
1

Advanced Algorithms

Rearrangement Distance of Phylogenetic Trees

Johannes Zink · WS22

. . .

Kernelization, FPT, Approximation Algorithm

2 - 1

Phylogenetic Trees

... represent the evolutionary history of a set of taxa.

Kingfishers (German: Eisvögel)
by McCullough et al. (2016)

2 - 2

Phylogenetic Trees

... represent the evolutionary history of a set of taxa.

Tree of Life
www.evogeneao.com

(2017)

2 - 3

Phylogenetic Trees

... represent the evolutionary history of a set of taxa.

Tree of Life
www.evogeneao.com

(2017) Phylogenetic tree of the
Indo-European languages

by Chang & Chundra
(2015)

2 - 4

Phylogenetic Trees

... represent the evolutionary history of a set of taxa.

Kingfishers (German: Eisvögel)
by McCullough et al. (2016)

Properties (in the biological sense):

2 - 5

Phylogenetic Trees

... represent the evolutionary history of a set of taxa.

Kingfishers (German: Eisvögel)
by McCullough et al. (2016)

� Leaves are labelled with taxa.

� Each taxon represents a species, population,
individual organism, gene, chromosome, . . .

� Edge length represents an amount of time
passed or a genetic distance.

� Inference methods compute a phylogenetic
tree based on some model and data.

Properties (in the biological sense):

2 - 6

Phylogenetic Trees

... represent the evolutionary history of a set of taxa.

Kingfishers (German: Eisvögel)
by McCullough et al. (2016)

� Leaves are labelled with taxa.

� Each taxon represents a species, population,
individual organism, gene, chromosome, . . .

� Edge length represents an amount of time
passed or a genetic distance.

� Inference methods compute a phylogenetic
tree based on some model and data.

Properties (in the biological sense):

2 - 7

Phylogenetic Trees

... represent the evolutionary history of a set of taxa.

Kingfishers (German: Eisvögel)
by McCullough et al. (2016)

� Leaves are labelled with taxa.

� Each taxon represents a species, population,
individual organism, gene, chromosome, . . .

� Edge length represents an amount of time
passed or a genetic distance.

� Inference methods compute a phylogenetic
tree based on some model and data.

Properties (in the biological sense):

3 - 1

Phylogenetic Trees

Let X = {1, 2, 3, . . . , n}.
A (rooted, binary) phylogenetic tree T
is a rooted tree with the following
properties:
� The unique root is labeled ρ and has

outdegree 1.

� The leaves are bijectively labeled by X.

� All other vertices have indegree 1 and
outdegree 2 (i.e., it is a binary tree).

T

3 - 2

Phylogenetic Trees

Let X = {1, 2, 3, . . . , n}.
A (rooted, binary) phylogenetic tree T
is a rooted tree with the following
properties:
� The unique root is labeled ρ and has

outdegree 1.

� The leaves are bijectively labeled by X.

� All other vertices have indegree 1 and
outdegree 2 (i.e., it is a binary tree).

T
ρ

root

3 - 3

Phylogenetic Trees

1 2 3 4 5 6

Let X = {1, 2, 3, . . . , n}.
A (rooted, binary) phylogenetic tree T
is a rooted tree with the following
properties:
� The unique root is labeled ρ and has

outdegree 1.

� The leaves are bijectively labeled by X.

� All other vertices have indegree 1 and
outdegree 2 (i.e., it is a binary tree).

T
ρ

root

leaf

3 - 4

Phylogenetic Trees

1 2 3 4 5 6

Let X = {1, 2, 3, . . . , n}.
A (rooted, binary) phylogenetic tree T
is a rooted tree with the following
properties:
� The unique root is labeled ρ and has

outdegree 1.

� The leaves are bijectively labeled by X.

� All other vertices have indegree 1 and
outdegree 2 (i.e., it is a binary tree).

T
ρ

root

leaf

inner tree
vertex

3 - 5

Phylogenetic Trees

1 2 3 4 5 6

Let X = {1, 2, 3, . . . , n}.
A (rooted, binary) phylogenetic tree T
is a rooted tree with the following
properties:
� The unique root is labeled ρ and has

outdegree 1.

� The leaves are bijectively labeled by X.

� All other vertices have indegree 1 and
outdegree 2 (i.e., it is a binary tree).

T
ρ

root

leaf

inner tree
vertex

Remarks. Here, in our definition
� vertices have no heights and

� the order of the children of a vertex
does not matter. 1 2 3

ρ

2
1

3

ρ

=

4 - 1

Problem

For the same taxa, we may infer different
phylogenetic trees because of the use of
� different inference methods,

� different models, or

� different data.

1 2 3

ρ
T

4 5 2 3

ρ
T′

45 1

4 - 2

Problem

We want to be able to compare
different phylogenetic trees.
How?

For the same taxa, we may infer different
phylogenetic trees because of the use of
� different inference methods,

� different models, or

� different data.

1 2 3

ρ
T

4 5 2 3

ρ
T′

45 1

4 - 3

Problem

We want to be able to compare
different phylogenetic trees.
How?

For the same taxa, we may infer different
phylogenetic trees because of the use of
� different inference methods,

� different models, or

� different data.

1 2 3

ρ
T

4 5 2 3

ρ
T′

45 1

Goal.
Define a metric that specifies how similar
two phylogenetic trees on the same set X
are and devise algorithms to compute it.

4 - 4

Problem

We want to be able to compare
different phylogenetic trees.
How?

For the same taxa, we may infer different
phylogenetic trees because of the use of
� different inference methods,

� different models, or

� different data.

1 2 3

ρ
T

4 5 2 3

ρ
T′

45 1

Goal.
Define a metric that specifies how similar
two phylogenetic trees on the same set X
are and devise algorithms to compute it.

Defintion:
A metric d is a function of two
parameters such that:

� d(x, x) = 0 (no distance to itself)
� d(x, y) > 0 for x 6= y (positive)
� d(x, y) = d(y, x) (symmetric)
� d(x, z) ≤ d(x, y) + d(y, z)

(triangle inequality holds)

4 - 5

Problem

We want to be able to compare
different phylogenetic trees.
How?

For the same taxa, we may infer different
phylogenetic trees because of the use of
� different inference methods,

� different models, or

� different data.

1 2 3

ρ
T

4 5 2 3

ρ
T′

45 1

Goal.
Define a metric that specifies how similar
two phylogenetic trees on the same set X
are and devise algorithms to compute it.

Idea.
Count the number of rearrangement
operations that are necessary to
transform T into T′.

5 - 1

Subtree Prune & Regraft (SPR)

1 2 3 4 5

T

An SPR operation transforms one phylogenetic tree into another one.

ρ

5 - 2

Subtree Prune & Regraft (SPR)

1 2 3 4 5

T

subtree

An SPR operation transforms one phylogenetic tree into another one.

ρ

5 - 3

Subtree Prune & Regraft (SPR)

1 2 3 4 5

T

1 2 3 4 5

prunesubtree

An SPR operation transforms one phylogenetic tree into another one.

ρ ρ

5 - 4

Subtree Prune & Regraft (SPR)

1 2 3 4 5

T

1 2 3 4 5

prunesubtree

An SPR operation transforms one phylogenetic tree into another one.

ρ ρ

5 - 5

Subtree Prune & Regraft (SPR)

1 2 3 4 5

T

1 2 3 4 5

prune regraftsubtree

An SPR operation transforms one phylogenetic tree into another one.

ρ ρ

5 - 6

Subtree Prune & Regraft (SPR)

1 2 3 4 5

T

1 2 3 4 5

prune regraft

1 2 34 5

T′

subtree

An SPR operation transforms one phylogenetic tree into another one.

ρ ρ ρ

5 - 7

Subtree Prune & Regraft (SPR)

1 2 3 4 5

T

1 2 3 4 5

prune regraft

1 2 34 5

T′

subtree

SPR

An SPR operation transforms one phylogenetic tree into another one.

ρ ρ ρ

5 - 8

Subtree Prune & Regraft (SPR)

1 2 3 4 5

T

1 2 3 4 5

prune regraft

1 2 34 5

T′

subtree

SPR

An SPR operation transforms one phylogenetic tree into another one.

� Note that an SPR operation is reversible.

ρ ρ ρ

6 - 1

SPR-Graph

The SPR operations induce the SPR-graph G = (V, E) for a set X:

6 - 2

SPR-Graph

� V = {T | T is a phylogenetic tree on X}
� E = {{T, T′} | T can be transformed into T′ with a single SPR operation}

The SPR operations induce the SPR-graph G = (V, E) for a set X:

1 2 3 4

1 3 2 4

1 2 3 4 1 3 2 4

2 4 3 1

3 4 2 1

. . .

