Advanced Algorithms

Randomized Algorithms

An introduction

> Johannes Zink • WS22

3	7	3	3	3	8	1	3	2

Basic Definitions

A discrete probability space $(\Omega, \operatorname{Pr})$ is used to model random experiments.
Ω is a countable set of elementary events (= outcomes of the experiment).
$\operatorname{Pr}: \Omega \longrightarrow[0,1]$ assigns a probability $\operatorname{Pr}(\omega)$ to each $\omega \in \Omega$ s.t. $\sum_{\omega \in \Omega} \operatorname{Pr}(\omega)=1$.

Basic Definitions

A discrete probability space ($\Omega, \operatorname{Pr}$) is used to model random experiments.
Ω is a countable set of elementary events ($=$ outcomes of the experiment).
$\operatorname{Pr}: \Omega \longrightarrow[0,1]$ assigns a probability $\operatorname{Pr}(\omega)$ to each $\omega \in \Omega$ s.t. $\sum_{\omega \in \Omega} \operatorname{Pr}(\omega)=1$.

Example. Rolling a red and a blue fair six-sided die.

$$
\Omega=\{(1,1),(1,2),(1,3), \ldots,(6,6)\}, \quad \operatorname{Pr}((i, j))=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36} \text { for each }(i, j) \in \Omega
$$

Basic Definitions

A discrete probability space ($\Omega, \operatorname{Pr}$) is used to model random experiments.
Ω is a countable set of elementary events ($=$ outcomes of the experiment).
$\operatorname{Pr}: \Omega \longrightarrow[0,1]$ assigns a probability $\operatorname{Pr}(\omega)$ to each $\omega \in \Omega$ s.t. $\sum_{\omega \in \Omega} \operatorname{Pr}(\omega)=1$.
A set $A \subseteq \Omega$ is called event. The probability of A is $\operatorname{Pr}[A]=\sum_{\omega \in A} \operatorname{Pr}(\omega)$.

Example. Rolling a red and a blue fair six-sided die.

$$
\Omega=\{(1,1),(1,2),(1,3), \ldots,(6,6)\}, \quad \operatorname{Pr}((i, j))=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36} \text { for each }(i, j) \in \Omega
$$

Basic Definitions

A discrete probability space ($\Omega, \operatorname{Pr}$) is used to model random experiments.
Ω is a countable set of elementary events ($=$ outcomes of the experiment).
$\operatorname{Pr}: \Omega \longrightarrow[0,1]$ assigns a probability $\operatorname{Pr}(\omega)$ to each $\omega \in \Omega$ s.t. $\sum_{\omega \in \Omega} \operatorname{Pr}(\omega)=1$.
A set $A \subseteq \Omega$ is called event. The probability of A is $\operatorname{Pr}[A]=\sum_{\omega \in A} \operatorname{Pr}(\omega)$.

- 8 :

Example. Rolling a red and a blue fair six-sided die.

$$
\begin{aligned}
& \Omega=\{(1,1),(1,2),(1,3), \ldots,(6,6)\}, \quad \operatorname{Pr}((i, j))=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36} \text { for each }(i, j) \in \Omega \\
& A=\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}=\text { rolling a double }
\end{aligned}
$$

Basic Definitions

A discrete probability space ($\Omega, \operatorname{Pr}$) is used to model random experiments.
Ω is a countable set of elementary events ($=$ outcomes of the experiment).
$\operatorname{Pr}: \Omega \longrightarrow[0,1]$ assigns a probability $\operatorname{Pr}(\omega)$ to each $\omega \in \Omega$ s.t. $\sum_{\omega \in \Omega} \operatorname{Pr}(\omega)=1$.
A set $A \subseteq \Omega$ is called event. The probability of A is $\operatorname{Pr}[A]=\sum_{\omega \in A} \operatorname{Pr}(\omega)$.

0
 :

Example. Rolling a red and a blue fair six-sided die.

$$
\begin{aligned}
& \Omega=\{(1,1),(1,2),(1,3), \ldots,(6,6)\}, \quad \operatorname{Pr}((i, j))=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36} \text { for each }(i, j) \in \Omega \\
& A=\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}=\text { rolling a double } \\
& \operatorname{Pr}(A)=6 \cdot \frac{1}{36}=\frac{1}{6}
\end{aligned}
$$

Basic Definitions

A random variable is a function $X: \Omega \longrightarrow \mathbb{R}$.

Basic Definitions

A random variable is a function $X: \Omega \longrightarrow \mathbb{R}$.

■ 固

Example. Rolling a red and a blue fair six-sided die.

$$
\Omega=\{(1,1),(1,2),(1,3), \ldots,(6,6)\}, \quad \operatorname{Pr}((i, j))=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36} \text { for each }(i, j) \in \Omega
$$

Basic Definitions

A random variable is a function $X: \Omega \longrightarrow \mathbb{R}$.

■ 固

Example. Rolling a red and a blue fair six-sided die.

$$
\begin{aligned}
& \Omega=\{(1,1),(1,2),(1,3), \ldots,(6,6)\}, \quad \operatorname{Pr}((i, j))=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36} \text { for each }(i, j) \in \Omega \\
& X((i, j))=\max \{i, j\}
\end{aligned}
$$

Basic Definitions

A random variable is a function $X: \Omega \longrightarrow \mathbb{R}$.
For each $x \in \mathbb{R}$ we define an event $(X=x)=\{\omega \in \Omega \mid X(\omega)=x\}$.

■ 固

Example. Rolling a red and a blue fair six-sided die.

$$
\begin{aligned}
& \Omega=\{(1,1),(1,2),(1,3), \ldots,(6,6)\}, \quad \operatorname{Pr}((i, j))=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36} \text { for each }(i, j) \in \Omega \\
& X((i, j))=\max \{i, j\}
\end{aligned}
$$

Basic Definitions

A random variable is a function $X: \Omega \longrightarrow \mathbb{R}$.
For each $x \in \mathbb{R}$ we define an event $(X=x)=\{\omega \in \Omega \mid X(\omega)=x\}$.

■ 围

Example. Rolling a red and a blue fair six-sided die.

$$
\begin{aligned}
& \Omega=\{(1,1),(1,2),(1,3), \ldots,(6,6)\}, \quad \operatorname{Pr}((i, j))=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36} \text { for each }(i, j) \in \Omega \\
& X((i, j))=\max \{i, j\} \\
& \operatorname{Pr}[(X=1)]=
\end{aligned}
$$

Basic Definitions

A random variable is a function $X: \Omega \longrightarrow \mathbb{R}$.
For each $x \in \mathbb{R}$ we define an event $(X=x)=\{\omega \in \Omega \mid X(\omega)=x\}$.

■ 围

Example. Rolling a red and a blue fair six-sided die.

$$
\begin{aligned}
& \Omega=\{(1,1),(1,2),(1,3), \ldots,(6,6)\}, \quad \operatorname{Pr}((i, j))=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36} \text { for each }(i, j) \in \Omega \\
& X((i, j))=\max \{i, j\} \\
& \operatorname{Pr}[(X=1)]=\frac{1}{36}
\end{aligned}
$$

Basic Definitions

A random variable is a function $X: \Omega \longrightarrow \mathbb{R}$.
For each $x \in \mathbb{R}$ we define an event $(X=x)=\{\omega \in \Omega \mid X(\omega)=x\}$.

■ 围

Example. Rolling a red and a blue fair six-sided die.

$$
\begin{aligned}
& \Omega=\{(1,1),(1,2),(1,3), \ldots,(6,6)\}, \quad \operatorname{Pr}((i, j))=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36} \text { for each }(i, j) \in \Omega \\
& X((i, j))=\max \{i, j\} \\
& \operatorname{Pr}[(X=1)]=\frac{1}{36}, \operatorname{Pr}[(X=2)]=
\end{aligned}
$$

Basic Definitions

A random variable is a function $X: \Omega \longrightarrow \mathbb{R}$.
For each $x \in \mathbb{R}$ we define an event $(X=x)=\{\omega \in \Omega \mid X(\omega)=x\}$.

■ 围

Example. Rolling a red and a blue fair six-sided die.

$$
\begin{aligned}
& \Omega=\{(1,1),(1,2),(1,3), \ldots,(6,6)\}, \quad \operatorname{Pr}((i, j))=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36} \text { for each }(i, j) \in \Omega \\
& X((i, j))=\max \{i, j\} \\
& \operatorname{Pr}[(X=1)]=\frac{1}{36}, \operatorname{Pr}[(X=2)]=\frac{3}{36}
\end{aligned}
$$

Basic Definitions

A random variable is a function $X: \Omega \longrightarrow \mathbb{R}$.
For each $x \in \mathbb{R}$ we define an event $(X=x)=\{\omega \in \Omega \mid X(\omega)=x\}$.

■ 固

Example. Rolling a red and a blue fair six-sided die.

$$
\begin{aligned}
& \Omega=\{(1,1),(1,2),(1,3), \ldots,(6,6)\}, \quad \operatorname{Pr}((i, j))=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36} \text { for each }(i, j) \in \Omega \\
& X((i, j))=\max \{i, j\} \\
& \operatorname{Pr}[(X=1)]=\frac{1}{36}, \operatorname{Pr}[(X=2)]=\frac{3}{36}, \operatorname{Pr}[(X=3)]=\frac{5}{36}, \ldots, \operatorname{Pr}[(X=6)]=
\end{aligned}
$$

Basic Definitions

A random variable is a function $X: \Omega \longrightarrow \mathbb{R}$.
For each $x \in \mathbb{R}$ we define an event $(X=x)=\{\omega \in \Omega \mid X(\omega)=x\}$.

■ 围

Example. Rolling a red and a blue fair six-sided die.

$$
\begin{aligned}
& \Omega=\{(1,1),(1,2),(1,3), \ldots,(6,6)\}, \quad \operatorname{Pr}((i, j))=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36} \text { for each }(i, j) \in \Omega \\
& X((i, j))=\max \{i, j\} \\
& \operatorname{Pr}[(X=1)]=\frac{1}{36}, \operatorname{Pr}[(X=2)]=\frac{3}{36}, \operatorname{Pr}[(X=3)]=\frac{5}{36}, \ldots, \operatorname{Pr}[(X=6)]=\frac{11}{36}
\end{aligned}
$$

Basic Definitions

A random variable is a function $X: \Omega \longrightarrow \mathbb{R}$.
For each $x \in \mathbb{R}$ we define an event $(X=x)=\{\omega \in \Omega \mid X(\omega)=x\}$.
The expected value of X is $\mathrm{E}[X]=\sum_{x \in X(\Omega)} x \cdot \operatorname{Pr}[(X=x)]$.

