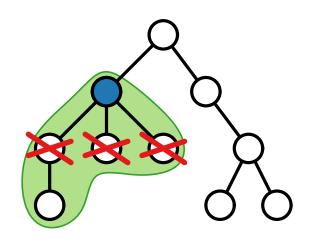


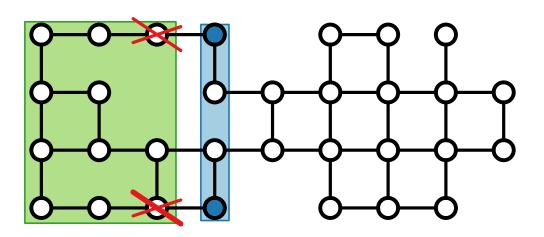
Advanced Algorithms

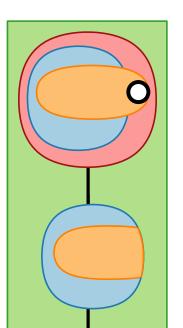
Parameterized Algorithms

Structural Parametrization

Johannes Zink · WS22







Dealing with NP-Hard Problems

What should we do?

- Sacrifice optimality for speed
 - Heuristics
 - Approximation Algorithms
- Optimal Solutions
 - Exact exponential-time algorithms
 - Fine-grained analysis parameterized algorithms

Heuristic Approximation
NP-hard
Exponential
FPT

this lecture

Dealing with NP-Hard Problems

What should we do?

- Sacrifice optimality for speed
 - Heuristics
 - Approximation Algorithms
- Optimal Solutions
 - Exact exponential-time algorithms
 - Fine-grained analysis parameterized algorithms

Heuristic Approximation
NP-hard
Exponential
FPT

Classical complexity theory:

Running time is expressed as a function in the input size

Parameterized algorithmics:

Running time is expressed as a function in the input size, as well as one or more additional parameter(s)

Classical complexity theory:

Running time is expressed as a function in the input size

Parameterized algorithmics:

Running time is expressed as a function in the input size, as well as one or more additional parameter(s)

```
Example: (recall from AGT)
```

```
k-Vertex Cover
```

Input Graph $G = (V, E), k \in \mathbb{N}$

Question Is there a set $C \subseteq V$ with $|C| \le k$ s.t. $\forall \{u, v\} \in E \colon \{u, v\} \cap C \neq \emptyset$?

Classical complexity theory:

Running time is expressed as a function in the input size

Parameterized algorithmics:

Running time is expressed as a function in the input size, as well as one or more additional parameter(s)

Example: (recall from AGT)

k-Vertex Cover

Input

Graph $G = (V, E), k \in \mathbb{N}$

Question Is there a set $C \subseteq V$ with $|C| \le k$ s.t. $\forall \{u, v\} \in E : \{u, v\} \cap C \neq \emptyset$?

- NP-complete,
- but there is an algorithm with runtime $\mathcal{O}(2^k \cdot k \cdot (|V| + |E|))$.

Classical complexity theory:

Running time is expressed as a function in the input size

Parameterized algorithmics:

Running time is expressed as a function in the input size, as well as one or more additional parameter(s)

Example: (recall from AGT)

k-Vertex Cover

Input Graph $G = (V, E), k \in \mathbb{N}$

■ NP-complete,

Question Is there a set $C \subseteq V$ with $|C| \le k$ s.t. $\forall \{u, v\} \in E : \{u, v\} \cap C \neq \emptyset$? but there is an algorithm with runtime $\mathcal{O}(2^k \cdot k \cdot (|V| + |E|))$.

Idea: If $k \in \mathcal{O}(1)$, then $\mathcal{O}(2^k \cdot k \cdot (|V| + |E|)) \subseteq \mathcal{O}(|V| + |E|)$

Classical complexity theory:

Running time is expressed as a function in the input size

Parameterized algorithmics:

Running time is expressed as a function in the input size, as well as one or more additional parameter(s)

Example: (recall from AGT)

k-Vertex Cover

Input Graph $G = (V, E), k \in \mathbb{N}$

■ NP-complete,

Question Is there a set $C \subseteq V$ with $|C| \le k$ s.t. $\forall \{u, v\} \in E : \{u, v\} \cap C \neq \emptyset$? but there is an algorithm with runtime $\mathcal{O}(2^k \cdot k \cdot (|V| + |E|))$.

Idea: If $k \in \mathcal{O}(1)$, then $\mathcal{O}(2^k \cdot k \cdot (|V| + |E|)) \subseteq \mathcal{O}(|V| + |E|)$, in other words, if we assume the parameter k to be fixed, k-Vertex Cover becomes tractable.

Definition.

Let Π be a decision problem. If there is

- lacksquare an algorithm ${\mathcal A}$ and
- a computable function f such that, given an instance I of Π and a parameter $k \in \mathbb{N}$, the algorithm \mathcal{A} provides the correct answer to I in time $f(k) \cdot |I|^{\mathcal{O}(1)}$, then \mathcal{A} (and Π) are called **fixed-parameter tractable (FPT)** with respect to k.

Definition.

Let Π be a decision problem. If there is

- lacksquare an algorithm ${\mathcal A}$ and
- lacksquare a computable function f

such that, given an instance I of Π and a parameter $k \in \mathbb{N}$, the algorithm \mathcal{A} provides the correct answer to I in time $f(k) \cdot |I|^{\mathcal{O}(1)}$, then \mathcal{A} (and Π) are called **fixed-parameter tractable (FPT)** with respect to k.

If \mathcal{A} provides the correct answer to I in time $|I|^{f(k)}$, then \mathcal{A} (and Π) are called slice-wise polynomial (XP) with respect to k. (Note that FPT \subsetneq XP.)

Definition.

Let Π be a decision problem. If there is

- lacksquare an algorithm ${\mathcal A}$ and
- \blacksquare a computable function f

such that, given an instance I of Π and a parameter $k \in \mathbb{N}$, the algorithm \mathcal{A} provides the correct answer to I in time $f(k) \cdot |I|^{\mathcal{O}(1)}$,

then A (and Π) are called fixed-parameter tractable (FPT) with respect to k.

If \mathcal{A} provides the correct answer to I in time $|I|^{f(k)}$, then \mathcal{A} (and Π) are called slice-wise polynomial (XP) with respect to k. (Note that FPT \subsetneq XP.)

Example. $k ext{-Vertex Cover can be solved in time <math>\mathcal{O}(2^k \cdot k \cdot (|V| + |E|))$.

Definition.

Let Π be a decision problem. If there is

- lacksquare an algorithm ${\cal A}$ and
- a computable function f such that, given an instance I of Π and a parameter $k \in \mathbb{N}$, the algorithm \mathcal{A} provides the correct answer to I in time $f(k) \cdot |I|^{\mathcal{O}(1)}$, then \mathcal{A} (and Π) are called **fixed-parameter tractable (FPT)** with respect to k.

If \mathcal{A} provides the correct answer to I in time $|I|^{f(k)}$, then \mathcal{A} (and Π) are called slice-wise polynomial (XP) with respect to k. (Note that FPT \subseteq XP.)

Example. $k ext{-Vertex Cover can be solved in time } \mathcal{O}(\underbrace{2^k \cdot k} \cdot (\underbrace{|V| + |E|})).$

Definition.

Let Π be a decision problem. If there is

- lacksquare an algorithm ${\mathcal A}$ and
- a computable function f such that, given an instance I of Π and a parameter $k \in \mathbb{N}$, the algorithm \mathcal{A} provides the correct answer to I in time $f(k) \cdot |I|^{\mathcal{O}(1)}$,

then A (and Π) are called fixed-parameter tractable (FPT) with respect to k.

If \mathcal{A} provides the correct answer to I in time $|I|^{f(k)}$, then \mathcal{A} (and Π) are called slice-wise polynomial (XP) with respect to k. (Note that FPT \subsetneq XP.)

Example. $k ext{-VERTEX COVER can be solved in time } \mathcal{O}(\underbrace{2^k \cdot k} \cdot (\underbrace{|V| + |E|})).$

 $\Rightarrow k$ -Vertex Cover is FPT (and therefore also XP) with respect to k.

k-Vertex Cover

- NP-complete
- but FPT with respect to k

k-Vertex Cover

- NP-complete
- but FPT with respect to k

k-Clique

- NP-complete
- but XP with respect to k
- Under common assumptions, k-CLIQUE is not FPT with respect to k (namely, k-CLIQUE is W[1]-complete with respect to k; \rightarrow Section 13 in [1])

k-Vertex Cover

- NP-complete
- but FPT with respect to k

k-Clique

- NP-complete
- but XP with respect to k
- Under common assumptions, k-Clique is not FPT with respect to k (namely, k-Clique is W[1]-complete with respect to k; \rightarrow Section 13 in [1])

Vertex k-Coloring

- NP-complete for every $k \ge 3$
- \blacksquare \Rightarrow neither FPT nor XP with respect to k, unless P = NP

k-Vertex Cover

- NP-complete
- but FPT with respect to *k*

k-Clique

- NP-complete
- but XP with respect to *k*
- Under common assumptions, k-Clique is not FPT with respect to k (namely, k-Clique is W[1]-complete with respect to k; \to Section 13 in [1])

Vertex k-Coloring

- NP-complete for every $k \ge 3$
- \blacksquare \Rightarrow neither FPT nor XP with respect to k, unless P = NP

In all these examples, k is the natural parameter that comes with the decision problem.

k-Vertex Cover

- NP-complete
- but FPT with respect to *k*

k-Clique

- NP-complete
- but XP with respect to k
- Under common assumptions, k-Clique is not FPT with respect to k
 - (namely, $k ext{-}\mathrm{CLIQUE}$ is $W[1] ext{-}\mathrm{complete}$ with respect to k; $ext{-}$ Section 13 in [1])

In all these examples, k is the natural parameter that comes with the decision problem.

We can also study other types of parameters!

Vertex k-Coloring

- NP-complete for every $k \ge 3$
- \blacksquare \Rightarrow neither FPT nor XP with respect to k, unless P = NP

k-Vertex Cover

- NP-complete
- but FPT with respect to k

k-Clique

- NP-complete
- but XP with respect to *k*
- Under common assumptions, k-CLIQUE is not FPT with respect to k (namely, k-CLIQUE is W[1]-complete with respect to k; \to Section 13 in [1])
- There is an $\mathcal{O}(2^{\Delta} \cdot \Delta^2 \cdot (|V| + |E|))$ time algorithm for k-CLIQUE, where Δ is the maximum degree of the input graph $\Rightarrow k$ -CLIQUE is FPT with respect to Δ .

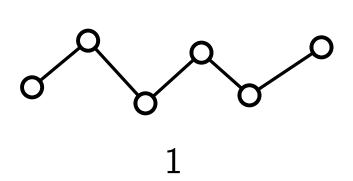
Vertex k-Coloring

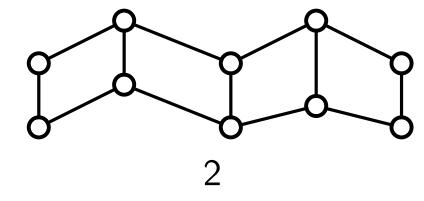
- NP-complete for every $k \ge 3$
- \blacksquare \Rightarrow neither FPT nor XP with respect to k, unless P = NP

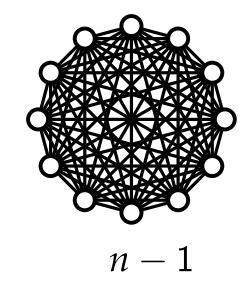
In all these examples, k is the natural parameter that comes with the decision problem.

We can also study other types of parameters!

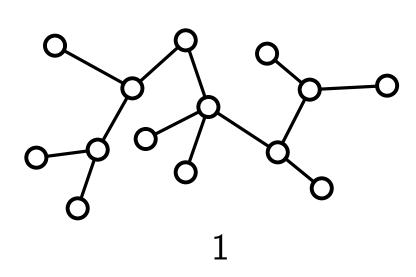
Pathwidth describes how path-like a graph is.

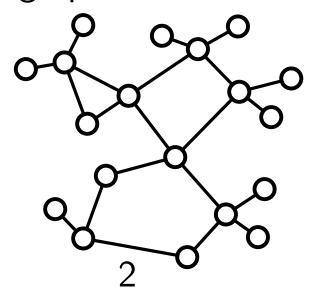


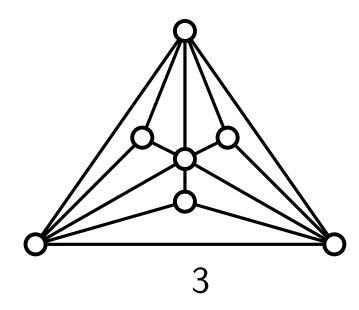




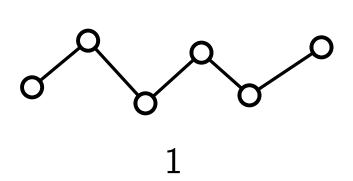
Treewidth describes how tree-like a graph is.

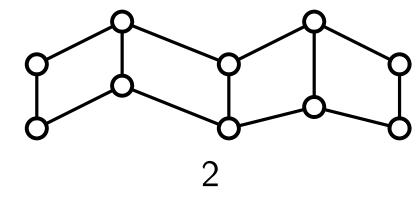


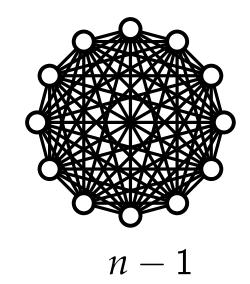




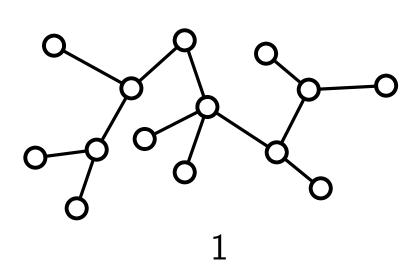
Pathwidth describes how path-like a graph is.

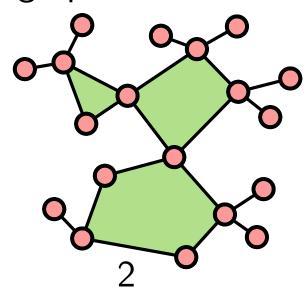


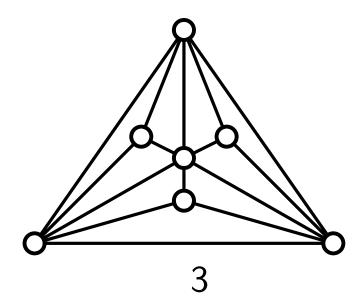




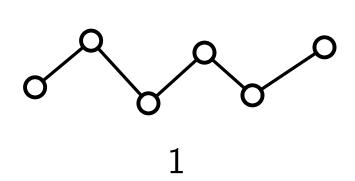
Treewidth describes how tree-like a graph is.

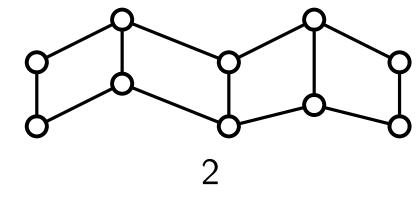


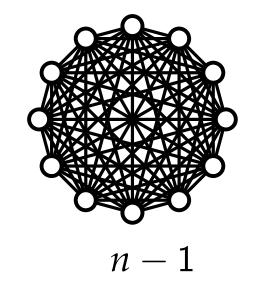




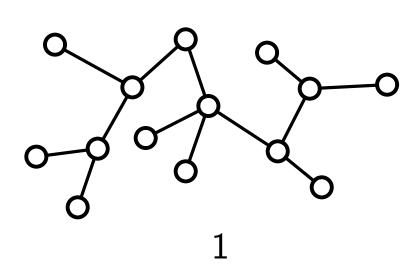
Pathwidth describes how path-like a graph is.

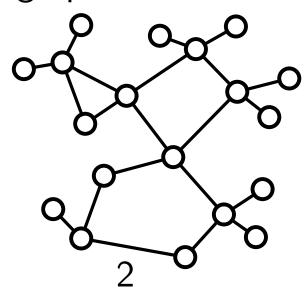


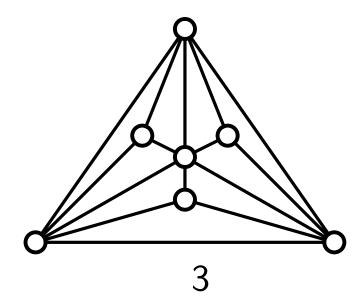




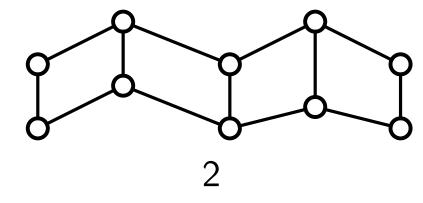
Treewidth describes how tree-like a graph is.

