Advanced Algorithms

Rearrangement Distance of Phylogenetic Trees Kernelization, FPT, Approximation Algorithm

Johannes Zink • WS22

Phylogenetic Trees

... represent the evolutionary history of a set of taxa.

Kingfishers (German: Eisvögel)
by McCullough et al. (2016)

Phylogenetic Trees

... represent the evolutionary history of a set of taxa.

Phylogenetic Trees

... represent the evolutionary history of a set of taxa.

Phylogenetic Trees

... represent the evolutionary history of a set of taxa.

Properties (in the biological sense):

Phylogenetic Trees

... represent the evolutionary history of a set of taxa.

Properties (in the biological sense):

- Leaves are labelled with taxa.

■ Each taxon represents a species, population, individual organism, gene, chromosome, ...

Phylogenetic Trees

... represent the evolutionary history of a set of taxa.

Properties (in the biological sense):

- Leaves are labelled with taxa.
- Each taxon represents a species, population, individual organism, gene, chromosome, ...
- Edge length represents an amount of time passed or a genetic distance.

Phylogenetic Trees

... represent the evolutionary history of a set of taxa.

Properties (in the biological sense):

- Leaves are labelled with taxa.
- Each taxon represents a species, population, individual organism, gene, chromosome, ...
- Edge length represents an amount of time passed or a genetic distance.
- Inference methods compute a phylogenetic tree based on some model and data.

Phylogenetic Trees

Let $X=\{1,2,3, \ldots, n\}$.
A (rooted, binary) phylogenetic tree T is a rooted tree with the following properties:

Phylogenetic Trees

Let $X=\{1,2,3, \ldots, n\}$.
A (rooted, binary) phylogenetic tree T is a rooted tree with the following properties:
\square The unique root is labeled ρ and has outdegree 1.

Phylogenetic Trees

Let $X=\{1,2,3, \ldots, n\}$.
A (rooted, binary) phylogenetic tree T is a rooted tree with the following properties:
■ The unique root is labeled ρ and has outdegree 1 .
■ The leaves are bijectively labeled by X.

Phylogenetic Trees

Let $X=\{1,2,3, \ldots, n\}$.
A (rooted, binary) phylogenetic tree T is a rooted tree with the following properties:
■ The unique root is labeled ρ and has outdegree 1 .
■ The leaves are bijectively labeled by X.

- All other vertices have indegree 1 and
 outdegree 2 (i.e., it is a binary tree).

Phylogenetic Trees

Let $X=\{1,2,3, \ldots, n\}$.
A (rooted, binary) phylogenetic tree T is a rooted tree with the following properties:
■ The unique root is labeled ρ and has outdegree 1.

- The leaves are bijectively labeled by X.
- All other vertices have indegree 1 and outdegree 2 (i.e., it is a binary tree).
Remarks. Here, in our definition
- vertices have no heights and
- the order of the children of a vertex does not matter.

Problem

For the same taxa, we may infer different phylogenetic trees because of the use of

- different inference methods,

■ different models, or

- different data.

Problem

For the same taxa, we may infer different phylogenetic trees because of the use of - different inference methods,

■ different models, or

- different data.

We want to be able to compare different phylogenetic trees. How?

Problem

For the same taxa, we may infer different phylogenetic trees because of the use of

- different inference methods,
- different models, or
- different data.

We want to be able to compare different phylogenetic trees. How?

Goal.

Define a metric that specifies how similar two phylogenetic trees on the same set X are and devise algorithms to compute it.

Problem

Problem

For the same taxa, we may infer different phylogenetic trees because of the use of

- different inference methods,
- different models, or
- different data.

We want to be able to compare different phylogenetic trees. How?

Goal.

Define a metric that specifies how similar two phylogenetic trees on the same set X are and devise algorithms to compute it.

Idea.

Count the number of rearrangement operations that are necessary to transform T into T^{\prime}.

Subtree Prune \& Regraft (SPR)

An SPR operation transforms one phylogenetic tree into another one.

Subtree Prune \& Regraft (SPR)

An SPR operation transforms one phylogenetic tree into another one.

Subtree Prune \& Regraft (SPR)

An SPR operation transforms one phylogenetic tree into another one.

Subtree Prune \& Regraft (SPR)

An SPR operation transforms one phylogenetic tree into another one.

Subtree Prune \& Regraft (SPR)

An SPR operation transforms one phylogenetic tree into another one.

Subtree Prune \& Regraft (SPR)

An SPR operation transforms one phylogenetic tree into another one.

Subtree Prune \& Regraft (SPR)

An SPR operation transforms one phylogenetic tree into another one.

Subtree Prune \& Regraft (SPR)

An SPR operation transforms one phylogenetic tree into another one.

\square Note that an SPR operation is reversible.

SPR-Graph

The SPR operations induce the SPR-graph $G=(V, E)$ for a set X :

SPR-Graph

The SPR operations induce the SPR-graph $G=(V, E)$ for a set X :
$\square V=\{T \mid T$ is a phylogenetic tree on X$\}$

SPR-Graph

The SPR operations induce the SPR-graph $G=(V, E)$ for a set X :
■ $V=\{T \mid T$ is a phylogenetic tree on X$\}$
$\square E=\left\{\left\{T, T^{\prime}\right\} \mid T\right.$ can be transformed into T^{\prime} with a single SPR operation $\}$

SPR-Distance

The SPR-distance $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ of T and T^{\prime} is defined as the distance of T and T^{\prime} in the SPR-graph G.

SPR-Distance

The SPR-distance $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ of T and T^{\prime} is defined as the distance of T and T^{\prime} in the SPR-graph G.

```
Lemma 1.
The SPR-graph G is connected.
```


SPR-Distance

The SPR-distance $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ of T and T^{\prime} is defined as the distance of T and T^{\prime} in the SPR-graph G.

```
Lemma 1.
The SPR-graph G is connected.
```


Proof exercise

SPR-Distance

The SPR-distance $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ of T and T^{\prime} is defined as the distance of T and T^{\prime} in the SPR-graph G.

Lemma 1.
 The SPR-graph G is connected.

```
Lemma 2.
The SPR-distance is a metric.
```


Proof exercise

SPR-Distance

The SPR-distance $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ of T and T^{\prime} is defined as the distance of T and T^{\prime} in the SPR-graph G.

Lemma 1.

The SPR-graph G is connected.

Lemma 2.
The SPR-distance is a metric.

Defintion:

A metric d is a function of two parameters such that:

- $d(x, x)=0$ (no distance to itself)
- $d(x, y)>0$ for $x \neq y$ (positive)
- $d(x, y)=d(y, x)$ (symmetric)
- $d(x, z) \leq d(x, y)+d(y, z)$
(triangle inequality holds)

SPR-Distance

The SPR-distance $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ of T and T^{\prime} is defined as the distance of T and T^{\prime} in the SPR-graph G.

Lemma 1.

The SPR-graph G is connected.

Defintion:

A metric d is a function of two parameters such that:

- $d(x, x)=0$ (no distance to itself)
- $d(x, y)>0$ for $x \neq y$ (positive)
- $d(x, y)=d(y, x)$ (symmetric)
- $d(x, z) \leq d(x, y)+d(y, z)$
(triangle inequality holds)

Lemma 2.
The SPR-distance is a metric.
Proof. G is connected and undirected.

SPR-Distance

The SPR-distance $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ of T and T^{\prime} is defined as the distance of T and T^{\prime} in the SPR-graph G.

Lemma 1.

The SPR-graph G is connected.

Defintion:

A metric d is a function of two parameters such that:

- $d(x, x)=0$ (no distance to itself)
- $d(x, y)>0$ for $x \neq y$ (positive)
- $d(x, y)=d(y, x)$ (symmetric)
- $d(x, z) \leq d(x, y)+d(y, z)$
(triangle inequality holds)

Lemma 2.
The SPR-distance is a metric.
Proof. G is connected and undirected.