- 围

Example. Rolling a red and a blue fair six-sided die.

$$
\begin{aligned}
& \Omega=\{(1,1),(1,2),(1,3), \ldots,(6,6)\}, \quad \operatorname{Pr}((i, j))=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36} \text { for each }(i, j) \in \Omega \\
& X((i, j))=\max \{i, j\} \\
& \operatorname{Pr}[(X=1)]=\frac{1}{36}, \operatorname{Pr}[(X=2)]=\frac{3}{36}, \operatorname{Pr}[(X=3)]=\frac{5}{36}, \ldots, \operatorname{Pr}[(X=6)]=\frac{11}{36}
\end{aligned}
$$

Basic Definitions

A random variable is a function $X: \Omega \longrightarrow \mathbb{R}$.
For each $x \in \mathbb{R}$ we define an event $(X=x)=\{\omega \in \Omega \mid X(\omega)=x\}$.
The expected value of X is $\mathrm{E}[X]=\sum_{x \in X(\Omega)} x \cdot \operatorname{Pr}[(X=x)]$.

- 围

Example. Rolling a red and a blue fair six-sided die.

$$
\begin{aligned}
& \Omega=\{(1,1),(1,2),(1,3), \ldots,(6,6)\}, \quad \operatorname{Pr}((i, j))=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36} \text { for each }(i, j) \in \Omega \\
& X((i, j))=\max \{i, j\} \\
& \operatorname{Pr}[(X=1)]=\frac{1}{36}, \operatorname{Pr}[(X=2)]=\frac{3}{36}, \operatorname{Pr}[(X=3)]=\frac{5}{36}, \ldots, \operatorname{Pr}[(X=6)]=\frac{11}{36} \\
& E[X]=1 \cdot \frac{1}{36}+2 \cdot \frac{3}{36}+3 \cdot \frac{5}{36}+\cdots+6 \cdot \frac{11}{36} \approx 4.5
\end{aligned}
$$

Linearity of Expectation

For each set of random variables $X_{1}, X_{2}, \ldots, X_{n}: \Omega \longrightarrow \mathbb{R}$, we define a random variable $\left(X_{1}+X_{2}+\cdots+X_{n}\right): \Omega \longrightarrow \mathbb{R}$ with $\left(X_{1}+X_{2}+\cdots+X_{n}\right)(\omega)=X_{1}(\omega)+X_{2}(\omega)+\cdots+X_{n}(\omega)$ for each $\omega \in \Omega$.

Linearity of Expectation

For each set of random variables $X_{1}, X_{2}, \ldots, X_{n}: \Omega \longrightarrow \mathbb{R}$, we define a random variable $\left(X_{1}+X_{2}+\cdots+X_{n}\right): \Omega \longrightarrow \mathbb{R}$ with $\left(X_{1}+X_{2}+\cdots+X_{n}\right)(\omega)=X_{1}(\omega)+X_{2}(\omega)+\cdots+X_{n}(\omega)$ for each $\omega \in \Omega$.

Linearity of expectation: $\mathrm{E}\left[\left(X_{1}+X_{2}+\cdots+X_{n}\right)\right]=\mathrm{E}\left[X_{1}\right]+\mathrm{E}\left[X_{2}\right]+\cdots+\mathrm{E}\left[X_{n}\right]$

Linearity of Expectation

For each set of random variables $X_{1}, X_{2}, \ldots, X_{n}: \Omega \longrightarrow \mathbb{R}$, we define a random variable $\left(X_{1}+X_{2}+\cdots+X_{n}\right): \Omega \longrightarrow \mathbb{R}$ with $\left(X_{1}+X_{2}+\cdots+X_{n}\right)(\omega)=X_{1}(\omega)+X_{2}(\omega)+\cdots+X_{n}(\omega)$ for each $\omega \in \Omega$.

Linearity of expectation: $\mathrm{E}\left[\left(X_{1}+X_{2}+\cdots+X_{n}\right)\right]=\mathrm{E}\left[X_{1}\right]+\mathrm{E}\left[X_{2}\right]+\cdots+\mathrm{E}\left[X_{n}\right]$

Proof of correctness:

$$
\mathrm{E}\left[\left(X_{1}+X_{2}+\cdots+X_{n}\right)\right]=
$$

Linearity of Expectation

For each set of random variables $X_{1}, X_{2}, \ldots, X_{n}: \Omega \longrightarrow \mathbb{R}$, we define a random variable $\left(X_{1}+X_{2}+\cdots+X_{n}\right): \Omega \longrightarrow \mathbb{R}$ with $\left(X_{1}+X_{2}+\cdots+X_{n}\right)(\omega)=X_{1}(\omega)+X_{2}(\omega)+\cdots+X_{n}(\omega)$ for each $\omega \in \Omega$.

Linearity of expectation: $\mathrm{E}\left[\left(X_{1}+X_{2}+\cdots+X_{n}\right)\right]=\mathrm{E}\left[X_{1}\right]+\mathrm{E}\left[X_{2}\right]+\cdots+\mathrm{E}\left[X_{n}\right]$

Proof of correctness:

$$
\mathrm{E}\left[\left(X_{1}+X_{2}+\cdots+X_{n}\right)\right]=\sum_{\omega \in \Omega} \operatorname{Pr}[\omega] \cdot \sum_{i=1}^{n} X_{i}(\omega)=
$$

Linearity of Expectation

For each set of random variables $X_{1}, X_{2}, \ldots, X_{n}: \Omega \longrightarrow \mathbb{R}$, we define a random variable $\left(X_{1}+X_{2}+\cdots+X_{n}\right): \Omega \longrightarrow \mathbb{R}$ with $\left(X_{1}+X_{2}+\cdots+X_{n}\right)(\omega)=X_{1}(\omega)+X_{2}(\omega)+\cdots+X_{n}(\omega)$ for each $\omega \in \Omega$.

Linearity of expectation: $\mathrm{E}\left[\left(X_{1}+X_{2}+\cdots+X_{n}\right)\right]=\mathrm{E}\left[X_{1}\right]+\mathrm{E}\left[X_{2}\right]+\cdots+\mathrm{E}\left[X_{n}\right]$

Proof of correctness:

$$
\mathrm{E}\left[\left(X_{1}+X_{2}+\cdots+X_{n}\right)\right]=\sum_{\omega \in \Omega} \operatorname{Pr}[\omega] \cdot \sum_{i=1}^{n} X_{i}(\omega)=\sum_{\omega \in \Omega} \sum_{i=1}^{n} \operatorname{Pr}[\omega] \cdot X_{i}(\omega)
$$

Linearity of Expectation

For each set of random variables $X_{1}, X_{2}, \ldots, X_{n}: \Omega \longrightarrow \mathbb{R}$, we define a random variable $\left(X_{1}+X_{2}+\cdots+X_{n}\right): \Omega \longrightarrow \mathbb{R}$ with $\left(X_{1}+X_{2}+\cdots+X_{n}\right)(\omega)=X_{1}(\omega)+X_{2}(\omega)+\cdots+X_{n}(\omega)$ for each $\omega \in \Omega$.

Linearity of expectation: $\mathrm{E}\left[\left(X_{1}+X_{2}+\cdots+X_{n}\right)\right]=\mathrm{E}\left[X_{1}\right]+\mathrm{E}\left[X_{2}\right]+\cdots+\mathrm{E}\left[X_{n}\right]$

Proof of correctness:

$$
\begin{aligned}
\mathrm{E}\left[\left(X_{1}+X_{2}+\cdots+X_{n}\right)\right] & =\sum_{\omega \in \Omega} \operatorname{Pr}[\omega] \cdot \sum_{i=1}^{n} X_{i}(\omega)=\sum_{\omega \in \Omega} \sum_{i=1}^{n} \operatorname{Pr}[\omega] \cdot X_{i}(\omega) \\
& =\sum_{i=1}^{n} \sum_{\omega \in \Omega} \operatorname{Pr}[\omega] \cdot X_{i}(\omega)
\end{aligned}
$$

Linearity of Expectation

For each set of random variables $X_{1}, X_{2}, \ldots, X_{n}: \Omega \longrightarrow \mathbb{R}$, we define a random variable $\left(X_{1}+X_{2}+\cdots+X_{n}\right): \Omega \longrightarrow \mathbb{R}$ with $\left(X_{1}+X_{2}+\cdots+X_{n}\right)(\omega)=X_{1}(\omega)+X_{2}(\omega)+\cdots+X_{n}(\omega)$ for each $\omega \in \Omega$.

Linearity of expectation: $\mathrm{E}\left[\left(X_{1}+X_{2}+\cdots+X_{n}\right)\right]=\mathrm{E}\left[X_{1}\right]+\mathrm{E}\left[X_{2}\right]+\cdots+\mathrm{E}\left[X_{n}\right]$

Proof of correctness:

$$
\begin{gathered}
\mathrm{E}\left[\left(X_{1}+X_{2}+\cdots+X_{n}\right)\right]=\sum_{\omega \in \Omega} \operatorname{Pr}[\omega] \cdot \sum_{i=1}^{n} X_{i}(\omega)=\sum_{\omega \in \Omega} \sum_{i=1}^{n} \operatorname{Pr}[\omega] \cdot X_{i}(\omega) \\
= \\
\sum_{i=1}^{n} \sum_{\omega \in \Omega} \operatorname{Pr}[\omega] \cdot X_{i}(\omega) \\
E\left[X_{i}\right]
\end{gathered}
$$

Linearity of Expectation

For each set of random variables $X_{1}, X_{2}, \ldots, X_{n}: \Omega \longrightarrow \mathbb{R}$, we define a random variable $\left(X_{1}+X_{2}+\cdots+X_{n}\right): \Omega \longrightarrow \mathbb{R}$ with $\left(X_{1}+X_{2}+\cdots+X_{n}\right)(\omega)=X_{1}(\omega)+X_{2}(\omega)+\cdots+X_{n}(\omega)$ for each $\omega \in \Omega$.