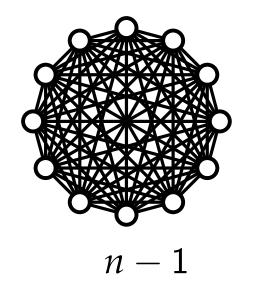




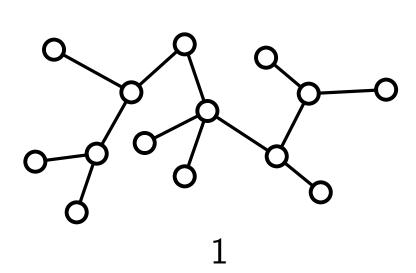


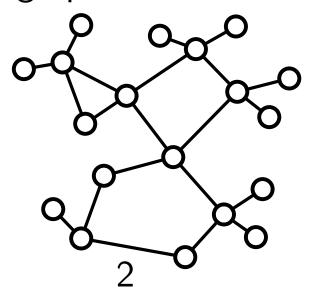
Pathwidth describes how path-like a graph is.

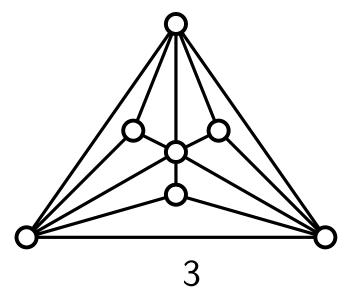




Treewidth describes how tree-like a graph is.



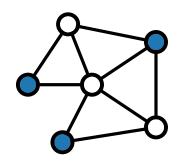




Tree-like structure is useful for designing dynamic programming algorithms.

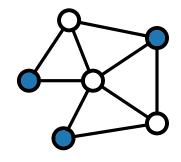
Input. A graph G = (V, E). Weight function $w : V \to \mathbb{N}$.

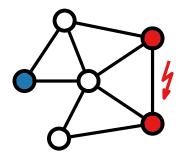
Output. A set $I \subseteq V$ that is **independent**, i.e., $\forall u, v \in I : \{u, v\} \notin E$, and has **maximum weight**, i.e., $w(I) := \sum_{v \in I} w(v)$ is maximized.



Input. A graph G = (V, E). Weight function $w : V \to \mathbb{N}$.

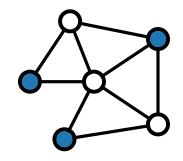
Output. A set $I \subseteq V$ that is **independent**, i.e., $\forall u, v \in I : \{u, v\} \notin E$, and has **maximum weight**, i.e., $w(I) := \sum_{v \in I} w(v)$ is maximized.

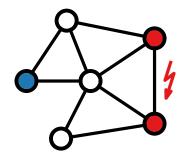




Input. A graph G = (V, E). Weight function $w : V \to \mathbb{N}$.

Output. A set $I \subseteq V$ that is **independent**, i.e., $\forall u, v \in I : \{u, v\} \notin E$, and has **maximum weight**, i.e., $w(I) := \sum_{v \in I} w(v)$ is maximized.

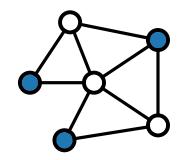


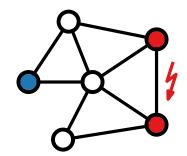


■ (Already unweighted) INDEPENDENT SET is NP-complete,

Input. A graph G = (V, E). Weight function $w : V \to \mathbb{N}$.

Output. A set $I \subseteq V$ that is **independent**, i.e., $\forall u, v \in I : \{u, v\} \notin E$, and has **maximum weight**, i.e., $w(I) := \sum_{v \in I} w(v)$ is maximized.

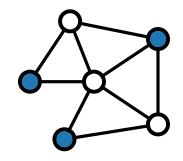


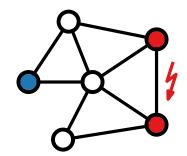


- (Already unweighted) INDEPENDENT SET is NP-complete,
- but can be solved efficiently on tree-like graphs (also when weighted).

Input. A graph G = (V, E). Weight function $w : V \to \mathbb{N}$.

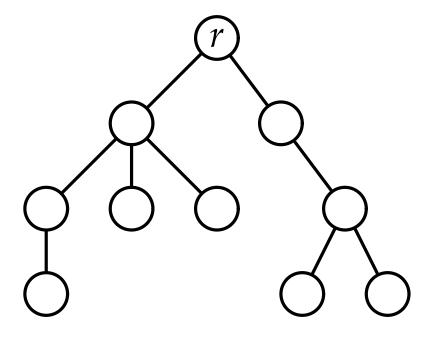
Output. A set $I \subseteq V$ that is **independent**, i.e., $\forall u, v \in I : \{u, v\} \notin E$, and has **maximum weight**, i.e., $w(I) := \sum_{v \in I} w(v)$ is maximized.





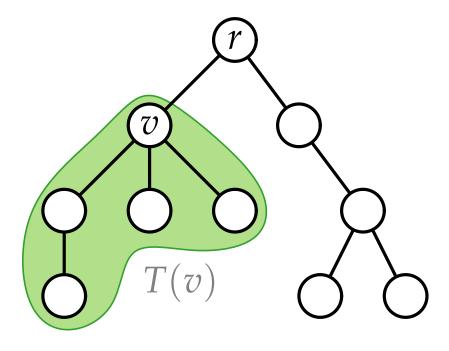
- (Already unweighted) INDEPENDENT SET is NP-complete,
- but can be solved efficiently on tree-like graphs (also when weighted).
- lacktriangle On trees, (Weighted) Independent Set can be solved in linear time.

Choose an arbitrary root r.



Choose an arbitrary root r.

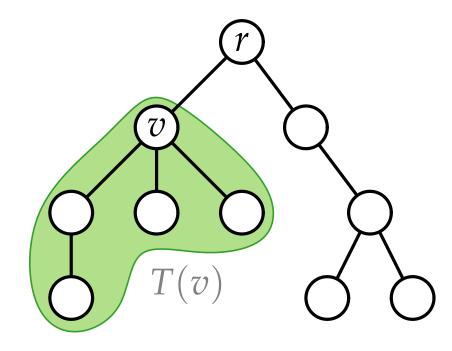
Let T(v) := subtree rooted at v



Choose an arbitrary root r.

Let T(v) := subtree rooted at v

Let $A(v) := \max \max$ weight of an independent set I in T(v)

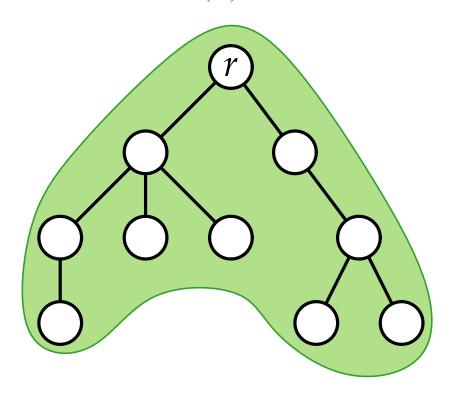


Choose an arbitrary root r.

Let T(v) := subtree rooted at v

Let $A(v) := \max \max$ weight of an independent set I in T(v)

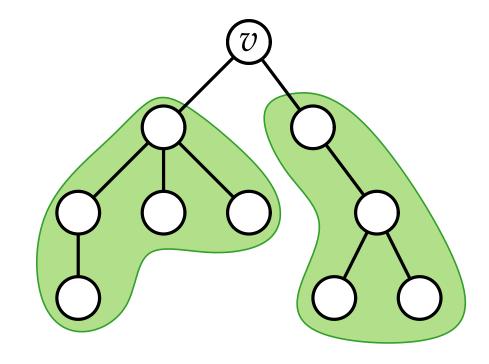
$$A(r) =$$
solution



Choose an arbitrary root r.

Let T(v) := subtree rooted at v

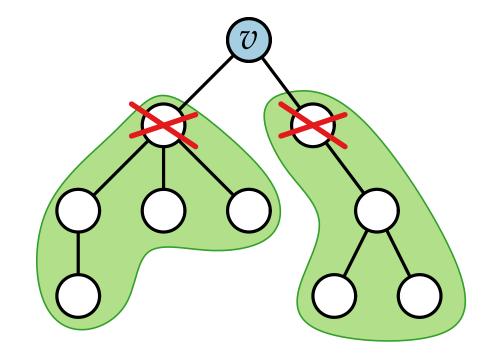
Let $A(v) := \max \max$ weight of an independent set I in T(v)



Choose an arbitrary root r.

Let T(v) :=subtree rooted at v

Let $A(v) := \max \max$ weight of an independent set I in T(v)



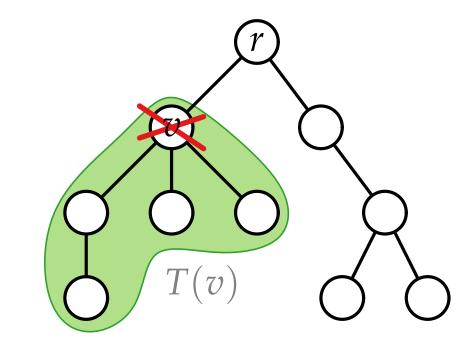
If $v \in V$ is part of indepent set I, then none of its neighbors N(v) is also in I.

Choose an arbitrary root r.

Let T(v) := subtree rooted at v

Let $A(v) := \max \max$ weight of an independent set I in T(v)

Let $B(v) := \max \min$ weight of an independent set I in T(v) where $v \notin I$



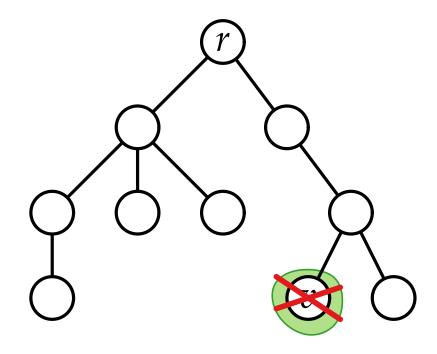
Choose an arbitrary root r.

Let T(v) := subtree rooted at v

Let $A(v) := \max \max$ weight of an independent set I in T(v)

Let $B(v) := \max \text{imum weight of an}$ independent set I in T(v) where $v \notin I$

If v is a leaf: B(v) =



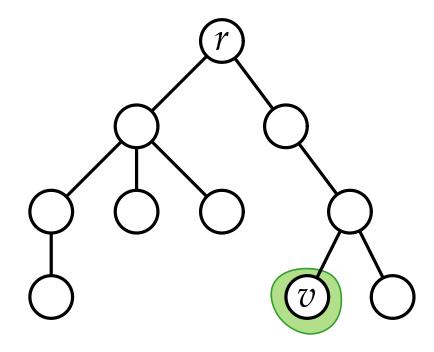
Choose an arbitrary root r.

Let T(v) := subtree rooted at v

Let $A(v) := \max \max$ weight of an independent set I in T(v)

Let $B(v) := \max \text{imum weight of an}$ independent set I in T(v) where $v \notin I$

If v is a leaf: B(v) = 0 and A(v) = 0



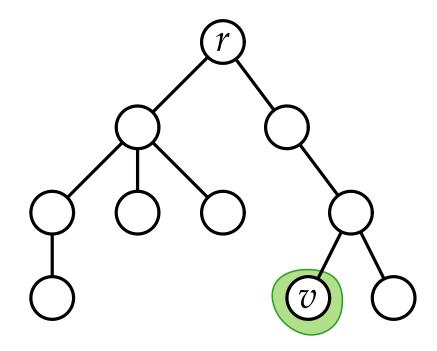
Choose an arbitrary root r.

Let T(v) := subtree rooted at v

Let $A(v) := \max \max$ weight of an independent set I in T(v)

Let $B(v) := \max \min weight of an independent set <math>I$ in T(v) where $v \notin I$

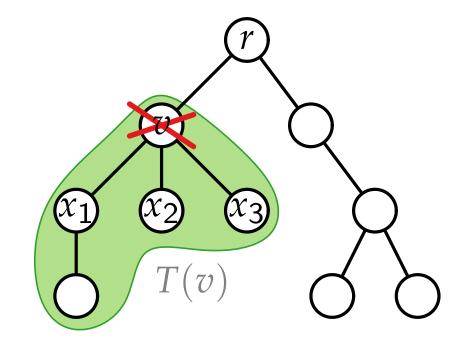
If v is a leaf: B(v) = 0 and A(v) = w(v)



Choose an arbitrary root r.

Let T(v) := subtree rooted at v

Let $A(v) := \max \max$ weight of an independent set I in T(v)



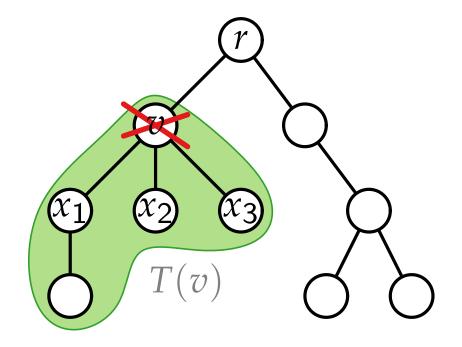
- If v is a leaf: B(v) = 0 and A(v) = w(v)
- If v has children x_1, \ldots, x_ℓ :

$$B(v) =$$

Choose an arbitrary root r.

Let T(v) := subtree rooted at v

Let $A(v) := \max \max$ weight of an independent set I in T(v)



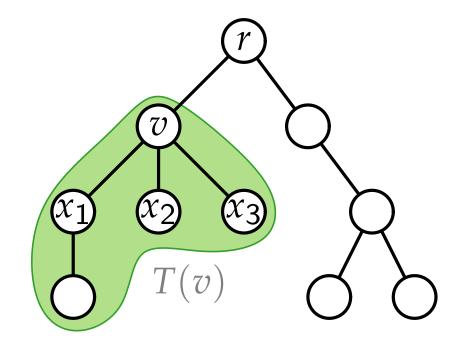
- If v is a leaf: B(v) = 0 and A(v) = w(v)
- If v has children x_1, \ldots, x_ℓ :

$$B(v) = \sum_{i=1}^{\ell} A(x_i);$$

Choose an arbitrary root r.

Let T(v) := subtree rooted at v

Let $A(v) := \max \max$ weight of an independent set I in T(v)



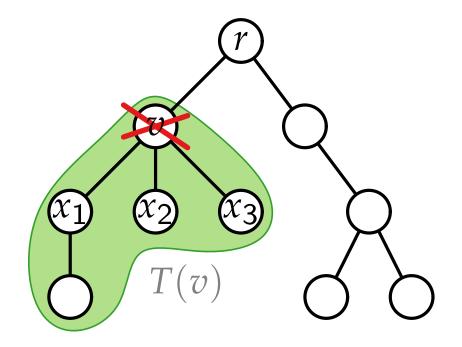
- If v is a leaf: B(v) = 0 and A(v) = w(v)
- If v has children x_1, \ldots, x_ℓ :

$$B(v) = \sum_{i=1}^{\ell} A(x_i); A(v) =$$

Choose an arbitrary root r.

Let T(v) := subtree rooted at v

Let $A(v) := \max \max$ weight of an independent set I in T(v)



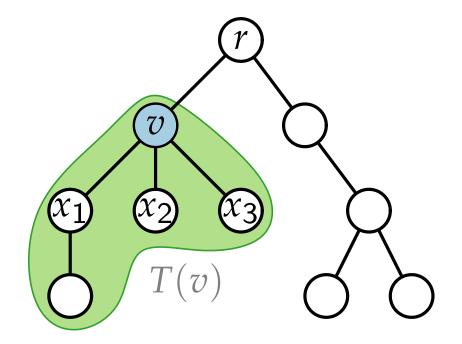
- If v is a leaf: B(v) = 0 and A(v) = w(v)
- If v has children x_1, \ldots, x_ℓ :

$$B(v) = \sum_{i=1}^{\ell} A(x_i); A(v) = \max\{B(v),$$

Choose an arbitrary root r.

Let T(v) := subtree rooted at v

Let $A(v) := \max \max$ weight of an independent set I in T(v)



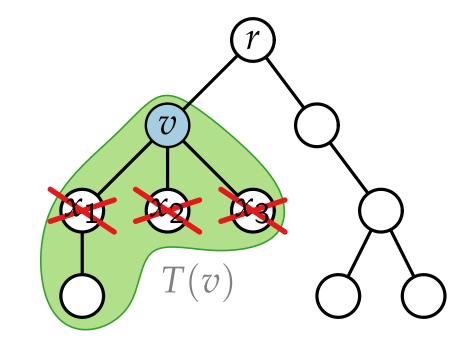
- If v is a leaf: B(v) = 0 and A(v) = w(v)
- If v has children x_1, \ldots, x_ℓ :

$$B(v) = \sum_{i=1}^{\ell} A(x_i); A(v) = \max\{B(v),$$

Choose an arbitrary root r.