SPR-Distance

The SPR-distance $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ of T and T^{\prime} is defined as the distance of T and T^{\prime} in the SPR-graph G.

Lemma 1.

The SPR-graph G is connected.

Defintion:

A metric d is a function of two parameters such that:
$\square d(x, x)=0$ (no distance to itself)

- $d(x, y)>0$ for $x \neq y$ (positive)
- $d(x, y)=d(y, x)$ (symmetric)
- $d(x, z) \leq d(x, y)+d(y, z)$
(triangle inequality holds)

Lemma 2.
The SPR-distance is a metric.
Proof. G is connected and undirected.
trivial
shortest path exists because G is connected

SPR-Distance

The SPR-distance $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ of T and T^{\prime} is defined as the distance of T and T^{\prime} in the SPR-graph G.

Lemma 1.

The SPR-graph G is connected.

Defintion:

A metric d is a function of two parameters such that:

- $d(x, x)=0$ (no distance to itself)
- $d(x, y)>0$ for $x \neq y$ (positive)
- $d(x, y)=d(y, x)$ (symmetric)
- $d(x, z) \leq d(x, y)+d(y, z)$
(triangle inequality holds)

Lemma 2.
The SPR-distance is a metric.
Proof. G is connected and undirected.

trivial

shortest path exists because G is connected all paths can be reversed bc. G is undirected

SPR-Distance

The SPR-distance $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ of T and T^{\prime} is defined as the distance of T and T^{\prime} in the SPR-graph G.

Lemma 1.

The SPR-graph G is connected.

Defintion:

A metric d is a function of two parameters such that:
$\square d(x, x)=0$ (no distance to itself)

- $d(x, y)>0$ for $x \neq y$ (positive)
- $d(x, y)=d(y, x)$ (symmetric)
$\square d(x, z) \leq d(x, y)+d(y, z)$
(triangle inequality holds)

Lemma 2.
The SPR-distance is a metric.
Proof. G is connected and undirected.
shortest path exists because G is connected all paths can be reversed bc. G is undirected the triangle inequality holds because we can compose the path $x \rightsquigarrow z$ by $x \rightsquigarrow y \rightsquigarrow z$

SPR-Distance

The SPR-distance $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ of T and T^{\prime} is defined as the distance of T and T^{\prime} in the SPR-graph G.

Lemma 1.

The SPR-graph G is connected.

Defintion:

A metric d is a function of two parameters such that:

- $d(x, x)=0$ (no distance to itself)
- $d(x, y)>0$ for $x \neq y$ (positive)
- $d(x, y)=d(y, x)$ (symmetric)
- $d(x, z) \leq d(x, y)+d(y, z)$
(triangle inequality holds)

Lemma 2.

The SPR-distance is a metric.
Proof. G is connected and undirected.
All properties of a metric follow.

trivial

shortest path exists because G is connected all paths can be reversed bc. G is undirected the triangle inequality holds because we can compose the path $x \rightsquigarrow z$ by $x \rightsquigarrow y \rightsquigarrow z$

SPR-Distance

The SPR-distance $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ of T and T^{\prime} is defined as the distance of T and T^{\prime} in the SPR-graph G.

```
Lemma 1.
The SPR-graph G is connected.
Proof exercise
```


Goal.

```
Compute the SPR-distance \(\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)\).
```

Lemma 2.
The SPR-distance is a metric.
Proof. G is connected and undirected. All properties of a metric follow.

SPR-Distance

The SPR-distance $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ of T and T^{\prime} is defined as the distance of T and T^{\prime} in the SPR-graph G.

Proof exercise

Goal.

Compute the SPR-distance $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.

Lemma 2.

The SPR-distance is a metric.
Proof. G is connected and undirected. All properties of a metric follow.
... but G is huge!

$$
|V(G)|=(2 n-3)!!=(2 n-3) \cdot(2 n-5) \cdot \ldots \cdot 5 \cdot 3
$$

SPR-Distance

The SPR-distance $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ of T and T^{\prime} is defined as the distance of T and T^{\prime} in the SPR-graph G.

Proof exercise

Goal.

Compute the SPR-distance $\mathrm{d}_{\operatorname{SPR}}\left(T, T^{\prime}\right)$.

Lemma 2.

The SPR-distance is a metric.
Proof. G is connected and undirected. All properties of a metric follow.
... but G is huge!

$$
|V(G)|=(2 n-3)!!=(2 n-3) \cdot(2 n-5) \cdot \ldots \cdot 5 \cdot 3
$$

- Can we rephrase the problem?

Maximum Agreement Forests

Maximum Agreement Forests

F

F into T^{\prime}

Maximum Agreement Forests

An agreement forest (AF) F of T and T^{\prime} is a forest $\left\{T_{\rho}, T_{1}, T_{2}, \ldots, T_{k}\right\}$ such that
\square the label sets of the T_{i} partition $X \cup\{\rho\}$,

Maximum Agreement Forests

An agreement forest (AF) F of T and T^{\prime} is a forest $\left\{T_{\rho}, T_{1}, T_{2}, \ldots, T_{k}\right\}$ such that

- the label sets of the T_{i} partition $X \cup\{\rho\}$,
- ρ is in the label set of T_{ρ}, and

Maximum Agreement Forests

An agreement forest (AF) F of T and T^{\prime} is a forest $\left\{T_{\rho}, T_{1}, T_{2}, \ldots, T_{k}\right\}$ such that

- the label sets of the T_{i} partition $X \cup\{\rho\}$,
- ρ is in the label set of T_{ρ}, and
\square there is an edge-disjoint embedding of the T_{i} s into T and T^{\prime} where all edges of T and T^{\prime} are covered. In other words, we can place all T_{i} s onto T and T^{\prime} such that the $T_{i} \mathrm{~s}$ do not overlap and every edge of T and T^{\prime} lies under some T_{i}.

Maximum Agreement Forests

An agreement forest (AF) F of T and T^{\prime} is a forest $\left\{T_{\rho}, T_{1}, T_{2}, \ldots, T_{k}\right\}$ such that
\square the label sets of the T_{i} partition $X \cup\{\rho\}$,

- ρ is in the label set of T_{ρ}, and
\square there is an edge-disjoint embedding of the T_{i} s into T and T^{\prime} where all edges of T and T^{\prime} are covered. In other words, we can place all T_{i} s onto T and T^{\prime} such that the T_{i} s do not overlap and every edge of T and T^{\prime} lies under some T_{i}.
If k is minimum, F is a maximum agreement forest (MAF).

Characterization

Let T and T^{\prime} be two phylogenetic trees on X and let $F=\left\{T_{\rho}, T_{1}, T_{2}, \ldots, T_{k}\right\}$ be a MAF of T and T^{\prime}.
Define
$\mathrm{m}\left(T, T^{\prime}\right)=k=|F|-1$.

Characterization

Let T and T^{\prime} be two phylogenetic trees on X and let $F=\left\{T_{\rho}, T_{1}, T_{2}, \ldots, T_{k}\right\}$ be a MAF of T and T^{\prime}.
Define

$$
\mathrm{m}\left(T, T^{\prime}\right)=k=|F|-1
$$

Theorem 3. $\mathrm{m}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$

Characterization

Let T and T^{\prime} be two phylogenetic trees on X and let $F=\left\{T_{\rho}, T_{1}, T_{2}, \ldots, T_{k}\right\}$ be a MAF of T and T^{\prime}.
Define

$$
\mathrm{m}\left(T, T^{\prime}\right)=k=|F|-1 .
$$

Theorem 3. $\mathrm{m}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$
Proof of " \leq " by induction on $d=\mathrm{d} \operatorname{SPR}\left(T, T^{\prime}\right)$.

Characterization

Let T and T^{\prime} be two phylogenetic trees on X and let $F=\left\{T_{\rho}, T_{1}, T_{2}, \ldots, T_{k}\right\}$ be a MAF of T and T^{\prime}.
Define

$$
\mathrm{m}\left(T, T^{\prime}\right)=k=|F|-1 .
$$

Theorem 3. $\mathrm{m}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$
Proof of " \leq " by induction on $d=\mathrm{d} \operatorname{SPR}\left(T, T^{\prime}\right)$.
■ Case $d=0$ is trivial and Case $d=1$ is easy.

