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Phylogenetic Trees

... represent the evolutionary history of a set of taxa.

Kingfishers (German: Eisvögel)
by McCullough et al. (2016)
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Phylogenetic Trees

Let X = {1, 2, 3, . . . , n}.
A (rooted, binary) phylogenetic tree T
is a rooted tree with the following
properties:
� The unique root is labeled ρ and has

outdegree 1.

� The leaves are bijectively labeled by X.

� All other vertices have indegree 1 and
outdegree 2 (i.e., it is a binary tree).
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1 2 3 4 5 6

Let X = {1, 2, 3, . . . , n}.
A (rooted, binary) phylogenetic tree T
is a rooted tree with the following
properties:
� The unique root is labeled ρ and has

outdegree 1.

� The leaves are bijectively labeled by X.

� All other vertices have indegree 1 and
outdegree 2 (i.e., it is a binary tree).

T
ρ

root

leaf

inner tree
vertex

Remarks. Here, in our definition
� vertices have no heights and

� the order of the children of a vertex
does not matter. 1 2 3

ρ

2
1

3

ρ

=



4 - 1

Problem

For the same taxa, we may infer different
phylogenetic trees because of the use of
� different inference methods,

� different models, or

� different data.

1 2 3

ρ
T

4 5 2 3

ρ
T′

45 1
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Problem

We want to be able to compare
different phylogenetic trees.
How?

For the same taxa, we may infer different
phylogenetic trees because of the use of
� different inference methods,

� different models, or

� different data.

1 2 3

ρ
T

4 5 2 3

ρ
T′

45 1

Goal.
Define a metric that specifies how similar
two phylogenetic trees on the same set X
are and devise algorithms to compute it.

Idea.
Count the number of rearrangement
operations that are necessary to
transform T into T′.
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Subtree Prune & Regraft (SPR)
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An SPR operation transforms one phylogenetic tree into another one.
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Subtree Prune & Regraft (SPR)

1 2 3 4 5

T

1 2 3 4 5

prune regraft

1 2 34 5

T′

subtree

SPR

An SPR operation transforms one phylogenetic tree into another one.

� Note that an SPR operation is reversible.

ρ ρ ρ
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SPR-Graph

The SPR operations induce the SPR-graph G = (V, E) for a set X:
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SPR-Distance

The SPR-distance dSPR(T, T′) of T and T′ is defined as
the distance of T and T′ in the SPR-graph G.

1 2 3 4

1 3 2 4

1 2 3 4 1 3 2 4

2 4 3 1
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SPR-Distance

The SPR-distance dSPR(T, T′) of T and T′ is defined as
the distance of T and T′ in the SPR-graph G.

Lemma 1.
The SPR-graph G is connected.
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Proof. G is connected and undirected.

The SPR-distance dSPR(T, T′) of T and T′ is defined as
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SPR-Distance

Proof. G is connected and undirected.

The SPR-distance dSPR(T, T′) of T and T′ is defined as
the distance of T and T′ in the SPR-graph G.

� Can we rephrase the problem?

|V(G)| = (2n− 3)!! = (2n− 3) · (2n− 5) · . . . · 5 · 3

Proof exercise

Lemma 2.
The SPR-distance is a metric.

Lemma 1.
The SPR-graph G is connected.

Goal.
Compute the SPR-distance dSPR(T, T′).

. . . but G is huge!

All properties of a metric follow.
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the Tis do not overlap and every edge of T and T′ lies under some Ti.
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Characterization

Let T and T′ be two phylogenetic trees on X and let
F = {Tρ, T1, T2, . . . , Tk} be a MAF of T and T′.
Define m(T, T′) = k = |F| − 1.
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� Assume m(T, T′) ≤ dSPR(T, T′) holds for all d ≤ `.
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Let T and T′ be two phylogenetic trees on X and let
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Let T and T′ be two phylogenetic trees on X and let
F = {Tρ, T1, T2, . . . , Tk} be a MAF of T and T′.
Define m(T, T′) = k = |F| − 1.
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� If d = `+ 1, then there exists T̂ with
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� ∃ MAF F̂ for T & T̂ of size `+ 1
and MAF F′ for T̂ & T′ of size 2.
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� Compose T̂ by subtrees of F̂. The
subtree T′1 of F′ is rooted at one

edge of T̂ within one subtree of F̂.

T′ρ T′1

� Subdivide the corresponding tree
to obtain F from F̂, which is an
AF for T and T′.
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Characterization

Let T and T′ be two phylogenetic trees on X and let
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Characterization

Let T and T′ be two phylogenetic trees on X and let
F = {Tρ, T1, T2, . . . , Tk} be a MAF of T and T′.
Define m(T, T′) = k = |F| − 1.

Theorem 3. m(T, T′) = dSPR(T, T′)

Proof of “≥” by induction on m = m(T, T′).
� Case m = 0 is trivial and Case m = 1 is easy. X

T T′F
ρ ρ

ρ SPR

� Assume m(T, T′) ≥ dSPR(T, T′) holds for all m ≤ `.
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� Let F be a MAF of T and T′ of size `+ 2. ⇒ m = `+ 1
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ρ

F̂
ρ



9 - 18

Characterization
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� There exists a Ti that can be pruned in T

due to the nesting structure of subtrees.