Let T(v) := subtree rooted at v

Let $A(v) := \max \max$ weight of an independent set I in T(v)



- If v is a leaf: B(v) = 0 and A(v) = w(v)
- If v has children x_1, \ldots, x_ℓ :

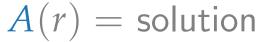
$$B(v) = \sum_{i=1}^{\ell} A(x_i); \ A(v) = \max\{B(v), \ w(v) + \sum_{i=1}^{\ell} B(x_i)\}$$

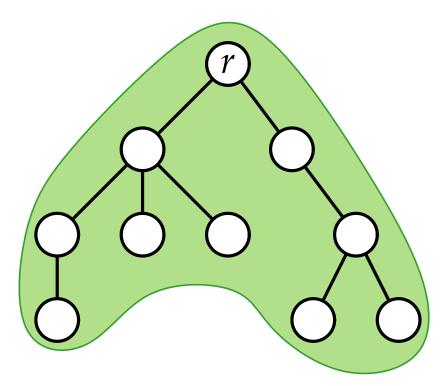
Choose an arbitrary root r.

Let T(v) := subtree rooted at v

Let $A(v) := \max \max$ weight of an independent set I in T(v)

Let $B(v) := \max \text{imum weight of an}$ independent set I in T(v) where $v \notin I$





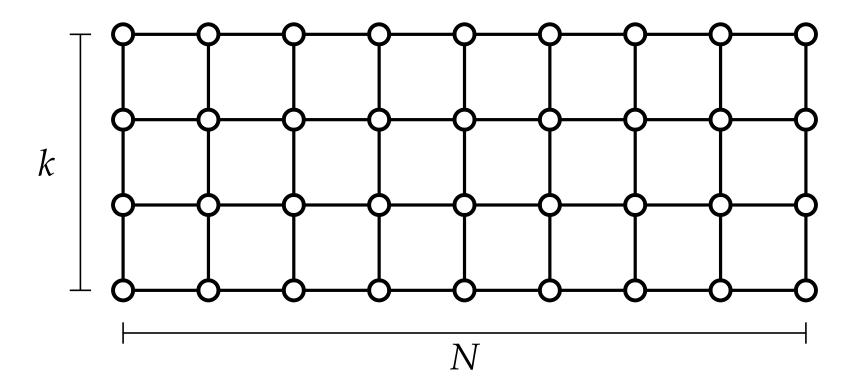
- If v is a leaf: B(v) = 0 and A(v) = w(v)
- If v has children x_1, \ldots, x_ℓ :

$$B(v) = \sum_{i=1}^{\ell} A(x_i); \ A(v) = \max\{B(v), \ w(v) + \sum_{i=1}^{\ell} B(x_i)\}$$

Algorithm: Compute $A(\cdot)$ and $B(\cdot)$ bottom-up, return A(r).

In a $k \times N$ grid graph

- the vertex set consist of all pairs (i, j) where $1 \le i \le k$ and $1 \le j \le N$, and
- two vertices (i_1, j_1) and (i_2, j_2) are adjacent if and only if $|i_1 i_2| + |j_1 j_2| = 1$.



In a $k \times N$ grid graph

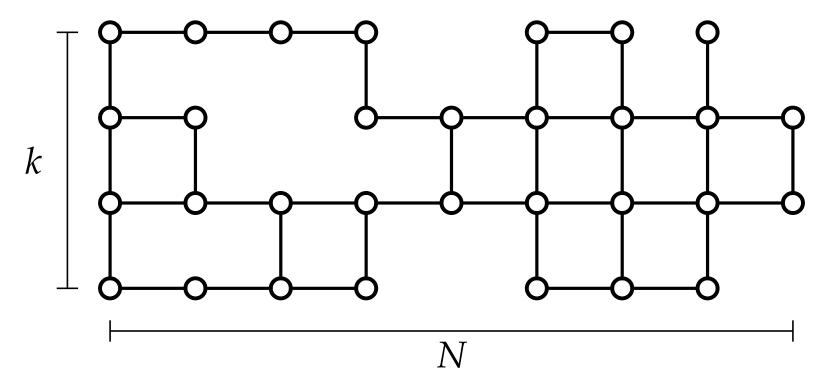
- lacktriangle the vertex set consist of all pairs (i,j) where $1\leq i\leq k$ and $1\leq j\leq N$, and
- where two vertices (i_1, j_1) and (i_2, j_2) are adjacent if and only if $|i_1 i_2| + |j_1 j_2| = 1$.



We will study INDEPENDENT SET in subgraphs of $k \times N$ grid graphs.

In a $k \times N$ grid graph

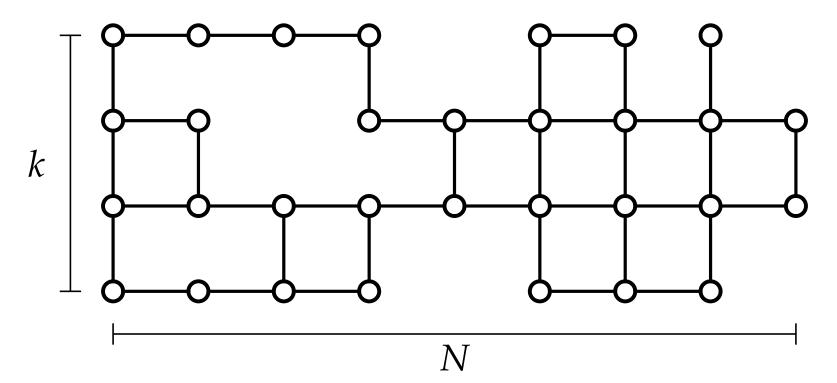
- lacktriangle the vertex set consist of all pairs (i,j) where $1\leq i\leq k$ and $1\leq j\leq N$, and
- where two vertices (i_1, j_1) and (i_2, j_2) are adjacent if and only if $|i_1 i_2| + |j_1 j_2| = 1$.



We will study Independent Set in subgraphs of $k \times N$ grid graphs.

In a $k \times N$ grid graph

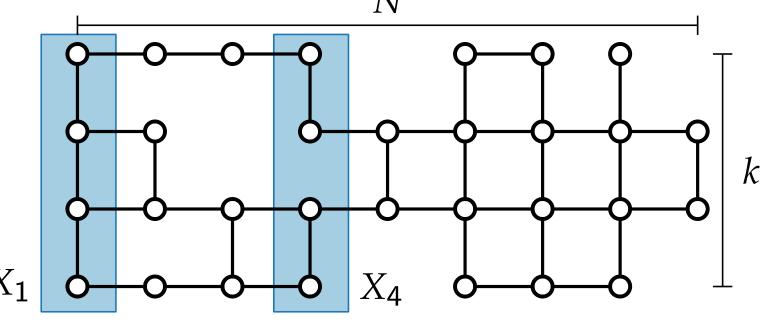
- lacktriangle the vertex set consist of all pairs (i,j) where $1\leq i\leq k$ and $1\leq j\leq N$, and
- two vertices (i_1, j_1) and (i_2, j_2) are adjacent if and only if $|i_1 i_2| + |j_1 j_2| = 1$.



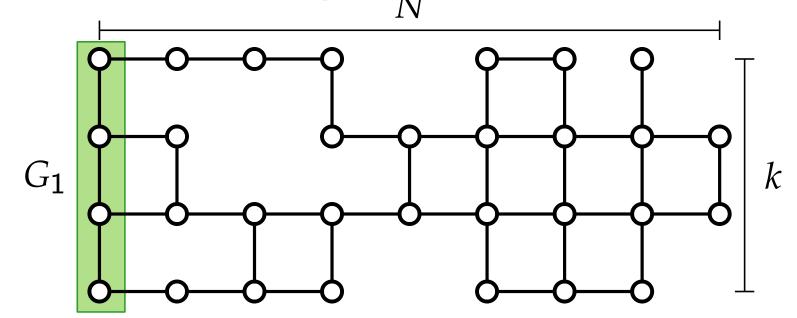
We will study INDEPENDENT SET in subgraphs of $k \times N$ grid graphs.

Goal: An FTP algorithms with respect to parameter k.

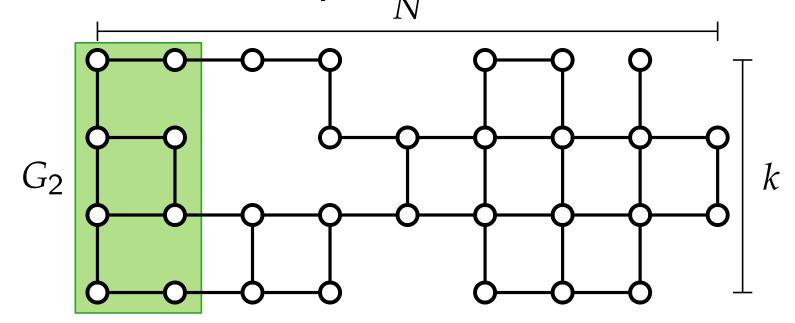
Let X_j be the j-th column, that is, $X_j = V(G) \cap \{(i,j) \mid 1 \le i \le k\}.$



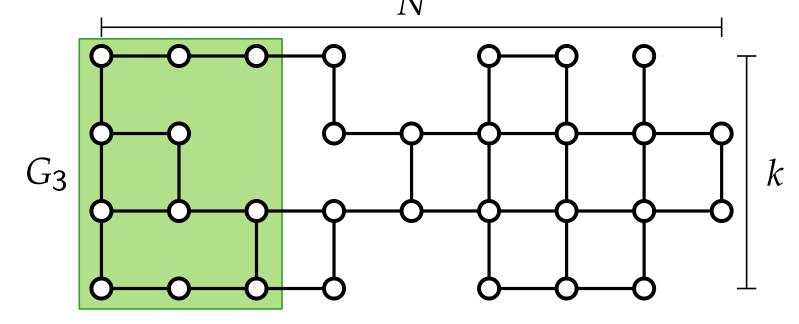
Let X_j be the j-th column, that is, $X_j = V(G) \cap \{(i,j) \mid 1 \le i \le k\}.$



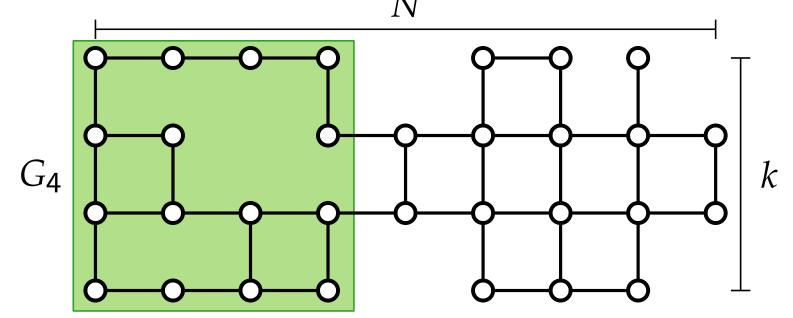
Let X_j be the j-th column, that is, $X_j = V(G) \cap \{(i,j) \mid 1 \le i \le k\}.$



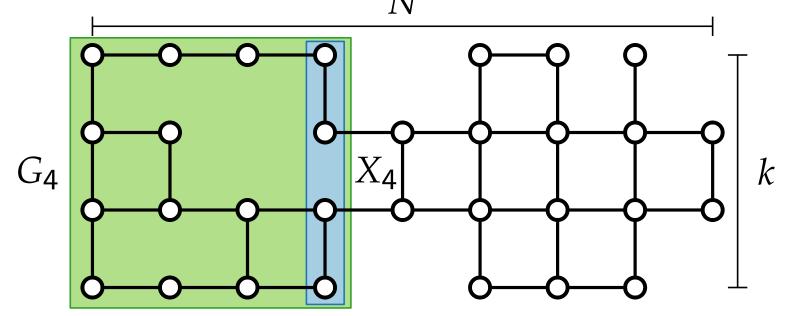
Let X_j be the j-th column, that is, $X_j = V(G) \cap \{(i,j) \mid 1 \le i \le k\}.$



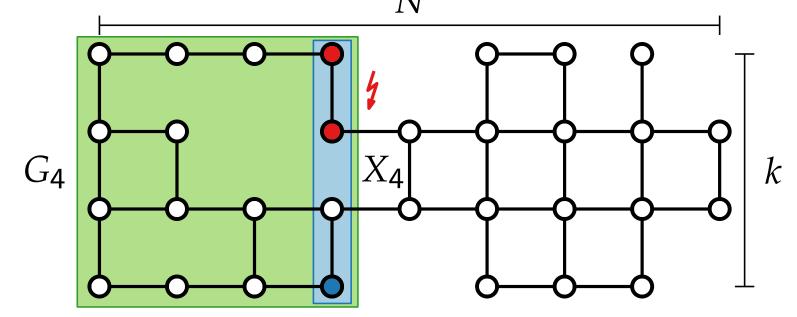
Let X_j be the j-th column, that is, $X_j = V(G) \cap \{(i,j) \mid 1 \le i \le k\}.$



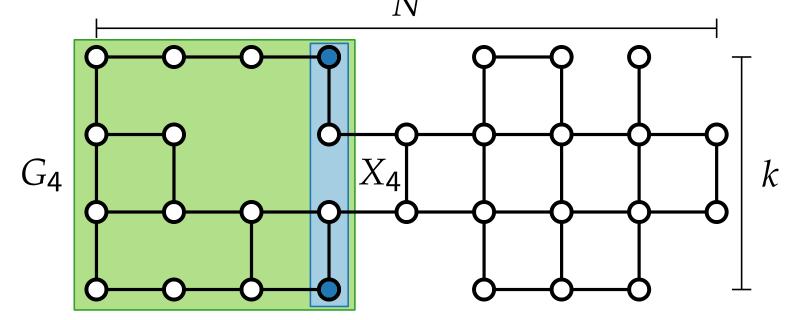
Let X_j be the j-th column, that is, $X_j = V(G) \cap \{(i,j) \mid 1 \le i \le k\}.$



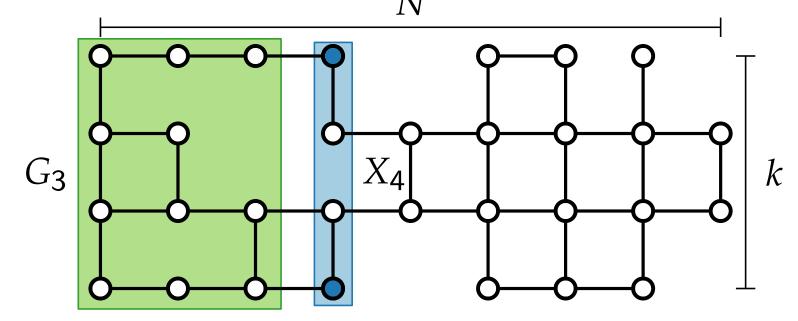
Let X_j be the j-th column, that is, $X_j = V(G) \cap \{(i,j) \mid 1 \le i \le k\}.$



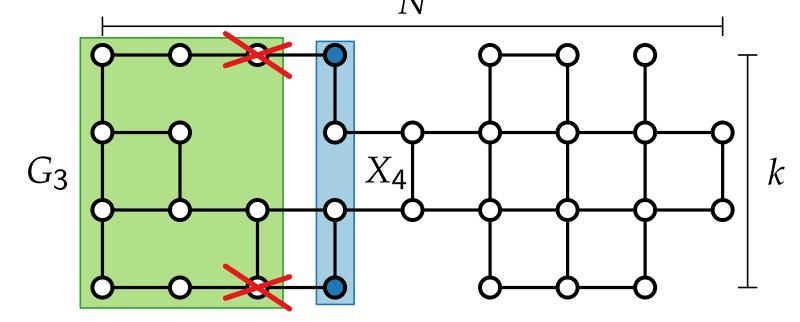
Let X_j be the j-th column, that is, $X_j = V(G) \cap \{(i,j) \mid 1 \le i \le k\}.$



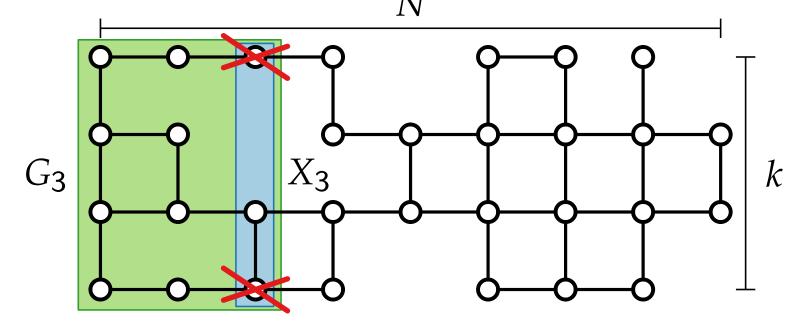
Let X_j be the j-th column, that is, $X_j = V(G) \cap \{(i,j) \mid 1 \le i \le k\}.$



Let X_j be the j-th column, that is, $X_j = V(G) \cap \{(i,j) \mid 1 \le i \le k\}.$



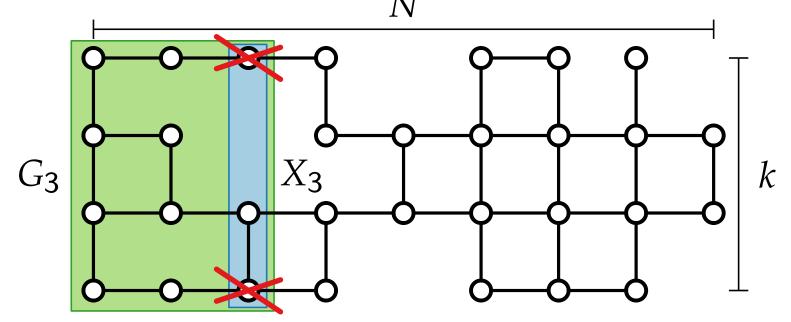
Let X_j be the j-th column, that is, $X_j = V(G) \cap \{(i,j) \mid 1 \le i \le k\}.$



Let X_j be the j-th column, that is, $X_j = V(G) \cap \{(i,j) \mid 1 \le i \le k\}.$

Let G_j be the graph induced by the first j columns $X_1 \cup X_2 \cup \ldots X_j$.