6 - 3

SPR-Graph

� V = {T | T is a phylogenetic tree on X}
� E = {{T, T′} | T can be transformed into T′ with a single SPR operation}

The SPR operations induce the SPR-graph G = (V, E) for a set X:

1 2 3 4

1 3 2 4

1 2 3 4 1 3 2 4

2 4 3 1

3 4 2 1

. . .

7 - 1

SPR-Distance

The SPR-distance dSPR(T, T′) of T and T′ is defined as
the distance of T and T′ in the SPR-graph G.

1 2 3 4

1 3 2 4

1 2 3 4 1 3 2 4

2 4 3 1

3 4 2 1

. . .

7 - 2

SPR-Distance

The SPR-distance dSPR(T, T′) of T and T′ is defined as
the distance of T and T′ in the SPR-graph G.

Lemma 1.
The SPR-graph G is connected.

7 - 3

SPR-Distance

The SPR-distance dSPR(T, T′) of T and T′ is defined as
the distance of T and T′ in the SPR-graph G.

Proof exercise

Lemma 1.
The SPR-graph G is connected.

7 - 4

SPR-Distance

The SPR-distance dSPR(T, T′) of T and T′ is defined as
the distance of T and T′ in the SPR-graph G.

Proof exercise

Lemma 2.
The SPR-distance is a metric.

Lemma 1.
The SPR-graph G is connected.

7 - 5

SPR-Distance

The SPR-distance dSPR(T, T′) of T and T′ is defined as
the distance of T and T′ in the SPR-graph G.

Proof exercise

Lemma 2.
The SPR-distance is a metric.

Lemma 1.
The SPR-graph G is connected.

Defintion:
A metric d is a function of two
parameters such that:

� d(x, x) = 0 (no distance to itself)
� d(x, y) > 0 for x 6= y (positive)
� d(x, y) = d(y, x) (symmetric)
� d(x, z) ≤ d(x, y) + d(y, z)

(triangle inequality holds)

7 - 6

SPR-Distance

Proof. G is connected and undirected.

The SPR-distance dSPR(T, T′) of T and T′ is defined as
the distance of T and T′ in the SPR-graph G.

Proof exercise

Lemma 2.
The SPR-distance is a metric.

Lemma 1.
The SPR-graph G is connected.

Defintion:
A metric d is a function of two
parameters such that:

� d(x, x) = 0 (no distance to itself)
� d(x, y) > 0 for x 6= y (positive)
� d(x, y) = d(y, x) (symmetric)
� d(x, z) ≤ d(x, y) + d(y, z)

(triangle inequality holds)

7 - 7

SPR-Distance

Proof. G is connected and undirected.

The SPR-distance dSPR(T, T′) of T and T′ is defined as
the distance of T and T′ in the SPR-graph G.

Proof exercise

Lemma 2.
The SPR-distance is a metric.

Lemma 1.
The SPR-graph G is connected.

Defintion:
A metric d is a function of two
parameters such that:

� d(x, x) = 0 (no distance to itself)
� d(x, y) > 0 for x 6= y (positive)
� d(x, y) = d(y, x) (symmetric)
� d(x, z) ≤ d(x, y) + d(y, z)

(triangle inequality holds)

X trivial

7 - 8

SPR-Distance

Proof. G is connected and undirected.

The SPR-distance dSPR(T, T′) of T and T′ is defined as
the distance of T and T′ in the SPR-graph G.

Proof exercise

Lemma 2.
The SPR-distance is a metric.

Lemma 1.
The SPR-graph G is connected.

Defintion:
A metric d is a function of two
parameters such that:

� d(x, x) = 0 (no distance to itself)
� d(x, y) > 0 for x 6= y (positive)
� d(x, y) = d(y, x) (symmetric)
� d(x, z) ≤ d(x, y) + d(y, z)

(triangle inequality holds)

X trivial

X shortest path exists because G is connected

7 - 9

SPR-Distance

Proof. G is connected and undirected.

The SPR-distance dSPR(T, T′) of T and T′ is defined as
the distance of T and T′ in the SPR-graph G.

Proof exercise

Lemma 2.
The SPR-distance is a metric.

Lemma 1.
The SPR-graph G is connected.

Defintion:
A metric d is a function of two
parameters such that:

� d(x, x) = 0 (no distance to itself)
� d(x, y) > 0 for x 6= y (positive)
� d(x, y) = d(y, x) (symmetric)
� d(x, z) ≤ d(x, y) + d(y, z)

(triangle inequality holds)

X trivial

X shortest path exists because G is connected

X all paths can be reversed bc. G is undirected

7 - 10

SPR-Distance

Proof. G is connected and undirected.

The SPR-distance dSPR(T, T′) of T and T′ is defined as
the distance of T and T′ in the SPR-graph G.

Proof exercise

Lemma 2.
The SPR-distance is a metric.

Lemma 1.
The SPR-graph G is connected.

Defintion:
A metric d is a function of two
parameters such that:

� d(x, x) = 0 (no distance to itself)
� d(x, y) > 0 for x 6= y (positive)
� d(x, y) = d(y, x) (symmetric)
� d(x, z) ≤ d(x, y) + d(y, z)

(triangle inequality holds)

X trivial

X shortest path exists because G is connected

X all paths can be reversed bc. G is undirected

X the triangle inequality holds because we can
compose the path x z by x y z

7 - 11

SPR-Distance

Proof. G is connected and undirected.

The SPR-distance dSPR(T, T′) of T and T′ is defined as
the distance of T and T′ in the SPR-graph G.

Proof exercise

Lemma 2.
The SPR-distance is a metric.

Lemma 1.
The SPR-graph G is connected.

Defintion:
A metric d is a function of two
parameters such that:

� d(x, x) = 0 (no distance to itself)
� d(x, y) > 0 for x 6= y (positive)
� d(x, y) = d(y, x) (symmetric)
� d(x, z) ≤ d(x, y) + d(y, z)

(triangle inequality holds)

X trivial

X shortest path exists because G is connected

X all paths can be reversed bc. G is undirected

X the triangle inequality holds because we can
compose the path x z by x y z

All properties of a metric follow.

�

7 - 12

SPR-Distance

Proof. G is connected and undirected.

The SPR-distance dSPR(T, T′) of T and T′ is defined as
the distance of T and T′ in the SPR-graph G.

Proof exercise

Lemma 2.
The SPR-distance is a metric.

Lemma 1.
The SPR-graph G is connected.

Goal.
Compute the SPR-distance dSPR(T, T′).

All properties of a metric follow.

�

7 - 13

SPR-Distance

Proof. G is connected and undirected.

The SPR-distance dSPR(T, T′) of T and T′ is defined as
the distance of T and T′ in the SPR-graph G.

|V(G)| = (2n− 3)!! = (2n− 3) · (2n− 5) · . . . · 5 · 3

Proof exercise

Lemma 2.
The SPR-distance is a metric.

Lemma 1.
The SPR-graph G is connected.

Goal.
Compute the SPR-distance dSPR(T, T′).

. . . but G is huge!

All properties of a metric follow.

�

7 - 14

SPR-Distance

Proof. G is connected and undirected.

The SPR-distance dSPR(T, T′) of T and T′ is defined as
the distance of T and T′ in the SPR-graph G.

� Can we rephrase the problem?

|V(G)| = (2n− 3)!! = (2n− 3) · (2n− 5) · . . . · 5 · 3

Proof exercise

Lemma 2.
The SPR-distance is a metric.

Lemma 1.
The SPR-graph G is connected.

Goal.
Compute the SPR-distance dSPR(T, T′).

. . . but G is huge!

All properties of a metric follow.