Linearity of expectation: $\mathrm{E}\left[\left(X_{1}+X_{2}+\cdots+X_{n}\right)\right]=\mathrm{E}\left[X_{1}\right]+\mathrm{E}\left[X_{2}\right]+\cdots+\mathrm{E}\left[X_{n}\right]$

Proof of correctness:

$$
\begin{aligned}
\mathrm{E}\left[\left(X_{1}+X_{2}+\cdots+X_{n}\right)\right] & =\sum_{\omega \in \Omega} \operatorname{Pr}[\omega] \cdot \sum_{i=1}^{n} X_{i}(\omega)=\sum_{\omega \in \Omega} \sum_{i=1}^{n} \operatorname{Pr}[\omega] \cdot X_{i}(\omega) \\
& =\sum_{i=1}^{n} \sum_{\omega \in \Omega} \operatorname{Pr}[\omega] \cdot X_{i}(\omega)=\sum_{i=1}^{n} \mathrm{E}\left[X_{i}\right]
\end{aligned}
$$

Using Indicator Random Variables (I)

Let A be an array filled with n pairwise distinct integers.

FindMax (A)

$$
\begin{aligned}
& m:=A[1] \\
& \text { for } i=2,3, \ldots, n \\
& \text { if } A[i]>m \\
& m:=A[i] \\
& \text { return } m
\end{aligned}
$$

Using Indicator Random Variables (I)

Let A be an array filled with n pairwise distinct integers. How often is the maximum m updated?

Using Indicator Random Variables (I)

Let A be an array filled with n pairwise distinct integers. How often is the maximum m updated? $\mathcal{O}(n)$ times
$\operatorname{FindMax}(A)$

$$
\begin{aligned}
& m:=A[1] \\
& \text { for } i=2,3, \ldots, n \\
& \quad \text { if } A[i]>m \\
& \quad m:=A[i] \\
& \text { return } m
\end{aligned}
$$

Using Indicator Random Variables (I)

Let A be an array filled with n pairwise distinct integers. How often is the maximum m updated? $\mathcal{O}(n)$ times

Assume that the integers in A are randomly permuted.
$\operatorname{FindMax}(A)$

$$
\begin{aligned}
& m:=A[1] \\
& \text { for } i=2,3, \ldots, n \\
& \quad \text { if } A[i]>m \\
& \quad m:=A[i] \\
& \text { return } m
\end{aligned}
$$

Using Indicator Random Variables (I)

Let A be an array filled with n pairwise distinct integers. How often is the maximum m updated? $\mathcal{O}(n)$ times

Assume that the integers in A are randomly permuted. Let X denote the random varibale that counts the number of times m is updated. We define n random variables
$\operatorname{FindMax}(A)$

$$
\begin{aligned}
& m:=A[1] \\
& \text { for } i=2,3, \ldots, n \\
& \quad \text { if } A[i]>m \\
& \quad m:=A[i]
\end{aligned}
$$

return m

Using Indicator Random Variables (I)

Let A be an array filled with n pairwise distinct integers. How often is the maximum m updated? $\mathcal{O}(n)$ times

Assume that the integers in A are randomly permuted. Let X denote the random varibale that counts the number of times m is updated. We define n random variables
$\operatorname{FindMax}(A)$

$$
\begin{aligned}
& m:=A[1] \\
& \text { for } i=2,3, \ldots, n \\
& \quad \text { if } A[i]>m \\
& \quad m:=A[i]
\end{aligned}
$$

return m

$$
X_{i}=\left\{\begin{array}{l}
1, \text { if } m \text { is updated in iteration } i \\
0, \text { otherwise }
\end{array}\right.
$$

Using Indicator Random Variables (I)

Let A be an array filled with n pairwise distinct integers. How often is the maximum m updated? $\mathcal{O}(n)$ times

Assume that the integers in A are randomly permuted. Let X denote the random varibale that counts the number of times m is updated. We define n random variables
$\operatorname{FindMax}(A)$

$$
\begin{aligned}
& m:=A[1] \\
& \text { for } i=2,3, \ldots, n \\
& \quad \text { if } A[i]>m \\
& \quad m:=A[i]
\end{aligned}
$$

return m

$$
X_{i}=\left\{\begin{array}{l}
1, \text { if } m \text { is updated in iteration } i \\
0, \text { otherwise }
\end{array}\right.
$$

Observation. $X=\left(X_{1}+X_{2}+\cdots+X_{n}\right)$

Using Indicator Random Variables (I)

Let A be an array filled with n pairwise distinct integers. How often is the maximum m updated? $\mathcal{O}(n)$ times

Assume that the integers in A are randomly permuted. Let X denote the random varibale that counts the number of times m is updated. We define n random variables
$\operatorname{FindMax}(A)$

$$
\begin{aligned}
& m:=A[1] \\
& \text { for } i=2,3, \ldots, n \\
& \quad \text { if } A[i]>m \\
& \quad m:=A[i]
\end{aligned}
$$

return m

$$
X_{i}=\left\{\begin{array}{l}
1, \text { if } m \text { is updated in iteration } i \\
0, \text { otherwise }
\end{array}\right.
$$

Observation. $X=\left(X_{1}+X_{2}+\cdots+X_{n}\right)$
$\operatorname{Pr}\left[\left(X_{i}=1\right)\right]=$

Using Indicator Random Variables (I)

Let A be an array filled with n pairwise distinct integers. How often is the maximum m updated? $\mathcal{O}(n)$ times

Assume that the integers in A are randomly permuted. Let X denote the random varibale that counts the number of times m is updated. We define n random variables
$\operatorname{FindMax}(A)$

$$
\begin{aligned}
& m:=A[1] \\
& \text { for } i=2,3, \ldots, n \\
& \quad \text { if } A[i]>m \\
& \quad m:=A[i]
\end{aligned}
$$

return m

$$
X_{i}=\left\{\begin{array}{l}
1, \text { if } m \text { is updated in iteration } i \\
0, \text { otherwise }
\end{array}\right.
$$

Observation. $X=\left(X_{1}+X_{2}+\cdots+X_{n}\right)$
$\operatorname{Pr}\left[\left(X_{i}=1\right)\right]=\frac{1}{i} \Rightarrow \mathrm{E}\left[X_{i}\right]=0+1 \cdot \frac{1}{i}=\frac{1}{i}$

Using Indicator Random Variables (I)

Let A be an array filled with n pairwise distinct integers. How often is the maximum m updated? $\mathcal{O}(n)$ times

Assume that the integers in A are randomly permuted.
Let X denote the random varibale that counts the number of times m is updated. We define n random variables

FindMax (A)

$$
\begin{aligned}
& m:=A[1] \\
& \text { for } i=2,3, \ldots, n \\
& \quad \text { if } A[i]>m \\
& \quad m:=A[i]
\end{aligned}
$$

return m

$$
X_{i}=\left\{\begin{array}{l}
1, \text { if } m \text { is updated in iteration } i \\
0, \text { otherwise }
\end{array}\right.
$$

indicator random variable

Observation. $X=\left(X_{1}+X_{2}+\cdots+X_{n}\right)$
$\operatorname{Pr}\left[\left(X_{i}=1\right)\right]=\frac{1}{i} \Rightarrow \mathrm{E}\left[X_{i}\right]=0+1 \cdot \frac{1}{i}=\frac{1}{i}$
$\mathrm{E}[X]=\mathrm{E}\left[X_{1}\right]+\mathrm{E}\left[X_{2}\right]+\cdots+\mathrm{E}\left[X_{n}\right]=1+\frac{1}{2}+\cdots+\frac{1}{n}$
linearity of expectation

Using Indicator Random Variables (I)

Let A be an array filled with n pairwise distinct integers. How often is the maximum m updated? $\mathcal{O}(n)$ times

Assume that the integers in A are randomly permuted. Let X denote the random varibale that counts the number of times m is updated. We define n random variables
$\operatorname{FindMax}(A)$

$$
\begin{aligned}
& m:=A[1] \\
& \text { for } i=2,3, \ldots, n \\
& \quad \text { if } A[i]>m \\
& \quad m:=A[i]
\end{aligned}
$$

return m

$$
X_{i}=\left\{\begin{array}{l}
1, \text { if } m \text { is updated in iteration } i \\
0, \text { otherwise }
\end{array}\right.
$$

indicator random variable

Observation. $X=\left(X_{1}+X_{2}+\cdots+X_{n}\right)$
H_{n} is the n-th harmonic number;

$$
\ln (n+1) \leq H_{n} \leq \ln (n)+1
$$

$\operatorname{Pr}\left[\left(X_{i}=1\right)\right]=\frac{1}{i} \Rightarrow \mathrm{E}\left[X_{i}\right]=0+1 \cdot \frac{1}{i}=\frac{1}{i}$
$\mathrm{E}[X]=\mathrm{E}\left[X_{1}\right]+\mathrm{E}\left[X_{2}\right]+\cdots+\mathrm{E}\left[X_{n}\right]=1+\frac{1}{2}+\cdots+\frac{1}{n}=H_{n} \in \Theta(\log n)$
linearity of expectation

Playing until You Win

A Bernoulli experiment has only two outcomes $\Omega=\{$ failure, success $\}$.

Playing until You Win

A Bernoulli experiment has only two outcomes $\Omega=$ \{failure, success $\}$. Let $p=\operatorname{Pr}$ (success) be the success probability.

Playing until You Win

A Bernoulli experiment has only two outcomes $\Omega=\{$ failure, success $\}$. Let $p=\operatorname{Pr}$ (success) be the success probability.
$\Rightarrow q=\operatorname{Pr}($ failure $)=1-p$ is the failure probability.

Playing until You Win

A Bernoulli experiment has only two outcomes $\Omega=\{$ failure, success $\}$.
Let $p=\operatorname{Pr}$ (success) be the success probability.
$\Rightarrow q=\operatorname{Pr}($ failure $)=1-p$ is the failure probability.
Suppose we repeat such an experiment multiple times. Assume the outcomes are independent from each other.

Playing until You Win

A Bernoulli experiment has only two outcomes $\Omega=\{$ failure, success $\}$.
Let $p=\operatorname{Pr}$ (success) be the success probability.
$\Rightarrow q=\operatorname{Pr}($ failure $)=1-p$ is the failure probability.
Suppose we repeat such an experiment multiple times.
Assume the outcomes are independent from each other.
Let X be the random variable that counts the number of rounds until we succeed for the first time.