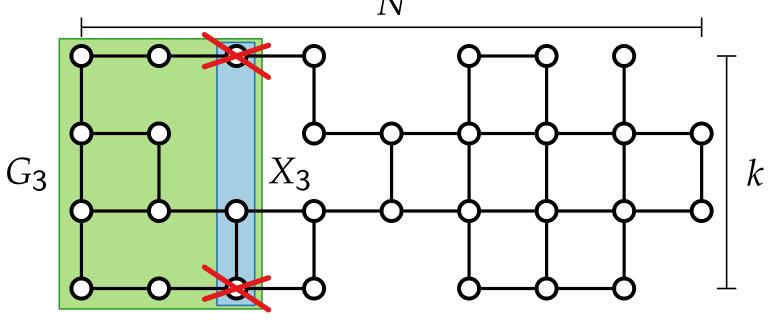
Let $1 \leq j \leq N$. For each $Y \subseteq X_j$ let



Let X_j be the j-th column, that is, $X_j = V(G) \cap \{(i,j) \mid 1 \le i \le k\}.$

Let G_j be the graph induced by the first j columns $X_1 \cup X_2 \cup \ldots X_j$.

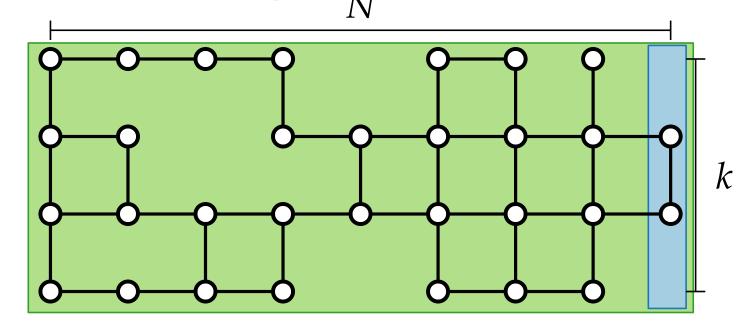
Let $1 \leq j \leq N$. For each $Y \subseteq X_j$ let



Let X_j be the j-th column, that is, $X_j = V(G) \cap \{(i,j) \mid 1 \le i \le k\}.$

Let G_j be the graph induced by the first j columns $X_1 \cup X_2 \cup \ldots X_j$.

Let $1 \leq j \leq N$. For each $Y \subseteq X_j$ let

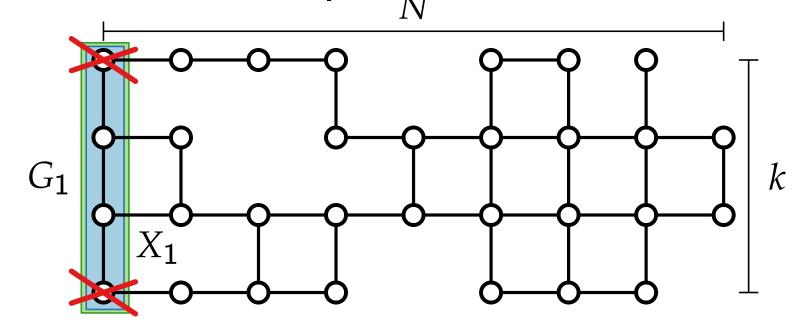


 $C[j, Y] := \text{maximum weight of an independent set } I \text{ in } G_j \text{ such that } I \cap Y = \emptyset$ $C[N, \emptyset] = \text{solution}$

Let X_j be the j-th column, that is, $X_j = V(G) \cap \{(i,j) \mid 1 \le i \le k\}.$

Let G_j be the graph induced by the first j columns $X_1 \cup X_2 \cup \ldots X_j$.

Let $1 \leq j \leq N$. For each $Y \subseteq X_j$ let

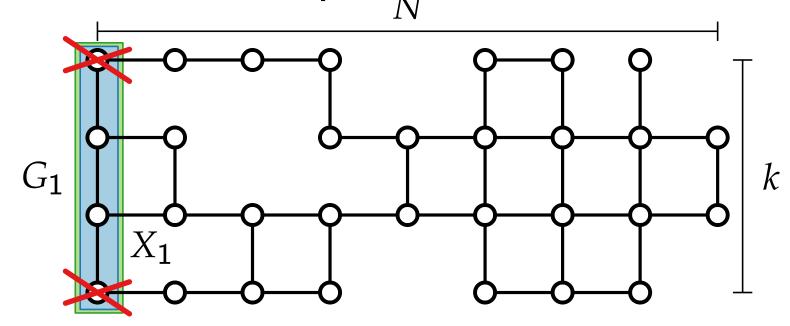


$$C[1, Y] =$$

Let X_j be the j-th column, that is, $X_j = V(G) \cap \{(i,j) \mid 1 \le i \le k\}$.

Let G_j be the graph induced by the first j columns $X_1 \cup X_2 \cup \ldots X_j$.

Let $1 \leq j \leq N$. For each $Y \subseteq X_j$ let

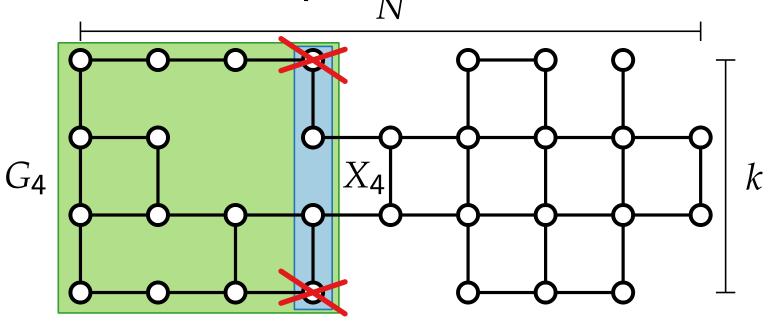


$$C[1, Y] = \max_{I \subseteq X_1 \setminus Y \text{ where } I \text{ independent}} \{w(I)\}$$

Let X_j be the j-th column, that is, $X_j = V(G) \cap \{(i,j) \mid 1 \le i \le k\}.$

Let G_j be the graph induced by the first j columns $X_1 \cup X_2 \cup \ldots X_j$.

Let $1 \leq j \leq N$. For each $Y \subseteq X_j$ let



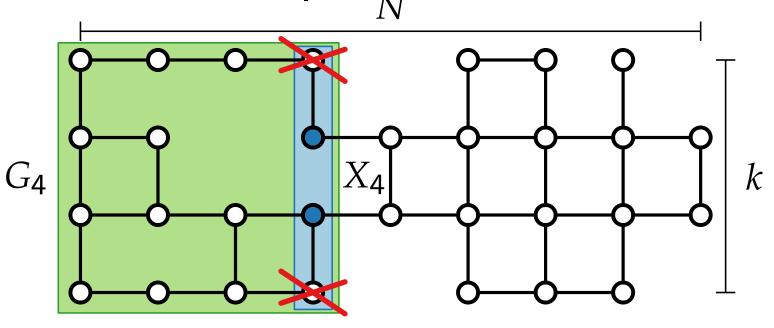
$$C[1, Y] = \max_{I \subseteq X_1 \setminus Y} \text{ where } I \text{ independent} \{w(I)\}$$

$$C[j, Y] =$$

Let X_j be the j-th column, that is, $X_j = V(G) \cap \{(i,j) \mid 1 \le i \le k\}.$

Let G_j be the graph induced by the first j columns $X_1 \cup X_2 \cup \ldots X_j$.

Let $1 \leq j \leq N$. For each $Y \subseteq X_j$ let



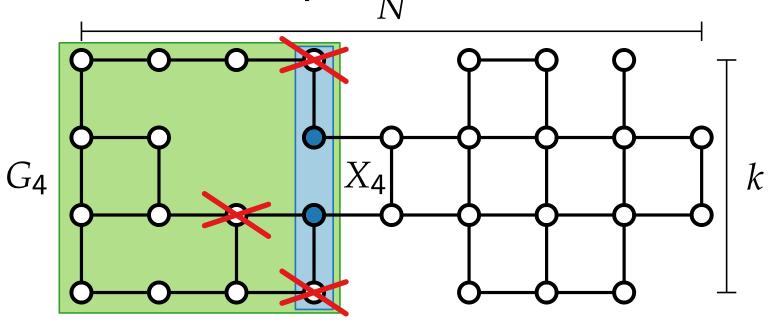
$$C[1, Y] = \max_{I \subseteq X_1 \setminus Y \text{ where } I \text{ independent}} \{w(I)\}$$

$$C[j, Y] =$$

Let X_j be the j-th column, that is, $X_j = V(G) \cap \{(i,j) \mid 1 \le i \le k\}.$

Let G_j be the graph induced by the first j columns $X_1 \cup X_2 \cup \ldots X_j$.

Let $1 \leq j \leq N$. For each $Y \subseteq X_j$ let



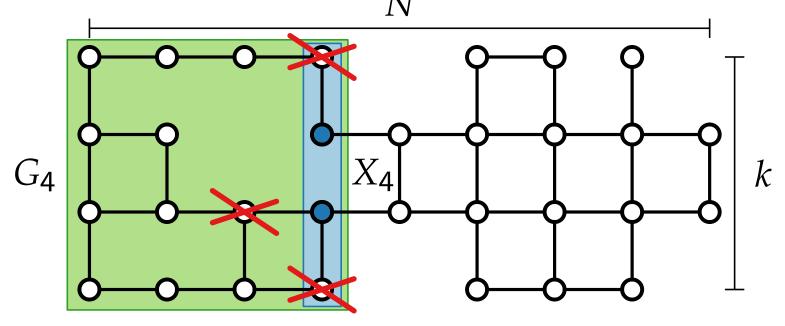
$$C[1, Y] = \max_{I \subseteq X_1 \setminus Y \text{ where } I \text{ independent}} \{w(I)\}$$

$$C[j, Y] =$$

Let X_j be the j-th column, that is, $X_j = V(G) \cap \{(i,j) \mid 1 \le i \le k\}.$

Let G_j be the graph induced by the first j columns $X_1 \cup X_2 \cup \ldots X_j$.

Let $1 \leq j \leq N$. For each $Y \subseteq X_j$ let



C[j, Y] := maximum weight of an independent set I in G_j such that $I \cap Y = \emptyset$

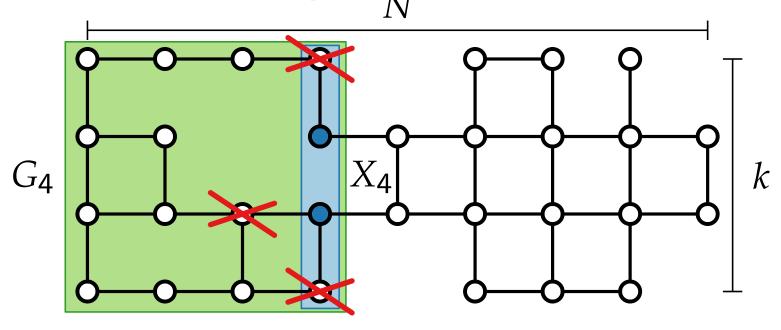
 $C[1, Y] = \max_{I \subseteq X_1 \setminus Y \text{ where } I \text{ independent}} \{w(I)\}$

 $C[j, Y] = \max_{I \subseteq X_j \setminus Y \text{ where } I \text{ independent}} \{w(I) + C[j-1, X_{j-1} \cap N(I)]\}$

Let X_j be the j-th column, that is, $X_j = V(G) \cap \{(i,j) \mid 1 \le i \le k\}.$

Let G_j be the graph induced by the first j columns $X_1 \cup X_2 \cup \ldots X_j$.

Let $1 \leq j \leq N$. For each $Y \subseteq X_j$ let



C[j, Y] := maximum weight of an independent set I in G_j such that $I \cap Y = \emptyset$

 $C[1, Y] = \max_{I \subseteq X_1 \setminus Y \text{ where } I \text{ independent}} \{w(I)\}$

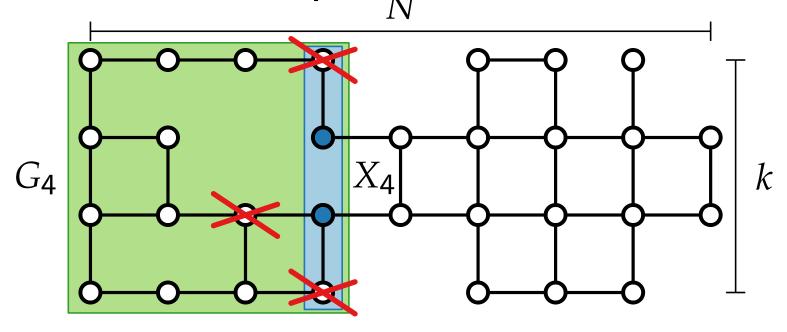
 $C[j, Y] = \max_{I \subseteq X_j \setminus Y} where I independent \{w(I) + C[j-1, X_{j-1} \cap N(I)]\}$

For each j there are $\leq 2^k$ choices of Y, and for each Y there are $2^{|X_j \setminus Y|}$ choices of I.

Let X_j be the j-th column, that is, $X_j = V(G) \cap \{(i,j) \mid 1 \le i \le k\}.$

Let G_j be the graph induced by the first j columns $X_1 \cup X_2 \cup \ldots X_j$.

Let $1 \leq j \leq N$. For each $Y \subseteq X_j$ let



C[j, Y] := maximum weight of an independent set I in G_j such that $I \cap Y = \emptyset$

 $C[1, Y] = \max_{I \subseteq X_1 \setminus Y \text{ where } I \text{ independent}} \{w(I)\}$

 $C[j, Y] = \max_{I \subseteq X_j \setminus Y \text{ where } I \text{ independent}} \{w(I) + C[j-1, X_{j-1} \cap N(I)]\}$

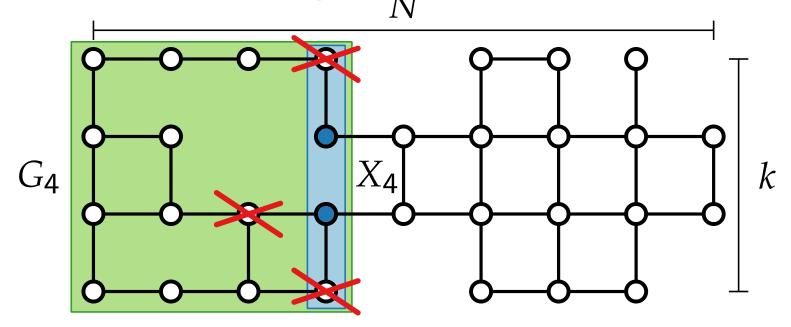
For each j there are $\leq 2^k$ choices of Y, and for each Y there are $2^{|X_j \setminus Y|}$ choices of I.

For each of these $\leq N4^k$ choices of I, we need to test if I is independent.

Let X_j be the j-th column, that is, $X_j = V(G) \cap \{(i,j) \mid 1 \le i \le k\}.$

Let G_j be the graph induced by the first j columns $X_1 \cup X_2 \cup \ldots X_j$.

Let $1 \leq j \leq N$. For each $Y \subseteq X_j$ let



C[j, Y] := maximum weight of an independent set I in G_j such that $I \cap Y = \emptyset$

 $C[1, Y] = \max_{I \subseteq X_1 \setminus Y \text{ where } I \text{ independent}} \{w(I)\}$

 $C[j, Y] = \max_{I \subseteq X_j \setminus Y} where I independent \{w(I) + C[j-1, X_{j-1} \cap N(I)]\}$

For each j there are $\leq 2^k$ choices of Y, and for each Y there are $2^{|X_j \setminus Y|}$ choices of I.

For each of these $\leq N3^k$ choices of I, we need to test if I is independent.

