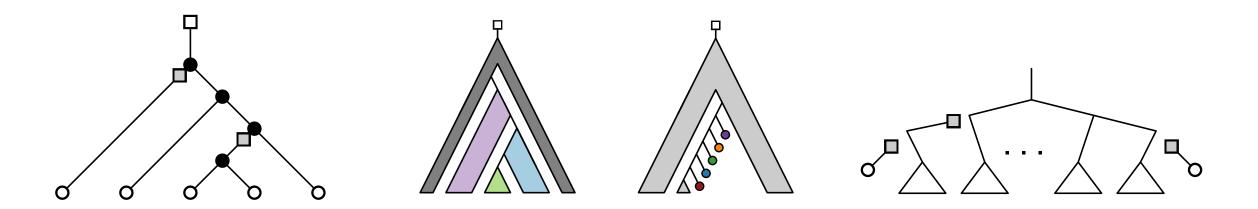


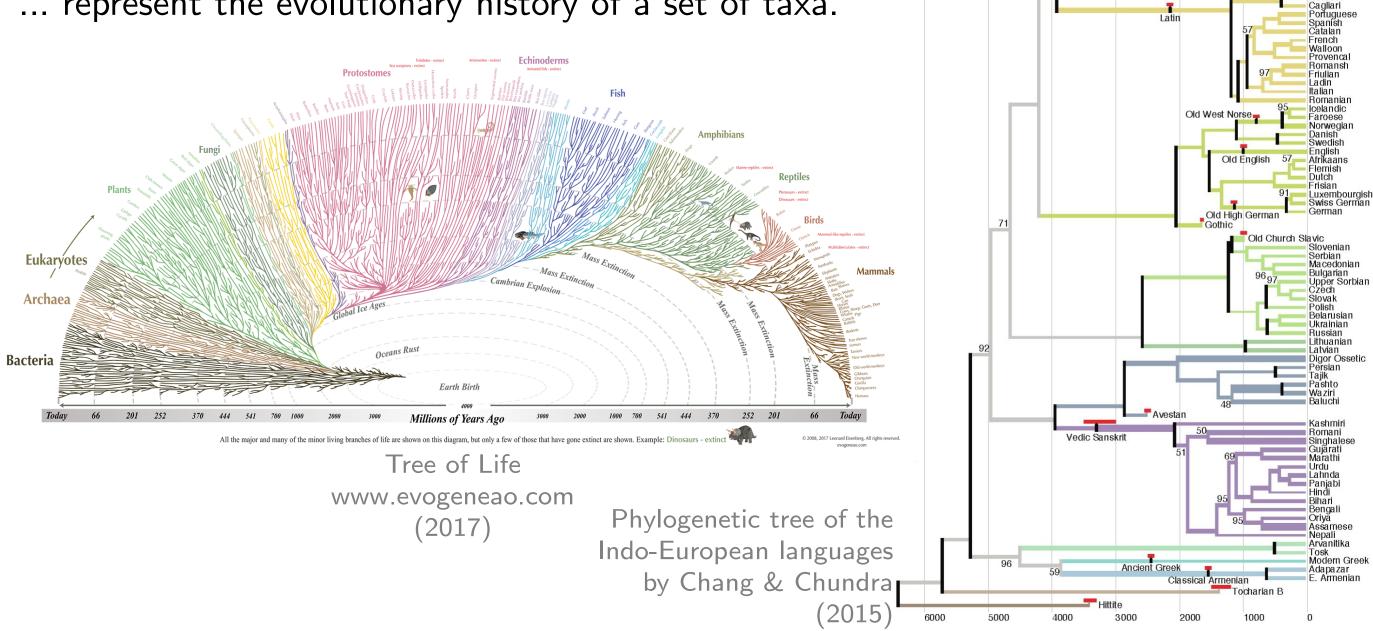
Advanced Algorithms

Rearrangement Distance of Phylogenetic Trees Kernelization, FPT, Approximation Algorithm

Johannes Zink \cdot WS22



Phylogenetic Trees



Irish Scots Gaelic

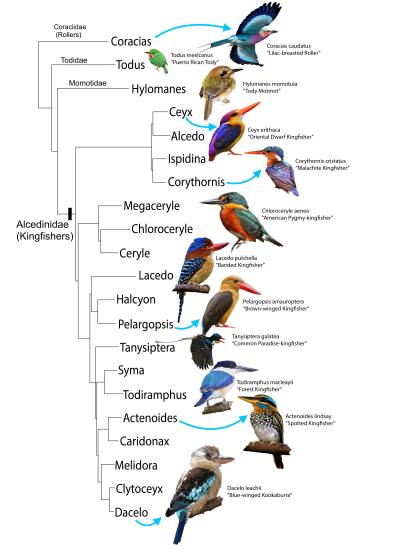
Nuorese

Cornish Breton Welsh

Old Irish

Phylogenetic Trees

... represent the evolutionary history of a set of taxa.



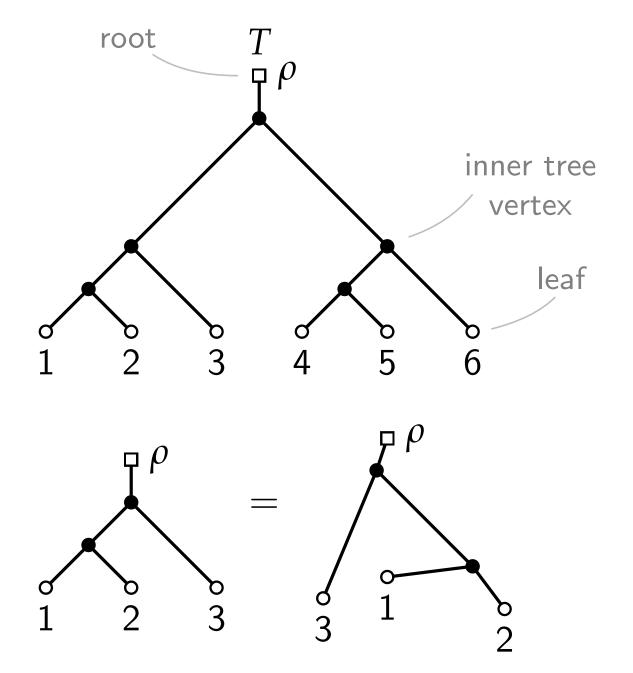
Kingfishers (German: *Eisvögel*) by McCullough et al. (2016) **Properties** (in the biological sense):

- Leaves are labelled with taxa.
- Each taxon represents a species, population, individual organism, gene, chromosome,
- Edge length represents an amount of time passed or a genetic distance.
- Inference methods compute a phylogenetic tree based on some model and data.