Playing until You Win

A Bernoulli experiment has only two outcomes $\Omega=\{$ failure, success $\}$.
Let $p=\operatorname{Pr}$ (success) be the success probability.
$\Rightarrow q=\operatorname{Pr}($ failure $)=1-p$ is the failure probability.
Suppose we repeat such an experiment multiple times.
Assume the outcomes are independent from each other.
Let X be the random variable that counts the number of rounds until we succeed for the first time.

$$
\operatorname{Pr}[(X=j)]=
$$

Playing until You Win

A Bernoulli experiment has only two outcomes $\Omega=$ \{failure, success $\}$.
Let $p=\operatorname{Pr}$ (success) be the success probability.
$\Rightarrow q=\operatorname{Pr}($ failure $)=1-p$ is the failure probability.
Suppose we repeat such an experiment multiple times.
Assume the outcomes are independent from each other.
Let X be the random variable that counts the number of rounds until we succeed for the first time.

$$
\operatorname{Pr}[(X=j)]=q^{j-1} p
$$

Playing until You Win

A Bernoulli experiment has only two outcomes $\Omega=$ \{failure, success $\}$.
Let $p=\operatorname{Pr}$ (success) be the success probability.
$\Rightarrow q=\operatorname{Pr}($ failure $)=1-p$ is the failure probability.
Suppose we repeat such an experiment multiple times.
Assume the outcomes are independent from each other.
Let X be the random variable that counts the number of rounds until we succeed for the first time.

$$
\operatorname{Pr}[(X=j)]=q^{j-1} p
$$

$\Rightarrow \mathrm{E}[\mathrm{X}]=$

Playing until You Win

A Bernoulli experiment has only two outcomes $\Omega=$ \{failure, success $\}$.
Let $p=\operatorname{Pr}($ success $)$ be the success probability.
$\Rightarrow q=\operatorname{Pr}($ failure $)=1-p$ is the failure probability.
Suppose we repeat such an experiment multiple times.
Assume the outcomes are independent from each other.
Let X be the random variable that counts the number of rounds until we succeed for the first time.

$$
\begin{aligned}
& \operatorname{Pr}[(X=j)]=q^{j-1} p \\
\Rightarrow & \mathrm{E}[X]=\sum_{j=0}^{\infty} j \cdot q^{j-1} p=
\end{aligned}
$$

Playing until You Win

A Bernoulli experiment has only two outcomes $\Omega=$ \{failure, success $\}$.
Let $p=\operatorname{Pr}($ success $)$ be the success probability.
$\Rightarrow q=\operatorname{Pr}($ failure $)=1-p$ is the failure probability.
Suppose we repeat such an experiment multiple times.
Assume the outcomes are independent from each other.
Let X be the random variable that counts the number of rounds until we succeed for the first time.

$$
\operatorname{Pr}[(X=j)]=q^{j-1} p
$$

$\Rightarrow \mathrm{E}[X]=\sum_{j=0}^{\infty} j \cdot q^{j-1} p=p \cdot \frac{\mathrm{~d}}{\mathrm{~d} q}\left(\sum_{j=0}^{\infty} q^{j}\right)=$

Playing until You Win

A Bernoulli experiment has only two outcomes $\Omega=$ \{failure, success $\}$.
Let $p=\operatorname{Pr}($ success $)$ be the success probability.
$\Rightarrow q=\operatorname{Pr}($ failure $)=1-p$ is the failure probability.
Suppose we repeat such an experiment multiple times.
Assume the outcomes are independent from each other.
Let X be the random variable that counts the number of rounds until we succeed for the first time.

$$
\begin{aligned}
& \operatorname{Pr}[(X=j)]=q^{j-1} p \\
\Rightarrow & \mathrm{E}[X]=\sum_{j=0}^{\infty} j \cdot q^{j-1} p=p \cdot \frac{\mathrm{~d}}{\mathrm{~d} q}\left(\sum_{j=0}^{\infty} q^{j}\right)=p \cdot \frac{\mathrm{~d}}{\mathrm{~d} q}\left(\frac{1}{1-q}\right)=
\end{aligned}
$$

Playing until You Win

A Bernoulli experiment has only two outcomes $\Omega=$ \{failure, success $\}$.
Let $p=\operatorname{Pr}($ success $)$ be the success probability.
$\Rightarrow q=\operatorname{Pr}($ failure $)=1-p$ is the failure probability.
Suppose we repeat such an experiment multiple times.
Assume the outcomes are independent from each other.
Let X be the random variable that counts the number of rounds until we succeed for the first time.

$$
\begin{aligned}
& \operatorname{Pr}[(X=j)]=q^{j-1} p \\
\Rightarrow & \mathrm{E}[X]=\sum_{j=0}^{\infty} j \cdot q^{j-1} p=p \cdot \frac{\mathrm{~d}}{\mathrm{~d} q}\left(\sum_{j=0}^{\infty} q^{j}\right)=p \cdot \frac{\mathrm{~d}}{\mathrm{~d} q}\left(\frac{1}{1-q}\right)=p \cdot \frac{1}{(1-q)^{2}}=
\end{aligned}
$$

Playing until You Win

A Bernoulli experiment has only two outcomes $\Omega=$ \{failure, success $\}$.
Let $p=\operatorname{Pr}($ success $)$ be the success probability.
$\Rightarrow q=\operatorname{Pr}($ failure $)=1-p$ is the failure probability.
Suppose we repeat such an experiment multiple times.
Assume the outcomes are independent from each other.
Let X be the random variable that counts the number of rounds until we succeed for the first time.

$$
\begin{aligned}
& \operatorname{Pr}[(X=j)]=q^{j-1} p \\
\Rightarrow & \mathrm{E}[X]=\sum_{j=0}^{\infty} j \cdot q^{j-1} p=p \cdot \frac{\mathrm{~d}}{\mathrm{~d} q}\left(\sum_{j=0}^{\infty} q^{j}\right) \stackrel{\text { geometric series }}{=} p \cdot \frac{\mathrm{~d}}{\mathrm{~d} q}\left(\frac{1}{1-q}\right)=p \cdot \frac{1}{(1-q)^{2}}=p \cdot \frac{1}{p^{2}}=
\end{aligned}
$$

Playing until You Win

A Bernoulli experiment has only two outcomes $\Omega=$ \{failure, success $\}$.
Let $p=\operatorname{Pr}($ success $)$ be the success probability.
$\Rightarrow q=\operatorname{Pr}($ failure $)=1-p$ is the failure probability.
Suppose we repeat such an experiment multiple times.
Assume the outcomes are independent from each other.
Let X be the random variable that counts the number of rounds until we succeed for the first time.

$$
\begin{aligned}
& \operatorname{Pr}[(X=j)]=q^{j-1} p \\
\Rightarrow & \mathrm{E}[X]=\sum_{j=0}^{\infty} j \cdot q^{j-1} p=p \cdot \frac{\mathrm{~d}}{\mathrm{~d} q}\left(\sum_{j=0}^{\infty} q^{j}\right)=p \cdot \frac{\mathrm{~d}}{\mathrm{~d} q}\left(\frac{1}{1-q}\right)=p \cdot \frac{1}{(1-q)^{2}}=p \cdot \frac{1}{p^{2}}=\frac{1}{p}
\end{aligned}
$$

Playing until You Win

A Bernoulli experiment has only two outcomes $\Omega=\{$ failure, success $\}$.
Let $p=\operatorname{Pr}($ success $)$ be the success probability.
$\Rightarrow q=\operatorname{Pr}($ failure $)=1-p$ is the failure probability.

Suppose we repeat such an experiment multiple times. Assume the outcomes are independent from each other.

This experiment has a geometric distribution

Let X be the random variable that counts the number of rounds until we succeed for the first time.

$$
\begin{aligned}
& \operatorname{Pr}[(X=j)]=q^{j-1} p \\
\Rightarrow & \mathrm{E}[X]=\sum_{j=0}^{\infty} j \cdot q^{j-1} p=p \cdot \frac{\mathrm{~d}}{\mathrm{~d} q}\left(\sum_{j=0}^{\infty} q^{j}\right)=p \cdot \frac{\mathrm{~d}}{\mathrm{~d} q}\left(\frac{1}{1-q}\right)=p \cdot \frac{1}{(1-q)^{2}}=p \cdot \frac{1}{p^{2}}=\frac{1}{p}
\end{aligned}
$$

Using Indicator Random Variables (II)

Each time you buy groceries at your local supermarket for more than 10 Euro you get a random toy for free. The number of pairwise distinct toys is n.

Using Indicator Random Variables (II)

Each time you buy groceries at your local supermarket for more than 10 Euro you get a random toy for free. The number of pairwise distinct toys is n.

How often do you have to shop to obtain a toy of each type? \rightarrow random variable X

Using Indicator Random Variables (II)

Each time you buy groceries at your local supermarket for more than 10 Euro you get a random toy for free. The number of pairwise distinct toys is n.

How often do you have to shop to obtain a toy of each type? \rightarrow random variable X
Observation. Suppose you have already obtained $i-1$ types of toys. Now you continue shopping until you receive a new type of toy. This experiment has a geometric probability distribution! The success probability is $p_{i}=$

Using Indicator Random Variables (II)

Each time you buy groceries at your local supermarket for more than 10 Euro you get a random toy for free. The number of pairwise distinct toys is n.

How often do you have to shop to obtain a toy of each type? \rightarrow random variable X
Observation. Suppose you have already obtained $i-1$ types of toys. Now you continue shopping until you receive a new type of toy. This experiment has a geometric probability distribution! The success probability is $p_{i}=\frac{n-(i-1)}{n}$.

Using Indicator Random Variables (II)

Each time you buy groceries at your local supermarket for more than 10 Euro you get a random toy for free. The number of pairwise distinct toys is n.

How often do you have to shop to obtain a toy of each type? \rightarrow random variable X
Observation. Suppose you have already obtained $i-1$ types of toys. Now you continue shopping until you receive a new type of toy. This experiment has a geometric probability distribution! The success probability is $p_{i}=\frac{n-(i-1)}{n}$.
$X_{i}=$ number of times you have to shop to obtain the i-th type of toy when you already have $i-1$ types of toys

Using Indicator Random Variables (II)

Each time you buy groceries at your local supermarket for more than 10 Euro you get a random toy for free. The number of pairwise distinct toys is n.

How often do you have to shop to obtain a toy of each type? \rightarrow random variable X Observation. Suppose you have already obtained $i-1$ types of toys. Now you continue shopping until you receive a new type of toy. This experiment has a geometric probability distribution! The success probability is $p_{i}=\frac{n-(i-1)}{n}$.
$X_{i}=$ number of times you have to shop to obtain the i-th type of toy when you already have $i-1$ types of toys
$\Rightarrow \mathrm{E}\left[X_{i}\right]=\frac{1}{p_{i}}=\frac{n}{n-(i-1)}$

Using Indicator Random Variables (II)

Each time you buy groceries at your local supermarket for more than 10 Euro you get a random toy for free. The number of pairwise distinct toys is n.