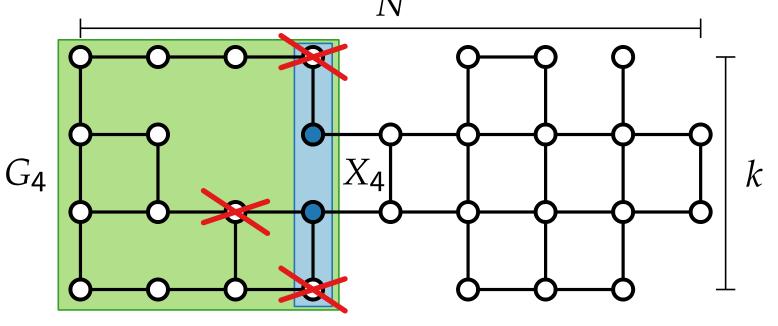
each element in a column has one of three options: being in Y or I or none of them

Indenpendent Set in $k \times N$ Grid Graphs $_N$

Let X_j be the j-th column, that is, $X_j = V(G) \cap \{(i,j) \mid 1 \le i \le k\}.$

Let G_j be the graph induced by the first j columns $X_1 \cup X_2 \cup \ldots X_j$.

Let $1 \leq j \leq N$. For each $Y \subseteq X_j$ let



C[j, Y] := maximum weight of an independent set I in G_j such that $I \cap Y = \emptyset$

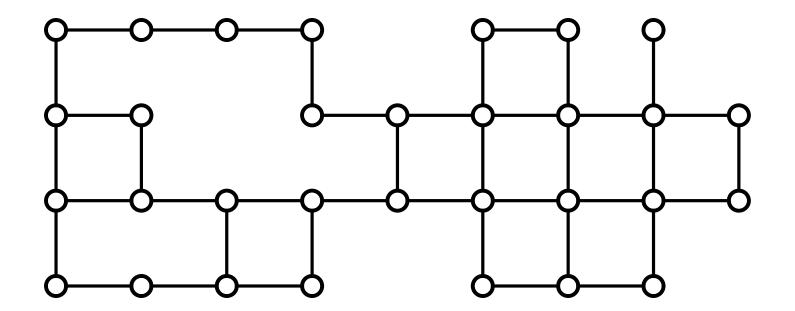
 $C[1, Y] = \max_{I \subseteq X_1 \setminus Y \text{ where } I \text{ independent}} \{w(I)\}$

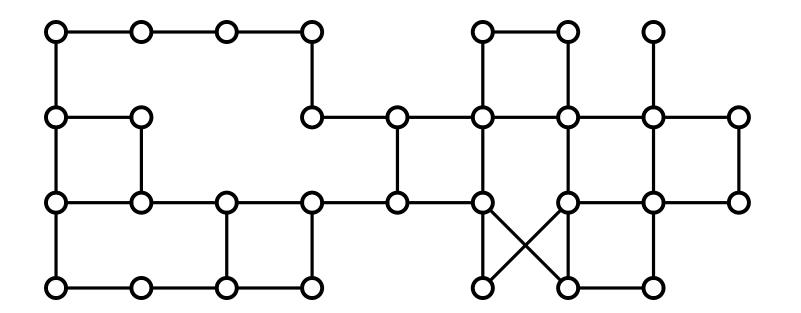
 $C[j, Y] = \max_{I \subseteq X_j \setminus Y \text{ where } I \text{ independent}} \{w(I) + C[j-1, X_{j-1} \cap N(I)]\}$

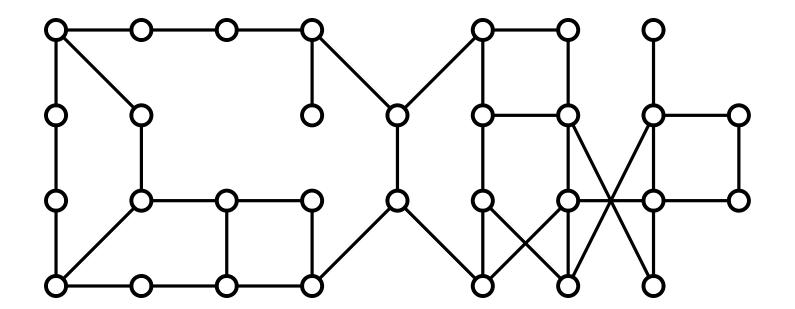
For each j there are $\leq 2^k$ choices of Y, and for each Y there are $2^{|X_j \setminus Y|}$ choices of I.

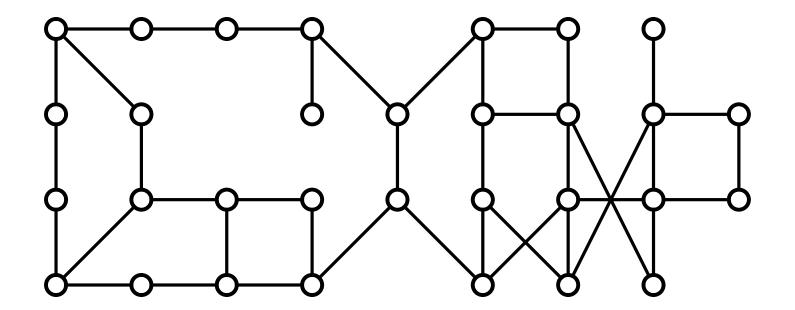
For each of these $\leq N3^k$ choices of I, we need to test if I is independent.

 \rightarrow total running time $\leq 3^k k^{\mathcal{O}(1)} N$.

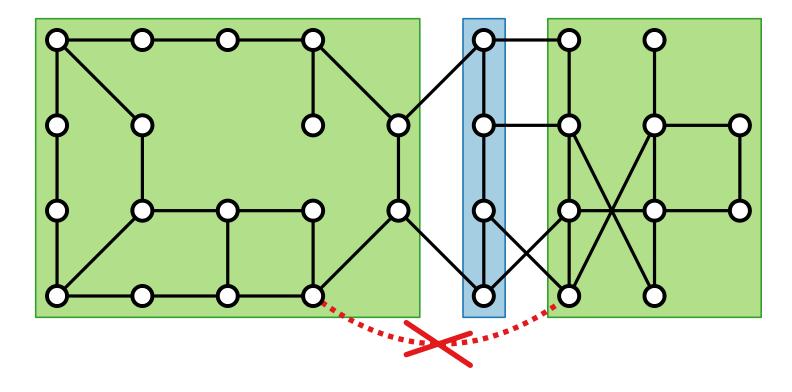






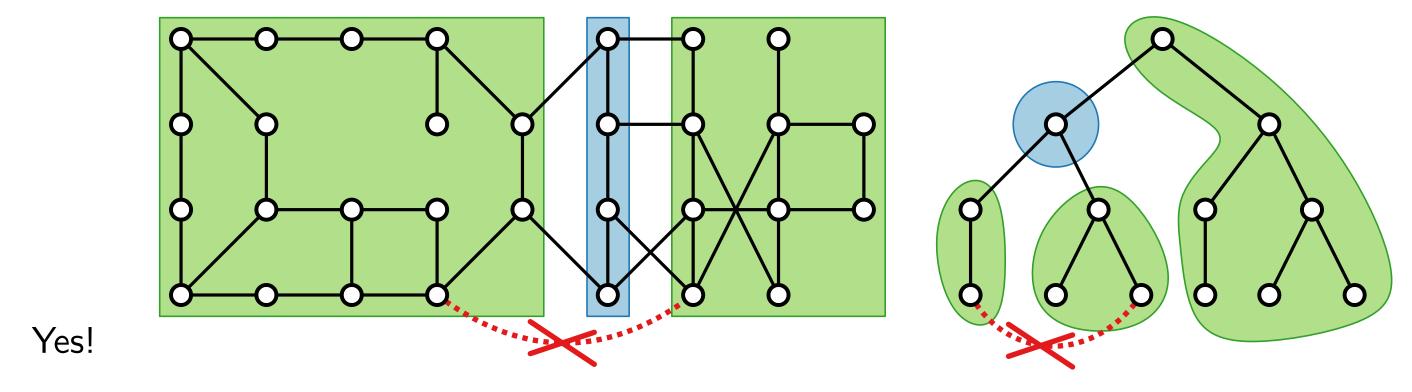


Yes!

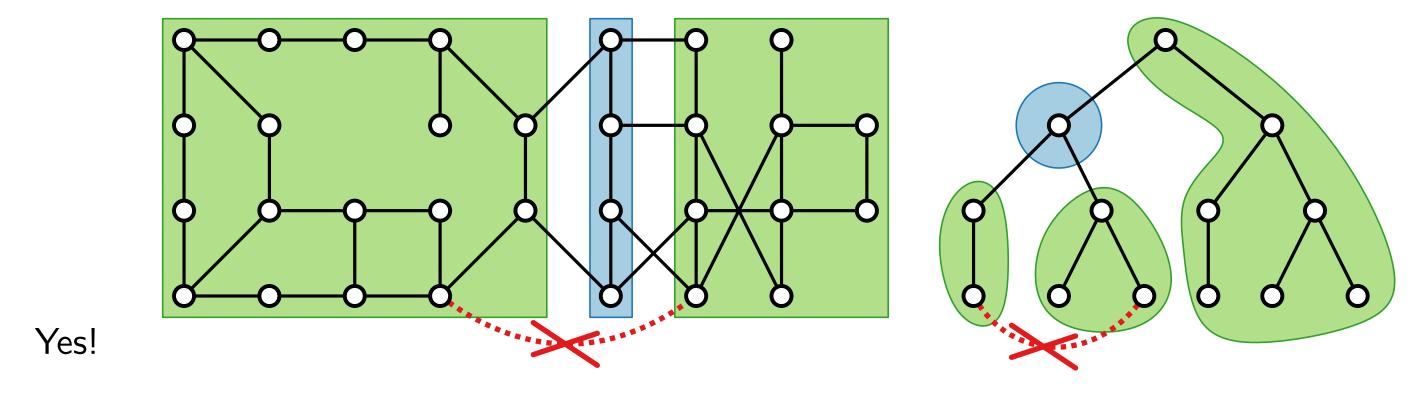


Yes!

We mainly used the fact that the graph consists of a sequence of small separators.



We mainly used the fact that the graph consists of a sequence of small separators. A similar fact was used in the algorithm for trees.

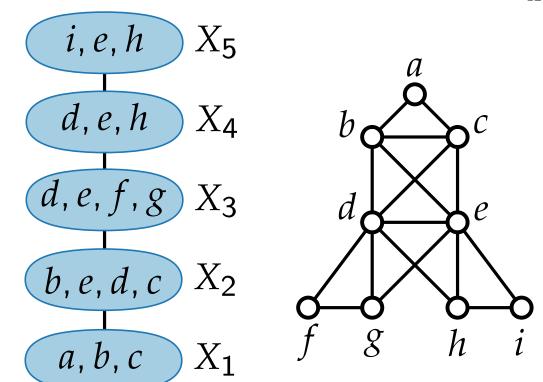


We mainly used the fact that the graph consists of a sequence of small separators.

A similiar fact was used in the algorithm for trees.

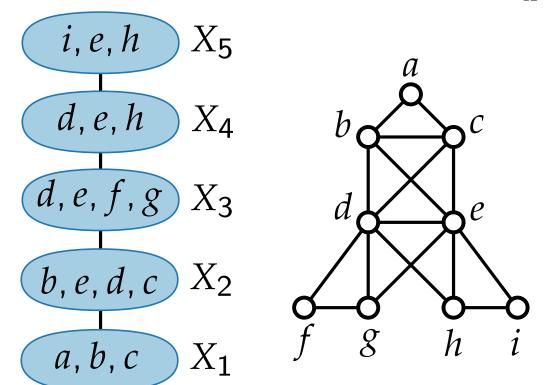
Goal: Define a more general graph class featuring a structure that is suited for this kind of dynamic programming approach.

Let G = (V, E) be a graph.



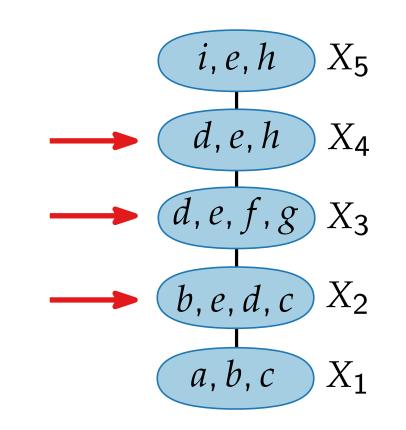
Let G = (V, E) be a graph.

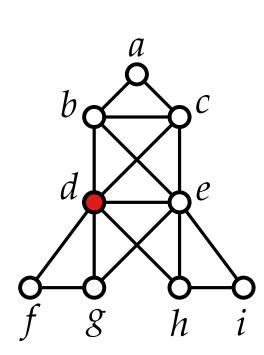
$$(\mathbf{P1}) \bigcup_{i=1}^{r} X_i = V$$



Let G = (V, E) be a graph.

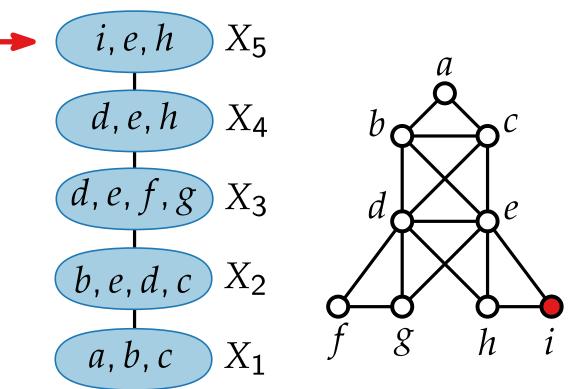
$$(\mathbf{P1}) \bigcup_{i=1}^{r} X_i = V$$





Let G = (V, E) be a graph.

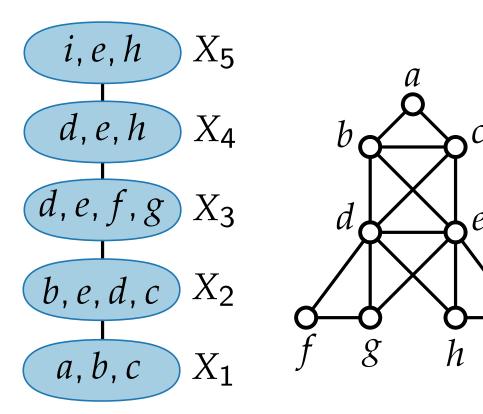
$$(\mathbf{P1}) \bigcup_{i=1}^{r} X_i = V$$



Let G = (V, E) be a graph.

$$(\mathbf{P1}) \bigcup_{i=1}^{r} X_i = V$$

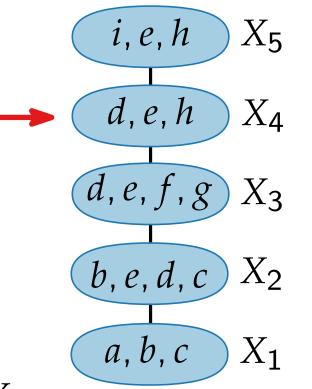
(P2)
$$\forall \{u, v\} \in E \ \exists i \in \{1, 2, ..., r\} : u, v \in X_i$$

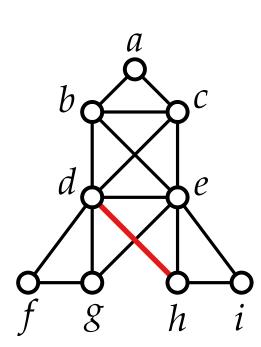


Let G = (V, E) be a graph.

$$(\mathbf{P1}) \cup_{i=1}^{r} X_i = V$$

(P2)
$$\forall \{u, v\} \in E \ \exists i \in \{1, 2, ..., r\} : u, v \in X_i$$



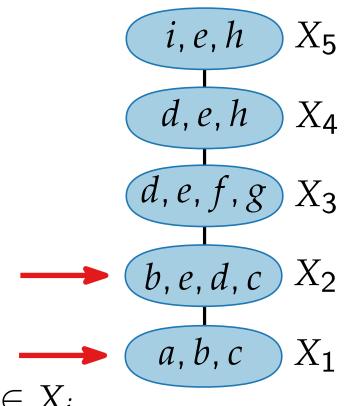


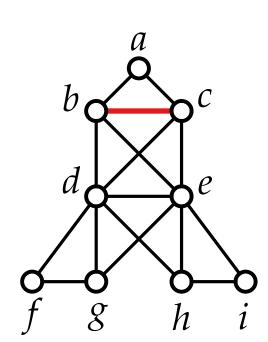
Let G = (V, E) be a graph.