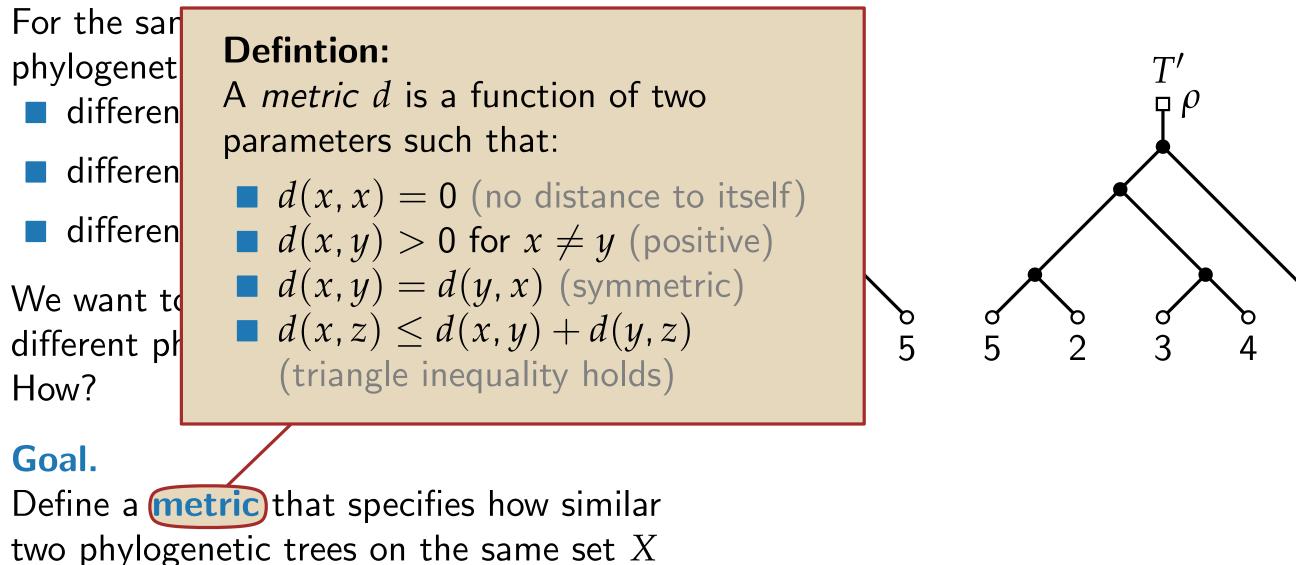
Phylogenetic Trees

Let $X = \{1, 2, 3, ..., n\}$. A **(rooted, binary) phylogenetic tree** *T* is a rooted tree with the following properties:

- The unique **root** is labeled ρ and has outdegree 1.
- The leaves are bijectively labeled by *X*.
- All other vertices have indegree 1 and outdegree 2 (i.e., it is a *binary* tree).
- Remarks. Here, in our definition
 vertices have no heights and
- the order of the children of a vertex does not matter.



Problem



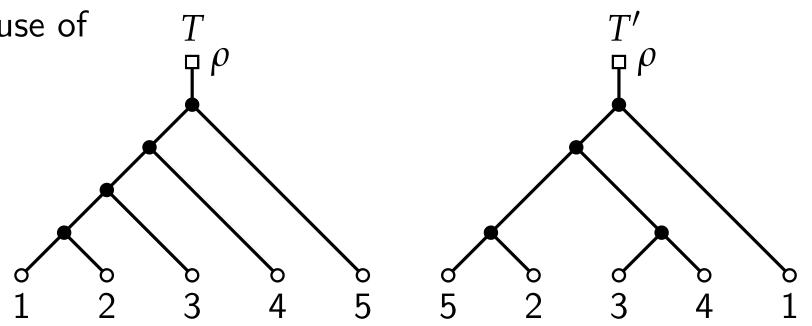
are and devise algorithms to compute it.

Problem

For the same taxa, we may infer different
phylogenetic trees because of the use of
different inference methods,

- different models, or
- different data.

We want to be able to **compare** different phylogenetic trees. How?



Goal.

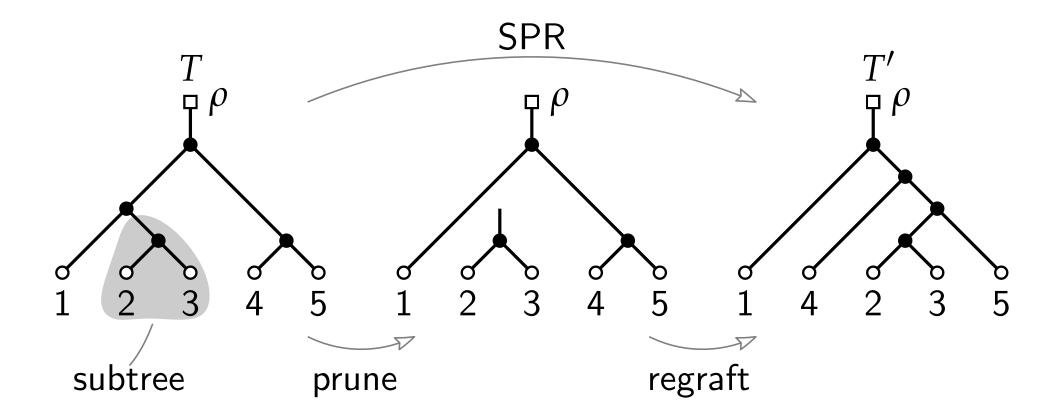
Define a **metric** that specifies how similar two phylogenetic trees on the same set X are and devise algorithms to compute it.

Idea.

Count the number of rearrangement operations that are necessary to transform T into T'.

Subtree Prune & Regraft (SPR)

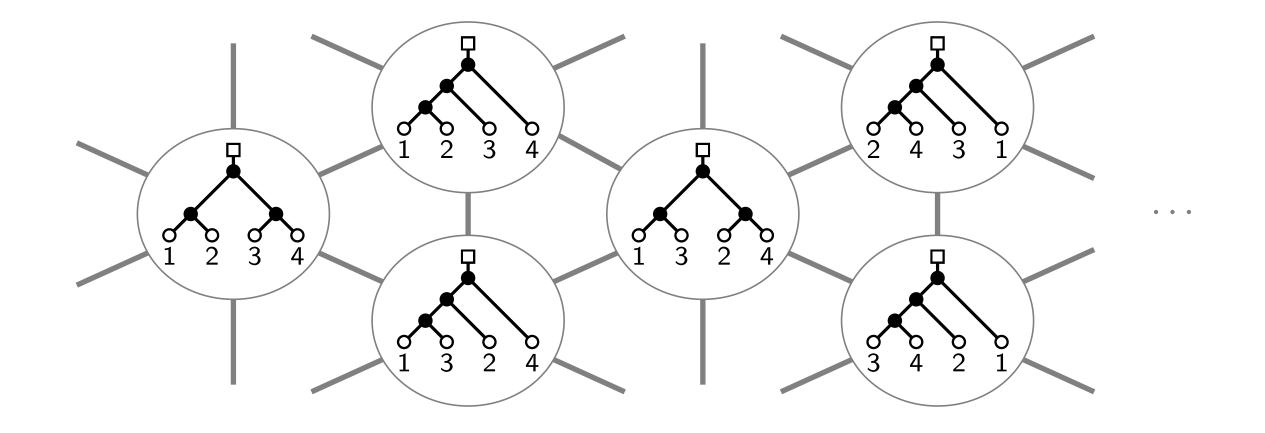
An **SPR** operation transforms one phylogenetic tree into another one.