� Regraft Ti according to the em-
bedding of F into T′ ⇒ T̂ & F̂

T̂
ρ

F̂
ρ

� F̂ is AF for T̂ & T′ and |F̂| = `+ 1

� ⇒ dSPR(T̂, T′) ≤ `

� dSPR(T, T̂) = 1

� dSPR(T, T′) ≤ `+ 1 = m(T, T′)
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Let T and T′ be two phylogenetic trees on X and let
F = {Tρ, T1, T2, . . . , Tk} be a MAF of T and T′.
Define m(T, T′) = k = |F| − 1.

Theorem 3. m(T, T′) = dSPR(T, T′)

Proof of “≥” by induction on m = m(T, T′).

T T′
ρ ρ

F

ρ

� Let F be a MAF of T and T′ of size `+ 2.
� There exists a Ti that can be pruned in T

due to the nesting structure of subtrees.

� Regraft Ti according to the em-
bedding of F into T′ ⇒ T̂ & F̂

T̂
ρ

F̂
ρ

� F̂ is AF for T̂ & T′ and |F̂| = `+ 1

� ⇒ dSPR(T̂, T′) ≤ `

� dSPR(T, T̂) = 1

� dSPR(T, T′) ≤ `+ 1 = m(T, T′)
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Kernelization – Subtrees

Common subtree reduction.
� Replace any subtree (with ≥ 2 leaves) that occurs identically

in both trees by a single leaf with a new label.

T T′

Suppose
is covered by
two trees of

MAF

then there is an
alternative MAF
of the same size

S S′

a a

Lemma 5. Applying the common subtree
reduction is safe, i.e., dSPR(T, T′) = dSPR(S, S′).

Proof.
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Kernelization – Chains

Chain reduction.
� Replace any chain of leaves that occurs identically (from bottom to top)

in both trees by three new leaves.

T T′

� Show there is a tree with abc-chain
in a MAF of S and S′.

S S′

a
b
c

a
b
c

� Swap abc-chain with original
chain for MAF of T and T′.

Lemma 6. Applying chain reduction is safe,
i.e., dSPR(T, T′) = dSPR(S, S′).

Proof.
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Chain reduction.
� Replace any chain of leaves that occurs identically (from bottom to top)

in both trees by three new leaves.
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a
b
c

a
b
c

Case 1

Lemma 6. Applying chain reduction is safe,
i.e., dSPR(T, T′) = dSPR(S, S′).

Proof.
� Consider embedding of

a MAF F into S.
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Kernelization – Chains

Chain reduction.
� Replace any chain of leaves that occurs identically (from bottom to top)

in both trees by three new leaves.
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b
c
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Chain reduction.
� Replace any chain of leaves that occurs identically (from bottom to top)

in both trees by three new leaves.

T T′ S S′

a
b
c
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b
c

Lemma 6. Applying chain reduction is safe,
i.e., dSPR(T, T′) = dSPR(S, S′).

Proof.
� Consider embedding of

a MAF F into S.
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b

c

a
b

c



12 - 13

Kernelization – Chains

Chain reduction.
� Replace any chain of leaves that occurs identically (from bottom to top)

in both trees by three new leaves.

T T′ S S′

a
b
c
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Lemma 6. Applying chain reduction is safe,
i.e., dSPR(T, T′) = dSPR(S, S′).
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� Consider embedding of
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Kernelization – Chains

Chain reduction.
� Replace any chain of leaves that occurs identically (from bottom to top)

in both trees by three new leaves.

T T′ S S′
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Lemma 6. Applying chain reduction is safe,
i.e., dSPR(T, T′) = dSPR(S, S′).

Why not using a chain of length ≤ 2?
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Kernelization – Chains

Chain reduction.
� Replace any chain of leaves that occurs identically (from bottom to top)

in both trees by three new leaves.

T T′ S S′

a
b
c

a
b
c

Lemma 6. Applying chain reduction is safe,
i.e., dSPR(T, T′) = dSPR(S, S′).

Why not using a chain of length ≤ 2?

S S′

a
b

a
b

A A
B

B
C C

2 SPR
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Kernelization – Chains

Chain reduction.
� Replace any chain of leaves that occurs identically (from bottom to top)

in both trees by three new leaves.

T T′ S S′

a
b
c

a
b
c

Lemma 6. Applying chain reduction is safe,
i.e., dSPR(T, T′) = dSPR(S, S′).

Why not using a chain of length ≤ 2?

S S′

a
b

a
b

A A
B

B
C C

2 SPR

T T′

A A
B

B
C C

≥ 3 SPR
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Kernel Size

Lemma 7.
Reduce T and T′ to S and S′ by exhaustively
applying the reduction rules. Let S and S′ be on X′.
Then |X′| ≤ 28 dSPR(T, T′).
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FPT Algorithm

Theorem 8.
Computing dSPR(T, T′) is fixed-parameter
tractable when parameterized by dSPR(T, T′).
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= O

(
(56k)2k) trees.

