcal{O}(1)$ points of P_{i-1} (\Leftarrow packing argument). The coordinates of the cell of p_i can be determined in $\mathcal{O}(1)$ time assuming the floor function can be computed in $\mathcal{O}(1)$ time.

 \Rightarrow The test $\delta_i < \delta_{i-1}$ can be performed in $\mathcal{O}(1)$ time assuming P_{i-1} is stored in a suitable dictionary for the nonempty cells (implementable via dynamic perfect hashing).

Backwards Analysis

If $\delta_i = \delta_{i-1}$, we add p_i to the dictionary in $\mathcal{O}(1)$ time. If $\delta_i < \delta_{i-1}$, the cell size changes and we have to rebuild the dictionary in $\mathcal{O}(i)$ time. \Rightarrow total runtime $\mathcal{O}(n^2)$.

Randomization: In the beginning, randomly permute the point set P.

Probability that adding p_i to P_{i-1} decreases the minimum distance

= Probability that deleting p_i from P_i increases the minimum distance

How many points p in P_i have the property that the minimum distance in $P_i \setminus \{p\}$ is larger than in P_i ?

 \leq 2 points

Let X_i be the running time used for adding p_i . $\Rightarrow \mathsf{E}[X_i] \leq \frac{2}{i} \cdot \mathcal{O}(i) + \frac{i-2}{i} \cdot \mathcal{O}(1) = \mathcal{O}(1)$

Let $X = (X_1 + \cdots + X_n)$ be the total running time used by the algorithm. $\Rightarrow E[X] = E[X_1] + \cdots + E[X_n] \in \mathcal{O}(n)$

Discussion

Randomized algorithms (often)

- are faster or use less space than deterministic algorithms in practice,
- have expected runtimes beyond deterministic lower bounds,
- are easier to implement/more elegant than deterministic strategies,
- allow for trading runtime against output quality,
- provide a good strategy for games or search in unknown environments.