Note that an SPR operation is reversible.

SPR-Graph

The SPR operations induce the **SPR-graph** G = (V, E) for a set X: $V = \{T \mid T \text{ is a phylogenetic tree on } X\}$ $E = \{\{T, T'\} \mid T \text{ can be transformed into } T' \text{ with a single SPR operation}\}$



SPR-Distance

The **SPR-distance** $d_{SPR}(T, T')$ of T and T' is defined as the distance of T and T' in the SPR-graph G.

Lemma 1. Lemma 2. The SPR-distance is a metric. The SPR-graph G is connected. **Proof.** G is connected and undirected. **Definition:** All properties of a metric follow. A *metric* d is a function of two parameters such that: d(x, x) = 0 (no distance to itself) \checkmark trivial ■ d(x, y) > 0 for $x \neq y$ (positive) shortest path exists because G is connected d(x, y) = d(y, x)(symmetric) all paths can be reversed bc. G is undirected $d(x,z) \le d(x,y) + d(y,z)$ the triangle inequality holds because we can compose the path $x \rightsquigarrow z$ by $x \rightsquigarrow y \rightsquigarrow z$ (triangle inequality holds)

SPR-Distance

The **SPR-distance** $d_{SPR}(T, T')$ of T and T' is defined as the distance of T and T' in the SPR-graph G.

Lemma 1. The SPR-graph *G* is connected.

Proof exercise

Goal. Compute the SPR-distance $d_{SPR}(T, T')$.

 \dots but *G* is huge!

$$|V(G)| = (2n - 3)!! = (2n - 3) \cdot (2n - 5) \cdot \ldots \cdot 5 \cdot 3$$

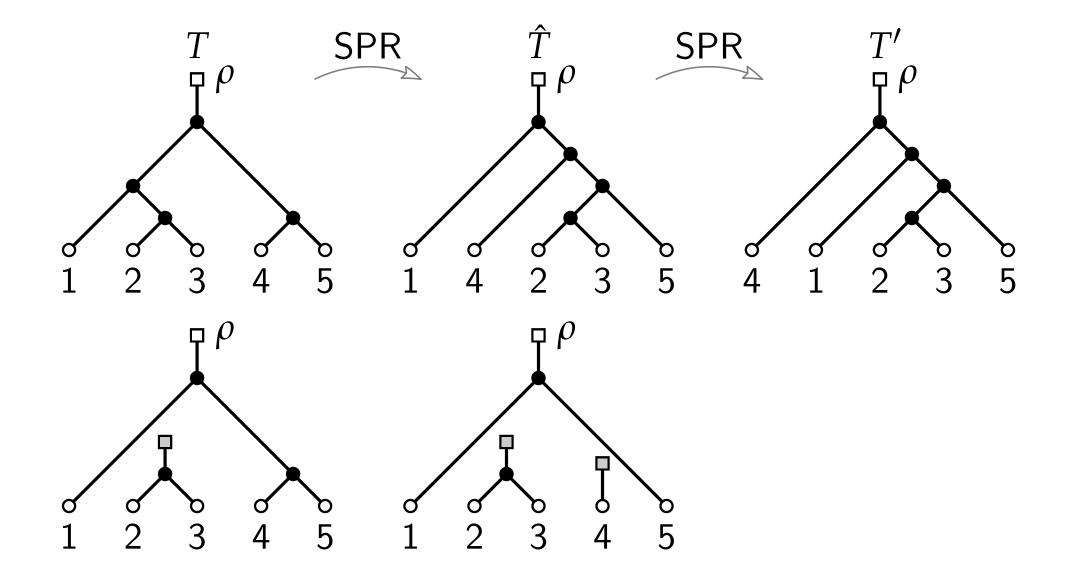
Can we rephrase the problem?

Lemma 2.

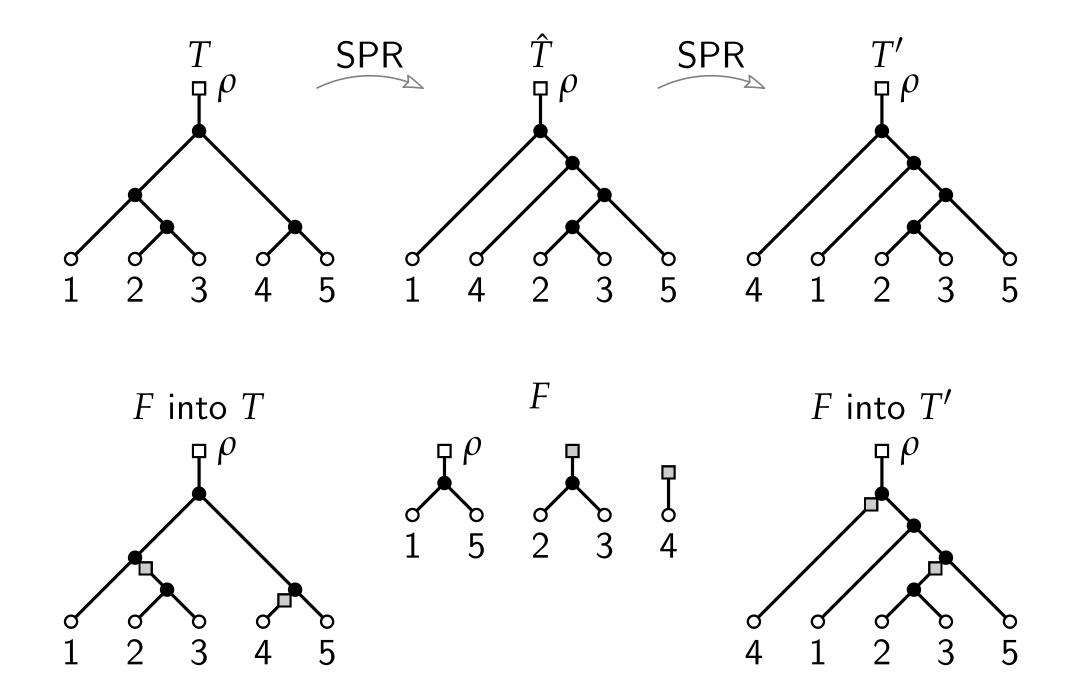
The SPR-distance is a metric.

Proof. G is connected and undirected. All properties of a metric follow.