�

8 - 1

Maximum Agreement Forests

1 2 3 4 5

T

1 2 34 5

T′SPR SPR
ρ ρ ρ

1 2 34 5

T̂

8 - 2

Maximum Agreement Forests

1 2 3 4 5

T

1 2 34 5

T′SPR SPR

1 2 3 4 5

ρ ρ ρ

ρ
1 2 34 5

T̂

8 - 3

Maximum Agreement Forests

1 2 3 4 5

T

1 2 34 5

T′SPR SPR

1 2 3 4 5 1 2 3 4 5

ρ ρ ρ

ρ ρ
1 2 34 5

T̂

8 - 4

Maximum Agreement Forests

1 2 3 4 5

T

1 2 34 5

T′SPR SPR
ρ ρ ρ

1 2 3 45

ρ
F

1 2 34 5

T̂

8 - 5

Maximum Agreement Forests

1 2 3 4 5

T

1 2 34 5

T′SPR SPR
ρ ρ ρ

1 2 3 45

ρ
F

1 2 3 4 5

ρ
F into T

1 2 34 5

T̂

8 - 6

Maximum Agreement Forests

1 2 3 4 5

T

1 2 34 5

T′SPR SPR
ρ ρ ρ

1 2 3 45

ρ
F

1 2 3 4 5

ρ
F into T

ρ
F into T′

1 2 34 5

1 2 34 5

T̂

8 - 7

Maximum Agreement Forests

1 2 3 4 5

T

1 2 34 5

T′
ρ ρ

An agreement forest (AF) F of T and T′ is a forest {Tρ, T1, T2, . . . , Tk} such that

� the label sets of the Ti partition X ∪ {ρ},

1 2 3 45

ρ

F

Tρ T1 T2

8 - 8

Maximum Agreement Forests

1 2 3 4 5

T

1 2 34 5

T′
ρ ρ

An agreement forest (AF) F of T and T′ is a forest {Tρ, T1, T2, . . . , Tk} such that

� the label sets of the Ti partition X ∪ {ρ},

1 2 3 45

ρ

F

� ρ is in the label set of Tρ, and

Tρ T1 T2

8 - 9

Maximum Agreement Forests

1 2 3 4 5

T

1 2 34 5

T′
ρ ρ

An agreement forest (AF) F of T and T′ is a forest {Tρ, T1, T2, . . . , Tk} such that

� the label sets of the Ti partition X ∪ {ρ},

1 2 3 45

ρ

F

� ρ is in the label set of Tρ, and

� there is an edge-disjoint embedding of the Tis into T and T′ where all edges of T
and T′ are covered. In other words, we can place all Tis onto T and T′ such that
the Tis do not overlap and every edge of T and T′ lies under some Ti.

Tρ T1 T2

8 - 10

Maximum Agreement Forests

1 2 3 4 5

T

1 2 34 5

T′
ρ ρ

An agreement forest (AF) F of T and T′ is a forest {Tρ, T1, T2, . . . , Tk} such that

� the label sets of the Ti partition X ∪ {ρ},

If k is minimum, F is a maximum agreement forest (MAF).

1 2 3 45

ρ

F

� ρ is in the label set of Tρ, and

� there is an edge-disjoint embedding of the Tis into T and T′ where all edges of T
and T′ are covered. In other words, we can place all Tis onto T and T′ such that
the Tis do not overlap and every edge of T and T′ lies under some Ti.

Tρ T1 T2

9 - 1

Characterization

Let T and T′ be two phylogenetic trees on X and let
F = {Tρ, T1, T2, . . . , Tk} be a MAF of T and T′.
Define m(T, T′) = k = |F| − 1.

9 - 2

Characterization

Let T and T′ be two phylogenetic trees on X and let
F = {Tρ, T1, T2, . . . , Tk} be a MAF of T and T′.
Define m(T, T′) = k = |F| − 1.

Theorem 3. m(T, T′) = dSPR(T, T′)

9 - 3

Characterization

Let T and T′ be two phylogenetic trees on X and let
F = {Tρ, T1, T2, . . . , Tk} be a MAF of T and T′.
Define m(T, T′) = k = |F| − 1.

Proof of “≤” by induction on d = dSPR(T, T′).

Theorem 3. m(T, T′) = dSPR(T, T′)

9 - 4

Characterization

Let T and T′ be two phylogenetic trees on X and let
F = {Tρ, T1, T2, . . . , Tk} be a MAF of T and T′.
Define m(T, T′) = k = |F| − 1.

Proof of “≤” by induction on d = dSPR(T, T′).

Theorem 3. m(T, T′) = dSPR(T, T′)

� Case d = 0 is trivial and Case d = 1 is easy. X

T T′ F
ρ ρ

ρSPR

9 - 5

Characterization

Let T and T′ be two phylogenetic trees on X and let
F = {Tρ, T1, T2, . . . , Tk} be a MAF of T and T′.
Define m(T, T′) = k = |F| − 1.

Proof of “≤” by induction on d = dSPR(T, T′).

Theorem 3. m(T, T′) = dSPR(T, T′)

� Case d = 0 is trivial and Case d = 1 is easy. X

T T′ F
ρ ρ

ρSPR

� Assume m(T, T′) ≤ dSPR(T, T′) holds for all d ≤ `.

9 - 6

Characterization

Let T and T′ be two phylogenetic trees on X and let
F = {Tρ, T1, T2, . . . , Tk} be a MAF of T and T′.
Define m(T, T′) = k = |F| − 1.

Proof of “≤” by induction on d = dSPR(T, T′).

Theorem 3. m(T, T′) = dSPR(T, T′)

� If d = `+ 1, then there exists T̂ with
dSPR(T, T̂) = ` and dSPR(T̂, T′) = 1.

T T̂

` SPR

ρ ρ

T̂
ρ

T′
ρ

SPR

9 - 7

Characterization

Let T and T′ be two phylogenetic trees on X and let
F = {Tρ, T1, T2, . . . , Tk} be a MAF of T and T′.
Define m(T, T′) = k = |F| − 1.

Proof of “≤” by induction on d = dSPR(T, T′).

Theorem 3. m(T, T′) = dSPR(T, T′)

� If d = `+ 1, then there exists T̂ with
dSPR(T, T̂) = ` and dSPR(T̂, T′) = 1.

T T̂

` SPR

ρ ρ

F̂

ρ

� ∃ MAF F̂ for T & T̂ of size `+ 1
and MAF F′ for T̂ & T′ of size 2.

T̂
ρ

T′
ρ

SPR

F′

ρ

9 - 8

Characterization

Let T and T′ be two phylogenetic trees on X and let
F = {Tρ, T1, T2, . . . , Tk} be a MAF of T and T′.
Define m(T, T′) = k = |F| − 1.

Proof of “≤” by induction on d = dSPR(T, T′).

Theorem 3. m(T, T′) = dSPR(T, T′)

� If d = `+ 1, then there exists T̂ with
dSPR(T, T̂) = ` and dSPR(T̂, T′) = 1.

T T̂

` SPR

ρ ρ

F̂

ρ

� ∃ MAF F̂ for T & T̂ of size `+ 1
and MAF F′ for T̂ & T′ of size 2.

T̂
ρ

T′
ρ

SPR

F′

ρ

� Compose T̂ by subtrees of F̂. The
subtree T′1 of F′ is rooted at one

edge of T̂ within one subtree of F̂.

T′ρ T′1

9 - 9

Characterization

Let T and T′ be two phylogenetic trees on X and let
F = {Tρ, T1, T2, . . . , Tk} be a MAF of T and T′.
Define m(T, T′) = k = |F| − 1.

Proof of “≤” by induction on d = dSPR(T, T′).

Theorem 3. m(T, T′) = dSPR(T, T′)

� If d = `+ 1, then there exists T̂ with
dSPR(T, T̂) = ` and dSPR(T̂, T′) = 1.

T T̂

` SPR

ρ ρ

F̂

ρ

� ∃ MAF F̂ for T & T̂ of size `+ 1
and MAF F′ for T̂ & T′ of size 2.

T̂
ρ

T′
ρ

SPR

F′

ρ

� Compose T̂ by subtrees of F̂. The
subtree T′1 of F′ is rooted at one

edge of T̂ within one subtree of F̂.

T′ρ T′1

9 - 10

Characterization

Let T and T′ be two phylogenetic trees on X and let
F = {Tρ, T1, T2, . . . , Tk} be a MAF of T and T′.
Define m(T, T′) = k = |F| − 1.

Proof of “≤” by induction on d = dSPR(T, T′).

Theorem 3. m(T, T′) = dSPR(T, T′)

� If d = `+ 1, then there exists T̂ with
dSPR(T, T̂) = ` and dSPR(T̂, T′) = 1.

T T̂

` SPR

ρ ρ

F̂

ρ

� ∃ MAF F̂ for T & T̂ of size `+ 1
and MAF F′ for T̂ & T′ of size 2.

T̂
ρ

T′
ρ

SPR

F′

ρ

F

ρ

� Compose T̂ by subtrees of F̂. The
subtree T′1 of F′ is rooted at one

edge of T̂ within one subtree of F̂.

T′ρ T′1

� Subdivide the corresponding tree
to obtain F from F̂, which is an
AF for T and T′.

9 - 11

Characterization

Let T and T′ be two phylogenetic trees on X and let
F = {Tρ, T1, T2, . . . , Tk} be a MAF of T and T′.
Define m(T, T′) = k = |F| − 1.