A path decomposition of G is a sequence $P = (X_1, X_2, ..., X_r)$ of bags, where $X_i \subseteq V$, such that

$$(\mathbf{P1}) \bigcup_{i=1}^{r} X_i = V$$

(P2) $\forall \{u, v\} \in E \ \exists i \in \{1, 2, ..., r\} : u, v \in X_i$



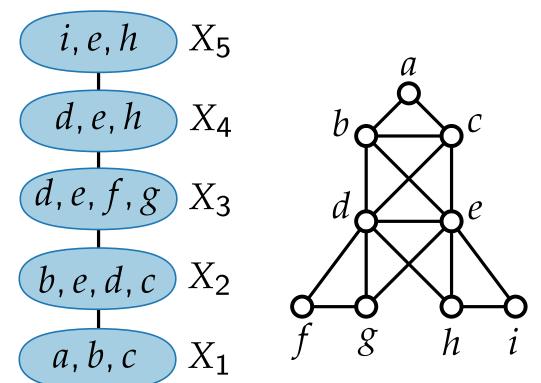


Let G = (V, E) be a graph.

A path decomposition of G is a sequence $P = (X_1, X_2, ..., X_r)$ of bags, where $X_i \subseteq V$, such that

$$(\mathbf{P1}) \bigcup_{i=1}^{r} X_i = V$$

(P2)
$$\forall \{u, v\} \in E \ \exists i \in \{1, 2, ..., r\} : u, v \in X_i$$

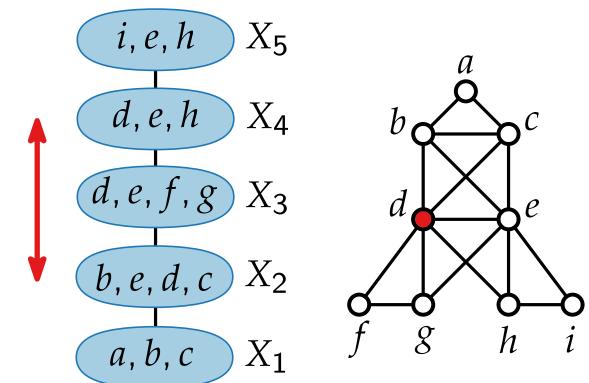


Let G = (V, E) be a graph.

A path decomposition of G is a sequence $P = (X_1, X_2, ..., X_r)$ of bags, where $X_i \subseteq V$, such that

$$(\mathbf{P1}) \bigcup_{i=1}^{r} X_i = V$$

(P2)
$$\forall \{u, v\} \in E \ \exists i \in \{1, 2, ..., r\} : u, v \in X_i$$

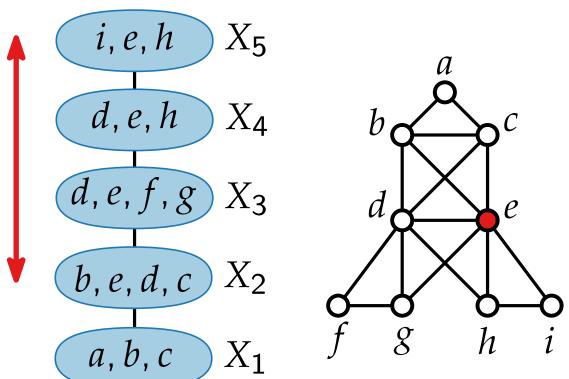


Let G = (V, E) be a graph.

A path decomposition of G is a sequence $P = (X_1, X_2, ..., X_r)$ of bags, where $X_i \subseteq V$, such that

$$(\mathbf{P1}) \bigcup_{i=1}^{r} X_i = V$$

(P2)
$$\forall \{u, v\} \in E \ \exists i \in \{1, 2, ..., r\} : u, v \in X_i$$

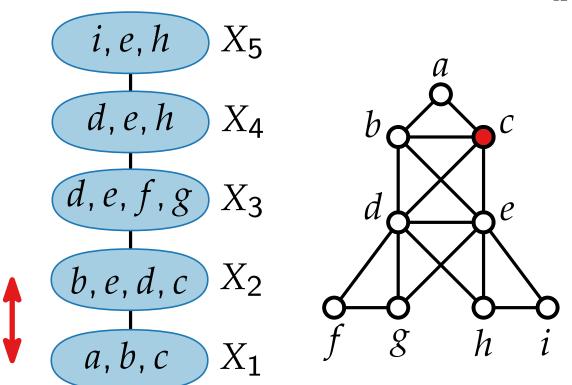


Let G = (V, E) be a graph.

A path decomposition of G is a sequence $P = (X_1, X_2, ..., X_r)$ of bags, where $X_i \subseteq V$, such that

$$(\mathbf{P1}) \bigcup_{i=1}^{r} X_i = V$$

(P2)
$$\forall \{u, v\} \in E \ \exists i \in \{1, 2, ..., r\} : u, v \in X_i$$



$$w(P) = 3$$

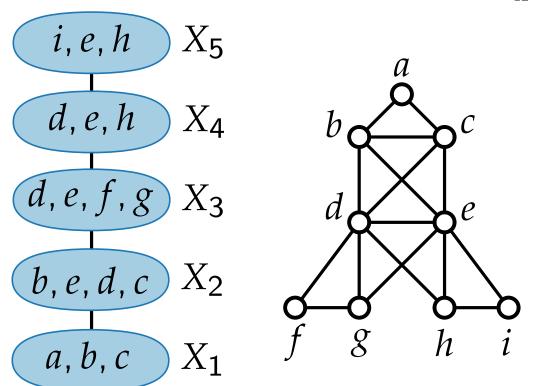
Let G = (V, E) be a graph.

A path decomposition of G is a sequence $P = (X_1, X_2, ..., X_r)$ of bags, where $X_i \subseteq V$, such that

$$(\mathbf{P1}) \bigcup_{i=1}^{r} X_i = V$$

- (P2) $\forall \{u, v\} \in E \ \exists i \in \{1, 2, ..., r\} : u, v \in X_i$
- (P3) $\forall v \in V$, if $v \in X_i \cap X_j$ with $i \leq j$, then $v \in X_i \cap X_{i+1} \cap \cdots \cap X_j$

The width of P is $w(P) = \max_{1 \le I \le r} |X_i| - 1$.



$$w(P) = 3$$

Let G = (V, E) be a graph.

A path decomposition of G is a sequence $P = (X_1, X_2, ..., X_r)$ of bags, where

$$X_i \subseteq V$$
, such that

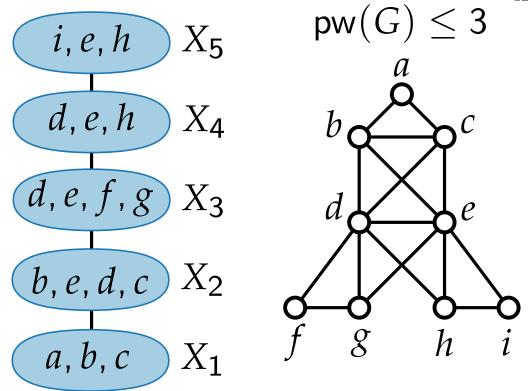
$$(\mathbf{P1}) \bigcup_{i=1}^{r} X_i = V$$

(P2)
$$\forall \{u, v\} \in E \ \exists i \in \{1, 2, ..., r\} : u, v \in X_i$$

(P3)
$$\forall v \in V$$
, if $v \in X_i \cap X_j$ with $i \leq j$, then $v \in X_i \cap X_{i+1} \cap \cdots \cap X_j$

The width of P is $w(P) = \max_{1 \le I \le r} |X_i| - 1$.

The pathwidth pw(G) of G is the minimum width of a path decomposition of G.



$$u(P) = 3$$

Let G = (V, E) be a graph.

A path decomposition of G is a sequence $P = (X_1, X_2, ..., X_r)$ of bags, where $X_i \subseteq V$, such that

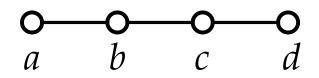
$$(\mathbf{P1}) \bigcup_{i=1}^{r} X_i = V$$

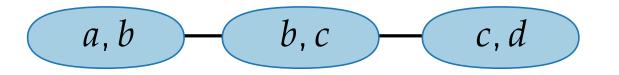
(P2)
$$\forall \{u, v\} \in E \ \exists i \in \{1, 2, ..., r\} : u, v \in X_i$$

(P3)
$$\forall v \in V$$
, if $v \in X_i \cap X_j$ with $i \leq j$, then $v \in X_i \cap X_{i+1} \cap \cdots \cap X_j$

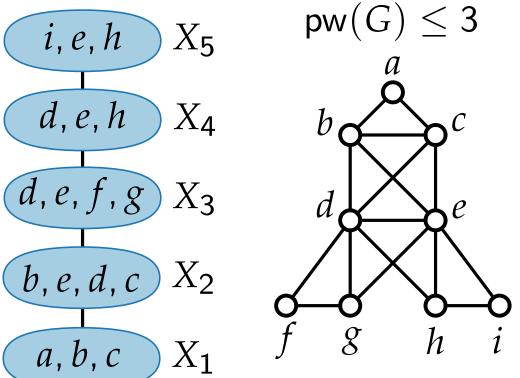
The width of P is $w(P) = \max_{1 \le I \le r} |X_i| - 1$.

The pathwidth pw(G) of G is the minimum width of a path decomposition of G.





$$pw(G) = 1$$



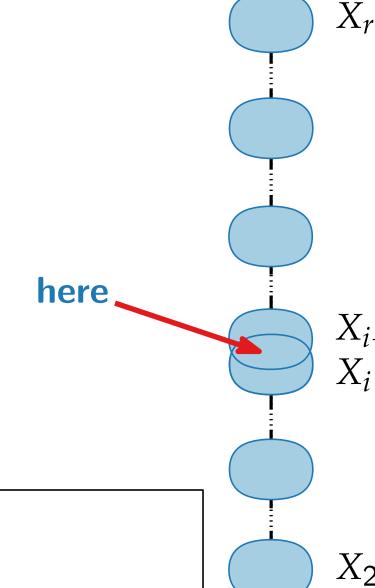
 X_r

 X_1

Okay – But Where Are the Separators?

- **(P1)** $\bigcup_{i=1}^{r} X_i = V$
- (P2) $\forall \{u, v\} \in E \ \exists i \in \{1, 2, ..., r\} : u, v \in X_i$
- **(P3)** $\forall v \in V$, if $v \in X_i \cap X_j$ with $i \leq j$, then $v \in X_i \cap X_{i+1} \cap \cdots \cap X_j$

Okay – But Where Are the Separators?



$$(\mathbf{P1}) \bigcup_{i=1}^{r} X_i = V$$

(P2)
$$\forall \{u, v\} \in E \ \exists i \in \{1, 2, ..., r\} : u, v \in X_i$$

(P3) $\forall v \in V$, if $v \in X_i \cap X_j$ with $i \leq j$, then $v \in X_i \cap X_{i+1} \cap \cdots \cap X_j$

 X_1

 X_r

Okay – But Where Are the Separators?

Lemma. Let i < r. Then there is no edge between

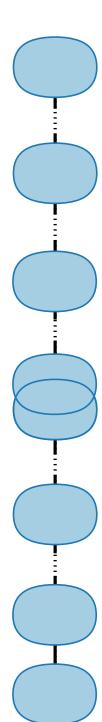
$$A = (X_1 \cup X_2 \cup \cdots \cup X_i) \setminus (X_i \cap X_{i+1})$$
 and

$$B = (X_{i+1} \cup X_{i+2} \cup \cdots \cup X_r) \setminus (X_i \cap X_{i+1}).$$

$$(\mathbf{P1}) \bigcup_{i=1}^{r} X_i = V$$

(P2)
$$\forall \{u, v\} \in E \ \exists i \in \{1, 2, ..., r\} : u, v \in X_i$$

(P3)
$$\forall v \in V$$
, if $v \in X_i \cap X_j$ with $i \leq j$, then $v \in X_i \cap X_{i+1} \cap \cdots \cap X_j$



Okay — But Where Are the Separators?

Lemma. Let i < r. Then there is no edge between

$$A = (X_1 \cup X_2 \cup \cdots \cup X_i) \setminus (X_i \cap X_{i+1})$$
 and $B = (X_{i+1} \cup X_{i+2} \cup \cdots \cup X_r) \setminus (X_i \cap X_{i+1}).$

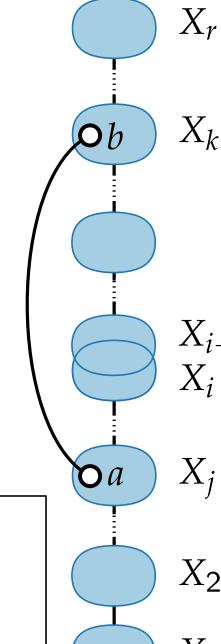
Proof. Assume there are $a \in A$ and $b \in B$ s.t. $\{a, b\} \in E$.

Let $j \leq i$ s.t. $a \in X_j$ and let $k \geq i+1$ s.t. $b \in X_k$.

$$(\mathbf{P1}) \bigcup_{i=1}^{r} X_i = V$$

(P2)
$$\forall \{u, v\} \in E \ \exists i \in \{1, 2, ..., r\} : u, v \in X_i$$

(P3)
$$\forall v \in V$$
, if $v \in X_i \cap X_j$ with $i \leq j$, then $v \in X_i \cap X_{i+1} \cap \cdots \cap X_j$



Okay – But Where Are the Separators?

Lemma. Let i < r. Then there is no edge between

$$A = (X_1 \cup X_2 \cup \cdots \cup X_i) \setminus (X_i \cap X_{i+1}) \text{ and}$$

$$B = (X_{i+1} \cup X_{i+2} \cup \cdots \cup X_r) \setminus (X_i \cap X_{i+1}).$$

Proof. Assume there are $a \in A$ and $b \in B$ s.t. $\{a, b\} \in E$.

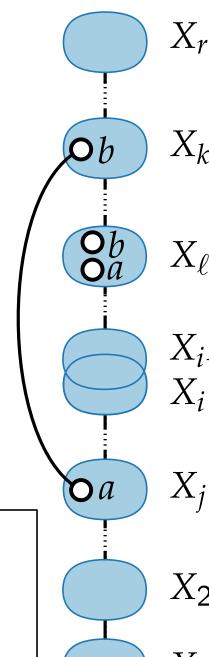
Let $j \leq i$ s.t. $a \in X_j$ and let $k \geq i+1$ s.t. $b \in X_k$.

(P2) \Rightarrow there is a bag X_{ℓ} s.t. $a, b \in X_{\ell}$, w.l.o.g. let $\ell \geq i+1$.

$$(\mathbf{P1}) \bigcup_{i=1}^{r} X_i = V$$

(P2)
$$\forall \{u, v\} \in E \ \exists i \in \{1, 2, ..., r\} : u, v \in X_i$$

(P3)
$$\forall v \in V$$
, if $v \in X_i \cap X_j$ with $i \leq j$, then $v \in X_i \cap X_{i+1} \cap \cdots \cap X_j$



Okay – But Where Are the Separators?

Lemma. Let i < r. Then there is no edge between

$$A = (X_1 \cup X_2 \cup \cdots \cup X_i) \setminus (X_i \cap X_{i+1})$$
 and

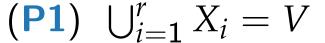
$$B = (X_{i+1} \cup X_{i+2} \cup \cdots \cup X_r) \setminus (X_i \cap X_{i+1}).$$

Proof. Assume there are $a \in A$ and $b \in B$ s.t. $\{a, b\} \in E$.

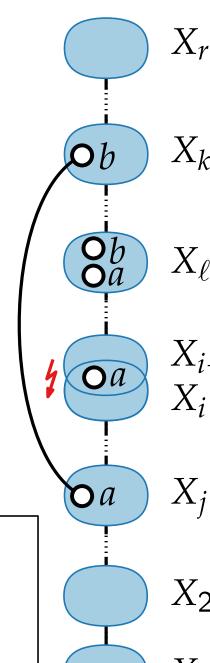
Let $j \leq i$ s.t. $a \in X_j$ and let $k \geq i+1$ s.t. $b \in X_k$.

(P2) \Rightarrow there is a bag X_{ℓ} s.t. $a, b \in X_{\ell}$, w.l.o.g. let $\ell \geq i+1$.

 $(P3) \Rightarrow a \in X_i \cap X_{i+1}$; contradiction to $a \in A$.



(P2)
$$\forall \{u, v\} \in E \ \exists i \in \{1, 2, ..., r\} : u, v \in X_i$$



Computing Path Decompositions

k-Pathwidth

Input. Graph $G = (V, E), k \in \mathbb{N}$

Question. Is the pathwidth of G at most k?

- NP-complete
- \blacksquare FPT in k
 - The algorithm constructs a path decomposition of width $\leq k$.
 - Its runtime depends linearly on |V| + |E|.