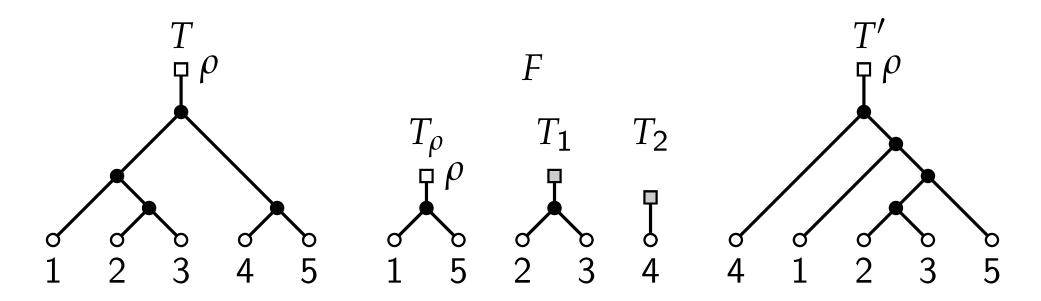
Maximum Agreement Forests



Maximum Agreement Forests



Maximum Agreement Forests



An agreement forest (AF) F of T and T' is a forest $\{T_{\rho}, T_1, T_2, \ldots, T_k\}$ such that

- the label sets of the T_i partition $X \cup \{\rho\}$,
- \bullet ρ is in the label set of T_{ρ} , and
- there is an edge-disjoint embedding of the T_i s into T and T' where all edges of Tand T' are covered. In other words, we can place all T_i s onto T and T' such that the T_i s do not overlap and every edge of T and T' lies under some T_i .
- If k is minimum, F is a maximum agreement forest (MAF).

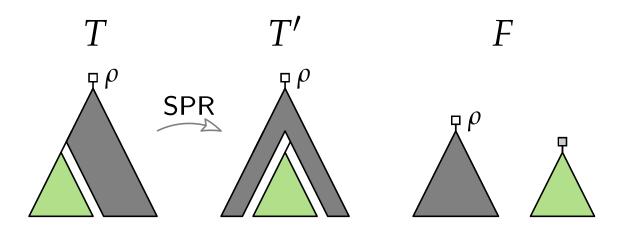
Let T and T' be two phylogenetic trees on X and let $F = \{T_{\rho}, T_1, T_2, \dots, T_k\}$ be a MAF of T and T'. Define m(T, T') = k = |F| - 1.

Theorem 3. $m(T, T') = d_{SPR}(T, T')$

Proof of "
$$\leq$$
" by induction on $d = d_{SPR}(T, T')$.

Case
$$d = 0$$
 is trivial and Case $d = 1$ is easy. \checkmark

Assume $m(T, T') \leq d_{SPR}(T, T')$ holds for all $d \leq \ell$.



Let T and T' be two phylogenetic trees on X and let $F = \{T_{\rho}, T_1, T_2, \dots, T_k\}$ be a MAF of T and T'. $\blacksquare \exists$ MAF \hat{F} for T & \hat{T} of size $\ell + 1$ Define m(T, T') = k = |F| - 1.

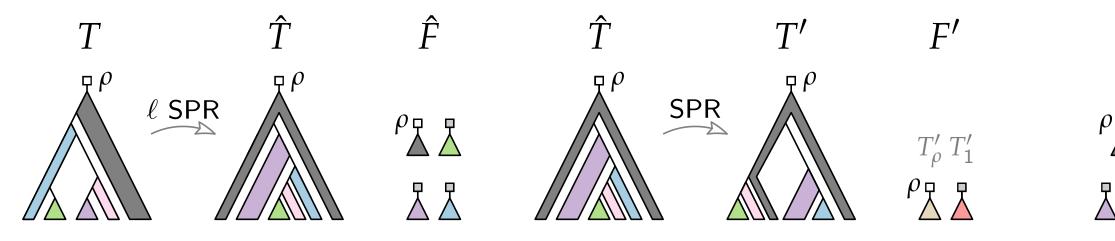
Theorem 3. $m(T, T') = d_{SPR}(T, T')$

Proof of "
$$\leq$$
" by induction on $d = d_{SPR}(T, T')$.

If
$$d = \ell + 1$$
, then there exists \hat{T} with $d_{SPR}(T, \hat{T}) = \ell$ and $d_{SPR}(\hat{T}, T') = 1$.

- and MAF F' for \hat{T} & T' of size 2.
- Compose \hat{T} by subtrees of \hat{F} . The subtree T'_1 of F' is rooted at one edge of \hat{T} within one subtree of \hat{F} .
- Subdivide the corresponding tree to obtain F from \hat{F} , which is an AF for T and T'.

F



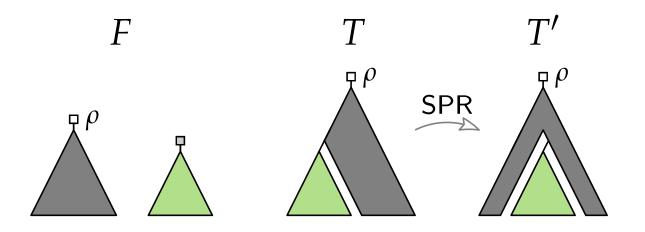
Let T and T' be two phylogenetic trees on X and let $F = \{T_{\rho}, T_1, T_2, \dots, T_k\}$ be a MAF of T and T'. Define m(T, T') = k = |F| - 1.

Theorem 3. $m(T, T') = d_{SPR}(T, T')$

Proof of " \geq " by induction on m = m(T, T').

Case m = 0 is trivial and Case m = 1 is easy. \checkmark

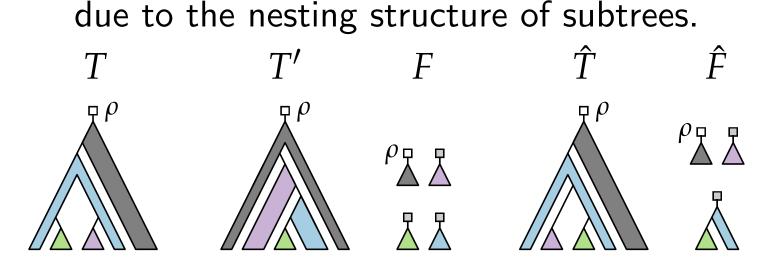
Assume $m(T, T') \ge d_{SPR}(T, T')$ holds for all $m \le \ell$.



Let T and T' be two phylogenetic trees on X and let $F = \{T_{\rho}, T_1, T_2, \dots, T_k\}$ be a MAF of T and T'. Define m(T, T') = k = |F| - 1.