Characterization

Let T and T^{\prime} be two phylogenetic trees on X and let $F=\left\{T_{\rho}, T_{1}, T_{2}, \ldots, T_{k}\right\}$ be a MAF of T and T^{\prime}.
Define

$$
\mathrm{m}\left(T, T^{\prime}\right)=k=|F|-1 .
$$

Theorem 3. $\mathrm{m}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$
Proof of " \leq " by induction on $d=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.
■ Case $d=0$ is trivial and Case $d=1$ is easy.

- Assume $\mathrm{m}\left(T, T^{\prime}\right) \leq \mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ holds for all $d \leq \ell$.

Characterization

Let T and T^{\prime} be two phylogenetic trees on X and let $F=\left\{T_{\rho}, T_{1}, T_{2}, \ldots, T_{k}\right\}$ be a MAF of T and T^{\prime}.
Define

$$
\mathrm{m}\left(T, T^{\prime}\right)=k=|F|-1 .
$$

Theorem 3. $\mathrm{m}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$
Proof of " \leq " by induction on $d=\mathrm{d} \operatorname{SPR}\left(T, T^{\prime}\right)$.

- If $d=\ell+1$, then there exists \hat{T} with $\mathrm{d}_{\mathrm{SPR}}(T, \hat{T})=\ell$ and $\mathrm{d}_{\operatorname{SPR}}\left(\hat{T}, T^{\prime}\right)=1$.

Characterization

Let T and T^{\prime} be two phylogenetic trees on X and let $F=\left\{T_{\rho}, T_{1}, T_{2}, \ldots, T_{k}\right\}$ be a MAF of T and T^{\prime}. Define

$$
\mathrm{m}\left(T, T^{\prime}\right)=k=|F|-1
$$

\exists MAF \hat{F} for $T \& \hat{T}$ of size $\ell+1$ and MAF F^{\prime} for $\hat{T} \& T^{\prime}$ of size 2 .

Theorem 3. $\mathrm{m}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$
Proof of " \leq " by induction on $d=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.

- If $d=\ell+1$, then there exists \hat{T} with $\mathrm{d}_{\mathrm{SPR}}(T, \hat{T})=\ell$ and $\mathrm{d}_{\mathrm{SPR}}\left(\hat{T}, T^{\prime}\right)=1$.

Characterization

Let T and T^{\prime} be two phylogenetic trees on X and let $F=\left\{T_{\rho}, T_{1}, T_{2}, \ldots, T_{k}\right\}$ be a MAF of T and $T^{\prime} . \square \exists \operatorname{MAF} \hat{F}$ for $T \& \hat{T}$ of size $\ell+1$ Define

$$
\mathrm{m}\left(T, T^{\prime}\right)=k=|F|-1
$$

Theorem 3. $\mathrm{m}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$
Proof of " \leq " by induction on $d=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$. and MAF F^{\prime} for $\hat{T} \& T^{\prime}$ of size 2 .

- Compose \hat{T} by subtrees of \hat{F}. The subtree T_{1}^{\prime} of F^{\prime} is rooted at one edge of \hat{T} within one subtree of \hat{F}.
■ If $d=\ell+1$, then there exists \hat{T} with $\mathrm{d}_{\mathrm{SPR}}(T, \hat{T})=\ell$ and $\mathrm{d}_{\mathrm{SPR}}\left(\hat{T}, T^{\prime}\right)=1$.

Characterization

Let T and T^{\prime} be two phylogenetic trees on X and let $F=\left\{T_{\rho}, T_{1}, T_{2}, \ldots, T_{k}\right\}$ be a MAF of T and $T^{\prime} . \square \exists$ MAF \hat{F} for $T \& \hat{T}$ of size $\ell+1$ Define

$$
\mathrm{m}\left(T, T^{\prime}\right)=k=|F|-1
$$

Theorem 3. $\mathrm{m}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$
Proof of " \leq " by induction on $d=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$. and MAF F^{\prime} for $\hat{T} \& T^{\prime}$ of size 2 .

- Compose \hat{T} by subtrees of \hat{F}. The subtree T_{1}^{\prime} of F^{\prime} is rooted at one edge of \hat{T} within one subtree of \hat{F}.
\square If $d=\ell+1$, then there exists \hat{T} with $\mathrm{d}_{\mathrm{SPR}}(T, \hat{T})=\ell$ and $\mathrm{d}_{\mathrm{SPR}}\left(\hat{T}, T^{\prime}\right)=1$.

Characterization

Let T and T^{\prime} be two phylogenetic trees on X and let $F=\left\{T_{\rho}, T_{1}, T_{2}, \ldots, T_{k}\right\}$ be a MAF of T and $T^{\prime} . ■ \exists$ MAF \hat{F} for $T \& \hat{T}$ of size $\ell+1$ Define

$$
\mathrm{m}\left(T, T^{\prime}\right)=k=|F|-1 .
$$

Theorem 3. $\mathrm{m}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$

Proof of " \leq " by induction on $d=\mathrm{d} \operatorname{SPR}\left(T, T^{\prime}\right)$.

- If $d=\ell+1$, then there exists \hat{T} with $\mathrm{d}_{\operatorname{SPR}}(T, \hat{T})=\ell$ and $\mathrm{d}_{\operatorname{SPR}}\left(\hat{T}, T^{\prime}\right)=1$. and MAF F^{\prime} for $\hat{T} \& T^{\prime}$ of size 2 .
■ Compose \hat{T} by subtrees of \hat{F}. The subtree T_{1}^{\prime} of F^{\prime} is rooted at one edge of \hat{T} within one subtree of \hat{F}.
■ Subdivide the corresponding tree to obtain F from \hat{F}, which is an AF for T and T^{\prime}.

Characterization

Let T and T^{\prime} be two phylogenetic trees on X and let $F=\left\{T_{\rho}, T_{1}, T_{2}, \ldots, T_{k}\right\}$ be a MAF of T and T^{\prime}.
Define

$$
\mathrm{m}\left(T, T^{\prime}\right)=k=|F|-1 .
$$

Theorem 3. $\mathrm{m}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$
Proof of " \geq " by induction on $m=m\left(T, T^{\prime}\right)$.

Characterization

Let T and T^{\prime} be two phylogenetic trees on X and let $F=\left\{T_{\rho}, T_{1}, T_{2}, \ldots, T_{k}\right\}$ be a MAF of T and T^{\prime}.
Define

$$
\mathrm{m}\left(T, T^{\prime}\right)=k=|F|-1 .
$$

Theorem 3. $\mathrm{m}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$
Proof of " \geq " by induction on $m=m\left(T, T^{\prime}\right)$.
■ Case $m=0$ is trivial and Case $m=1$ is easy. \checkmark

Characterization

Let T and T^{\prime} be two phylogenetic trees on X and let $F=\left\{T_{\rho}, T_{1}, T_{2}, \ldots, T_{k}\right\}$ be a MAF of T and T^{\prime}.
Define

$$
\mathrm{m}\left(T, T^{\prime}\right)=k=|F|-1 .
$$

Theorem 3. $\mathrm{m}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$
Proof of " \geq " by induction on $m=m\left(T, T^{\prime}\right)$.
■ Case $m=0$ is trivial and Case $m=1$ is easy. \checkmark

Characterization

Let T and T^{\prime} be two phylogenetic trees on X and let $F=\left\{T_{\rho}, T_{1}, T_{2}, \ldots, T_{k}\right\}$ be a MAF of T and T^{\prime}.
Define

$$
\mathrm{m}\left(T, T^{\prime}\right)=k=|F|-1 .
$$

Theorem 3. $\mathrm{m}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$
Proof of " \geq " by induction on $m=m\left(T, T^{\prime}\right)$.
■ Case $m=0$ is trivial and Case $m=1$ is easy. \checkmark

- Assume $\mathrm{m}\left(T, T^{\prime}\right) \geq \mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ holds for all $m \leq \ell$.