Theorem 3. m(T, T′) = dSPR(T, T′)

Proof of “≥” by induction on m = m(T, T′).

9 - 12

Characterization

Let T and T′ be two phylogenetic trees on X and let
F = {Tρ, T1, T2, . . . , Tk} be a MAF of T and T′.
Define m(T, T′) = k = |F| − 1.

Theorem 3. m(T, T′) = dSPR(T, T′)

Proof of “≥” by induction on m = m(T, T′).
� Case m = 0 is trivial and Case m = 1 is easy. X

T T′F
ρ ρ

ρ

9 - 13

Characterization

Let T and T′ be two phylogenetic trees on X and let
F = {Tρ, T1, T2, . . . , Tk} be a MAF of T and T′.
Define m(T, T′) = k = |F| − 1.

Theorem 3. m(T, T′) = dSPR(T, T′)

Proof of “≥” by induction on m = m(T, T′).
� Case m = 0 is trivial and Case m = 1 is easy. X

T T′F
ρ ρ

ρ SPR

9 - 14

Characterization

Let T and T′ be two phylogenetic trees on X and let
F = {Tρ, T1, T2, . . . , Tk} be a MAF of T and T′.
Define m(T, T′) = k = |F| − 1.

Theorem 3. m(T, T′) = dSPR(T, T′)

Proof of “≥” by induction on m = m(T, T′).
� Case m = 0 is trivial and Case m = 1 is easy. X

T T′F
ρ ρ

ρ SPR

� Assume m(T, T′) ≥ dSPR(T, T′) holds for all m ≤ `.

9 - 15

Characterization

Let T and T′ be two phylogenetic trees on X and let
F = {Tρ, T1, T2, . . . , Tk} be a MAF of T and T′.
Define m(T, T′) = k = |F| − 1.

Theorem 3. m(T, T′) = dSPR(T, T′)

Proof of “≥” by induction on m = m(T, T′).

T T′
ρ ρ

F

ρ

� Let F be a MAF of T and T′ of size `+ 2. ⇒ m = `+ 1

9 - 16

Characterization

Let T and T′ be two phylogenetic trees on X and let
F = {Tρ, T1, T2, . . . , Tk} be a MAF of T and T′.
Define m(T, T′) = k = |F| − 1.

Theorem 3. m(T, T′) = dSPR(T, T′)

Proof of “≥” by induction on m = m(T, T′).

T T′
ρ ρ

F

ρ

� Let F be a MAF of T and T′ of size `+ 2.
� There exists a Ti that can be pruned in T

due to the nesting structure of subtrees.

ρ

⇒ m = `+ 1

9 - 17

Characterization

Let T and T′ be two phylogenetic trees on X and let
F = {Tρ, T1, T2, . . . , Tk} be a MAF of T and T′.
Define m(T, T′) = k = |F| − 1.

Theorem 3. m(T, T′) = dSPR(T, T′)

Proof of “≥” by induction on m = m(T, T′).

T T′
ρ ρ

F

ρ

� Let F be a MAF of T and T′ of size `+ 2.
� There exists a Ti that can be pruned in T

due to the nesting structure of subtrees.

� Regraft Ti according to the em-
bedding of F into T′ ⇒ T̂ & F̂

T̂
ρ

F̂
ρ

9 - 18

Characterization

Let T and T′ be two phylogenetic trees on X and let
F = {Tρ, T1, T2, . . . , Tk} be a MAF of T and T′.
Define m(T, T′) = k = |F| − 1.

Theorem 3. m(T, T′) = dSPR(T, T′)

Proof of “≥” by induction on m = m(T, T′).

T T′
ρ ρ

F

ρ

� Let F be a MAF of T and T′ of size `+ 2.
� There exists a Ti that can be pruned in T

due to the nesting structure of subtrees.

� Regraft Ti according to the em-
bedding of F into T′ ⇒ T̂ & F̂

T̂
ρ

F̂
ρ

� F̂ is AF for T̂ & T′ and |F̂| = `+ 1

� ⇒ dSPR(T̂, T′) ≤ `

� dSPR(T, T̂) = 1

� dSPR(T, T′) ≤ `+ 1 = m(T, T′)

9 - 19

Characterization

Let T and T′ be two phylogenetic trees on X and let
F = {Tρ, T1, T2, . . . , Tk} be a MAF of T and T′.
Define m(T, T′) = k = |F| − 1.

Theorem 3. m(T, T′) = dSPR(T, T′)

Proof of “≥” by induction on m = m(T, T′).

T T′
ρ ρ

F

ρ

� Let F be a MAF of T and T′ of size `+ 2.
� There exists a Ti that can be pruned in T

due to the nesting structure of subtrees.

� Regraft Ti according to the em-
bedding of F into T′ ⇒ T̂ & F̂

T̂
ρ

F̂
ρ

� F̂ is AF for T̂ & T′ and |F̂| = `+ 1

� ⇒ dSPR(T̂, T′) ≤ `

� dSPR(T, T̂) = 1

� dSPR(T, T′) ≤ `+ 1 = m(T, T′)

9 - 20

Characterization

Let T and T′ be two phylogenetic trees on X and let
F = {Tρ, T1, T2, . . . , Tk} be a MAF of T and T′.
Define m(T, T′) = k = |F| − 1.

Theorem 3. m(T, T′) = dSPR(T, T′)

Proof of “≥” by induction on m = m(T, T′).

T T′
ρ ρ

F

ρ

� Let F be a MAF of T and T′ of size `+ 2.
� There exists a Ti that can be pruned in T

due to the nesting structure of subtrees.

� Regraft Ti according to the em-
bedding of F into T′ ⇒ T̂ & F̂

T̂
ρ

F̂
ρ

� F̂ is AF for T̂ & T′ and |F̂| = `+ 1

� ⇒ dSPR(T̂, T′) ≤ `

� dSPR(T, T̂) = 1

� dSPR(T, T′) ≤ `+ 1 = m(T, T′)

�

10 - 1

Problem & Plan

Theorem 4. [HJWZ ’96, BS ’05]
Computing dSPR(T, T′) is NP-hard.

Proof by reduction from Exact Cover by 3-Sets.

10 - 2

Problem & Plan

Theorem 4. [HJWZ ’96, BS ’05]
Computing dSPR(T, T′) is NP-hard.

Proof by reduction from Exact Cover by 3-Sets.

Plan.
� Construct kernel of the problem.
� Replace T and T′ with smaller S and S′.

� Derive dSPR(T, T′) from dSPR(S, S′).

� Show that the size of the kernel depends on dSPR(T, T′).

� Devise an FPT algorithm with respect to dSPR.

� Sketch an approximation algorithm.

10 - 3

Problem & Plan

Theorem 4. [HJWZ ’96, BS ’05]
Computing dSPR(T, T′) is NP-hard.

Proof by reduction from Exact Cover by 3-Sets.

Plan.
� Construct kernel of the problem.
� Replace T and T′ with smaller S and S′.

� Derive dSPR(T, T′) from dSPR(S, S′).

� Show that the size of the kernel depends on dSPR(T, T′).

� Devise an FPT algorithm with respect to dSPR.

� Sketch an approximation algorithm.

10 - 4

Problem & Plan

Theorem 4. [HJWZ ’96, BS ’05]
Computing dSPR(T, T′) is NP-hard.

Proof by reduction from Exact Cover by 3-Sets.

Plan.
� Construct kernel of the problem.
� Replace T and T′ with smaller S and S′.

� Derive dSPR(T, T′) from dSPR(S, S′).

� Show that the size of the kernel depends on dSPR(T, T′).

� Devise an FPT algorithm with respect to dSPR.

� Sketch an approximation algorithm.

10 - 5

Problem & Plan

Theorem 4. [HJWZ ’96, BS ’05]
Computing dSPR(T, T′) is NP-hard.

Proof by reduction from Exact Cover by 3-Sets.

Plan.
� Construct kernel of the problem.
� Replace T and T′ with smaller S and S′.

� Derive dSPR(T, T′) from dSPR(S, S′).

� Show that the size of the kernel depends on dSPR(T, T′).

� Devise an FPT algorithm with respect to dSPR.

� Sketch an approximation algorithm.

11 - 1

Kernelization – Subtrees

Common subtree reduction.
� Replace any subtree (with ≥ 2 leaves) that occurs identically

in both trees by a single leaf with a new label.

11 - 2

Kernelization – Subtrees

Common subtree reduction.
� Replace any subtree (with ≥ 2 leaves) that occurs identically

in both trees by a single leaf with a new label.

T T′

11 - 3

Kernelization – Subtrees

Common subtree reduction.
� Replace any subtree (with ≥ 2 leaves) that occurs identically

in both trees by a single leaf with a new label.