How often do you have to shop to obtain a toy of each type? \rightarrow random variable X
Observation. Suppose you have already obtained $i-1$ types of toys. Now you continue shopping until you receive a new type of toy. This experiment has a geometric probability distribution! The success probability is $p_{i}=\frac{n-(i-1)}{n}$.
$X_{i}=$ number of times you have to shop to obtain the i-th type of toy when you already have $i-1$ types of toys
$\Rightarrow \mathrm{E}\left[X_{i}\right]=\frac{1}{p_{i}}=\frac{n}{n-(i-1)}$
$\Rightarrow \mathrm{E}[X]=\mathrm{E}\left[X_{1}\right]+\mathrm{E}\left[X_{2}\right]+\cdots+\mathrm{E}\left[X_{n}\right]=n \cdot\left(\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{2}+1\right) \in \Theta(n \log n)$

Finding a Large Number

Given: An array A of n pairwise distinct natural numbers.
Task: Determine an integer $A[j]$ that is at least as large as the median.

Finding a Large Number

Given: An array A of n pairwise distinct natural numbers.
Task: Determine an integer $A[j]$ that is at least as large as the median.
Deterministic approach:

Finding a Large Number

Given: An array A of n pairwise distinct natural numbers.
Task: Determine an integer $A[j]$ that is at least as large as the median.
Deterministic approach: Go through all elements, return maximum.

Finding a Large Number

Given: An array A of n pairwise distinct natural numbers.
Task: Determine an integer $A[j]$ that is at least as large as the median.
Deterministic approach: Go through all elements, return maximum.
(Actually, it suffices to go through $\lfloor n / 2\rfloor+1$ elements.)

Finding a Large Number

Given: An array A of n pairwise distinct natural numbers.
Task: Determine an integer $A[j]$ that is at least as large as the median.
Deterministic approach: Go through all elements, return maximum.
(Actually, it suffices to go through $\lfloor n / 2\rfloor+1$ elements.)
runtime $\Theta(n)$

Finding a Large Number

Given: An array A of n pairwise distinct natural numbers.
Task: Determine an integer $A[j]$ that is at least as large as the median.
Deterministic approach: Go through all elements, return maximum.
(Actually, it suffices to go through $\lfloor n / 2\rfloor+1$ elements.)

Randomized approach:

$\operatorname{FindLarge}(A, k \in \mathbb{N})$

$$
\begin{aligned}
& \ell:=0 \\
& \text { for } i=1,2, \ldots, k \\
& \quad \text { randomly choose } \\
& \text { if } A[r]>\ell \\
& \quad \ell:=A[r]
\end{aligned}
$$

$$
\text { randomly choose } r \in\{1,2, \ldots, n\}
$$

return ℓ

Finding a Large Number

Given: An array A of n pairwise distinct natural numbers.
Task: Determine an integer $A[j]$ that is at least as large as the median.
Deterministic approach: Go through all elements, return maximum.
(Actually, it suffices to go through $\lfloor n / 2\rfloor+1$ elements.)

Randomized approach:

$\operatorname{FindLarge}(A, k \in \mathbb{N})$

$$
\ell:=0
$$

FindLarge has error probability \leq
for $i=1,2, \ldots, k$
randomly choose $r \in\{1,2, \ldots, n\}$
if $A[r]>\ell$
$\ell:=A[r]$
return ℓ

Finding a Large Number

Given: An array A of n pairwise distinct natural numbers.
Task: Determine an integer $A[j]$ that is at least as large as the median.
Deterministic approach: Go through all elements, return maximum.
(Actually, it suffices to go through $\lfloor n / 2\rfloor+1$ elements.)

Randomized approach:

$\operatorname{FindLarge}(A, k \in \mathbb{N})$

$$
\begin{aligned}
& \ell:=0 \\
& \text { for } i=1,2, \ldots, k
\end{aligned}
$$

$$
\text { if } A[r]>\ell
$$

$$
\ell:=A[r]
$$

return ℓ

FindLarge has error probability $\leq \frac{1}{2^{k}}$.

$$
\text { randomly choose } r \in\{1,2, \ldots, n\}
$$

Finding a Large Number

Given: An array A of n pairwise distinct natural numbers.
Task: Determine an integer $A[j]$ that is at least as large as the median.
Deterministic approach: Go through all elements, return maximum.
(Actually, it suffices to go through $\lfloor n / 2\rfloor+1$ elements.)
runtime
$\Theta(n)$

Randomized approach:

$\operatorname{FindLarge}(A, k \in \mathbb{N})$

$$
\ell:=0
$$

$$
\text { for } i=1,2, \ldots, k
$$

randomly choose $r \in\{1,2, \ldots, n\}$ if $A[r]>\ell$ $\ell:=A[r]$
return ℓ

FindLarge has error probability $\leq \frac{1}{2^{k}}$. Set $k=c \log _{2} n$ for some constant $c>1$.

Finding a Large Number

Given: An array A of n pairwise distinct natural numbers.
Task: Determine an integer $A[j]$ that is at least as large as the median.
Deterministic approach: Go through all elements, return maximum.
(Actually, it suffices to go through $\lfloor n / 2\rfloor+1$ elements.)
runtime
$\Theta(n)$

Randomized approach:

$\operatorname{FindLarge}(A, k \in \mathbb{N})$

$$
\ell:=0
$$

$$
\text { for } i=1,2, \ldots, k
$$

$$
\text { randomly choose } r \in\{1,2, \ldots, n\}
$$

$$
\text { if } A[r]>\ell
$$

return ℓ

FindLarge has error probability $\leq \frac{1}{2^{k}}$.
Set $k=c \log _{2} n$ for some constant $c>1$.
\Rightarrow Error probability \leq

$$
\ell:=A[r]
$$

Finding a Large Number

Given: An array A of n pairwise distinct natural numbers.
Task: Determine an integer $A[j]$ that is at least as large as the median.
Deterministic approach: Go through all elements, return maximum.
(Actually, it suffices to go through $\lfloor n / 2\rfloor+1$ elements.)
runtime
$\Theta(n)$

Randomized approach:

$\operatorname{FindLarge}(A, k \in \mathbb{N})$

$$
\ell:=0
$$

$$
\text { for } i=1,2, \ldots, k
$$

randomly choose $r \in\{1,2, \ldots, n\}$ if $A[r]>\ell$ $\ell:=A[r]$
return ℓ

FindLarge has error probability $\leq \frac{1}{2^{k}}$. Set $k=c \log _{2} n$ for some constant $c>1$.
\Rightarrow Error probability $\leq \frac{1}{n^{c}}$

Finding a Large Number

Given: An array A of n pairwise distinct natural numbers.
Task: Determine an integer $A[j]$ that is at least as large as the median.
Deterministic approach: Go through all elements, return maximum.
(Actually, it suffices to go through $\lfloor n / 2\rfloor+1$ elements.)
runtime
$\Theta(n)$

Randomized approach:

$\operatorname{FindLarge}(A, k \in \mathbb{N})$

$$
\begin{aligned}
& \ell:=0 \\
& \text { for } i=1,2, \ldots, k
\end{aligned}
$$

$$
\text { randomly choose } r \in\{1,2, \ldots, n\}
$$

$$
\text { if } A[r]>\ell
$$

$$
\ell:=A[r]
$$

return ℓ

FindLarge has error probability $\leq \frac{1}{2^{k}}$. Set $k=c \log _{2} n$ for some constant $c>1$.
\Rightarrow Error probability $\leq \frac{1}{n^{c}}$
runtime $\mathcal{O}(\log n)$

Finding a Large Number

Given: An array A of n pairwise distinct natural numbers.
Task: Determine an integer $A[j]$ that is at least as large as the median.
Deterministic approach: Go through all elements, return maximum.
(Actually, it suffices to go through $\lfloor n / 2\rfloor+1$ elements.)

Randomized approach:

$\operatorname{FindLarge}(A, k \in \mathbb{N})$

$$
\ell:=0
$$

$$
\text { for } i=1,2, \ldots, k
$$

$$
\text { randomly choose } r \in\{1,2, \ldots, n\}
$$

return ℓ
FindLarge has error probability $\leq \frac{1}{2^{k}}$. Set $k=c \log _{2} n$ for some constant $c>1$.

$$
\text { if } A[r]>\ell
$$

\Rightarrow Error probability $\leq \frac{1}{n^{c}}$

$$
\ell:=A[r]
$$

runtime $\mathcal{O}(\log n)$
Remark. We traded correctness for running time.

Finding a Repeated Element

Given: An array A of n natural numbers such that $\left\lceil\frac{n}{2}\right\rceil$ of them are identical and $\left\lfloor\frac{n}{2}\right\rfloor$ of them are pairwise distinct.
Task: Find the repeated element.

3	7	3	3	3	8	1	3

Finding a Repeated Element

Given: An array A of n natural numbers such that
$\left\lceil\frac{n}{2}\right\rceil$ of them are identical and $\left\lfloor\frac{n}{2}\right\rfloor$ of them are pairwise distinct.
Task: Find the repeated element.

| 3 | 7 | 3 | 3 | 3 | 8 | 1 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 2

Deterministic approaches:

Finding a Repeated Element

Given: An array A of n natural numbers such that $\left\lceil\frac{n}{2}\right\rceil$ of them are identical and $\left\lfloor\frac{n}{2}\right\rfloor$ of them are pairwise distinct.
Task: Find the repeated element.

3	7	3	3	3	8	1	3	2

Deterministic approaches:

Compare each element with every predecessor $\Theta\left(n^{2}\right)$ time

Finding a Repeated Element

Given: An array A of n natural numbers such that $\left\lceil\frac{n}{2}\right\rceil$ of them are identical and $\left\lfloor\frac{n}{2}\right\rfloor$ of them are pairwise distinct.
Task: Find the repeated element.

3	7	3	3	3	8	1	3	2

Deterministic approaches:

Compare each element with every predecessor $\Theta\left(n^{2}\right)$ time Sort the array, then perform a linear sweep.
$\Theta(n \log n)$ time

Finding a Repeated Element

Given: An array A of n natural numbers such that $\left\lceil\frac{n}{2}\right\rceil$ of them are identical and $\left\lfloor\frac{n}{2}\right\rfloor$ of them are pairwise distinct.
Task: Find the repeated element.