Computing Path Decompositions

k-Pathwidth

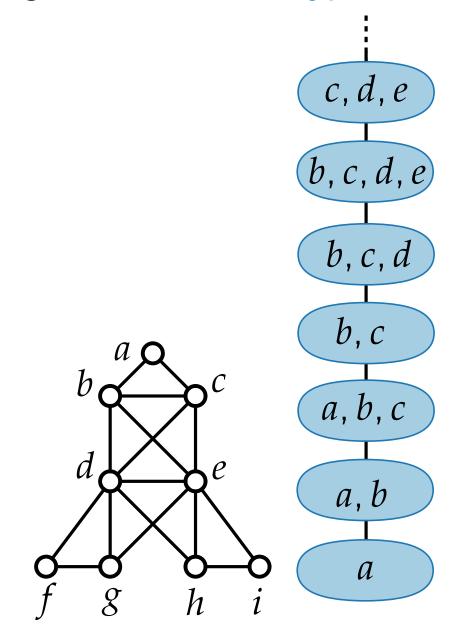
Input. Graph $G = (V, E), k \in \mathbb{N}$

Question. Is the pathwidth of G at most k?

- NP-complete
- \blacksquare FPT in k
 - The algorithm constructs a path decomposition of width $\leq k$.
 - Its runtime depends linearly on |V| + |E|.
- ⇒ When designing FPT algorithms with respect to the pathwidth, we may assume to be given a path decomposition!

Nice Path Decompositions

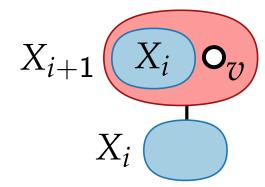
A path decomposition is **nice** if $|X_1| = 1$ and each other bag has one of two **types**:



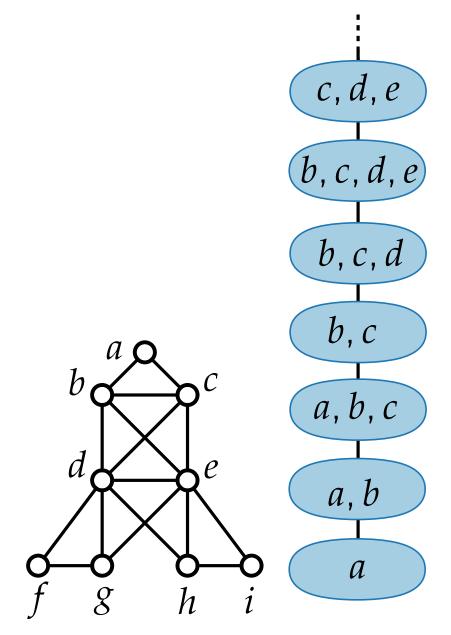
Nice Path Decompositions

A path decomposition is **nice** if $|X_1| = 1$ and each other bag has one of two **types**:

 X_{i+1} is of type **Introduce** if



 $X_{i+1} = X_i \cup \{v\}$ where $v \notin X_i$



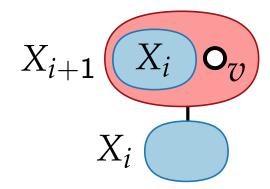
(b, c, d, e)

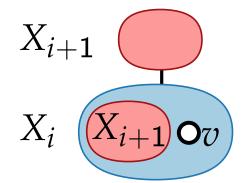
b, c, d

Nice Path Decompositions

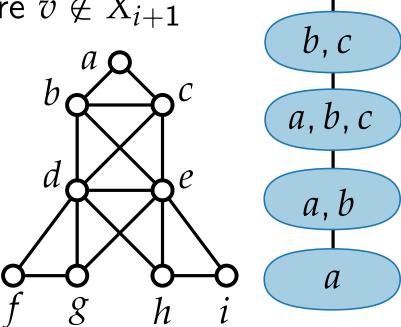
A path decomposition is **nice** if $|X_1| = 1$ and each other bag has one of two **types**:

 X_{i+1} is of type Introduce if X_{i+1} is of type Forget if





 $X_{i+1} = X_i \cup \{v\}$ where $v \notin X_i$ $X_i = X_{i+1} \cup \{v\}$ where $v \notin X_{i+1}$



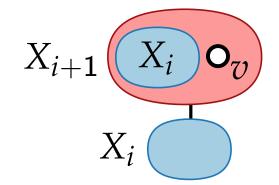
(b, c, d, e)

b, c, d

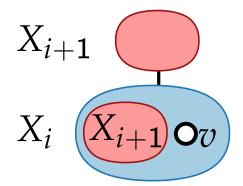
Nice Path Decompositions

A path decomposition is **nice** if $|X_1| = 1$ and each other bag has one of two **types**:

 X_{i+1} is of type Introduce if X_{i+1} is of type Forget if

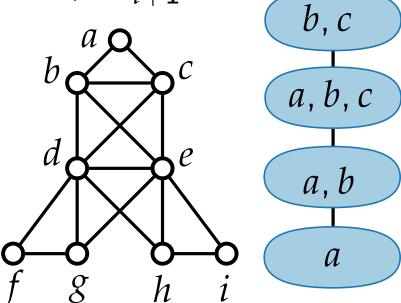


$$X_{i+1} = X_i \cup \{v\}$$
 where $v \notin X_i$



$$X_{i+1} = X_i \cup \{v\}$$
 where $v \notin X_i$ $X_i = X_{i+1} \cup \{v\}$ where $v \notin X_{i+1}$

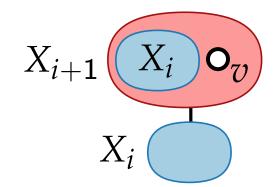
Observation. The number of bags is $r \leq 2|V| - 1$.



Nice Path Decompositions

A path decomposition is **nice** if $|X_1| = 1$ and each other bag has one of two **types**:

 X_{i+1} is of type **Introduce** if



$$X_{i+1} = X_i \cup \{v\}$$
 where $v \notin X_i$

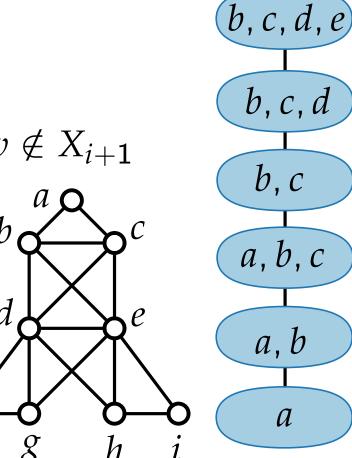
 X_{i+1} is of type Forget if

$$X_{i+1}$$
 X_i
 X_{i+1}
 X_i

$$X_{i+1} = X_i \cup \{v\}$$
 where $v \notin X_i$ $X_i = X_{i+1} \cup \{v\}$ where $v \notin X_{i+1}$

Observation. The number of bags is $r \leq 2|V| - 1$.

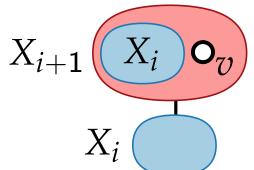
Lemma. A path decomposition of width k can be transformed into a nice path decomposition of width k in polynomial time.



Nice Path Decompositions

A path decomposition is **nice** if $|X_1| = 1$ and each other bag has one of two **types**:

 X_{i+1} is of type Introduce if X_{i+1} is of type Forget if



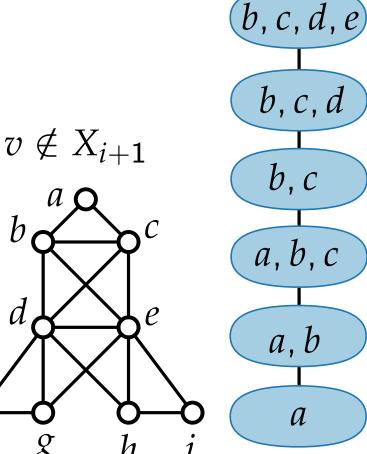
$$X_{i+1}$$
 X_i
 X_{i+1}
 X_i

 $X_{i+1} = X_i \cup \{v\}$ where $v \notin X_i$ $X_i = X_{i+1} \cup \{v\}$ where $v \notin X_{i+1}$

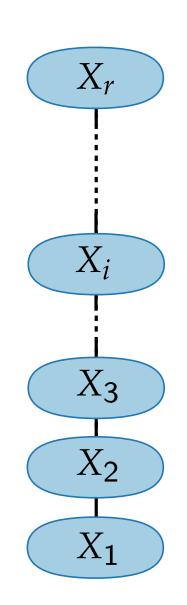
Observation. The number of bags is $r \leq 2|V| - 1$.

Lemma. A path decomposition of width k can be transformed into a nice path decomposition of width k in polynomial time.

⇒ When designing FPT algorithms w.r.t. the pathwidth, we may assume to be given a *nice* path decomposition.

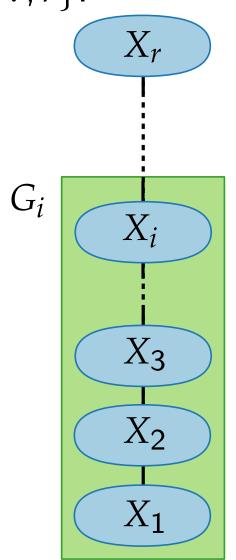


Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.



Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.

Let G_i be the graph induced by $X_1 \cup X_2 \cup \cdots \cup X_i$ for some $i \in \{1, 2, \ldots, r\}$.

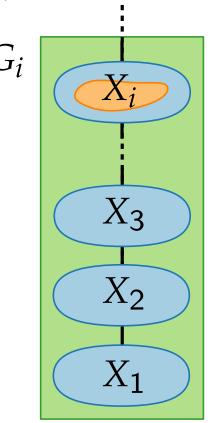


Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.

Let G_i be the graph induced by $X_1 \cup X_2 \cup \cdots \cup X_i$ for some $i \in \{1, 2, \ldots, r\}$.

For each $S \subseteq X_i$ let

 $D[i, S] := maximum weight of an independent set I in <math>G_i$ such that $I \cap X_i = S$.



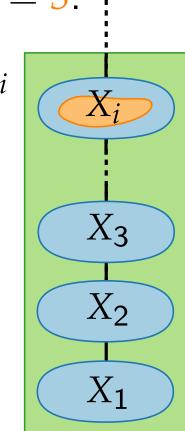
Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.

Let G_i be the graph induced by $X_1 \cup X_2 \cup \cdots \cup X_i$ for some $i \in \{1, 2, \ldots, r\}$.

For each $S \subseteq X_i$ let

 $D[i, S] := maximum weight of an independent set I in <math>G_i$ such that $I \cap X_i = S$.

(P1) $\Rightarrow G_r = G \Rightarrow \text{solution} = \max_{S \subseteq X_r} D[r, S]$



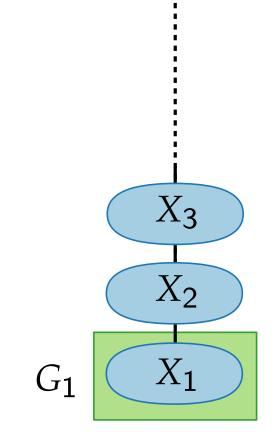
Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.

Let G_i be the graph induced by $X_1 \cup X_2 \cup \cdots \cup X_i$ for some $i \in \{1, 2, \ldots, r\}$.

For each $S \subseteq X_i$ let

D[i, S] := maximum weight of an independent set <math>I in G_i such that $I \cap X_i = S$.

$$D[1,S] = \left\{egin{array}{ll} 0 & ext{, if } S = \emptyset \ w(v) & ext{, if } S = \{v\} \end{array}
ight.$$



Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.

Let G_i be the graph induced by $X_1 \cup X_2 \cup \cdots \cup X_i$ for some $i \in \{1, 2, \ldots, r\}$.

For each $S \subseteq X_i$ let

D[i, S] := maximum weight of an independent set I in G_i such that $I \cap X_i = S$.

Assume that i > 1. If S is not independent, $D[i, S] = -\infty$.

Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.

Let G_i be the graph induced by $X_1 \cup X_2 \cup \cdots \cup X_i$ for some $i \in \{1, 2, \ldots, r\}$.

For each $S \subseteq X_i$ let

D[i, S] := maximum weight of an independent set I in G_i such that $I \cap X_i = S$.

Assume that i > 1. If S is not independent, $D[i, S] = -\infty$.

Otherwise, we distinguish between the two types of X_i .

Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.

Let G_i be the graph induced by $X_1 \cup X_2 \cup \cdots \cup X_i$ for some $i \in \{1, 2, \ldots, r\}$.

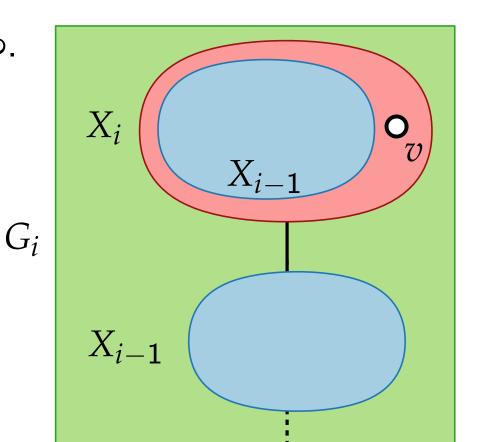
For each $S \subseteq X_i$ let

D[i, S] := maximum weight of an independent set I in G_i such that $I \cap X_i = S$.

Assume that i > 1. If S is not independent, $D[i, S] = -\infty$.

Otherwise, we distinguish between the two types of X_i .

$$D[i, S] =$$



Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.

Let G_i be the graph induced by $X_1 \cup X_2 \cup \cdots \cup X_i$ for some $i \in \{1, 2, \ldots, r\}$.

For each $S \subseteq X_i$ let

D[i, S] := maximum weight of an independent set I in G_i such that $I \cap X_i = S$.

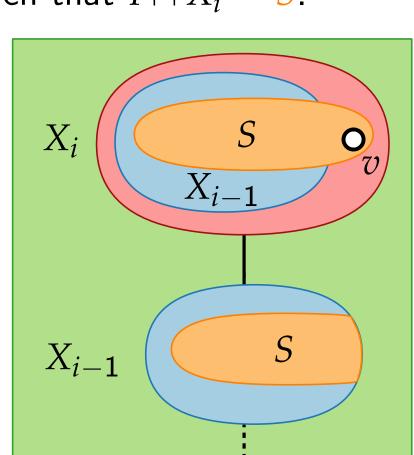
Assume that i > 1. If S is not independent, $D[i, S] = -\infty$.

Otherwise, we distinguish between the two types of X_i .

If X_i is **Introduce**, then

$$D[i, S] =$$

 G_i



Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.

Let G_i be the graph induced by $X_1 \cup X_2 \cup \cdots \cup X_i$ for some $i \in \{1, 2, \ldots, r\}$.

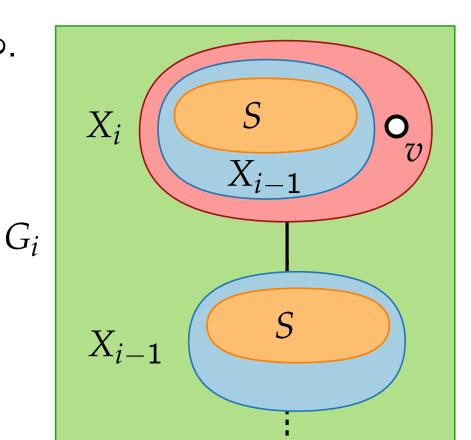
For each $S \subseteq X_i$ let

D[i, S] := maximum weight of an independent set I in G_i such that $I \cap X_i = S$.

Assume that i > 1. If S is not independent, $D[i, S] = -\infty$.

Otherwise, we distinguish between the two types of X_i .

$$D[i, S] =$$



Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.

Let G_i be the graph induced by $X_1 \cup X_2 \cup \cdots \cup X_i$ for some $i \in \{1, 2, \ldots, r\}$.

For each $S \subseteq X_i$ let

D[i, S] := maximum weight of an independent set I in G_i such that $I \cap X_i = S$.

Assume that i > 1. If S is not independent, $D[i, S] = -\infty$.

Otherwise, we distinguish between the two types of X_i .

If X_i is Introduce, then

$$D[i, S] = \left\{$$

, if
$$v \notin S$$

, if $v \in S$

0

Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.

Let G_i be the graph induced by $X_1 \cup X_2 \cup \cdots \cup X_i$ for some $i \in \{1, 2, \ldots, r\}$.

For each $S \subseteq X_i$ let

D[i, S] := maximum weight of an independent set I in G_i such that $I \cap X_i = S$.

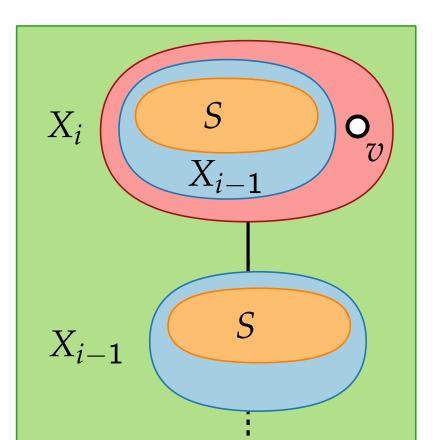
Assume that i > 1. If S is not independent, $D[i, S] = -\infty$.

Otherwise, we distinguish between the two types of X_i .

$$D[i, S] = \begin{cases} D[i-1, S] \end{cases}$$

, if
$$v \notin S$$

, if $v \in S$



Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.