T T′ S S′

a a

11 - 4

Kernelization – Subtrees

Common subtree reduction.
� Replace any subtree (with ≥ 2 leaves) that occurs identically

in both trees by a single leaf with a new label.

T T′ S S′

a a

Lemma 5. Applying the common subtree
reduction is safe, i.e., dSPR(T, T′) = dSPR(S, S′).

11 - 5

Kernelization – Subtrees

Common subtree reduction.
� Replace any subtree (with ≥ 2 leaves) that occurs identically

in both trees by a single leaf with a new label.

T T′

Suppose
is covered by
two trees of

MAF

S S′

a a

Lemma 5. Applying the common subtree
reduction is safe, i.e., dSPR(T, T′) = dSPR(S, S′).

Proof.

11 - 6

Kernelization – Subtrees

Common subtree reduction.
� Replace any subtree (with ≥ 2 leaves) that occurs identically

in both trees by a single leaf with a new label.

T T′

Suppose
is covered by
two trees of

MAF

then there is an
alternative MAF
of the same size

S S′

a a

Lemma 5. Applying the common subtree
reduction is safe, i.e., dSPR(T, T′) = dSPR(S, S′).

Proof.

12 - 1

Kernelization – Chains

Chain reduction.
� Replace any chain of leaves that occurs identically (from bottom to top)

in both trees by three new leaves.

12 - 2

Kernelization – Chains

Chain reduction.
� Replace any chain of leaves that occurs identically (from bottom to top)

in both trees by three new leaves.

T T′

12 - 3

Kernelization – Chains

Chain reduction.
� Replace any chain of leaves that occurs identically (from bottom to top)

in both trees by three new leaves.

T T′ S S′

a
b
c

a
b
c

12 - 4

Kernelization – Chains

Chain reduction.
� Replace any chain of leaves that occurs identically (from bottom to top)

in both trees by three new leaves.

T T′ S S′

a
b
c

a
b
c

Lemma 6. Applying chain reduction is safe,
i.e., dSPR(T, T′) = dSPR(S, S′).

12 - 5

Kernelization – Chains

Chain reduction.
� Replace any chain of leaves that occurs identically (from bottom to top)

in both trees by three new leaves.

T T′

� Show there is a tree with abc-chain
in a MAF of S and S′.

S S′

a
b
c

a
b
c

� Swap abc-chain with original
chain for MAF of T and T′.

Lemma 6. Applying chain reduction is safe,
i.e., dSPR(T, T′) = dSPR(S, S′).

Proof.

12 - 6

Kernelization – Chains

Chain reduction.
� Replace any chain of leaves that occurs identically (from bottom to top)

in both trees by three new leaves.

T T′ S S′

a
b
c

a
b
c

Case 1

Lemma 6. Applying chain reduction is safe,
i.e., dSPR(T, T′) = dSPR(S, S′).

Proof.
� Consider embedding of

a MAF F into S.

a
b

c

a
b

c

12 - 7

Kernelization – Chains

Chain reduction.
� Replace any chain of leaves that occurs identically (from bottom to top)

in both trees by three new leaves.

T T′ S S′

a
b
c

a
b
c

Case 1

Lemma 6. Applying chain reduction is safe,
i.e., dSPR(T, T′) = dSPR(S, S′).

Proof.
� Consider embedding of

a MAF F into S.

a
b

c

a
b

c
a

b

c

12 - 8

Kernelization – Chains

Chain reduction.
� Replace any chain of leaves that occurs identically (from bottom to top)

in both trees by three new leaves.

T T′ S S′

a
b
c

a
b
c

Case 1

Lemma 6. Applying chain reduction is safe,
i.e., dSPR(T, T′) = dSPR(S, S′).

Proof.
� Consider embedding of

a MAF F into S.

a
b

c

a
b

c
a

b

c

a
b

c

12 - 9

Kernelization – Chains

Chain reduction.
� Replace any chain of leaves that occurs identically (from bottom to top)

in both trees by three new leaves.

T T′ S S′

a
b
c

a
b
c

Case 1

Lemma 6. Applying chain reduction is safe,
i.e., dSPR(T, T′) = dSPR(S, S′).

Proof.
� Consider embedding of

a MAF F into S.

a
b

c

a
b

c
a

b

c

a
b

c

a
b

c

12 - 10

Kernelization – Chains

Chain reduction.
� Replace any chain of leaves that occurs identically (from bottom to top)

in both trees by three new leaves.

T T′ S S′

a
b
c

a
b
c

Case 2

Lemma 6. Applying chain reduction is safe,
i.e., dSPR(T, T′) = dSPR(S, S′).

Proof.
� Consider embedding of

a MAF F into S.

a
b

c

a
b

c

a
b

c

12 - 11

Kernelization – Chains

Chain reduction.
� Replace any chain of leaves that occurs identically (from bottom to top)

in both trees by three new leaves.

T T′ S S′

a
b
c

a
b
c

Case 2

Lemma 6. Applying chain reduction is safe,
i.e., dSPR(T, T′) = dSPR(S, S′).

Proof.
� Consider embedding of

a MAF F into S.

a
b

c

a
b

c

a
b

c

a
b

c

12 - 12

Kernelization – Chains

Chain reduction.
� Replace any chain of leaves that occurs identically (from bottom to top)

in both trees by three new leaves.

T T′ S S′

a
b
c

a
b
c

Lemma 6. Applying chain reduction is safe,
i.e., dSPR(T, T′) = dSPR(S, S′).

Proof.
� Consider embedding of

a MAF F into S.

Case 3

a
b

c

a
b

c

12 - 13

Kernelization – Chains

Chain reduction.
� Replace any chain of leaves that occurs identically (from bottom to top)

in both trees by three new leaves.

T T′ S S′

a
b
c

a
b
c

Lemma 6. Applying chain reduction is safe,
i.e., dSPR(T, T′) = dSPR(S, S′).

Proof.
� Consider embedding of

a MAF F into S.

Case 3

a
b

c

a
b

c

a
b

c

12 - 14

Kernelization – Chains

Chain reduction.
� Replace any chain of leaves that occurs identically (from bottom to top)

in both trees by three new leaves.

T T′ S S′

a
b
c

a
b
c

Lemma 6. Applying chain reduction is safe,
i.e., dSPR(T, T′) = dSPR(S, S′).

Why not using a chain of length ≤ 2?

12 - 15

Kernelization – Chains

Chain reduction.
� Replace any chain of leaves that occurs identically (from bottom to top)

in both trees by three new leaves.

T T′ S S′

a
b
c

a
b
c

Lemma 6. Applying chain reduction is safe,
i.e., dSPR(T, T′) = dSPR(S, S′).

Why not using a chain of length ≤ 2?

S S′

a
b

a
b

A A
B

B
C C

2 SPR

12 - 16

Kernelization – Chains

Chain reduction.
� Replace any chain of leaves that occurs identically (from bottom to top)

in both trees by three new leaves.

T T′ S S′

a
b
c

a
b
c

Lemma 6. Applying chain reduction is safe,
i.e., dSPR(T, T′) = dSPR(S, S′).

Why not using a chain of length ≤ 2?

S S′

a
b

a
b

A A
B

B
C C

2 SPR

T T′

A A
B

B
C C

≥ 3 SPR

13 - 1

Kernel Size

Lemma 7.
Reduce T and T′ to S and S′ by exhaustively
applying the reduction rules. Let S and S′ be on X′.
Then |X′| ≤ 28 dSPR(T, T′).

13 - 2

Kernel Size

Let F = {Tρ, T1, . . . , Tk} be MAF for S and S′.

Lemma 7.
Reduce T and T′ to S and S′ by exhaustively
applying the reduction rules. Let S and S′ be on X′.
Then |X′| ≤ 28 dSPR(T, T′).

Proof.

13 - 3

Kernel Size

Let F = {Tρ, T1, . . . , Tk} be MAF for S and S′.
Let n(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S}|.

Lemma 7.
Reduce T and T′ to S and S′ by exhaustively
applying the reduction rules. Let S and S′ be on X′.
Then |X′| ≤ 28 dSPR(T, T′).

Proof.

13 - 4

Kernel Size

Let F = {Tρ, T1, . . . , Tk} be MAF for S and S′.
Let n(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S}|.

Lemma 7.
Reduce T and T′ to S and S′ by exhaustively
applying the reduction rules. Let S and S′ be on X′.
Then |X′| ≤ 28 dSPR(T, T′).

Proof.

Similarly, let n′(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S′}|.