3	7	3	3	3	8	1	3	2

Deterministic approaches:

Compare each element with every predecessor $\Theta\left(n^{2}\right)$ time
Sort the array, then perform a linear sweep.
$\Theta(n \log n)$ time
Compute and report the median.
$\Theta(n)$ time

Finding a Repeated Element

Given: An array A of n natural numbers such that $\left\lceil\frac{n}{2}\right\rceil$ of them are identical and $\left\lfloor\frac{n}{2}\right\rfloor$ of them are pairwise distinct.
Task: Find the repeated element.

| 3 | 7 | 3 | 3 | 3 | 8 | 1 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 2

Deterministic approaches:
Compare each element with every predecessor $\Theta\left(n^{2}\right)$ time
Sort the array, then perform a linear sweep.
Compute and report the median.
$\Theta(n \log n)$ time
$\Theta(n)$ time

Randomized approach:

FindRepeated (A) while true do
randomly choose $i \in\{1, \ldots, n\}$
randomly choose $j \in\{1, \ldots, n\} \backslash\{i\}$
if $A[i]=A[j]$ then return $A[i]$

Finding a Repeated Element

Given: An array A of n natural numbers such that $\left\lceil\frac{n}{2}\right\rceil$ of them are identical and $\left\lfloor\frac{n}{2}\right\rfloor$ of them are pairwise distinct.
Task: Find the repeated element.

3	7	3	3	3	8	1	3	2

Deterministic approaches:
Compare each element with every predecessor $\Theta\left(n^{2}\right)$ time

Sort the array, then perform a linear sweep.
Compute and report the median.
Randomized approach:
FindRepeated (A) while true do
randomly choose $i \in\{1, \ldots, n\}$
randomly choose $j \in\{1, \ldots, n\} \backslash\{i\}$
if $A[i]=A[j]$ then return $A[i]$
$\Theta(n \log n)$ time
$\Theta(n)$ time
Success probability in each step

Finding a Repeated Element

Given: An array A of n natural numbers such that $\left\lceil\frac{n}{2}\right\rceil$ of them are identical and $\left\lfloor\frac{n}{2}\right\rfloor$ of them are pairwise distinct.
Task: Find the repeated element.

3	7	3	3	3	8	1	3	2

Deterministic approaches:

Compare each element with every predecessor $\Theta\left(n^{2}\right)$ time

Sort the array, then perform a linear sweep.
Compute and report the median.

Randomized approach:

FindRepeated (A)
while true do
randomly choose $i \in\{1, \ldots, n\}$
randomly choose $j \in\{1, \ldots, n\} \backslash\{i\}$
if $A[i]=A[j]$ then return $A[i]$

Success probability in each step

$$
\geq \frac{n / 2}{n} \cdot \frac{(n / 2)-1}{n-1}
$$

Finding a Repeated Element

Given: An array A of n natural numbers such that $\left\lceil\frac{n}{2}\right\rceil$ of them are identical and $\left\lfloor\frac{n}{2}\right\rfloor$ of them are pairwise distinct.
Task: Find the repeated element.

3	7	3	3	3	8	1	3	2

Deterministic approaches:

Compare each element with every predecessor $\Theta\left(n^{2}\right)$ time

Sort the array, then perform a linear sweep.
Compute and report the median.

Randomized approach:

FindRepeated (A) while true do
randomly choose $i \in\{1, \ldots, n\}$
randomly choose $j \in\{1, \ldots, n\} \backslash\{i\}$
if $A[i]=A[j]$ then return $A[i]$

Success probability in each step

$$
\geq \frac{n / 2}{n} \cdot \frac{(n / 2)-1}{n-1} \approx \frac{1}{4}
$$

Finding a Repeated Element

Given: An array A of n natural numbers such that $\left\lceil\frac{n}{2}\right\rceil$ of them are identical and $\left\lfloor\frac{n}{2}\right\rfloor$ of them are pairwise distinct.
Task: Find the repeated element.

3	7	3	3	3	8	1	3	2

Deterministic approaches:

Compare each element with every predecessor $\Theta\left(n^{2}\right)$ time

Sort the array, then perform a linear sweep.
Compute and report the median.

Randomized approach:

FindRepeated (A) while true do
randomly choose $i \in\{1, \ldots, n\}$
randomly choose $j \in\{1, \ldots, n\} \backslash\{i\}$
if $A[i]=A[j]$ then return $A[i]$

Success probability in each step

$$
\geq \frac{n / 2}{n} \cdot \frac{(n / 2)-1}{n-1} \approx \frac{1}{4}
$$

\Rightarrow Expected number of steps ≈ 4
s.r
$\Theta(n \log n)$ time
$\Theta(n)$ time

Finding a Repeated Element

Given: An array A of n natural numbers such that $\left\lceil\frac{n}{2}\right\rceil$ of them are identical and $\left\lfloor\frac{n}{2}\right\rfloor$ of them are pairwise distinct.
Task: Find the repeated element.

3	7	3	3	3	8	1	3	2

Deterministic approaches:
Compare each element with every predecessor $\Theta\left(n^{2}\right)$ time

Sort the array, then perform a linear sweep.
Compute and report the median.

Randomized approach:

FindRepeated (A) while true do
randomly choose $i \in\{1, \ldots, n\}$
randomly choose $j \in\{1, \ldots, n\} \backslash\{i\}$
if $A[i]=A[j]$ then return $A[i]$
$\Theta(n \log n)$ time
$\Theta(n)$ time
Success probability in each step

$$
\geq \frac{n / 2}{n} \cdot \frac{(n / 2)-1}{n-1} \approx \frac{1}{4}
$$

\Rightarrow Expected number of steps ≈ 4
Remark. The algorithm only returns correct answers, but may run forever.

Las Vegas and Monte Carlo Algorithms

Las Vegas algorithm. Returns a correct result, but the running time (and possibly the required space) are random variables.

Examples. FindRepeated, RandomizedQuicksort

Las Vegas and Monte Carlo Algorithms

Las Vegas algorithm. Returns a correct result, but the running time (and possibly the required space) are random variables.

Examples. FindRepeated, RandomizedQuicksort

Monte Carlo algorithm. Returns incorrect result or fails with a certain (small) probability. The running time may be a random variable.

Examples. FindLarge, Karger's randomized MinCut algorithm

Las Vegas and Monte Carlo Algorithms

Las Vegas algorithm. Returns a correct result, but the running time (and possibly the required space) are random variables.

Examples. FindRepeated, RandomizedQuicksort

Monte Carlo algorithm. Returns incorrect result or fails with a certain (small) probability. The running time may be a random variable.

Examples. FindLarge, Karger's randomized MinCut algorithm

Remark. A Monte Carlo algorithm can often be turned into a Las Vegas algorithm and vice versa.

Closest Pair

Given: (multi-)set of points $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{2}$.
Task: Find a pair of distinct elements $p_{a}, p_{b} \in P$ such that the Euclidean distance $\delta=\left\|p_{a}, p_{b}\right\|$ is minimum.

Closest Pair

Given: (multi-)set of points $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{2}$.
Task: Find a pair of distinct elements $p_{a}, p_{b} \in P$ such that the Euclidean distance $\delta=\left\|p_{a}, p_{b}\right\|$ is minimum.
Deterministic approaches:
Brute-force

$$
\Theta\left(n^{2}\right)
$$

Closest Pair

Given: (multi-)set of points $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{2}$.
Task: Find a pair of distinct elements $p_{a}, p_{b} \in P$ such that the Euclidean distance $\delta=\left\|p_{a}, p_{b}\right\|$ is minimum.
Deterministic approaches:
Brute-force $\quad \Theta\left(n^{2}\right)$
Divide and conquer (recall from ADS) $\Theta(n \log n)$

Closest Pair

Given: (multi-)set of points $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{2}$.
Task: Find a pair of distinct elements $p_{a}, p_{b} \in P$ such that the Euclidean distance $\delta=\left\|p_{a}, p_{b}\right\|$ is minimum.
Deterministic approaches:
Brute-force

$$
\Theta\left(n^{2}\right)
$$

Divide and conquer (recall from ADS) $\Theta(n \log n)$

Lower bound:

Element Uniqueness: Given numbers $a_{1}, a_{2}, \ldots, a_{n}$. Are they pairwise distinct?
There is no $o(n \log n)$ time algorithm for Element Uniqueness.
(under some assumption concerning the arithmetic model)

Closest Pair

Given: (multi-)set of points $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{2}$.
Task: Find a pair of distinct elements $p_{a}, p_{b} \in P$ such that the Euclidean distance $\delta=\left\|p_{a}, p_{b}\right\|$ is minimum.

Deterministic approaches:

Brute-force

$$
\Theta\left(n^{2}\right)
$$

Divide and conquer (recall from ADS) $\Theta(n \log n)$

Lower bound:

Element Uniqueness: Given numbers $a_{1}, a_{2}, \ldots, a_{n}$. Are they pairwise distinct?
There is no $o(n \log n)$ time algorithm for Element Uniqueness.
(under some assumption concerning the arithmetic model)
\Rightarrow There is no $o(n \log n)$ time algorithm for Closest pair.
(under the same assumption concerning the arithmetic model)

Closest Pair

Given: (multi-)set of points $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{2}$.
Task: Find a pair of distinct elements $p_{a}, p_{b} \in P$ such that the Euclidean distance $\delta=\left\|p_{a}, p_{b}\right\|$ is minimum.

Deterministic approaches:

Brute-force

$$
\Theta\left(n^{2}\right)
$$

Divide and conquer (recall from ADS) $\Theta(n \log n)$

Lower bound:

Element Uniqueness: Given numbers $a_{1}, a_{2}, \ldots, a_{n}$. Are they pairwise distinct?
There is no $o(n \log n)$ time algorithm for Element Uniqueness.
(under some assumption concerning the arithmetic model)
\Rightarrow There is no $o(n \log n)$ time algorithm for Closest pair.
(under the same assumption concerning the arithmetic model)
Reduction: map each a_{i} to a point $\left(a_{i}, a_{i}\right)$ and test if the minimum distance is 0 .

A Randomized Incremental Algorithm for Closest Pair
Define $P_{i}=\left\{p_{1}, p_{2}, \ldots, p_{i}\right\}$ and let δ_{i} be the distance of a closest pair in P_{i}.

A Randomized Incremental Algorithm for Closest Pair
Define $P_{i}=\left\{p_{1}, p_{2}, \ldots, p_{i}\right\}$ and let δ_{i} be the distance of a closest pair in P_{i}.
Idea: $\delta_{2}=\left\|p_{1}, p_{2}\right\|$. Compute $\delta_{3}, \delta_{4}, \ldots, \delta_{n}$ by adding the points iteratively.