Theorem 3. $m(T, T') = d_{SPR}(T, T')$

Proof of "≥" by induction on m = m(T, T').
■ Let F be a MAF of T and T' of size $\ell + 2$.
■ There exists a T_i that can be pruned in T



Regraft T_i according to the embedding of F into $T' \Rightarrow \hat{T} \& \hat{F}$

•
$$\hat{F}$$
 is AF for \hat{T} & T' and $|\hat{F}| = \ell + 1$

$$\blacksquare \Rightarrow \mathsf{d}_{\mathsf{SPR}}(\hat{T}, T') \leq \ell$$

$$\blacksquare \mathsf{d}_{\mathsf{SPR}}(T, \hat{T}) = 1$$

 $d_{\mathsf{SPR}}(T,T') \leq \ell + 1 = \mathsf{m}(T,T')$

Problem & Plan

Theorem 4. [HJWZ '96, BS '05] Computing $d_{SPR}(T, T')$ is NP-hard.

Proof by reduction from Exact Cover by 3-Sets.

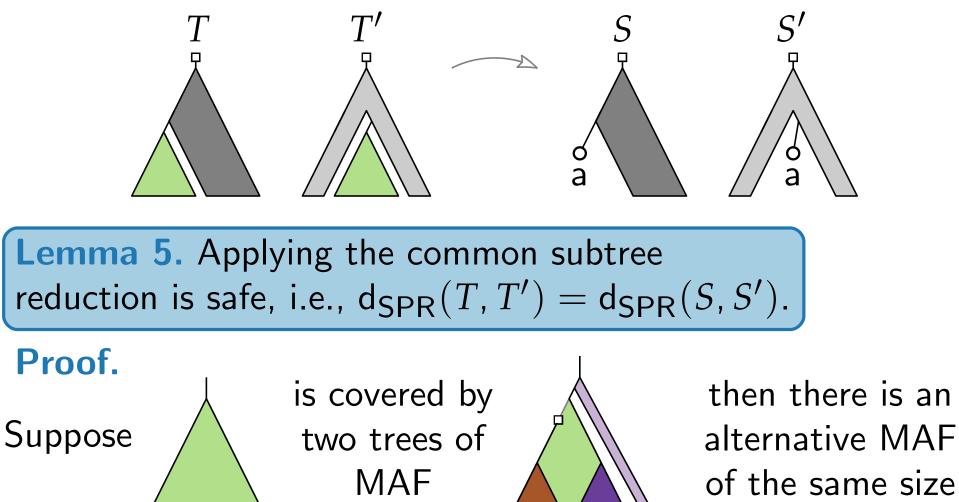
Plan.

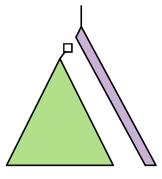
- Construct **kernel** of the problem.
 - Replace T and T' with smaller S and S'.
 - Derive $d_{SPR}(T, T')$ from $d_{SPR}(S, S')$.
- Show that the size of the kernel depends on $d_{SPR}(T, T')$.
- Devise an FPT algorithm with respect to d_{SPR}.
- Sketch an approximation algorithm.

Kernelization – Subtrees

Common subtree reduction.

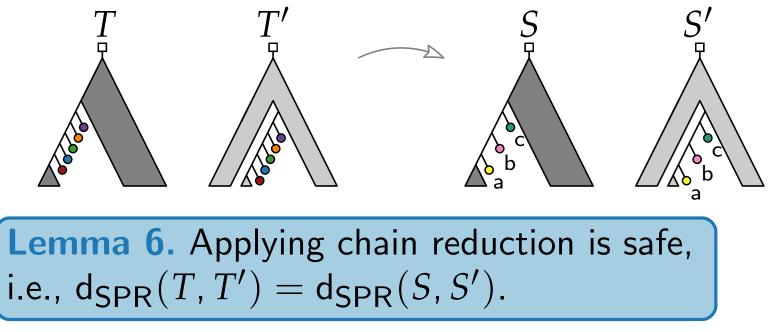
■ Replace any subtree (with ≥ 2 leaves) that occurs identically in both trees by a single leaf with a new label.





Chain reduction.

Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

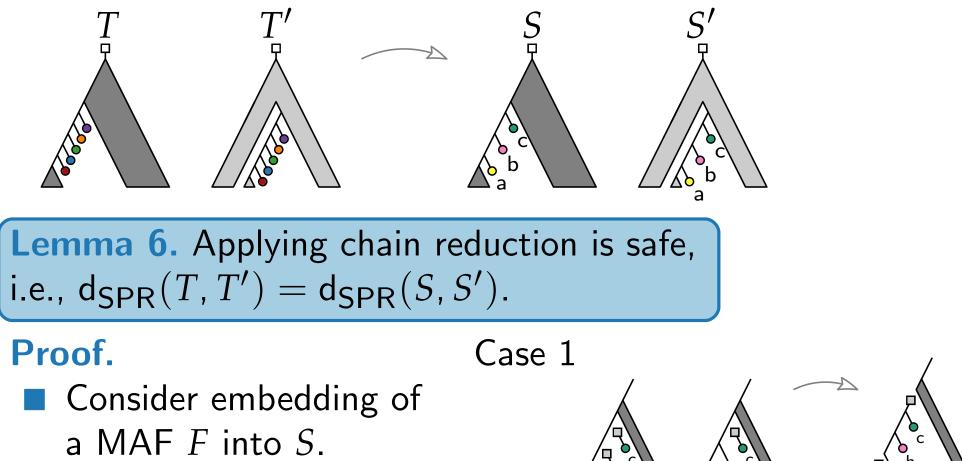


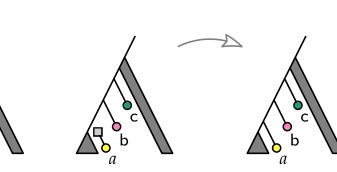
Proof.

- Show there is a tree with abc-chain in a MAF of S and S'.
- Swap abc-chain with original chain for MAF of T and T'.

Chain reduction.

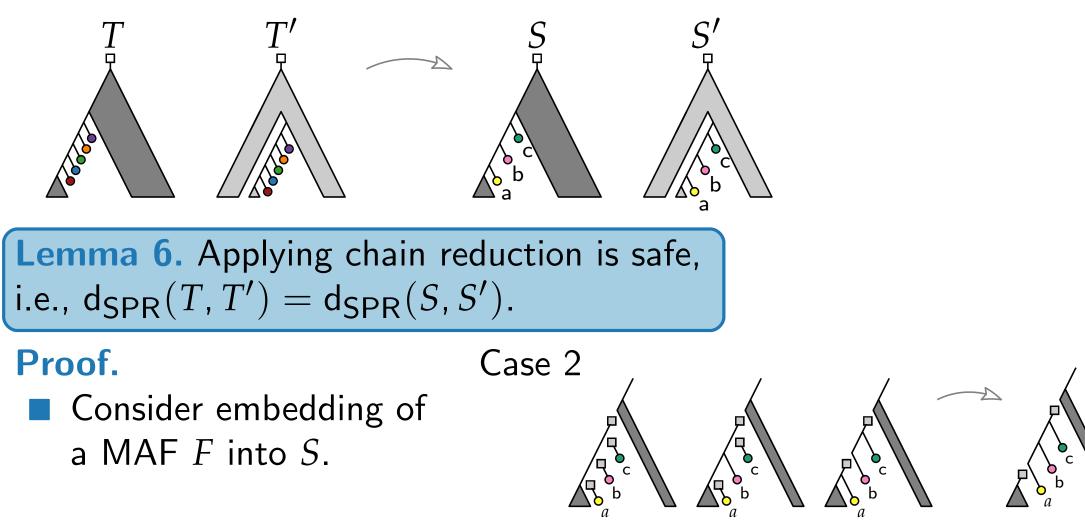
Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.