Characterization

Let T and T^{\prime} be two phylogenetic trees on X and let $F=\left\{T_{\rho}, T_{1}, T_{2}, \ldots, T_{k}\right\}$ be a MAF of T and T^{\prime}.
Define

$$
\mathrm{m}\left(T, T^{\prime}\right)=k=|F|-1
$$

Theorem 3. $\mathrm{m}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$
Proof of " \geq " by induction on $m=\mathrm{m}\left(T, T^{\prime}\right)$.

- Let F be a MAF of T and T^{\prime} of size $\ell+2 . \Rightarrow m=\ell+1$

Characterization

Let T and T^{\prime} be two phylogenetic trees on X and let $F=\left\{T_{\rho}, T_{1}, T_{2}, \ldots, T_{k}\right\}$ be a MAF of T and T^{\prime}.
Define

$$
\mathrm{m}\left(T, T^{\prime}\right)=k=|F|-1 .
$$

Theorem 3. $\mathrm{m}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$
Proof of " \geq " by induction on $m=m\left(T, T^{\prime}\right)$.
■ Let F be a MAF of T and T^{\prime} of size $\ell+2 . \Rightarrow m=\ell+1$

- There exists a T_{i} that can be pruned in T due to the nesting structure of subtrees.

F

Characterization

Let T and T^{\prime} be two phylogenetic trees on X and let $F=\left\{T_{\rho}, T_{1}, T_{2}, \ldots, T_{k}\right\}$ be a MAF of T and T^{\prime}.
Define

$$
\mathrm{m}\left(T, T^{\prime}\right)=k=|F|-1 .
$$

Theorem 3. $\mathrm{m}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$

Proof of " \geq " by induction on $m=m\left(T, T^{\prime}\right)$.

- Let F be a MAF of T and T^{\prime} of size $\ell+2$.
- There exists a T_{i} that can be pruned in T due to the nesting structure of subtrees.

\hat{F}
${ }^{\circ} \mathrm{A} \AA$

Characterization

Let T and T^{\prime} be two phylogenetic trees on X and let $F=\left\{T_{\rho}, T_{1}, T_{2}, \ldots, T_{k}\right\}$ be a MAF of T and T^{\prime}.
Define

$$
\mathrm{m}\left(T, T^{\prime}\right)=k=|F|-1 .
$$

Theorem 3. $\mathrm{m}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$

Proof of " \geq " by induction on $m=m\left(T, T^{\prime}\right)$.
■ Let F be a MAF of T and T^{\prime} of size $\ell+2$.

- There exists a T_{i} that can be pruned in T due to the nesting structure of subtrees.

T^{\prime}
F
\hat{T}
\hat{F}

${ }^{\circ} \mathrm{A} \AA$

■ Regraft T_{i} according to the embedding of F into $T^{\prime} \Rightarrow \hat{T} \& \hat{F}$
$\square \hat{F}$ is AF for $\hat{T} \& T^{\prime}$ and $|\hat{F}|=\ell+1$
$\square \Rightarrow \mathrm{d}_{\mathrm{SPR}}\left(\hat{T}, T^{\prime}\right) \leq \ell$

Characterization

Let T and T^{\prime} be two phylogenetic trees on X and let $F=\left\{T_{\rho}, T_{1}, T_{2}, \ldots, T_{k}\right\}$ be a MAF of T and T^{\prime}.
Define

$$
\mathrm{m}\left(T, T^{\prime}\right)=k=|F|-1 .
$$

Theorem 3. $\mathrm{m}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$
Proof of " \geq " by induction on $m=\mathrm{m}\left(T, T^{\prime}\right)$.

- Let F be a MAF of T and T^{\prime} of size $\ell+2$.
- There exists a T_{i} that can be pruned in T due to the nesting structure of subtrees.

■ Regraft T_{i} according to the embedding of F into $T^{\prime} \Rightarrow \hat{T} \& \hat{F}$
$\square \hat{F}$ is AF for $\hat{T} \& T^{\prime}$ and $|\hat{F}|=\ell+1$
$\square \Rightarrow \mathrm{d}_{\mathrm{SPR}}\left(\hat{T}, T^{\prime}\right) \leq \ell$

- $\mathrm{d}_{\mathrm{SPR}}(T, \hat{T})=1$

Characterization

Let T and T^{\prime} be two phylogenetic trees on X and let $F=\left\{T_{\rho}, T_{1}, T_{2}, \ldots, T_{k}\right\}$ be a MAF of T and T^{\prime}.
Define

$$
\mathrm{m}\left(T, T^{\prime}\right)=k=|F|-1 .
$$

Theorem 3. $\mathrm{m}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$

Proof of " \geq " by induction on $m=\mathrm{m}\left(T, T^{\prime}\right)$.

- Let F be a MAF of T and T^{\prime} of size $\ell+2$.
- There exists a T_{i} that can be pruned in T due to the nesting structure of subtrees.

$$
\square \Rightarrow \mathrm{d}_{\mathrm{SPR}}\left(\hat{T}, T^{\prime}\right) \leq \ell
$$

$$
\mathrm{d}_{\mathrm{SPR}}(T, \hat{T})=1
$$

$$
\square \mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right) \leq \ell+1=\mathrm{m}\left(T, T^{\prime}\right)
$$

Problem \& Plan

Theorem 4. [HJWZ '96, BS '05]
Computing $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ is NP-hard.
Proof by reduction from Exact Cover by 3-Sets.

Problem \& Plan

Theorem 4. [HJWZ '96, BS '05]
 Computing $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ is NP-hard.

Proof by reduction from Exact Cover by 3-Sets.

Plan.

- Construct kernel of the problem.
- Replace T and T^{\prime} with smaller S and S^{\prime}.

■ Derive $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ from $\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)$.

Problem \& Plan

Theorem 4. [HJWZ '96, BS '05]
 Computing $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ is NP-hard.

Proof by reduction from Exact Cover by 3-Sets.

Plan.

- Construct kernel of the problem.
- Replace T and T^{\prime} with smaller S and S^{\prime}.

■ Derive $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ from $\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)$.
\square Show that the size of the kernel depends on $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.

Problem \& Plan

Theorem 4. [HJWZ '96, BS '05]
 Computing $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ is NP-hard.

Proof by reduction from Exact Cover by 3-Sets.

Plan.

- Construct kernel of the problem.
- Replace T and T^{\prime} with smaller S and S^{\prime}.

■ Derive $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ from $\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)$.
\square Show that the size of the kernel depends on $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.

- Devise an FPT algorithm with respect to $d_{\text {SPR }}$.

Problem \& Plan

Theorem 4. [HJWZ '96, BS '05]
 Computing $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ is NP-hard.

Proof by reduction from Exact Cover by 3-Sets.

Plan.

- Construct kernel of the problem.
- Replace T and T^{\prime} with smaller S and S^{\prime}.

■ Derive $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ from $\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)$.
\square Show that the size of the kernel depends on $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.
■ Devise an FPT algorithm with respect to dSPR.
■ Sketch an approximation algorithm.

Kernelization - Subtrees

Common subtree reduction.

- Replace any subtree (with ≥ 2 leaves) that occurs identically in both trees by a single leaf with a new label.

Kernelization - Subtrees

Common subtree reduction.

- Replace any subtree (with ≥ 2 leaves) that occurs identically in both trees by a single leaf with a new label.

Kernelization - Subtrees

Common subtree reduction.

■ Replace any subtree (with ≥ 2 leaves) that occurs identically in both trees by a single leaf with a new label.

Kernelization - Subtrees

Common subtree reduction.

- Replace any subtree (with ≥ 2 leaves) that occurs identically in both trees by a single leaf with a new label.