13 - 5

Kernel Size

Let F = {Tρ, T1, . . . , Tk} be MAF for S and S′.
Let n(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S}|.

Claim 1. ∑k
i=ρ(n(Ti) + n′(Ti)) ≤ 4k.

Lemma 7.
Reduce T and T′ to S and S′ by exhaustively
applying the reduction rules. Let S and S′ be on X′.
Then |X′| ≤ 28 dSPR(T, T′).

Proof.

Similarly, let n′(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S′}|.

We know
k = dSPR(S, S′) = dSPR(T, T′).

13 - 6

Kernel Size

Let F = {Tρ, T1, . . . , Tk} be MAF for S and S′.
Let n(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S}|.

Claim 1. ∑k
i=ρ(n(Ti) + n′(Ti)) ≤ 4k.

Lemma 7.
Reduce T and T′ to S and S′ by exhaustively
applying the reduction rules. Let S and S′ be on X′.
Then |X′| ≤ 28 dSPR(T, T′).

Proof.

Similarly, let n′(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S′}|.

We know
k = dSPR(S, S′) = dSPR(T, T′).

13 - 7

Kernel Size

Let F = {Tρ, T1, . . . , Tk} be MAF for S and S′.
Let n(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S}|.

Claim 1. ∑k
i=ρ(n(Ti) + n′(Ti)) ≤ 4k.

H

Lemma 7.
Reduce T and T′ to S and S′ by exhaustively
applying the reduction rules. Let S and S′ be on X′.
Then |X′| ≤ 28 dSPR(T, T′).

Proof.

Similarly, let n′(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S′}|.

We know
k = dSPR(S, S′) = dSPR(T, T′).

13 - 8

Kernel Size

Let F = {Tρ, T1, . . . , Tk} be MAF for S and S′.
Let n(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S}|.

Claim 1. ∑k
i=ρ(n(Ti) + n′(Ti)) ≤ 4k.

H |V(H)| = k + 1

Lemma 7.
Reduce T and T′ to S and S′ by exhaustively
applying the reduction rules. Let S and S′ be on X′.
Then |X′| ≤ 28 dSPR(T, T′).

Proof.

Similarly, let n′(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S′}|.

We know
k = dSPR(S, S′) = dSPR(T, T′).

13 - 9

Kernel Size

Let F = {Tρ, T1, . . . , Tk} be MAF for S and S′.
Let n(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S}|.

Claim 1. ∑k
i=ρ(n(Ti) + n′(Ti)) ≤ 4k.

H |V(H)| = k + 1

= |E(H)|+ 1

Lemma 7.
Reduce T and T′ to S and S′ by exhaustively
applying the reduction rules. Let S and S′ be on X′.
Then |X′| ≤ 28 dSPR(T, T′).

Proof.

Similarly, let n′(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S′}|.

We know
k = dSPR(S, S′) = dSPR(T, T′).

13 - 10

Kernel Size

Let F = {Tρ, T1, . . . , Tk} be MAF for S and S′.
Let n(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S}|.

Claim 1. ∑k
i=ρ(n(Ti) + n′(Ti)) ≤ 4k.

H |V(H)| = k + 1

= |E(H)|+ 1

∑k
i=ρ n(Ti) = 2|E(H)| ≤ 2k

Lemma 7.
Reduce T and T′ to S and S′ by exhaustively
applying the reduction rules. Let S and S′ be on X′.
Then |X′| ≤ 28 dSPR(T, T′).

Proof.

Similarly, let n′(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S′}|.

We know
k = dSPR(S, S′) = dSPR(T, T′).

13 - 11

Kernel Size

Let F = {Tρ, T1, . . . , Tk} be MAF for S and S′.
Let n(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S}|.

Claim 2. # leaves of Ti ≤ 7(n(Ti) + n′(Ti)).

Claim 1. ∑k
i=ρ(n(Ti) + n′(Ti)) ≤ 4k.

Lemma 7.
Reduce T and T′ to S and S′ by exhaustively
applying the reduction rules. Let S and S′ be on X′.
Then |X′| ≤ 28 dSPR(T, T′).

Proof.

Similarly, let n′(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S′}|.

We know
k = dSPR(S, S′) = dSPR(T, T′).

13 - 12

Kernel Size

Let F = {Tρ, T1, . . . , Tk} be MAF for S and S′.
Let n(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S}|.

Claim 2. # leaves of Ti ≤ 7(n(Ti) + n′(Ti)).

Claim 1. ∑k
i=ρ(n(Ti) + n′(Ti)) ≤ 4k.

Ti

Lemma 7.
Reduce T and T′ to S and S′ by exhaustively
applying the reduction rules. Let S and S′ be on X′.
Then |X′| ≤ 28 dSPR(T, T′).

Proof.

Similarly, let n′(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S′}|.

We know
k = dSPR(S, S′) = dSPR(T, T′).

13 - 13

Kernel Size

Let F = {Tρ, T1, . . . , Tk} be MAF for S and S′.
Let n(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S}|.

Claim 2. # leaves of Ti ≤ 7(n(Ti) + n′(Ti)).

Claim 1. ∑k
i=ρ(n(Ti) + n′(Ti)) ≤ 4k.

Ti Ti

Lemma 7.
Reduce T and T′ to S and S′ by exhaustively
applying the reduction rules. Let S and S′ be on X′.
Then |X′| ≤ 28 dSPR(T, T′).

Proof.

Similarly, let n′(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S′}|.

We know
k = dSPR(S, S′) = dSPR(T, T′).

13 - 14

Kernel Size

Let F = {Tρ, T1, . . . , Tk} be MAF for S and S′.
Let n(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S}|.

Claim 2. # leaves of Ti ≤ 7(n(Ti) + n′(Ti)).

Claim 1. ∑k
i=ρ(n(Ti) + n′(Ti)) ≤ 4k.

Ti Ti
Ti

Lemma 7.
Reduce T and T′ to S and S′ by exhaustively
applying the reduction rules. Let S and S′ be on X′.
Then |X′| ≤ 28 dSPR(T, T′).

Proof.

Similarly, let n′(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S′}|.

We know
k = dSPR(S, S′) = dSPR(T, T′).

13 - 15

Kernel Size

Let F = {Tρ, T1, . . . , Tk} be MAF for S and S′.
Let n(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S}|.

Claim 2. # leaves of Ti ≤ 7(n(Ti) + n′(Ti)).

Claim 1. ∑k
i=ρ(n(Ti) + n′(Ti)) ≤ 4k.

Ti Ti
Ti

Tj

Lemma 7.
Reduce T and T′ to S and S′ by exhaustively
applying the reduction rules. Let S and S′ be on X′.
Then |X′| ≤ 28 dSPR(T, T′).

Proof.

Similarly, let n′(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S′}|.

We know
k = dSPR(S, S′) = dSPR(T, T′).

13 - 16

Kernel Size

Let F = {Tρ, T1, . . . , Tk} be MAF for S and S′.
Let n(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S}|.

Claim 2. # leaves of Ti ≤ 7(n(Ti) + n′(Ti)).

Claim 1. ∑k
i=ρ(n(Ti) + n′(Ti)) ≤ 4k.

Ti Ti
Ti

Tj

Lemma 7.
Reduce T and T′ to S and S′ by exhaustively
applying the reduction rules. Let S and S′ be on X′.
Then |X′| ≤ 28 dSPR(T, T′).

Proof.

Similarly, let n′(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S′}|.

We know
k = dSPR(S, S′) = dSPR(T, T′).

13 - 17

Kernel Size

Let F = {Tρ, T1, . . . , Tk} be MAF for S and S′.
Let n(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S}|.

Claim 2. # leaves of Ti ≤ 7(n(Ti) + n′(Ti)).

Claim 1. ∑k
i=ρ(n(Ti) + n′(Ti)) ≤ 4k.

Ti Ti
Ti

Tj
Tj Tj′

Lemma 7.
Reduce T and T′ to S and S′ by exhaustively
applying the reduction rules. Let S and S′ be on X′.
Then |X′| ≤ 28 dSPR(T, T′).

Proof.

Similarly, let n′(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S′}|.

We know
k = dSPR(S, S′) = dSPR(T, T′).

13 - 18

Kernel Size

Let F = {Tρ, T1, . . . , Tk} be MAF for S and S′.
Let n(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S}|.

Claim 2. # leaves of Ti ≤ 7(n(Ti) + n′(Ti)).

Claim 1. ∑k
i=ρ(n(Ti) + n′(Ti)) ≤ 4k.

Ti Ti
Ti

Tj
Tj Tj′

7 leaves

Lemma 7.
Reduce T and T′ to S and S′ by exhaustively
applying the reduction rules. Let S and S′ be on X′.
Then |X′| ≤ 28 dSPR(T, T′).