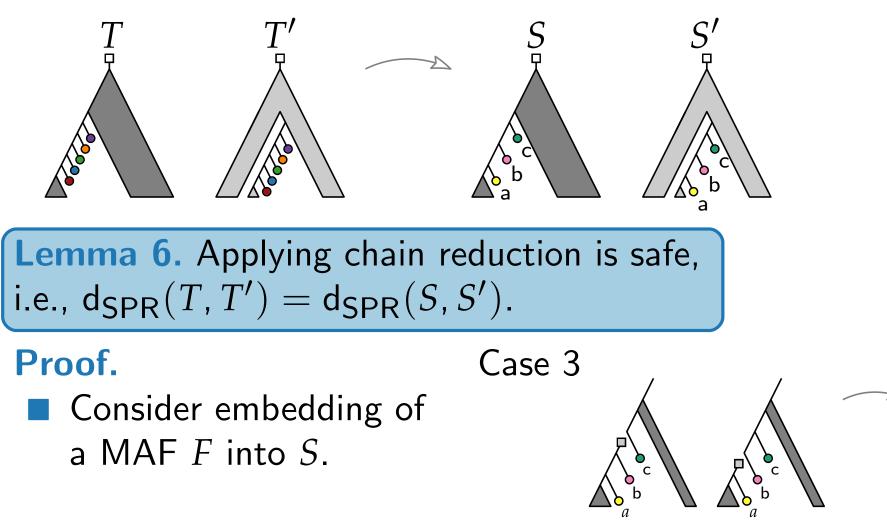
Chain reduction.

Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.



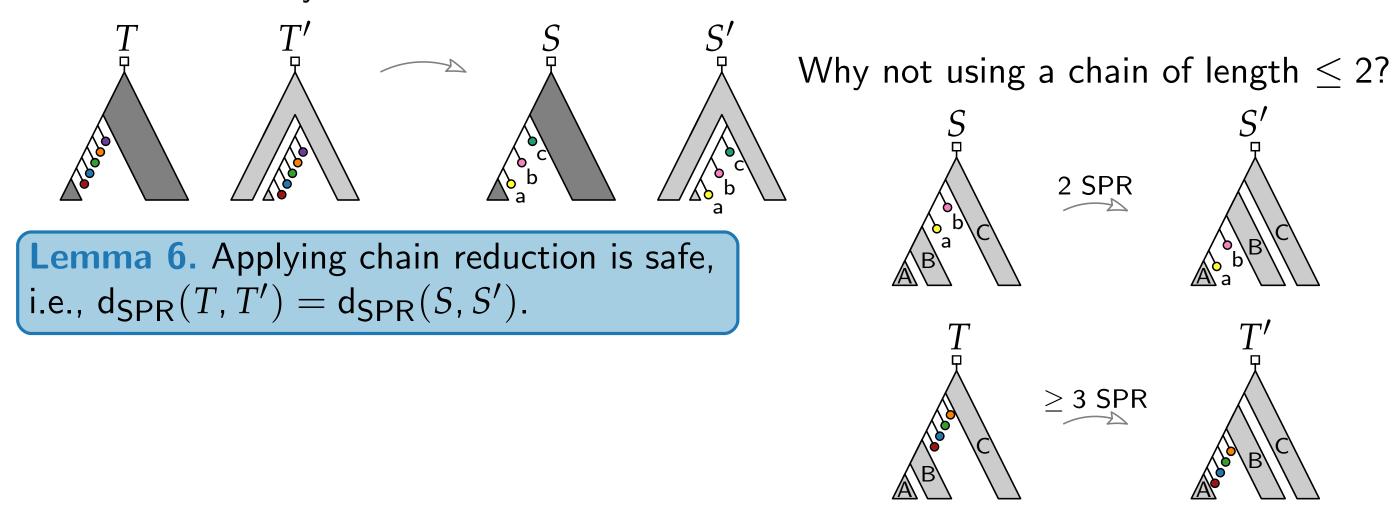
Chain reduction.

Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.



Chain reduction.

Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.



Kernel Size

Lemma 7.

Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then $|X'| \le 28 d_{SPR}(T, T').$

We know $k = d_{SPR}(S, S') = d_{SPR}(T, T').$

 $\sum_{i=\rho}^k \mathsf{n}(T_i) = 2|E(H)| \le 2k$

13 - 10

Proof. Let
$$F = \{T_{\rho}, T_1, \dots, T_k\}$$
 be MAF for S and S' .
Let $n(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S\}|$.
Similarly, let $n'(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|$.
Claim 1. $\sum_{i=\rho}^k (n(T_i) + n'(T_i)) \le 4k$.
$$H \qquad |V(H)| = k + 1$$
$$= |E(H)| + 1$$

Kernel Size

Lemma 7.

Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then $|X'| \le 28 d_{SPR}(T, T').$

We know $k = d_{SPR}(S, S') = d_{SPR}(T, T').$

Proof. Let
$$F = \{T_{\rho}, T_{1}, \dots, T_{k}\}$$
 be MAF for S and S' .
Let $n(T_{i}) := |\{T_{j} \mid T_{j} \in F \land T_{i} \text{ and } T_{j} \text{ touch in } S\}|$.
Similarly, let $n'(T_{i}) := |\{T_{j} \mid T_{j} \in F \land T_{i} \text{ and } T_{j} \text{ touch in } S'\}|$.
Claim 1. $\sum_{i=\rho}^{k} (n(T_{i}) + n'(T_{i})) \leq 4k$.
Claim 2. $\#$ leaves of $T_{i} \leq 7(n(T_{i}) + n'(T_{i}))$.
 $T_{i} \qquad T_{i} \qquad T_{i} \qquad T_{j} \qquad 0$
 $T_{j} \qquad 0$

FPT Algorithm

Theorem 8.

Computing $d_{SPR}(T, T')$ is fixed-parameter tractable when parameterized by $d_{SPR}(T, T')$.

Proof.

- Reduce T and T' to S and S' by exhaustively applying the reduction rules.
- Let S and S' be on X' and let $k = d_{SPR}(S, S')$.
- S has at most 4|X'|² neighbors in the SPR-graph G.
 S has less than 2|X'| edges to cut and to attach to. by Lemma 7
 Length-k BFS from S visits at most O((4|X'|²)^k) = O((56k)^{2k}) trees.

Since $k = d_{SPR}(S, S') = d_{SPR}(T, T')$, this yields an FPT algorithm.