Theorem 8.
Computing dSPR(T, T′) is fixed-parameter
tractable when parameterized by dSPR(T, T′).

Proof.

by Lemma 7

� Since k = dSPR(S, S′) = dSPR(T, T′), this yields an FPT algorithm.

by Lemma 7
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Approximation Algorithm

Idea.
� Given trees T and T′, which are reduced by the previous rules,

we compute an agreement forest F by

� successively making “cuts” and “eliminations”.

� These steps let T and T′ shrink further and further.

� Show that |F| is at most 3|F∗|,
where F∗ is a MAF of T and T′.
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Approximation Algorithm

approxDSPR(T, T′)
i← 1
Gi ← T
Hi ← T′

while ∃ pair of sibling leaves a and b in Gi do
find the case that applies to a and b in Hi
apply the corresponding modification
to obtain Gi+1 from Gi and Hi+1 from Hi
i ++

return |Hi| − 1
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Approximation Algorithm – Example
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� Should we cut off leaf 1
or leaf 2 or everything
between them in H1?

� Do parts of each!
3 4 5
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1 5
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� If the same “cherry” (i.e.,
pair of leaves) occurs in Gi
and Hi, we simply reduce it.

Case 1
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� If the same “cherry” (i.e.,
pair of leaves) occurs in Gi
and Hi, we simply reduce it.
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1 52
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a
5

G3
ρ

6
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H3
ρ

a
� Leaf b is the only leaf of

a tree in Hi.
� Cut off b in Gi.

1 52

Case 4
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Approximation Algorithm – Analysis
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Theorem 9
approxDSPR is a 3-approximation algorithm for
dSPR(T, T′) with an O

(
|X|2

)
running time.
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Discussion

Kernelization.
� Kernelization is an important technique to construct FPT algorithms.

� Result important since SPR-distance small in practice.

� Reduction rules actually give a kernel of size at most 15k− 9 (we have shown 28k).

� With further reduction rules, we can get a size below 11k− 9. [KL ’18]

� Divide & conquer techniques can (in practice) further reduce the problem sizes.
[LS ’11]
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� Kernelization is an important technique to construct FPT algorithms.

� Result important since SPR-distance small in practice.

� Reduction rules actually give a kernel of size at most 15k− 9 (we have shown 28k).

� With further reduction rules, we can get a size below 11k− 9. [KL ’18]

� Divide & conquer techniques can (in practice) further reduce the problem sizes.
[LS ’11]

Approximation algorithm.
� There exists a 2-approximation algorithms for the SPR-distance

with a running time in O(n3). [CHW ’17]
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Discussion

Phylogenetic trees.
� There are other classes of phylogenetic trees: unrooted,

non-binary, ranked, . . .

� Trees can be generalized to phylogenetic networks,
which can also have indegree 2 outdegree 1 vertices.

1 2 3
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Discussion

Phylogenetic trees.
� There are other classes of phylogenetic trees: unrooted,

non-binary, ranked, . . .

� Trees can be generalized to phylogenetic networks,
which can also have indegree 2 outdegree 1 vertices.

Maximum Agreement Forests.
� Reframing (characterizing) a problem in a different way,

can sometimes make your life a lot easier.

� MAF can be generalized to Maximum Agreement Graphs, but
these do not characterize the SPR-distance of networks anymore.
[K ’20]

1 2 3



19

Literature

Original papers:

� [BS ’05] Semple C., Bordewich M.: On the computational complexity of the rooted subtree
prune and regraft distance (for SPR, MAF, characterisation, fpt, divide & conquer)

� [HJWZ ’96] Hein J., Jiang T., Wang L., Zhang K.: On the complexity of comparing
evolutionary trees (for NP-hardness proof)

� [RSW ’06] Rodrigues E. M., Sagot M.-F., Wakabayashi Y.: The maximum agreement forest
problem: Approximation algorithms and computational experiments (for approx. algorithm)

Referenced papers:

� [CHW ’17] Chen Z., Harada Y., Wang L.: A new 2-approximation algorithm for rSPR distance

� [K ’20] Klawitter J.: The agreement distance of unrooted phylogenetic networks

� [KL ’19] Kelk S., Linz. S.: New reduction rules for the tree bisection and reconnection distance

� [LS ’11] Linz S., Semple C.: A cluster reduction for computing the subtree distance between
phylogenies


	Title page
	Phylogenetic Trees
	Examples
	Definition
	Need of metric

	Subtree Prune & Regraft
	Operation
	SPR-Graph
	SPR-Distance

	Maximum Agreement Forests
	Characterization
	Problem & Plan
	Kernelisation
	Common subtree reduction
	Chain reduction
	Kernel Size

	FPT Algorithm
	Approximation Algorithm
	Example
	Analysis

	Discussion
	Literature