Lemma 5. Applying the common subtree reduction is safe, i.e., $d_{S P R}\left(T, T^{\prime}\right)=d_{S P R}\left(S, S^{\prime}\right)$.

Kernelization - Subtrees

Common subtree reduction.

- Replace any subtree (with ≥ 2 leaves) that occurs identically in both trees by a single leaf with a new label.

Lemma 5. Applying the common subtree reduction is safe, i.e., $d_{S P R}\left(T, T^{\prime}\right)=d_{S P R}\left(S, S^{\prime}\right)$.

Proof.
Suppose

> is covered by two trees of MAF

Kernelization - Subtrees

Common subtree reduction.

- Replace any subtree (with ≥ 2 leaves) that occurs identically in both trees by a single leaf with a new label.

Lemma 5. Applying the common subtree reduction is safe, i.e., $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)$.

Kernelization - Chains

Chain reduction.

- Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

Kernelization - Chains

Chain reduction.

- Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

Kernelization - Chains

Chain reduction.

- Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

Kernelization - Chains

Chain reduction.

- Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

Lemma 6. Applying chain reduction is safe, i.e., $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)$.

Kernelization - Chains

Chain reduction.

■ Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

Lemma 6. Applying chain reduction is safe, i.e., $\operatorname{d}_{\operatorname{SPR}}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)$.

Proof.

\square Show there is a tree with abc-chain in a MAF of S and S^{\prime}.

- Swap abc-chain with original chain for MAF of T and T^{\prime}.

Kernelization - Chains

Chain reduction.

- Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

Lemma 6. Applying chain reduction is safe, i.e., $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)$.

Proof.

- Consider embedding of a MAF F into S.

Case 1

Kernelization - Chains

Chain reduction.

■ Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

Lemma 6. Applying chain reduction is safe, i.e., $\operatorname{d}_{\operatorname{SPR}}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)$.

Proof.

- Consider embedding of a MAF F into S.

Case 1

Kernelization - Chains

Chain reduction.

■ Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

Lemma 6. Applying chain reduction is safe, i.e., $\operatorname{d}_{\operatorname{SPR}}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)$.

Proof.

- Consider embedding of a MAF F into S.

Case 1

Kernelization - Chains

Chain reduction.

- Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

Lemma 6. Applying chain reduction is safe, i.e., $d_{S P R}\left(T, T^{\prime}\right)=d_{\operatorname{SPR}}\left(S, S^{\prime}\right)$.

Proof.

- Consider embedding of a MAF F into S.

Case 1

Kernelization - Chains

Chain reduction.

■ Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

Lemma 6. Applying chain reduction is safe, i.e., $d_{S P R}\left(T, T^{\prime}\right)=d_{\operatorname{SPR}}\left(S, S^{\prime}\right)$.

Proof.

- Consider embedding of a MAF F into S.

Kernelization - Chains

Chain reduction.

■ Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

Lemma 6. Applying chain reduction is safe, i.e., $d_{S P R}\left(T, T^{\prime}\right)=d_{\operatorname{SPR}}\left(S, S^{\prime}\right)$.

Proof.

- Consider embedding of a MAF F into S.

Case 2

Kernelization - Chains

Chain reduction.

■ Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

Lemma 6. Applying chain reduction is safe, i.e., $d_{S P R}\left(T, T^{\prime}\right)=d_{\operatorname{SPR}}\left(S, S^{\prime}\right)$.

Proof.

■ Consider embedding of a MAF F into S.

Case 3

Kernelization - Chains

Chain reduction.

■ Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

Lemma 6. Applying chain reduction is safe, i.e., $d_{S P R}\left(T, T^{\prime}\right)=d_{\operatorname{SPR}}\left(S, S^{\prime}\right)$.

Proof.

- Consider embedding of a MAF F into S.

Case 3

Kernelization - Chains

Chain reduction.

- Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

Why not using a chain of length ≤ 2 ?

Lemma 6. Applying chain reduction is safe, i.e., $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)$.

Kernelization - Chains

Chain reduction.

■ Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

Lemma 6. Applying chain reduction is safe, i.e., $\operatorname{d}_{\operatorname{SPR}}\left(T, T^{\prime}\right)=\operatorname{d}_{\operatorname{SPR}}\left(S, S^{\prime}\right)$.

Why not using a chain of length ≤ 2 ?

Kernelization - Chains

Chain reduction.

■ Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

Lemma 6. Applying chain reduction is safe, i.e., $\operatorname{d}_{\operatorname{SPR}}\left(T, T^{\prime}\right)=d_{\operatorname{SPR}}\left(S, S^{\prime}\right)$.

Why not using a chain of length ≤ 2 ?

Kernel Size

Lemma 7.

Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules. Let S and S^{\prime} be on X^{\prime}. Then

$$
\left|X^{\prime}\right| \leq 28 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)
$$

Kernel Size

Lemma 7.
 Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules. Let S and S^{\prime} be on X^{\prime}. Then
 $$
\left|X^{\prime}\right| \leq 28 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)
$$

Proof. Let $F=\left\{T_{\rho}, T_{1}, \ldots, T_{k}\right\}$ be MAF for S and S^{\prime}.

Kernel Size

Lemma 7.

Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules. Let S and S^{\prime} be on X^{\prime}. Then

$$
\left|X^{\prime}\right| \leq 28 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)
$$

Proof. Let $F=\left\{T_{\rho}, T_{1}, \ldots, T_{k}\right\}$ be MAF for S and S^{\prime}.
Let $\mathrm{n}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S\right\} \mid$.

Kernel Size

Lemma 7.

Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules. Let S and S^{\prime} be on X^{\prime}. Then

$$
\left|X^{\prime}\right| \leq 28 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)
$$

Proof. Let $F=\left\{T_{\rho}, T_{1}, \ldots, T_{k}\right\}$ be MAF for S and S^{\prime}.
Let $\mathrm{n}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S\right\} \mid$.
Similarly, let $\mathrm{n}^{\prime}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S^{\prime}\right\} \mid$.

Kernel Size

Lemma 7.

Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules. Let S and S^{\prime} be on X^{\prime}.

> We know
> $k=\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.

$$
\left|X^{\prime}\right| \leq 28 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)
$$

Proof. Let $F=\left\{T_{\rho}, T_{1}, \ldots, T_{k}\right\}$ be MAF for S and S^{\prime}.
Let $\mathrm{n}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S\right\} \mid$.
Similarly, let $\mathrm{n}^{\prime}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S^{\prime}\right\} \mid$.
Claim 1. $\sum_{i=\rho}^{k}\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right) \leq 4 k$.

Kernel Size

Lemma 7.

Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules. Let S and S^{\prime} be on X^{\prime}.

> We know
> $k=\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.

$$
\left|X^{\prime}\right| \leq 28 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)
$$

Proof. Let $F=\left\{T_{\rho}, T_{1}, \ldots, T_{k}\right\}$ be MAF for S and S^{\prime}.
Let $\mathrm{n}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S\right\} \mid$.
Similarly, let $\mathrm{n}^{\prime}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S^{\prime}\right\} \mid$.
Claim 1. $\sum_{i=\rho}^{k}\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right) \leq 4 k$.

Kernel Size

Lemma 7.

Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules. Let S and S^{\prime} be on X^{\prime}.

> We know
> $k=\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.

$$
\left|X^{\prime}\right| \leq 28 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)
$$

Proof. Let $F=\left\{T_{\rho}, T_{1}, \ldots, T_{k}\right\}$ be MAF for S and S^{\prime}.
Let $\mathrm{n}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S\right\} \mid$.
Similarly, let $\mathrm{n}^{\prime}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S^{\prime}\right\} \mid$.
Claim 1. $\sum_{i=\rho}^{k}\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right) \leq 4 k$.

Kernel Size

Lemma 7.

Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules. Let S and S^{\prime} be on X^{\prime}.