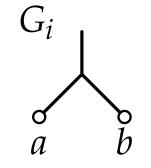
Approximation Algorithm

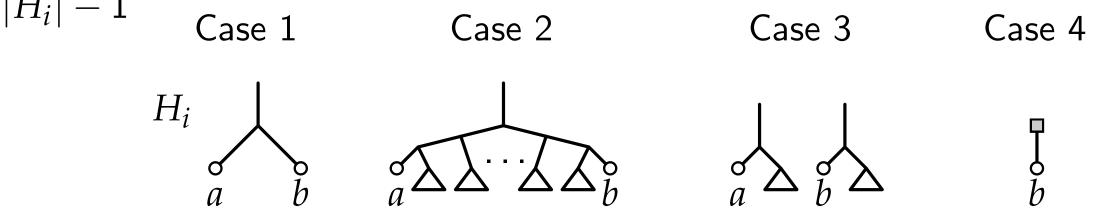
Idea.

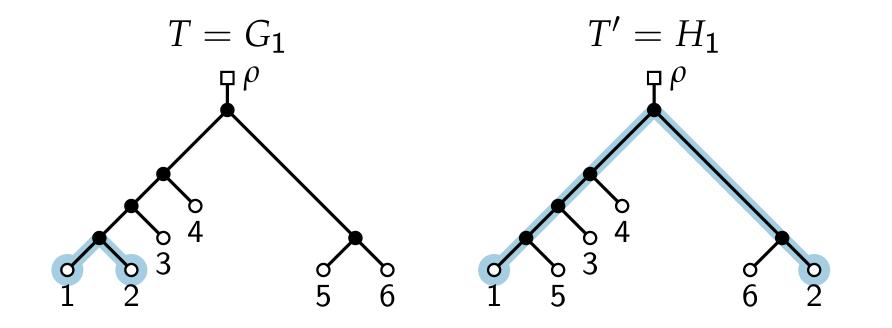
- Given trees T and T', which are reduced by the previous rules, we compute an agreement forest F by
- successively making "cuts" and "eliminations".
- These steps let T and T' shrink further and further.
- Show that |F| is at most $3|F^*|$, where F^* is a MAF of T and T'.

Approximation Algorithm

```
APPROXDSPR(T, T')
  i \leftarrow 1
  G_i \leftarrow T
  H_i \leftarrow T'
  while \exists pair of sibling leaves a and b in G_i do
      find the case that applies to a and b in H_i
      apply the corresponding modification
      to obtain G_{i+1} from G_i and H_{i+1} from H_i
      i + +
  return |H_i| - 1
```



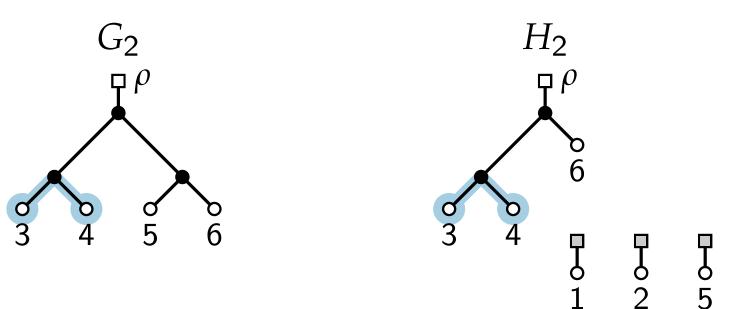




Case 2

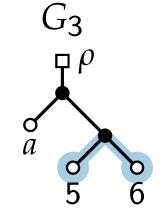
Should we cut off leaf 1 or leaf 2 or everything between them in H₁?

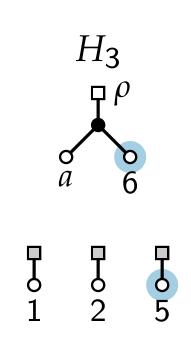
Do parts of each!



Case 1

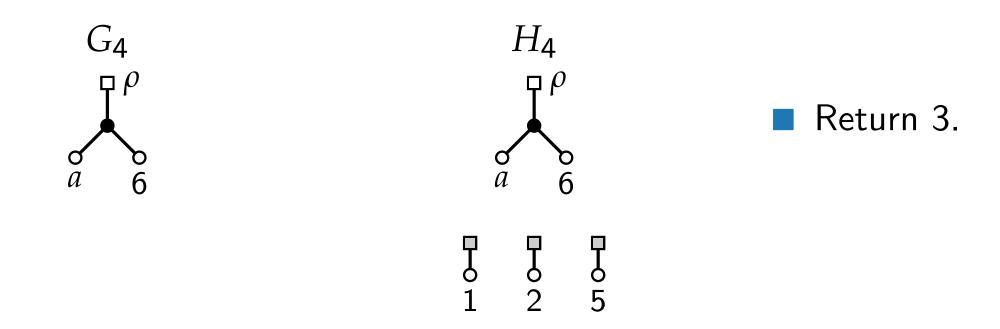
If the same "cherry" (i.e., pair of leaves) occurs in G_i and H_i, we simply reduce it.