A Randomized Incremental Algorithm for Closest Pair

Define $P_{i}=\left\{p_{1}, p_{2}, \ldots, p_{i}\right\}$ and let δ_{i} be the distance of a closest pair in P_{i}.
Idea: $\delta_{2}=\left\|p_{1}, p_{2}\right\|$. Compute $\delta_{3}, \delta_{4}, \ldots, \delta_{n}$ by adding the points iteratively.
Suppose we have already determined δ_{i-1}.

A Randomized Incremental Algorithm for Closest Pair

Define $P_{i}=\left\{p_{1}, p_{2}, \ldots, p_{i}\right\}$ and let δ_{i} be the distance of a closest pair in P_{i}. Idea: $\delta_{2}=\left\|p_{1}, p_{2}\right\|$. Compute $\delta_{3}, \delta_{4}, \ldots, \delta_{n}$ by adding the points iteratively.

Suppose we have already determined δ_{i-1}.
Consider a square grid with cells of size $\delta_{i-1} \times \delta_{i-1}$.

A Randomized Incremental Algorithm for Closest Pair

Define $P_{i}=\left\{p_{1}, p_{2}, \ldots, p_{i}\right\}$ and let δ_{i} be the distance of a closest pair in P_{i}. Idea: $\delta_{2}=\left\|p_{1}, p_{2}\right\|$. Compute $\delta_{3}, \delta_{4}, \ldots, \delta_{n}$ by adding the points iteratively.

Suppose we have already determined δ_{i-1}.
Consider a square grid with cells of size $\delta_{i-1} \times \delta_{i-1}$. Add the point p_{i}. If $\delta_{i}<\delta_{i-1}$, then p_{i} must be part of each closest pair p_{i}, p_{j}.

A Randomized Incremental Algorithm for Closest Pair

Define $P_{i}=\left\{p_{1}, p_{2}, \ldots, p_{i}\right\}$ and let δ_{i} be the distance of a closest pair in P_{i}. Idea: $\delta_{2}=\left\|p_{1}, p_{2}\right\|$. Compute $\delta_{3}, \delta_{4}, \ldots, \delta_{n}$ by adding the points iteratively.

Suppose we have already determined δ_{i-1}.
Consider a square grid with cells of size $\delta_{i-1} \times \delta_{i-1}$. Add the point p_{i}. If $\delta_{i}<\delta_{i-1}$, then p_{i} must be part of each closest pair p_{i}, p_{j}.

A Randomized Incremental Algorithm for Closest Pair

Define $P_{i}=\left\{p_{1}, p_{2}, \ldots, p_{i}\right\}$ and let δ_{i} be the distance of a closest pair in P_{i}. Idea: $\delta_{2}=\left\|p_{1}, p_{2}\right\|$. Compute $\delta_{3}, \delta_{4}, \ldots, \delta_{n}$ by adding the points iteratively.

Suppose we have already determined δ_{i-1}.
Consider a square grid with cells of size $\delta_{i-1} \times \delta_{i-1}$. Add the point p_{i}. If $\delta_{i}<\delta_{i-1}$, then p_{i} must be part of each closest pair p_{i}, p_{j}.
Moreover, p_{j} must lie in the cell of p_{i} or one of the adjacent cells.

A Randomized Incremental Algorithm for Closest Pair

Define $P_{i}=\left\{p_{1}, p_{2}, \ldots, p_{i}\right\}$ and let δ_{i} be the distance of a closest pair in P_{i}.
Idea: $\delta_{2}=\left\|p_{1}, p_{2}\right\|$. Compute $\delta_{3}, \delta_{4}, \ldots, \delta_{n}$ by adding the points iteratively.
Suppose we have already determined δ_{i-1}.
Consider a square grid with cells of size $\delta_{i-1} \times \delta_{i-1}$. Add the point p_{i}. If $\delta_{i}<\delta_{i-1}$, then p_{i} must be part of each closest pair p_{i}, p_{j}.
Moreover, p_{j} must lie in the cell of p_{i} or one of the adjacent cells.

(simple)
exercise
Each of these cells contains at most $\mathcal{O}(1)$ points of $P_{i-1}(\Leftarrow$ packing argument $)$.

A Randomized Incremental Algorithm for Closest Pair

Define $P_{i}=\left\{p_{1}, p_{2}, \ldots, p_{i}\right\}$ and let δ_{i} be the distance of a closest pair in P_{i}.
Idea: $\delta_{2}=\left\|p_{1}, p_{2}\right\|$. Compute $\delta_{3}, \delta_{4}, \ldots, \delta_{n}$ by adding the points iteratively.
Suppose we have already determined δ_{i-1}.
Consider a square grid with cells of size $\delta_{i-1} \times \delta_{i-1}$. Add the point p_{i}. If $\delta_{i}<\delta_{i-1}$, then p_{i} must be part of each closest pair p_{i}, p_{j}.
Moreover, p_{j} must lie in the cell of p_{i} or one of the adjacent cells.

(simple)
exercise
Each of these cells contains at most $\mathcal{O}(1)$ points of P_{i-1} (\Leftarrow packing argument). The coordinates of the cell of p_{i} can be determined in $\mathcal{O}(1)$ time assuming the floor function can be computed in $\mathcal{O}(1)$ time.

A Randomized Incremental Algorithm for Closest Pair

Define $P_{i}=\left\{p_{1}, p_{2}, \ldots, p_{i}\right\}$ and let δ_{i} be the distance of a closest pair in P_{i}.
Idea: $\delta_{2}=\left\|p_{1}, p_{2}\right\|$. Compute $\delta_{3}, \delta_{4}, \ldots, \delta_{n}$ by adding the points iteratively.
Suppose we have already determined δ_{i-1}.
Consider a square grid with cells of size $\delta_{i-1} \times \delta_{i-1}$. Add the point p_{i}. If $\delta_{i}<\delta_{i-1}$, then p_{i} must be part of each closest pair p_{i}, p_{j}.
Moreover, p_{j} must lie in the cell of p_{i} or one of the adjacent cells.

(simple)
exercise
Each of these cells contains at most $\mathcal{O}(1)$ points of P_{i-1} (\Leftarrow packing argument). The coordinates of the cell of p_{i} can be determined in $\mathcal{O}(1)$ time assuming the floor function can be computed in $\mathcal{O}(1)$ time.
\Rightarrow The test $\delta_{i}<\delta_{i-1}$ can be performed in $\mathcal{O}(1)$ time assuming P_{i-1} is stored in a suitable dictionary for the nonempty cells (implementable via dynamic perfect hashing).

Backwards Analysis

If $\delta_{i}=\delta_{i-1}$, we add p_{i} to the dictionary in $\mathcal{O}(1)$ time.
If $\delta_{i}<\delta_{i-1}$, the cell size changes and we have to rebuild the dictionary in $\mathcal{O}(i)$ time.

Backwards Analysis

If $\delta_{i}=\delta_{i-1}$, we add p_{i} to the dictionary in $\mathcal{O}(1)$ time.
If $\delta_{i}<\delta_{i-1}$, the cell size changes and we have to rebuild the dictionary in $\mathcal{O}(i)$ time.
\Rightarrow total runtime $\mathcal{O}\left(n^{2}\right)$.

Backwards Analysis

If $\delta_{i}=\delta_{i-1}$, we add p_{i} to the dictionary in $\mathcal{O}(1)$ time.
If $\delta_{i}<\delta_{i-1}$, the cell size changes and we have to rebuild the dictionary in $\mathcal{O}(i)$ time.
\Rightarrow total runtime $\mathcal{O}\left(n^{2}\right)$.
Randomization: In the beginning, randomly permute the point set P.

Backwards Analysis

If $\delta_{i}=\delta_{i-1}$, we add p_{i} to the dictionary in $\mathcal{O}(1)$ time.
If $\delta_{i}<\delta_{i-1}$, the cell size changes and we have to rebuild the dictionary in $\mathcal{O}(i)$ time.
\Rightarrow total runtime $\mathcal{O}\left(n^{2}\right)$.
Randomization: In the beginning, randomly permute the point set P.
Probability that adding p_{i} to P_{i-1} decreases the minimum distance

Backwards Analysis

If $\delta_{i}=\delta_{i-1}$, we add p_{i} to the dictionary in $\mathcal{O}(1)$ time.
If $\delta_{i}<\delta_{i-1}$, the cell size changes and we have to rebuild the dictionary in $\mathcal{O}(i)$ time.
\Rightarrow total runtime $\mathcal{O}\left(n^{2}\right)$.
Randomization: In the beginning, randomly permute the point set P.
Probability that adding p_{i} to P_{i-1} decreases the minimum distance
= ???

Backwards Analysis

If $\delta_{i}=\delta_{i-1}$, we add p_{i} to the dictionary in $\mathcal{O}(1)$ time.
If $\delta_{i}<\delta_{i-1}$, the cell size changes and we have to rebuild the dictionary in $\mathcal{O}(i)$ time.
\Rightarrow total runtime $\mathcal{O}\left(n^{2}\right)$.
Randomization: In the beginning, randomly permute the point set P.
Probability that adding p_{i} to P_{i-1} decreases the minimum distance
= ???

Use backwards analysis!

Backwards Analysis

If $\delta_{i}=\delta_{i-1}$, we add p_{i} to the dictionary in $\mathcal{O}(1)$ time.
If $\delta_{i}<\delta_{i-1}$, the cell size changes and we have to rebuild the dictionary in $\mathcal{O}(i)$ time.
\Rightarrow total runtime $\mathcal{O}\left(n^{2}\right)$.
Randomization: In the beginning, randomly permute the point set P.
Probability that adding p_{i} to P_{i-1} decreases the minimum distance
$=$ Probability that deleting p_{i} from P_{i} increases the minimum distance
Use backwards analysis!

Backwards Analysis

If $\delta_{i}=\delta_{i-1}$, we add p_{i} to the dictionary in $\mathcal{O}(1)$ time.
If $\delta_{i}<\delta_{i-1}$, the cell size changes and we have to rebuild the dictionary in $\mathcal{O}(i)$ time.
\Rightarrow total runtime $\mathcal{O}\left(n^{2}\right)$.
Randomization: In the beginning, randomly permute the point set P.
Probability that adding p_{i} to P_{i-1} decreases the minimum distance
$=$ Probability that deleting p_{i} from P_{i} increases the minimum distance
How many points p in P_{i} have the property that the minimum distance in $P_{i} \backslash\{p\}$ is larger than in P_{i} ?