> We know
> $k=\mathrm{d}_{\operatorname{SPR}}\left(S, S^{\prime}\right)=\mathrm{d}_{\operatorname{SPR}}\left(T, T^{\prime}\right)$.

$$
\left|X^{\prime}\right| \leq 28 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)
$$

Proof. Let $F=\left\{T_{\rho}, T_{1}, \ldots, T_{k}\right\}$ be MAF for S and S^{\prime}.
Let $\mathrm{n}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S\right\} \mid$.
Similarly, let $\mathrm{n}^{\prime}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S^{\prime}\right\} \mid$.
Claim 1. $\sum_{i=\rho}^{k}\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right) \leq 4 k$.

$$
|V(H)|=k+1
$$

Kernel Size

Lemma 7.

Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules. Let S and S^{\prime} be on X^{\prime}.

> We know
> $k=\mathrm{d}_{\operatorname{SPR}}\left(S, S^{\prime}\right)=\mathrm{d}_{\operatorname{SPR}}\left(T, T^{\prime}\right)$.

$$
\left|X^{\prime}\right| \leq 28 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)
$$

Proof. Let $F=\left\{T_{\rho}, T_{1}, \ldots, T_{k}\right\}$ be MAF for S and S^{\prime}.
Let $\mathrm{n}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S\right\} \mid$.
Similarly, let $\mathrm{n}^{\prime}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S^{\prime}\right\} \mid$.
Claim 1. $\sum_{i=\rho}^{k}\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right) \leq 4 k$.

$$
\begin{aligned}
|V(H)| & =k+1 \\
& =|E(H)|+1
\end{aligned}
$$

Kernel Size

Lemma 7.

Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules. Let S and S^{\prime} be on X^{\prime}.

> We know
> $k=\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.

$$
\left|X^{\prime}\right| \leq 28 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)
$$

Proof. Let $F=\left\{T_{\rho}, T_{1}, \ldots, T_{k}\right\}$ be MAF for S and S^{\prime}.
Let $\mathrm{n}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S\right\} \mid$.
Similarly, let $\mathrm{n}^{\prime}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S^{\prime}\right\} \mid$.
Claim 1. $\sum_{i=\rho}^{k}\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right) \leq 4 k$.

$$
\begin{aligned}
|V(H)| & =k+1 \\
& =|E(H)|+1 \\
\sum_{i=\rho}^{k} \mathrm{n}\left(T_{i}\right) & =2|E(H)| \leq 2 k
\end{aligned}
$$

Kernel Size

Lemma 7.

Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules. Let S and S^{\prime} be on X^{\prime}.

> We know
> $k=\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.

$$
\left|X^{\prime}\right| \leq 28 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)
$$

Proof. Let $F=\left\{T_{\rho}, T_{1}, \ldots, T_{k}\right\}$ be MAF for S and S^{\prime}.
Let $\mathrm{n}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S\right\} \mid$.
Similarly, let $\mathrm{n}^{\prime}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S^{\prime}\right\} \mid$.
Claim 1. $\sum_{i=\rho}^{k}\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right) \leq 4 k$.
Claim 2. \# leaves of $T_{i} \leq 7\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right)$.

Kernel Size

Lemma 7.

Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules. Let S and S^{\prime} be on X^{\prime}.

> We know
> $k=\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.

$$
\left|X^{\prime}\right| \leq 28 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)
$$

Proof. Let $F=\left\{T_{\rho}, T_{1}, \ldots, T_{k}\right\}$ be MAF for S and S^{\prime}.
Let $\mathrm{n}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S\right\} \mid$.
Similarly, let $\mathrm{n}^{\prime}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S^{\prime}\right\} \mid$.
Claim 1. $\sum_{i=\rho}^{k}\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right) \leq 4 k$.
Claim 2. \# leaves of $T_{i} \leq 7\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right)$.

Kernel Size

Lemma 7.

Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules. Let S and S^{\prime} be on X^{\prime}.

```
We know
k= d
```

$$
\left|X^{\prime}\right| \leq 28 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)
$$

Proof. Let $F=\left\{T_{\rho}, T_{1}, \ldots, T_{k}\right\}$ be MAF for S and S^{\prime}.
Let $\mathrm{n}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S\right\} \mid$.
Similarly, let $\mathrm{n}^{\prime}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S^{\prime}\right\} \mid$.
Claim 1. $\sum_{i=\rho}^{k}\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right) \leq 4 k$.
Claim 2. \# leaves of $T_{i} \leq 7\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right)$.

Kernel Size

Lemma 7.

Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules. Let S and S^{\prime} be on X^{\prime}.

```
We know
k= d
```

$$
\left|X^{\prime}\right| \leq 28 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)
$$

Proof. Let $F=\left\{T_{\rho}, T_{1}, \ldots, T_{k}\right\}$ be MAF for S and S^{\prime}.
Let $\mathrm{n}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S\right\} \mid$.
Similarly, let $\mathrm{n}^{\prime}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S^{\prime}\right\} \mid$.
Claim 1. $\sum_{i=\rho}^{k}\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right) \leq 4 k$.
Claim 2. \# leaves of $T_{i} \leq 7\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right)$.

Kernel Size

Lemma 7.

Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules. Let S and S^{\prime} be on X^{\prime}.

> We know
> $k=\mathrm{d}_{\operatorname{SPR}}\left(S, S^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.

$$
\left|X^{\prime}\right| \leq 28 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)
$$

Proof. Let $F=\left\{T_{\rho}, T_{1}, \ldots, T_{k}\right\}$ be MAF for S and S^{\prime}.
Let $\mathrm{n}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S\right\} \mid$.
Similarly, let $\mathrm{n}^{\prime}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S^{\prime}\right\} \mid$.
Claim 1. $\sum_{i=\rho}^{k}\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right) \leq 4 k$.
Claim 2. \# leaves of $T_{i} \leq 7\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right)$.

Kernel Size

Lemma 7.

Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules. Let S and S^{\prime} be on X^{\prime}.

> We know
> $k=\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.

$$
\left|X^{\prime}\right| \leq 28 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)
$$

Proof. Let $F=\left\{T_{\rho}, T_{1}, \ldots, T_{k}\right\}$ be MAF for S and S^{\prime}.
Let $\mathrm{n}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S\right\} \mid$.
Similarly, let $\mathrm{n}^{\prime}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S^{\prime}\right\} \mid$.
Claim 1. $\sum_{i=\rho}^{k}\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right) \leq 4 k$.
Claim 2. \# leaves of $T_{i} \leq 7\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right)$.

Kernel Size

Lemma 7.

Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules. Let S and S^{\prime} be on X^{\prime}.

```
We know
\(k=d_{\operatorname{SPR}}\left(S, S^{\prime}\right)=\mathrm{d}_{\operatorname{SPR}}\left(T, T^{\prime}\right)\).
```

$$
\left|X^{\prime}\right| \leq 28 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)
$$

Proof. Let $F=\left\{T_{\rho}, T_{1}, \ldots, T_{k}\right\}$ be MAF for S and S^{\prime}.
Let $\mathrm{n}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S\right\} \mid$.
Similarly, let $\mathrm{n}^{\prime}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S^{\prime}\right\} \mid$.
Claim 1. $\sum_{i=\rho}^{k}\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right) \leq 4 k$.
Claim 2. \# leaves of $T_{i} \leq 7\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right)$.

Kernel Size

Lemma 7.

Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules. Let S and S^{\prime} be on X^{\prime}.

```
We know
\(k=d_{\operatorname{SPR}}\left(S, S^{\prime}\right)=\mathrm{d}_{\operatorname{SPR}}\left(T, T^{\prime}\right)\).
```

$$
\left|X^{\prime}\right| \leq 28 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)
$$

Proof. Let $F=\left\{T_{\rho}, T_{1}, \ldots, T_{k}\right\}$ be MAF for S and S^{\prime}.
Let $\mathrm{n}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S\right\} \mid$.
Similarly, let $\mathrm{n}^{\prime}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S^{\prime}\right\} \mid$.
Claim 1. $\sum_{i=\rho}^{k}\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right) \leq 4 k$.
Claim 2. \# leaves of $T_{i} \leq 7\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right)$.