Proof.

Similarly, let n′(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S′}|.

We know
k = dSPR(S, S′) = dSPR(T, T′).

13 - 19

Kernel Size

Let F = {Tρ, T1, . . . , Tk} be MAF for S and S′.
Let n(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S}|.

Claim 2. # leaves of Ti ≤ 7(n(Ti) + n′(Ti)).

|X′| = ∑k
i=ρ # leaves of Ti

≤ ∑k
i=ρ 7(n(Ti) + n′(Ti))

≤ 28k

Claim 1. ∑k
i=ρ(n(Ti) + n′(Ti)) ≤ 4k.

Ti Ti
Ti

Tj
Tj Tj′

7 leaves

Lemma 7.
Reduce T and T′ to S and S′ by exhaustively
applying the reduction rules. Let S and S′ be on X′.
Then |X′| ≤ 28 dSPR(T, T′).

Proof.

Similarly, let n′(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S′}|.

We know
k = dSPR(S, S′) = dSPR(T, T′).

13 - 20

Kernel Size

Let F = {Tρ, T1, . . . , Tk} be MAF for S and S′.
Let n(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S}|.

Claim 2. # leaves of Ti ≤ 7(n(Ti) + n′(Ti)).

|X′| = ∑k
i=ρ # leaves of Ti

≤ ∑k
i=ρ 7(n(Ti) + n′(Ti))

≤ 28k

Claim 1. ∑k
i=ρ(n(Ti) + n′(Ti)) ≤ 4k.

Ti Ti
Ti

Tj
Tj Tj′

7 leaves

Lemma 7.
Reduce T and T′ to S and S′ by exhaustively
applying the reduction rules. Let S and S′ be on X′.
Then |X′| ≤ 28 dSPR(T, T′).

Proof.

Similarly, let n′(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S′}|.

We know
k = dSPR(S, S′) = dSPR(T, T′).

13 - 21

Kernel Size

Let F = {Tρ, T1, . . . , Tk} be MAF for S and S′.
Let n(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S}|.

Claim 2. # leaves of Ti ≤ 7(n(Ti) + n′(Ti)).

|X′| = ∑k
i=ρ # leaves of Ti

≤ ∑k
i=ρ 7(n(Ti) + n′(Ti))

≤ 28k

Claim 1. ∑k
i=ρ(n(Ti) + n′(Ti)) ≤ 4k.

Ti Ti
Ti

Tj
Tj Tj′

7 leaves

Lemma 7.
Reduce T and T′ to S and S′ by exhaustively
applying the reduction rules. Let S and S′ be on X′.
Then |X′| ≤ 28 dSPR(T, T′).

Proof.

Similarly, let n′(Ti) := |{Tj | Tj ∈ F ∧ Ti and Tj touch in S′}|.

We know
k = dSPR(S, S′) = dSPR(T, T′).

14 - 1

FPT Algorithm

Theorem 8.
Computing dSPR(T, T′) is fixed-parameter
tractable when parameterized by dSPR(T, T′).

14 - 2

FPT Algorithm

� Reduce T and T′ to S and S′ by exhaustively applying the reduction rules.

� Let S and S′ be on X′ and let k = dSPR(S, S′).

Theorem 8.
Computing dSPR(T, T′) is fixed-parameter
tractable when parameterized by dSPR(T, T′).

Proof.

14 - 3

FPT Algorithm

� Reduce T and T′ to S and S′ by exhaustively applying the reduction rules.

� Let S and S′ be on X′ and let k = dSPR(S, S′).

� S has at most 4|X′|2 neighbors in the SPR-graph G.
� S has less than 2|X′| edges to cut and to attach to.

Theorem 8.
Computing dSPR(T, T′) is fixed-parameter
tractable when parameterized by dSPR(T, T′).

Proof.

14 - 4

FPT Algorithm

� Reduce T and T′ to S and S′ by exhaustively applying the reduction rules.

� Let S and S′ be on X′ and let k = dSPR(S, S′).

� S has at most 4|X′|2 neighbors in the SPR-graph G.
� S has less than 2|X′| edges to cut and to attach to.

Theorem 8.
Computing dSPR(T, T′) is fixed-parameter
tractable when parameterized by dSPR(T, T′).

Proof.

14 - 5

FPT Algorithm

� Reduce T and T′ to S and S′ by exhaustively applying the reduction rules.

� Let S and S′ be on X′ and let k = dSPR(S, S′).

� S has at most 4|X′|2 neighbors in the SPR-graph G.
� S has less than 2|X′| edges to cut and to attach to.

� Length-k BFS from S visits at most O
((

4|X′|2
)k
)
= O

(
(56k)2k) trees.

Theorem 8.
Computing dSPR(T, T′) is fixed-parameter
tractable when parameterized by dSPR(T, T′).

Proof.

14 - 6

FPT Algorithm

� Reduce T and T′ to S and S′ by exhaustively applying the reduction rules.

� Let S and S′ be on X′ and let k = dSPR(S, S′).

� S has at most 4|X′|2 neighbors in the SPR-graph G.
� S has less than 2|X′| edges to cut and to attach to.

� Length-k BFS from S visits at most O
((

4|X′|2
)k
)
= O

(
(56k)2k) trees.

Theorem 8.
Computing dSPR(T, T′) is fixed-parameter
tractable when parameterized by dSPR(T, T′).

Proof.

by Lemma 7

14 - 7

FPT Algorithm

� Reduce T and T′ to S and S′ by exhaustively applying the reduction rules.

� Let S and S′ be on X′ and let k = dSPR(S, S′).

� S has at most 4|X′|2 neighbors in the SPR-graph G.
� S has less than 2|X′| edges to cut and to attach to.

� Length-k BFS from S visits at most O
((

4|X′|2
)k
)
= O

(
(56k)2k) trees.

Theorem 8.
Computing dSPR(T, T′) is fixed-parameter
tractable when parameterized by dSPR(T, T′).

Proof.

by Lemma 7

� Since k = dSPR(S, S′) = dSPR(T, T′), this yields an FPT algorithm.

by Lemma 7

15 - 1

Approximation Algorithm

Idea.
� Given trees T and T′, which are reduced by the previous rules,

we compute an agreement forest F by

� successively making “cuts” and “eliminations”.

� These steps let T and T′ shrink further and further.

� Show that |F| is at most 3|F∗|,
where F∗ is a MAF of T and T′.

15 - 2

Approximation Algorithm

approxDSPR(T, T′)
i← 1
Gi ← T
Hi ← T′

while ∃ pair of sibling leaves a and b in Gi do
find the case that applies to a and b in Hi
apply the corresponding modification
to obtain Gi+1 from Gi and Hi+1 from Hi
i ++

return |Hi| − 1

15 - 3

Approximation Algorithm

a b

Gi

approxDSPR(T, T′)
i← 1
Gi ← T
Hi ← T′

while ∃ pair of sibling leaves a and b in Gi do
find the case that applies to a and b in Hi
apply the corresponding modification
to obtain Gi+1 from Gi and Hi+1 from Hi
i ++

return |Hi| − 1

15 - 4

Approximation Algorithm

a b

Gi

approxDSPR(T, T′)
i← 1
Gi ← T
Hi ← T′

while ∃ pair of sibling leaves a and b in Gi do
find the case that applies to a and b in Hi
apply the corresponding modification
to obtain Gi+1 from Gi and Hi+1 from Hi
i ++

return |Hi| − 1

15 - 5

Approximation Algorithm

a b

Case 1

a b

Gi

Hi

approxDSPR(T, T′)
i← 1
Gi ← T
Hi ← T′

while ∃ pair of sibling leaves a and b in Gi do
find the case that applies to a and b in Hi
apply the corresponding modification
to obtain Gi+1 from Gi and Hi+1 from Hi
i ++

return |Hi| − 1

15 - 6

Approximation Algorithm

a b

Case 1

a b a b
. . .

Case 2

Gi

Hi

approxDSPR(T, T′)
i← 1
Gi ← T
Hi ← T′

while ∃ pair of sibling leaves a and b in Gi do
find the case that applies to a and b in Hi
apply the corresponding modification
to obtain Gi+1 from Gi and Hi+1 from Hi
i ++

return |Hi| − 1

15 - 7

Approximation Algorithm

a b

Case 1

a b a b
. . .

Case 2

a b

Case 3

Gi

Hi

approxDSPR(T, T′)
i← 1
Gi ← T
Hi ← T′

while ∃ pair of sibling leaves a and b in Gi do
find the case that applies to a and b in Hi
apply the corresponding modification
to obtain Gi+1 from Gi and Hi+1 from Hi
i ++

return |Hi| − 1

15 - 8

Approximation Algorithm

a b

Case 1

a b a b
. . .