Backwards Analysis

If $\delta_{i}=\delta_{i-1}$, we add p_{i} to the dictionary in $\mathcal{O}(1)$ time.
If $\delta_{i}<\delta_{i-1}$, the cell size changes and we have to rebuild the dictionary in $\mathcal{O}(i)$ time.
\Rightarrow total runtime $\mathcal{O}\left(n^{2}\right)$.
Randomization: In the beginning, randomly permute the point set P.
Probability that adding p_{i} to P_{i-1} decreases the minimum distance
$=$ Probability that deleting p_{i} from P_{i} increases the minimum distance
How many points p in P_{i} have the property that the minimum distance in $P_{i} \backslash\{p\}$ is larger than in P_{i} ?
\square If the closest distance in P_{i} is unique:

Backwards Analysis

If $\delta_{i}=\delta_{i-1}$, we add p_{i} to the dictionary in $\mathcal{O}(1)$ time.
If $\delta_{i}<\delta_{i-1}$, the cell size changes and we have to rebuild the dictionary in $\mathcal{O}(i)$ time.
\Rightarrow total runtime $\mathcal{O}\left(n^{2}\right)$.
Randomization: In the beginning, randomly permute the point set P.
Probability that adding p_{i} to P_{i-1} decreases the minimum distance
$=$ Probability that deleting p_{i} from P_{i} increases the minimum distance
How many points p in P_{i} have the property that the minimum distance in $P_{i} \backslash\{p\}$ is larger than in P_{i} ?

- If the closest distance in P_{i} is unique:
- If one point has the same smallest distance to several points:

2 points
1 point

Backwards Analysis

If $\delta_{i}=\delta_{i-1}$, we add p_{i} to the dictionary in $\mathcal{O}(1)$ time.
If $\delta_{i}<\delta_{i-1}$, the cell size changes and we have to rebuild the dictionary in $\mathcal{O}(i)$ time.
\Rightarrow total runtime $\mathcal{O}\left(n^{2}\right)$.
Randomization: In the beginning, randomly permute the point set P.
Probability that adding p_{i} to P_{i-1} decreases the minimum distance
$=$ Probability that deleting p_{i} from P_{i} increases the minimum distance
How many points p in P_{i} have the property that the minimum distance in $P_{i} \backslash\{p\}$ is larger than in P_{i} ?

- If the closest distance in P_{i} is unique:

2 points

- If one point has the same smallest distance to several points:

1 point
■ If there are at least two disjoint closest pairs:

Backwards Analysis

If $\delta_{i}=\delta_{i-1}$, we add p_{i} to the dictionary in $\mathcal{O}(1)$ time.
If $\delta_{i}<\delta_{i-1}$, the cell size changes and we have to rebuild the dictionary in $\mathcal{O}(i)$ time.
\Rightarrow total runtime $\mathcal{O}\left(n^{2}\right)$.
Randomization: In the beginning, randomly permute the point set P.
Probability that adding p_{i} to P_{i-1} decreases the minimum distance
$=$ Probability that deleting p_{i} from P_{i} increases the minimum distance
How many points p in P_{i} have the property that the minimum distance in $P_{i} \backslash\{p\}$ is larger than in P_{i} ?

Backwards Analysis

If $\delta_{i}=\delta_{i-1}$, we add p_{i} to the dictionary in $\mathcal{O}(1)$ time.
If $\delta_{i}<\delta_{i-1}$, the cell size changes and we have to rebuild the dictionary in $\mathcal{O}(i)$ time.
\Rightarrow total runtime $\mathcal{O}\left(n^{2}\right)$.
Randomization: In the beginning, randomly permute the point set P.
Probability that adding p_{i} to P_{i-1} decreases the minimum distance
$=$ Probability that deleting p_{i} from P_{i} increases the minimum distance
How many points p in P_{i} have the property that the minimum distance in $P_{i} \backslash\{p\}$ is larger than in P_{i} ?
Let X_{i} be the running time used for adding p_{i}.
$\Rightarrow \mathrm{E}\left[X_{i}\right] \leq$

Backwards Analysis

If $\delta_{i}=\delta_{i-1}$, we add p_{i} to the dictionary in $\mathcal{O}(1)$ time.
If $\delta_{i}<\delta_{i-1}$, the cell size changes and we have to rebuild the dictionary in $\mathcal{O}(i)$ time.
\Rightarrow total runtime $\mathcal{O}\left(n^{2}\right)$.
Randomization: In the beginning, randomly permute the point set P.
Probability that adding p_{i} to P_{i-1} decreases the minimum distance
$=$ Probability that deleting p_{i} from P_{i} increases the minimum distance
How many points p in P_{i} have the property that the minimum distance in $P_{i} \backslash\{p\}$ is larger than in P_{i} ?
Let X_{i} be the running time used for adding p_{i}.
$\Rightarrow \mathrm{E}\left[X_{i}\right] \leq \frac{2}{i} \cdot \mathcal{O}(i)+\frac{i-2}{i} \cdot \mathcal{O}(1)=$

Backwards Analysis

If $\delta_{i}=\delta_{i-1}$, we add p_{i} to the dictionary in $\mathcal{O}(1)$ time.
If $\delta_{i}<\delta_{i-1}$, the cell size changes and we have to rebuild the dictionary in $\mathcal{O}(i)$ time.
\Rightarrow total runtime $\mathcal{O}\left(n^{2}\right)$.
Randomization: In the beginning, randomly permute the point set P.
Probability that adding p_{i} to P_{i-1} decreases the minimum distance
$=$ Probability that deleting p_{i} from P_{i} increases the minimum distance
How many points p in P_{i} have the property that the minimum distance in $P_{i} \backslash\{p\}$ is larger than in P_{i} ?
Let X_{i} be the running time used for adding p_{i}.
$\Rightarrow \mathrm{E}\left[X_{i}\right] \leq \frac{2}{i} \cdot \mathcal{O}(i)+\frac{i-2}{i} \cdot \mathcal{O}(1)=\mathcal{O}(1)$

Backwards Analysis

If $\delta_{i}=\delta_{i-1}$, we add p_{i} to the dictionary in $\mathcal{O}(1)$ time.
If $\delta_{i}<\delta_{i-1}$, the cell size changes and we have to rebuild the dictionary in $\mathcal{O}(i)$ time.
\Rightarrow total runtime $\mathcal{O}\left(n^{2}\right)$.
Randomization: In the beginning, randomly permute the point set P.
Probability that adding p_{i} to P_{i-1} decreases the minimum distance
$=$ Probability that deleting p_{i} from P_{i} increases the minimum distance
How many points p in P_{i} have the property that the minimum distance in $P_{i} \backslash\{p\}$ is larger than in P_{i} ?
Let X_{i} be the running time used for adding p_{i}.
$\Rightarrow \mathrm{E}\left[X_{i}\right] \leq \frac{2}{i} \cdot \mathcal{O}(i)+\frac{i-2}{i} \cdot \mathcal{O}(1)=\mathcal{O}(1)$
Let $X=\left(X_{1}+\cdots+X_{n}\right)$ be the total running time used by the algorithm.
$\Rightarrow \mathrm{E}[X]=$

Backwards Analysis

If $\delta_{i}=\delta_{i-1}$, we add p_{i} to the dictionary in $\mathcal{O}(1)$ time.
If $\delta_{i}<\delta_{i-1}$, the cell size changes and we have to rebuild the dictionary in $\mathcal{O}(i)$ time.
\Rightarrow total runtime $\mathcal{O}\left(n^{2}\right)$.
Randomization: In the beginning, randomly permute the point set P.
Probability that adding p_{i} to P_{i-1} decreases the minimum distance
$=$ Probability that deleting p_{i} from P_{i} increases the minimum distance
How many points p in P_{i} have the property that the minimum distance in $P_{i} \backslash\{p\}$ is larger than in P_{i} ?
Let X_{i} be the running time used for adding p_{i}.
$\Rightarrow \mathrm{E}\left[X_{i}\right] \leq \frac{2}{i} \cdot \mathcal{O}(i)+\frac{i-2}{i} \cdot \mathcal{O}(1)=\mathcal{O}(1)$
Let $X=\left(X_{1}+\cdots+X_{n}\right)$ be the total running time used by the algorithm.
$\Rightarrow \mathrm{E}[\mathrm{X}]=\mathrm{E}\left[X_{1}\right]+\cdots+\mathrm{E}\left[X_{n}\right]$

Backwards Analysis

If $\delta_{i}=\delta_{i-1}$, we add p_{i} to the dictionary in $\mathcal{O}(1)$ time.
If $\delta_{i}<\delta_{i-1}$, the cell size changes and we have to rebuild the dictionary in $\mathcal{O}(i)$ time.
\Rightarrow total runtime $\mathcal{O}\left(n^{2}\right)$.
Randomization: In the beginning, randomly permute the point set P.
Probability that adding p_{i} to P_{i-1} decreases the minimum distance
$=$ Probability that deleting p_{i} from P_{i} increases the minimum distance
How many points p in P_{i} have the property that the minimum distance in $P_{i} \backslash\{p\}$ is larger than in P_{i} ?
Let X_{i} be the running time used for adding p_{i}.
$\Rightarrow \mathrm{E}\left[X_{i}\right] \leq \frac{2}{i} \cdot \mathcal{O}(i)+\frac{i-2}{i} \cdot \mathcal{O}(1)=\mathcal{O}(1)$
Let $X=\left(X_{1}+\cdots+X_{n}\right)$ be the total running time used by the algorithm.
$\Rightarrow \mathrm{E}[X]=\mathrm{E}\left[X_{1}\right]+\cdots+\mathrm{E}\left[X_{n}\right] \in \mathcal{O}(n)$

Discussion

Randomized algorithms (often)

- are faster or use less space than deterministic algorithms in practice,

Discussion

Randomized algorithms (often)

■ are faster or use less space than deterministic algorithms in practice,
■ have expected runtimes beyond deterministic lower bounds,

Discussion

Randomized algorithms (often)

■ are faster or use less space than deterministic algorithms in practice,

- have expected runtimes beyond deterministic lower bounds,

■ are easier to implement/more elegant than deterministic strategies,

Discussion

Randomized algorithms (often)

■ are faster or use less space than deterministic algorithms in practice,

- have expected runtimes beyond deterministic lower bounds,

■ are easier to implement/more elegant than deterministic strategies,

- allow for trading runtime against output quality,

Discussion

Randomized algorithms (often)
■ are faster or use less space than deterministic algorithms in practice,

- have expected runtimes beyond deterministic lower bounds,

■ are easier to implement/more elegant than deterministic strategies,

- allow for trading runtime against output quality,
- provide a good strategy for games or search in unknown environments.