Kernel Size

Lemma 7.

Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules. Let S and S^{\prime} be on X^{\prime}.

> We know
> $k=\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.

$$
\left|X^{\prime}\right| \leq 28 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)
$$

Proof. Let $F=\left\{T_{\rho}, T_{1}, \ldots, T_{k}\right\}$ be MAF for S and S^{\prime}.
Let $\mathrm{n}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S\right\} \mid$.
Similarly, let $\mathrm{n}^{\prime}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S^{\prime}\right\} \mid$.
Claim 1. $\sum_{i=\rho}^{k}\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right) \leq 4 k$.

$$
\left|X^{\prime}\right|=\sum_{i=\rho}^{k} \# \text { leaves of } T_{i}
$$

Claim 2. \# leaves of $T_{i} \leq 7\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right)$.

Kernel Size

Lemma 7.

Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules. Let S and S^{\prime} be on X^{\prime}.

> We know
> $k=\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.

$$
\left|X^{\prime}\right| \leq 28 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)
$$

Proof. Let $F=\left\{T_{\rho}, T_{1}, \ldots, T_{k}\right\}$ be MAF for S and S^{\prime}.
Let $\mathrm{n}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S\right\} \mid$.
Similarly, let $\mathrm{n}^{\prime}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S^{\prime}\right\} \mid$.
Claim 1. $\sum_{i=\rho}^{k}\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right) \leq 4 k$.

$$
\left|X^{\prime}\right|=\sum_{i=\rho}^{k} \# \text { leaves of } T_{i}
$$

Claim 2. \# leaves of $T_{i} \leq 7\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right)$.

$$
\leq \sum_{i=\rho}^{k} 7\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right)
$$

Kernel Size

Lemma 7.

Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules. Let S and S^{\prime} be on X^{\prime}.

> We know
> $k=\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.

$$
\left|X^{\prime}\right| \leq 28 \mathrm{~d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)
$$

Proof. Let $F=\left\{T_{\rho}, T_{1}, \ldots, T_{k}\right\}$ be MAF for S and S^{\prime}.
Let $\mathrm{n}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S\right\} \mid$.
Similarly, let $\mathrm{n}^{\prime}\left(T_{i}\right):=\mid\left\{T_{j} \mid T_{j} \in F \wedge T_{i}\right.$ and T_{j} touch in $\left.S^{\prime}\right\} \mid$.
Claim 1. $\sum_{i=\rho}^{k}\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right) \leq 4 k$.

$$
\left|X^{\prime}\right|=\sum_{i=\rho}^{k} \# \text { leaves of } T_{i}
$$

Claim 2. \# leaves of $T_{i} \leq 7\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right)$.

$$
\begin{gathered}
\leq \sum_{i=\rho}^{k} 7\left(\mathrm{n}\left(T_{i}\right)+\mathrm{n}^{\prime}\left(T_{i}\right)\right) \\
\leq 28 k
\end{gathered}
$$

FPT Algorithm

Theorem 8.

Computing $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ is fixed-parameter tractable when parameterized by $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.

FPT Algorithm

Theorem 8.

Computing $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ is fixed-parameter tractable when parameterized by $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.

Proof.

\square Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules.

- Let S and S^{\prime} be on X^{\prime} and let $k=\mathrm{d}_{\operatorname{SPR}}\left(S, S^{\prime}\right)$.

FPT Algorithm

Theorem 8.

Computing $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ is fixed-parameter tractable when parameterized by $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.

Proof.

\square Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules.

- Let S and S^{\prime} be on X^{\prime} and let $k=\mathrm{d}_{\operatorname{SPR}}\left(S, S^{\prime}\right)$.

■ S has at most $4\left|X^{\prime}\right|^{2}$ neighbors in the SPR-graph G.

FPT Algorithm

Theorem 8.

Computing $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ is fixed-parameter tractable when parameterized by $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.

Proof.

■ Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules.

- Let S and S^{\prime} be on X^{\prime} and let $k=\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)$.

■ S has at most $4\left|X^{\prime}\right|^{2}$ neighbors in the SPR-graph G.

- S has less than $2\left|X^{\prime}\right|$ edges to cut and to attach to.

FPT Algorithm

Theorem 8.

Computing $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ is fixed-parameter tractable when parameterized by $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.

Proof.

■ Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules.

- Let S and S^{\prime} be on X^{\prime} and let $k=\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)$.

■ S has at most $4\left|X^{\prime}\right|^{2}$ neighbors in the SPR-graph G.

- S has less than $2\left|X^{\prime}\right|$ edges to cut and to attach to.

■ Length- k BFS from S visits at most $O\left(\left(4\left|X^{\prime}\right|^{2}\right)^{k}\right)=O\left((56 k)^{2 k}\right)$ trees.

FPT Algorithm

Theorem 8.

Computing $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ is fixed-parameter tractable when parameterized by $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.

Proof.

■ Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules.

- Let S and S^{\prime} be on X^{\prime} and let $k=\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)$.

■ S has at most $4\left|X^{\prime}\right|^{2}$ neighbors in the SPR-graph G.

- S has less than $2\left|X^{\prime}\right|$ edges to cut and to attach to.

■ Length- k BFS from S visits at most $O\left(\left(4\left|X^{\prime}\right|^{2}\right)^{k}\right)=O\left((56 k)^{2 k}\right)$ trees.

FPT Algorithm

Theorem 8.

Computing $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$ is fixed-parameter tractable when parameterized by $\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$.

Proof.

- Reduce T and T^{\prime} to S and S^{\prime} by exhaustively applying the reduction rules.
- Let S and S^{\prime} be on X^{\prime} and let $k=\mathrm{d}_{\mathrm{SPR}}\left(S, S^{\prime}\right)$.

■ S has at most $4\left|X^{\prime}\right|^{2}$ neighbors in the SPR-graph G.

- S has less than $2\left|X^{\prime}\right|$ edges to cut and to attach to.

■ Length- k BFS from S visits at most $O\left(\left(4\left|X^{\prime}\right|^{2}\right)^{k}\right)=O\left((56 k)^{2 k}\right)$ trees.
■ Since $k=\mathrm{d}_{\operatorname{SPR}}\left(S, S^{\prime}\right)=\mathrm{d}_{\mathrm{SPR}}\left(T, T^{\prime}\right)$, this yields an FPT algorithm.

Approximation Algorithm

Idea.

- Given trees T and T^{\prime}, which are reduced by the previous rules, we compute an agreement forest F by

■ successively making "cuts" and "eliminations".
■ These steps let T and T^{\prime} shrink further and further.

- Show that $|F|$ is at most $3\left|F^{*}\right|$, where F^{*} is a MAF of T and T^{\prime}.

Approximation Algorithm

APPROXDS
$i \leftarrow 1$
$G_{i} \leftarrow T$
$H_{i} \leftarrow T^{\prime}$
while \exists pair of sibling leaves a and b in G_{i} do
\square
return $\left|H_{i}\right|-1$

Approximation Algorithm

```
APPROXDSPR \(\left(T, T^{\prime}\right)\)
    \(i \leftarrow 1\)
        \(G_{i} \leftarrow T\)
        \(H_{i} \leftarrow T^{\prime}\)
        while \(\exists\) pair of sibling leaves \(a\) and \(b\) in \(G_{i}\) do
    L
return \(\left|H_{i}\right|-1\)
```


Approximation Algorithm

```
\(\operatorname{APPROXDSPR}\left(T, T^{\prime}\right)\)
    \(i \leftarrow 1\)
        \(G_{i} \leftarrow T\)
        \(H_{i} \leftarrow T^{\prime}\)
        while \(\exists\) pair of sibling leaves \(a\) and \(b\) in \(G_{i}\) do
        find the case that applies to \(a\) and \(b\) in \(H_{i}\)
```



```
return \(\left|H_{i}\right|-1\)
```