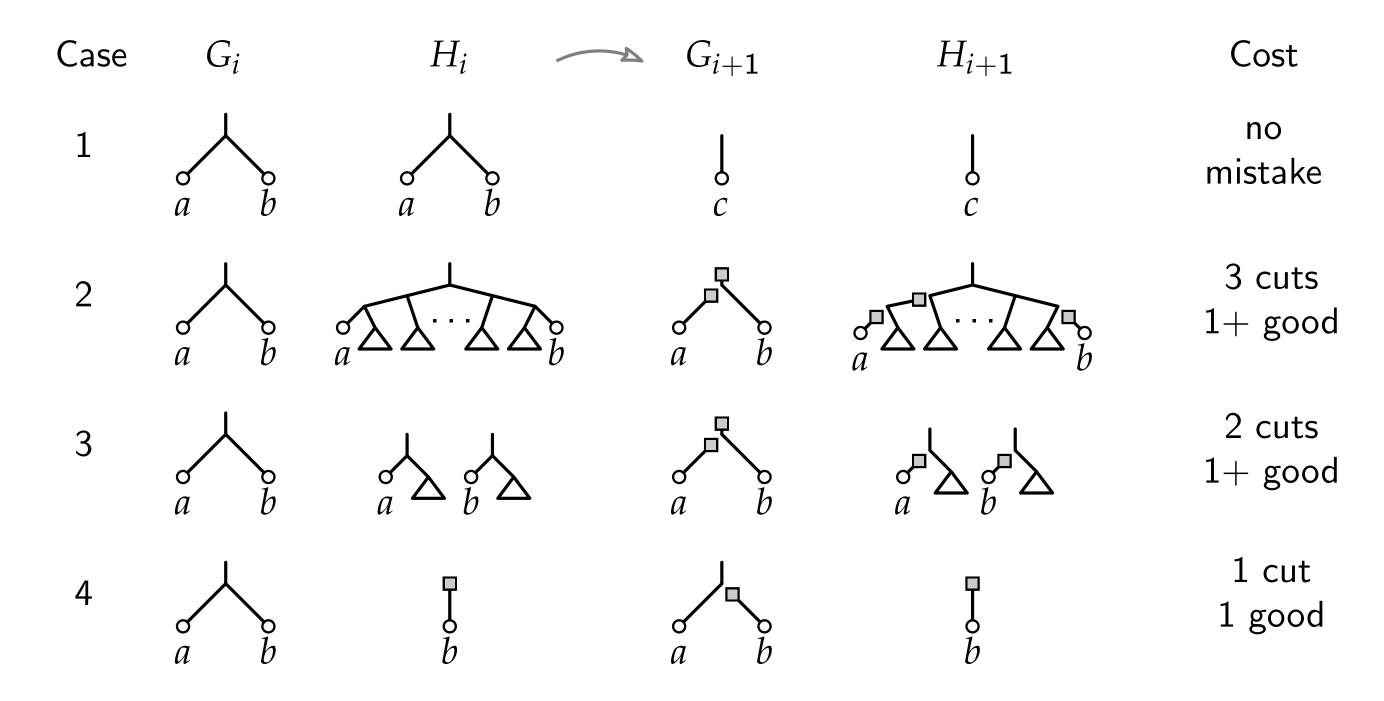


Case 4

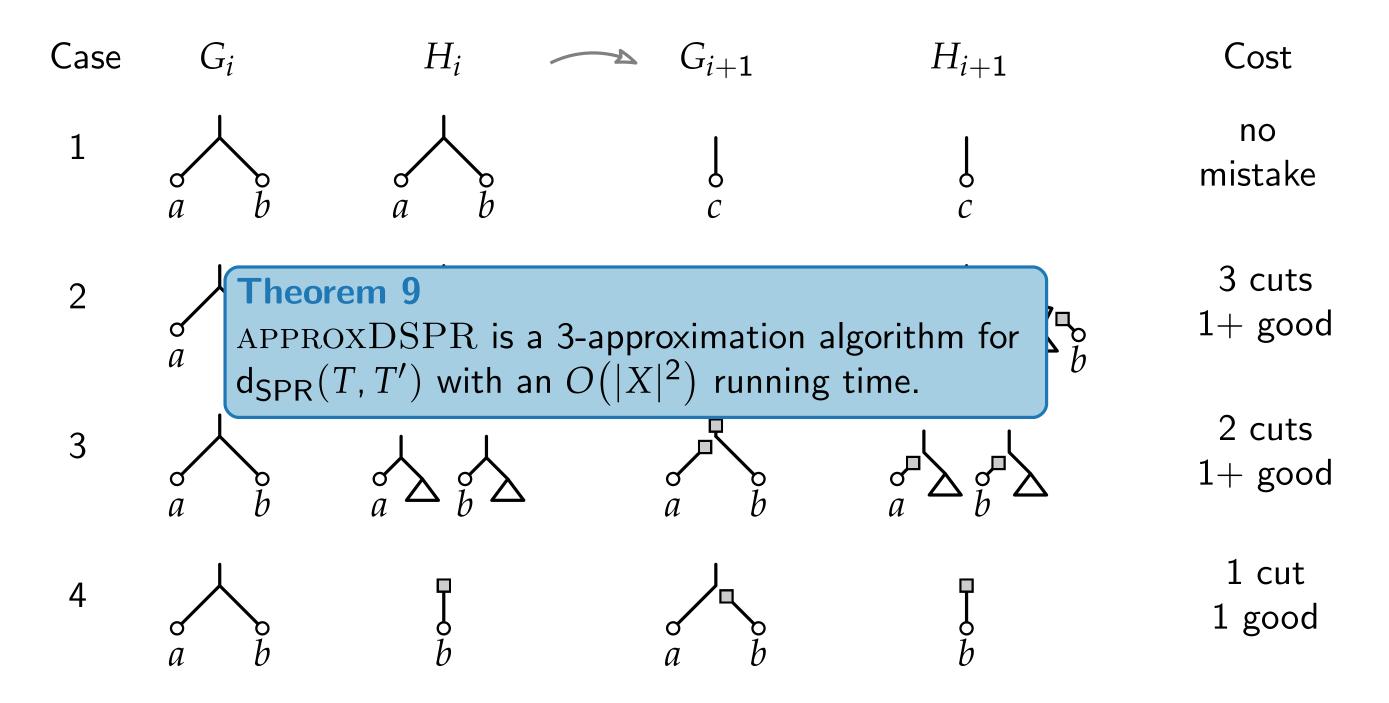
Leaf b is the only leaf of a tree in H_i.
Cut off b in G_i.



Approximation Algorithm – Analysis



Approximation Algorithm – Analysis



Discussion

Kernelization.

- Kernelization is an important technique to construct FPT algorithms.
- Result important since SPR-distance small in practice.
- Reduction rules actually give a kernel of size at most 15k 9 (we have shown 28k).
- With further reduction rules, we can get a size below 11k 9. [KL '18]
- Divide & conquer techniques can (in practice) further reduce the problem sizes. [LS '11]

Approximation algorithm.

There exists a 2-approximation algorithms for the SPR-distance with a running time in $\mathcal{O}(n^3)$. [CHW '17]

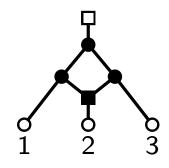
Discussion

Phylogenetic trees.

- There are other classes of phylogenetic trees: unrooted, non-binary, ranked, ...
- Trees can be generalized to phylogenetic networks, which can also have indegree 2 outdegree 1 vertices.

Maximum Agreement Forests.

- Reframing (characterizing) a problem in a different way, can sometimes make your life a lot easier.
- MAF can be generalized to Maximum Agreement Graphs, but these do not characterize the SPR-distance of networks anymore.
 [K '20]



Literature

Original papers:

- [BS '05] Semple C., Bordewich M.: On the computational complexity of the rooted subtree prune and regraft distance (for SPR, MAF, characterisation, fpt, divide & conquer)
- [HJWZ '96] Hein J., Jiang T., Wang L., Zhang K.: On the complexity of comparing evolutionary trees (for NP-hardness proof)
- [RSW '06] Rodrigues E. M., Sagot M.-F., Wakabayashi Y.: The maximum agreement forest problem: Approximation algorithms and computational experiments (for approx. algorithm)
 Referenced papers:
- [CHW '17] Chen Z., Harada Y., Wang L.: A new 2-approximation algorithm for rSPR distance
- **[**K '20] Klawitter J.: *The agreement distance of unrooted phylogenetic networks*
- [KL '19] Kelk S., Linz. S.: New reduction rules for the tree bisection and reconnection distance
- [LS '11] Linz S., Semple C.: A cluster reduction for computing the subtree distance between phylogenies