Case 2

a b

Case 3 Case 4

b

Gi

Hi

approxDSPR(T, T′)
i← 1
Gi ← T
Hi ← T′

while ∃ pair of sibling leaves a and b in Gi do
find the case that applies to a and b in Hi
apply the corresponding modification
to obtain Gi+1 from Gi and Hi+1 from Hi
i ++

return |Hi| − 1

15 - 9

Approximation Algorithm

a b

Case 1

a b a b
. . .

Case 2

a b

Case 3 Case 4

b

Gi

Hi

approxDSPR(T, T′)
i← 1
Gi ← T
Hi ← T′

while ∃ pair of sibling leaves a and b in Gi do
find the case that applies to a and b in Hi
apply the corresponding modification
to obtain Gi+1 from Gi and Hi+1 from Hi
i ++

return |Hi| − 1

16 - 1

Approximation Algorithm – Example

1 2
3
4

5

T = G1
ρ

6 1 5
3
4

6

T′ = H1
ρ

2

16 - 2

Approximation Algorithm – Example

1 2
3
4

5

T = G1
ρ

6 1 5
3
4

6

T′ = H1
ρ

2

16 - 3

Approximation Algorithm – Example

1 2
3
4

5

T = G1
ρ

6 1 5
3
4

6

T′ = H1
ρ

2

� Should we cut off leaf 1
or leaf 2 or everything
between them in H1?

16 - 4

Approximation Algorithm – Example

1 2
3
4

5

T = G1
ρ

6 1 5
3
4

6

T′ = H1
ρ

2

� Should we cut off leaf 1
or leaf 2 or everything
between them in H1?

� Do parts of each!

Case 2

16 - 5

Approximation Algorithm – Example

� Should we cut off leaf 1
or leaf 2 or everything
between them in H1?

� Do parts of each!
3 4 5

G2
ρ

6

1 5

3 4

6

H2
ρ

2

Case 2

16 - 6

Approximation Algorithm – Example

3 4 5

G2
ρ

6

1 5

3 4

6

H2
ρ

2

16 - 7

Approximation Algorithm – Example

3 4 5

G2
ρ

6

1 5

3 4

6

H2
ρ

2

� If the same “cherry” (i.e.,
pair of leaves) occurs in Gi
and Hi, we simply reduce it.

Case 1

16 - 8

Approximation Algorithm – Example

� If the same “cherry” (i.e.,
pair of leaves) occurs in Gi
and Hi, we simply reduce it.

a
5

G3
ρ

6

6

H3
ρ

a

1 52

Case 1

16 - 9

Approximation Algorithm – Example

a
5

G3
ρ

6

6

H3
ρ

a
� Leaf b is the only leaf of

a tree in Hi.
� Cut off b in Gi.

1 52

Case 4

16 - 10

Approximation Algorithm – Example

G4
ρ

1 5

H4
ρ

2

� Return 3.

6a 6a

17 - 1

Approximation Algorithm – Analysis

a b

1

a b

Gi HiCase Gi+1 Hi+1

c c

Cost

17 - 2

Approximation Algorithm – Analysis

a b

1

a b

Gi HiCase Gi+1 Hi+1

c c

no
mistake

Cost

17 - 3

Approximation Algorithm – Analysis

a b

1

a b

Gi HiCase Gi+1 Hi+1

c c

2

a b a b
. . .

a b
. . .

a b

no
mistake

Cost

17 - 4

Approximation Algorithm – Analysis

a b

1

a b

Gi HiCase Gi+1 Hi+1

c c

2

a b a b
. . .

a b
. . .

a b

no
mistake

3 cuts
1+ good

Cost

17 - 5

Approximation Algorithm – Analysis

a b

1

a b

Gi HiCase Gi+1 Hi+1

c c

2

a b

3

a b

a b
. . .

a b
. . .

a b

a b a b a b

no
mistake

3 cuts
1+ good

Cost

17 - 6

Approximation Algorithm – Analysis

a b

1

a b

Gi HiCase Gi+1 Hi+1

c c

2

a b

3

a b

a b
. . .

a b
. . .

a b

a b a b a b

no
mistake

3 cuts
1+ good

2 cuts
1+ good

Cost

17 - 7

Approximation Algorithm – Analysis

a b

1

a b

Gi HiCase Gi+1 Hi+1

c c

2

a b

3

a b

4

a b

a b
. . .

a b
. . .

a b

a b

b

a b a b

ba b

no
mistake

3 cuts
1+ good

2 cuts
1+ good

Cost

17 - 8

Approximation Algorithm – Analysis

a b

1

a b

Gi HiCase Gi+1 Hi+1

c c

2

a b

3

a b

4

a b

a b
. . .

a b
. . .

a b

a b

b

a b a b

ba b

no
mistake

3 cuts
1+ good

2 cuts
1+ good

1 cut
1 good

Cost

17 - 9

Approximation Algorithm – Analysis

a b

1

a b

Gi HiCase Gi+1 Hi+1

c c

2

a b

3

a b

4

a b

a b
. . .

a b
. . .

a b

a b

b

a b a b

ba b

no
mistake

3 cuts
1+ good

2 cuts
1+ good

1 cut
1 good

Cost

Theorem 9
approxDSPR is a 3-approximation algorithm for
dSPR(T, T′) with an O

(
|X|2

)
running time.

18 - 1

Discussion

Kernelization.
� Kernelization is an important technique to construct FPT algorithms.

� Result important since SPR-distance small in practice.

� Reduction rules actually give a kernel of size at most 15k− 9 (we have shown 28k).

� With further reduction rules, we can get a size below 11k− 9. [KL ’18]

� Divide & conquer techniques can (in practice) further reduce the problem sizes.
[LS ’11]

18 - 2

Discussion

Kernelization.
� Kernelization is an important technique to construct FPT algorithms.

� Result important since SPR-distance small in practice.

� Reduction rules actually give a kernel of size at most 15k− 9 (we have shown 28k).

� With further reduction rules, we can get a size below 11k− 9. [KL ’18]

� Divide & conquer techniques can (in practice) further reduce the problem sizes.
[LS ’11]

Approximation algorithm.
� There exists a 2-approximation algorithms for the SPR-distance

with a running time in O(n3). [CHW ’17]

18 - 3

Discussion

Phylogenetic trees.
� There are other classes of phylogenetic trees: unrooted,

non-binary, ranked, . . .

� Trees can be generalized to phylogenetic networks,
which can also have indegree 2 outdegree 1 vertices.

1 2 3

18 - 4

Discussion

Phylogenetic trees.
� There are other classes of phylogenetic trees: unrooted,

non-binary, ranked, . . .

� Trees can be generalized to phylogenetic networks,
which can also have indegree 2 outdegree 1 vertices.

Maximum Agreement Forests.
� Reframing (characterizing) a problem in a different way,

can sometimes make your life a lot easier.

� MAF can be generalized to Maximum Agreement Graphs, but
these do not characterize the SPR-distance of networks anymore.
[K ’20]

1 2 3

19

Literature

Original papers:

� [BS ’05] Semple C., Bordewich M.: On the computational complexity of the rooted subtree
prune and regraft distance (for SPR, MAF, characterisation, fpt, divide & conquer)

� [HJWZ ’96] Hein J., Jiang T., Wang L., Zhang K.: On the complexity of comparing
evolutionary trees (for NP-hardness proof)

� [RSW ’06] Rodrigues E. M., Sagot M.-F., Wakabayashi Y.: The maximum agreement forest
problem: Approximation algorithms and computational experiments (for approx. algorithm)

Referenced papers:

� [CHW ’17] Chen Z., Harada Y., Wang L.: A new 2-approximation algorithm for rSPR distance

� [K ’20] Klawitter J.: The agreement distance of unrooted phylogenetic networks

� [KL ’19] Kelk S., Linz. S.: New reduction rules for the tree bisection and reconnection distance

� [LS ’11] Linz S., Semple C.: A cluster reduction for computing the subtree distance between
phylogenies

	Title page
	Phylogenetic Trees
	Examples
	Definition
	Need of metric

	Subtree Prune & Regraft
	Operation
	SPR-Graph
	SPR-Distance

	Maximum Agreement Forests
	Characterization
	Problem & Plan
	Kernelisation
	Common subtree reduction
	Chain reduction
	Kernel Size

	FPT Algorithm
	Approximation Algorithm
	Example
	Analysis

	Discussion
	Literature