Approximation Algorithm

APPROXDS
$i \leftarrow 1$
$G_{i} \leftarrow T$
$H_{i} \leftarrow T^{\prime}$
while \exists pair of sibling leaves a and b in G_{i} do find the case that applies to a and b in H_{i}

return $\left|H_{i}\right|-1$
Case 1

Approximation Algorithm

APPROXDS
$i \leftarrow 1$
$G_{i} \leftarrow T$
$H_{i} \leftarrow T^{\prime}$
while \exists pair of sibling leaves a and b in G_{i} do find the case that applies to a and b in H_{i}

return $\left|H_{i}\right|-1$

Case 2

Approximation Algorithm

APPROXDS
$i \leftarrow 1$
$G_{i} \leftarrow T$
$H_{i} \leftarrow T^{\prime}$
while \exists pair of sibling leaves a and b in G_{i} do find the case that applies to a and b in H_{i}

return $\left|H_{i}\right|-1$

Case 1
Case 2
${ }_{a}^{0} \Delta \Delta \Delta \Delta \Delta_{b}^{\circ}$

Case 3

Approximation Algorithm

APPROXDS
$i \leftarrow 1$
$G_{i} \leftarrow T$
$H_{i} \leftarrow T^{\prime}$
while \exists pair of sibling leaves a and b in G_{i} do find the case that applies to a and b in H_{i}

return $\left|H_{i}\right|-1$
Case 1
Case 2
Case 3
Case 4

Approximation Algorithm

APPROXDS
$i \leftarrow 1$
$G_{i} \leftarrow T$
$H_{i} \leftarrow T^{\prime}$
while \exists pair of sibling leaves a and b in G_{i} do find the case that applies to a and b in H_{i}
 apply the corresponding modification to obtain G_{i+1} from G_{i} and H_{i+1} from H_{i} $i++$
return $\left|H_{i}\right|-1$

Case 1
Case 2
Case 3

Case 4

Approximation Algorithm - Example

Approximation Algorithm - Example

Approximation Algorithm - Example

■ Should we cut off leaf 1 or leaf 2 or everything between them in H_{1} ?

Approximation Algorithm - Example

Case 2

■ Should we cut off leaf 1 or leaf 2 or everything between them in H_{1} ?
■ Do parts of each!

Approximation Algorithm - Example

Case 2

■ Should we cut off leaf 1 or leaf 2 or everything between them in H_{1} ?
■ Do parts of each!

Approximation Algorithm - Example

Approximation Algorithm - Example

Case 1
■ If the same "cherry" (i.e., pair of leaves) occurs in G_{i} and H_{i}, we simply reduce it.

Approximation Algorithm - Example

H_{3}

Case 1
■ If the same "cherry" (i.e., pair of leaves) occurs in G_{i} and H_{i}, we simply reduce it.

Approximation Algorithm - Example

H_{3}

$\begin{array}{lll}\text { ㅁ } & \text { ㅁ } & \text { ㅁ } \\ 0 & 0 & 0 \\ 1 & 2 & 5\end{array}$

Case 4

- Leaf b is the only leaf of a tree in H_{i}.
- Cut off b in G_{i}.

Approximation Algorithm - Example

H_{4}

■ Return 3.

\square	\square	\square
0	0	0
1	2	5

Approximation Algorithm - Analysis
Case
G_{i}
H_{i}
$\leadsto G_{i+1}$
H_{i+1}
Cost
1

$\stackrel{\downarrow}{c}$
b
c

Approximation Algorithm - Analysis

Case	G_{i}	H_{i}	\triangle	G_{i+1}	H_{i+1}	Cost
1				$\begin{aligned} & \vdots \\ & c \end{aligned}$	$\underset{c}{\downarrow}$	no mistake

Approximation Algorithm - Analysis
Case $\quad G_{i}$
H_{i}
$\leadsto G_{i+1}$
H_{i+1}
Cost
$2 \xrightarrow[a]{2}$

Approximation Algorithm - Analysis
Case G_{i}
H_{i}
$\leadsto G_{i+1}$
H_{i+1}
Cost
no
mistake
2

3 cuts
$1+$ good

Approximation Algorithm - Analysis
Case
G_{i}
H_{i}
$\leadsto G_{i+1}$
H_{i+1}
Cost
no
mistake
2

 3 cuts
$1+$ good
3

Approximation Algorithm - Analysis
Case
G_{i}
H_{i}
$\leadsto G_{i+1}$
H_{i+1}
Cost
1

no mistake
2

3 cuts $1+$ good

2 cuts
$1+$ good

Approximation Algorithm - Analysis
Case
G_{i}
H_{i}
$\leadsto G_{i+1}$
H_{i+1}
Cost
no
mistake
2

3 cuts $1+$ good
${ }_{a}^{\circ}{ }_{a}^{0}{ }_{b}^{o^{\circ}}{ }^{d}$
2 cuts
$1+\operatorname{good}$
4

I
b

Approximation Algorithm - Analysis
Case
G_{i}
1
H_{i}
$\leadsto G_{i+1}$

$$
H_{i+1}
$$

Cost

3 cuts
2

2 cuts
$1+\operatorname{good}$
4

a
b
1 cut 1 good

Approximation Algorithm - Analysis
Case $\quad G_{i}$
1
H_{i}
$\leadsto G_{i+1}$
H_{i+1}
Cost

no
mistake
2

3 cuts $1+$ good
2 cuts
$1+\operatorname{good}$
4

I
b
1 cut
1 good

Discussion

Kernelization.

- Kernelization is an important technique to construct FPT algorithms.

■ Result important since SPR-distance small in practice.
■ Reduction rules actually give a kernel of size at most $15 k-9$ (we have shown $28 k$).

- With further reduction rules, we can get a size below $11 k-9$. [KL '18]

■ Divide \& conquer techniques can (in practice) further reduce the problem sizes. [LS '11]

Discussion

Kernelization.

- Kernelization is an important technique to construct FPT algorithms.

■ Result important since SPR-distance small in practice.
■ Reduction rules actually give a kernel of size at most $15 k-9$ (we have shown $28 k$).

- With further reduction rules, we can get a size below $11 k-9$. [KL '18]

■ Divide \& conquer techniques can (in practice) further reduce the problem sizes. [LS '11]

Approximation algorithm.

- There exists a 2-approximation algorithms for the SPR-distance with a running time in $\mathcal{O}\left(n^{3}\right)$. [CHW '17]

Discussion

Phylogenetic trees

■ There are other classes of phylogenetic trees: unrooted non-binary, ranked, ...

- Trees can be generalized to phylogenetic networks, which can also have indegree 2 outdegree 1 vertices.

Phylogenetic trees.

- There are other classes of phylogenetic trees: unrooted, non-binary, ranked, ...
- Trees can be generalized to phylogenetic networks, which can also have indegree 2 outdegree 1 vertices.

Maximum Agreement Forests.

- Reframing (characterizing) a problem in a different way, can sometimes make your life a lot easier.

■ MAF can be generalized to Maximum Agreement Graphs, but these do not characterize the SPR-distance of networks anymore. [K '20]

Literature

Original papers:
■ [BS '05] Semple C., Bordewich M.: On the computational complexity of the rooted subtree prune and regraft distance (for SPR, MAF, characterisation, fpt, divide \& conquer)

■ [HJWZ '96] Hein J., Jiang T., Wang L., Zhang K.: On the complexity of comparing evolutionary trees (for NP-hardness proof)

■ [RSW '06] Rodrigues E. M., Sagot M.-F., Wakabayashi Y.: The maximum agreement forest problem: Approximation algorithms and computational experiments (for approx. algorithm)

Referenced papers:
■ [CHW '17] Chen Z., Harada Y., Wang L.: A new 2-approximation algorithm for rSPR distance

- [K '20] Klawitter J.: The agreement distance of unrooted phylogenetic networks
- [KL '19] Kelk S., Linz. S.: New reduction rules for the tree bisection and reconnection distance

■ [LS '11] Linz S., Semple C.: A cluster reduction for computing the subtree distance between phylogenies