Let G_i be the graph induced by $X_1 \cup X_2 \cup \cdots \cup X_i$ for some $i \in \{1, 2, \ldots, r\}$.

For each $S \subseteq X_i$ let

D[i, S] := maximum weight of an independent set I in G_i such that $I \cap X_i = S$.

Assume that i > 1. If S is not independent, $D[i, S] = -\infty$.

Otherwise, we distinguish between the two types of X_i .

$$D[i,S] = \begin{cases} D[i-1,S] \end{cases}$$

, if
$$v \notin S$$

, if $v \in S$

Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.

Let G_i be the graph induced by $X_1 \cup X_2 \cup \cdots \cup X_i$ for some $i \in \{1, 2, \ldots, r\}$.

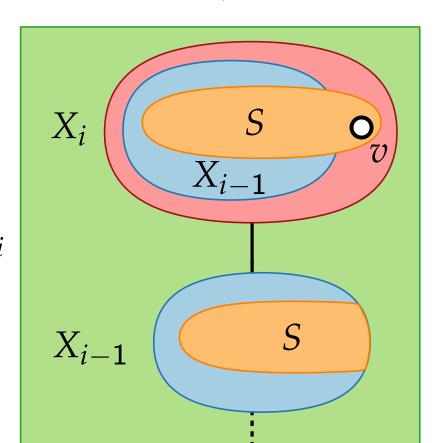
For each $S \subseteq X_i$ let

D[i, S] := maximum weight of an independent set I in G_i such that $I \cap X_i = S$.

Assume that i > 1. If S is not independent, $D[i, S] = -\infty$.

Otherwise, we distinguish between the two types of X_i .

$$D[i,S] = \left\{ egin{aligned} D[i-1,S] & ext{, if } v
otin S \ w(v) + D[i-1,S\setminus \{v\}] & ext{, if } v
otin S \end{aligned}
ight.$$



Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.

Let G_i be the graph induced by $X_1 \cup X_2 \cup \cdots \cup X_i$ for some $i \in \{1, 2, \ldots, r\}$.

For each $S \subseteq X_i$ let

 $D[i, S] := maximum weight of an independent set I in <math>G_i$ such that $I \cap X_i = S$.

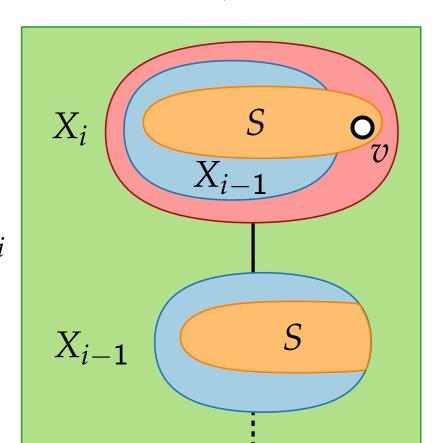
Assume that i > 1. If S is not independent, $D[i, S] = -\infty$.

Otherwise, we distinguish between the two types of X_i .

If X_i is Introduce, then

$$D[i,S] = \left\{ egin{aligned} D[i-1,S] & ext{, if } v
otin S \ w(v) + D[i-1,S \setminus \{v\}] & ext{, if } v
otin S \end{aligned}
ight.$$

Let I' denote the independent set corresponding to $\overline{}$ Why is $I' \cup \{v\}$ independent?



Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.

Let G_i be the graph induced by $X_1 \cup X_2 \cup \cdots \cup X_i$ for some $i \in \{1, 2, \ldots, r\}$.

For each $S \subseteq X_i$ let

 $D[i, S] := maximum weight of an independent set I in <math>G_i$ such that $I \cap X_i = S$.

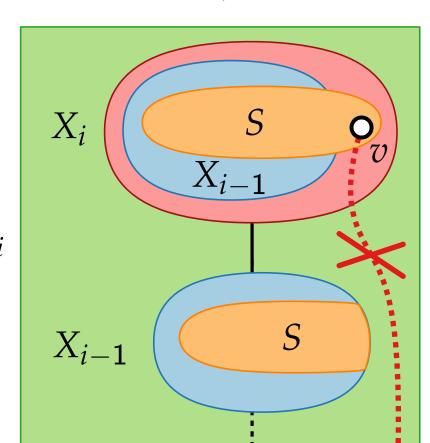
Assume that i > 1. If S is not independent, $D[i, S] = -\infty$.

Otherwise, we distinguish between the two types of X_i .

If X_i is Introduce, then

$$D[i,S] = \left\{ egin{aligned} D[i-1,S] & ext{, if } v
otin S \ w(v) + D[i-1,S \setminus \{v\}] & ext{, if } v
otin S \end{aligned}
ight.$$

Let I' denote the independent set corresponding to $\overline{}$ Why is $I' \cup \{v\}$ independent? due to Lemma 1!



Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.

Let G_i be the graph induced by $X_1 \cup X_2 \cup \cdots \cup X_i$ for some $i \in \{1, 2, \ldots, r\}$.

For each $S \subseteq X_i$ let

D[i, S] := maximum weight of an independent set I in G_i such that $I \cap X_i = S$.

Assume that i > 1. If S is not independent, $D[i, S] = -\infty$.

Otherwise, we distinguish between the two types of X_i .

Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.

Let G_i be the graph induced by $X_1 \cup X_2 \cup \cdots \cup X_i$ for some $i \in \{1, 2, \ldots, r\}$.

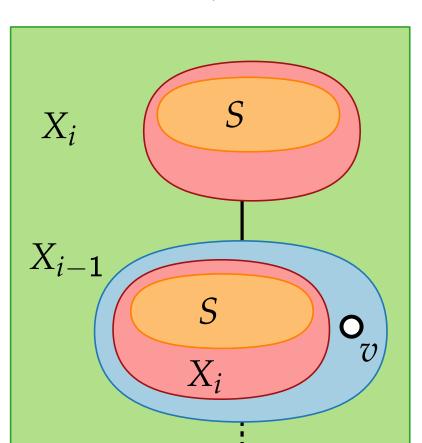
For each $S \subseteq X_i$ let

D[i, S] := maximum weight of an independent set I in G_i such that $I \cap X_i = S$.

Assume that i > 1. If S is not independent, $D[i, S] = -\infty$.

Otherwise, we distinguish between the two types of X_i .

$$D[i, S] =$$



Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.

Let G_i be the graph induced by $X_1 \cup X_2 \cup \cdots \cup X_i$ for some $i \in \{1, 2, \ldots, r\}$.

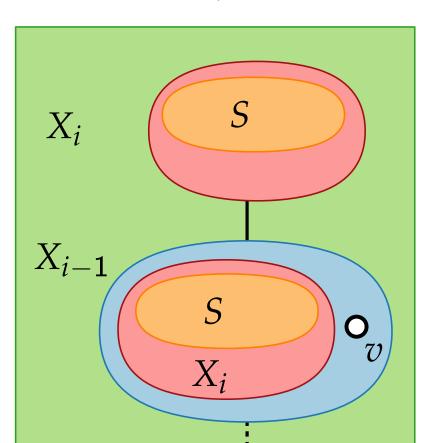
For each $S \subseteq X_i$ let

D[i, S] := maximum weight of an independent set I in G_i such that $I \cap X_i = S$.

Assume that i > 1. If S is not independent, $D[i, S] = -\infty$.

Otherwise, we distinguish between the two types of X_i .

$$D[i, S] = \max\{$$



Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.

Let G_i be the graph induced by $X_1 \cup X_2 \cup \cdots \cup X_i$ for some $i \in \{1, 2, \ldots, r\}$.

For each $S \subseteq X_i$ let

D[i, S] := maximum weight of an independent set I in G_i such that $I \cap X_i = S$.

Assume that i > 1. If S is not independent, $D[i, S] = -\infty$.

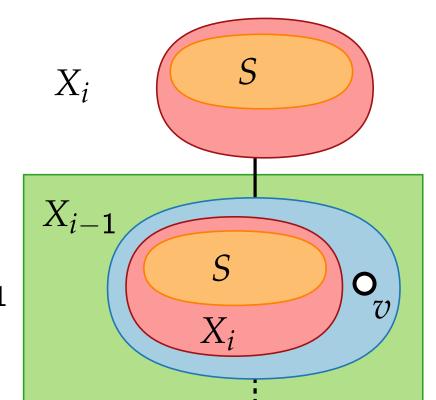
Otherwise, we distinguish between the two types of X_i .

If X_i is Forget, then

$$D[i, S] = \max\{$$

}

$$G_i = G_{i-1}$$



Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.

Let G_i be the graph induced by $X_1 \cup X_2 \cup \cdots \cup X_i$ for some $i \in \{1, 2, \ldots, r\}$.

For each $S \subseteq X_i$ let

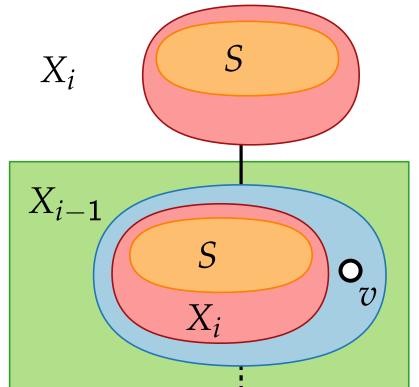
D[i, S] := maximum weight of an independent set I in G_i such that $I \cap X_i = S$.

Assume that i > 1. If S is not independent, $D[i, S] = -\infty$.

Otherwise, we distinguish between the two types of X_i .

$$D[i, S] = \max\{$$
 , $v \notin I \Rightarrow I \cap X_{i-1} = S$

$$G_i = G_{i-1}$$



Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.

Let G_i be the graph induced by $X_1 \cup X_2 \cup \cdots \cup X_i$ for some $i \in \{1, 2, \ldots, r\}$.

For each $S \subseteq X_i$ let

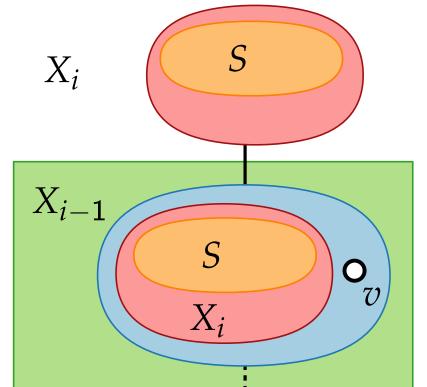
 $D[i, S] := maximum weight of an independent set I in <math>G_i$ such that $I \cap X_i = S$.

Assume that i > 1. If S is not independent, $D[i, S] = -\infty$.

Otherwise, we distinguish between the two types of X_i .

$$D[i, S] = \max\{ D[i-1, S] ,$$
 $v \notin I \Rightarrow I \cap X_{i-1} = S$

$$G_i = G_{i-1}$$



Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.

Let G_i be the graph induced by $X_1 \cup X_2 \cup \cdots \cup X_i$ for some $i \in \{1, 2, \ldots, r\}$.

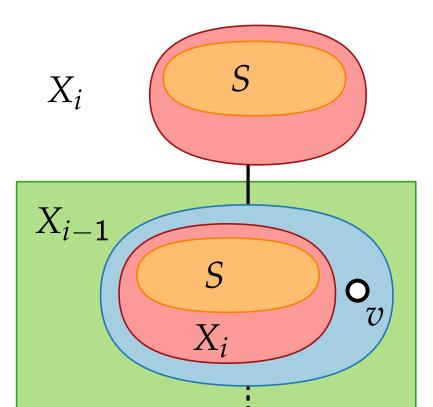
For each $S \subseteq X_i$ let

D[i, S] := maximum weight of an independent set I in G_i such that $I \cap X_i = S$.

Assume that i > 1. If S is not independent, $D[i, S] = -\infty$.

Otherwise, we distinguish between the two types of X_i .

$$D[i, S] = \max\{ D[i-1, S],$$
 }
 $v \notin I \Rightarrow I \cap X_{i-1} = S$ $G_i = G_{i-1}$
 $v \in I \Rightarrow I \cap X_{i-1} = S \cup \{v\}$



Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.

Let G_i be the graph induced by $X_1 \cup X_2 \cup \cdots \cup X_i$ for some $i \in \{1, 2, \ldots, r\}$.

For each $S \subseteq X_i$ let

D[i, S] := maximum weight of an independent set I in G_i such that $I \cap X_i = S$.

Assume that i > 1. If S is not independent, $D[i, S] = -\infty$.

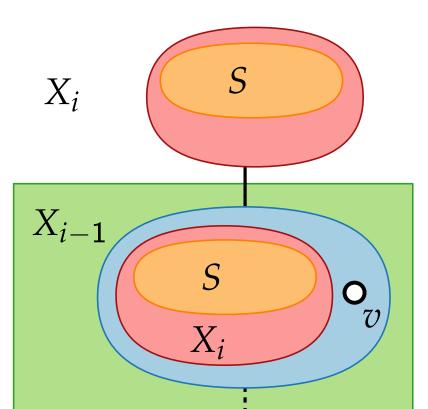
Otherwise, we distinguish between the two types of X_i .

$$D[i, S] = \max\{ D[i-1, S], D[i-1, S \cup \{v\}] \}$$

$$v \notin I \Rightarrow I \cap X_{i-1} = S$$

$$G_i = G_{i-1}$$

$$v \in I \Rightarrow I \cap X_{i-1} = S \cup \{v\}$$



Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.

Let G_i be the graph induced by $X_1 \cup X_2 \cup \cdots \cup X_i$ for some $i \in \{1, 2, \ldots, r\}$.

For each $S \subseteq X_i$ let

D[i, S] := maximum weight of an independent set I in G_i such that $I \cap X_i = S$.

Assume that i > 1. If S is not independent, $D[i, S] = -\infty$.

Otherwise, we distinguish between the two types of X_i .

Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.

Let G_i be the graph induced by $X_1 \cup X_2 \cup \cdots \cup X_i$ for some $i \in \{1, 2, \ldots, r\}$.

For each $S \subseteq X_i$ let

D[i, S] := maximum weight of an independent set I in G_i such that $I \cap X_i = S$.

Assume that i > 1. If S is not independent, $D[i, S] = -\infty$.

Otherwise, we distinguish between the two types of X_i .

For each of the $\mathcal{O}(|V|)$ many bags, there are $\leq 2^{k+1}$ choices for S.

Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.

Let G_i be the graph induced by $X_1 \cup X_2 \cup \cdots \cup X_i$ for some $i \in \{1, 2, \ldots, r\}$.

For each $S \subseteq X_i$ let

D[i, S] := maximum weight of an independent set I in G_i such that $I \cap X_i = S$.

Assume that i > 1. If S is not independent, $D[i, S] = -\infty$.

Otherwise, we distinguish between the two types of X_i .

For each of the $\mathcal{O}(|V|)$ many bags, there are $\leq 2^{k+1}$ choices for S.

For each of these choices, we need to test if S is independent, which can be done in $k^{\mathcal{O}(1)}$ time (\rightarrow Section 7.3.1 in [1]).

Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.

Let G_i be the graph induced by $X_1 \cup X_2 \cup \cdots \cup X_i$ for some $i \in \{1, 2, \ldots, r\}$.

For each $S \subseteq X_i$ let

D[i, S] := maximum weight of an independent set I in G_i such that $I \cap X_i = S$.

Assume that i > 1. If S is not independent, $D[i, S] = -\infty$.

Otherwise, we distinguish between the two types of X_i .

For each of the $\mathcal{O}(|V|)$ many bags, there are $\leq 2^{k+1}$ choices for S.

For each of these choices, we need to test if S is independent, which can be done in $k^{\mathcal{O}(1)}$ time (\rightarrow Section 7.3.1 in [1]).

 \Rightarrow total running time $\leq 2^k k^{\mathcal{O}(1)} |V|$

Assume we are given a nice path decomposition $P = (X_1, X_2, ..., X_r)$ of width k.

Let G_i be the graph induced by $X_1 \cup X_2 \cup \cdots \cup X_i$ for some $i \in \{1, 2, \ldots, r\}$.

For each $S \subseteq X_i$ let

D[i, S] := maximum weight of an independent set I in G_i such that $I \cap X_i = S$.

Assume that i > 1. If S is not independent, $D[i, S] = -\infty$.

Otherwise, we distinguish between the two types of X_i .

For each of the $\mathcal{O}(|V|)$ many bags, there are $\leq 2^{k+1}$ choices for S.

For each of these choices, we need to test if S is independent, which can be done in $k^{\mathcal{O}(1)}$ time (\rightarrow Section 7.3.1 in [1]).

 \Rightarrow total running time $\leq 2^k k^{\mathcal{O}(1)} |V|$

Theorem. INDEPENDENT SET is FPT with respect to the pathwidth.

Discussion

- The fixed-parameter tractability of a problem may be studied with respect to various structural parameters.
- The assumption that the chosen parameter is small should be plausible!

Discussion

- The fixed-parameter tractability of a problem may be studied with respect to various structural parameters.
- The assumption that the chosen parameter is small should be plausible!
- Treewidth is among the most studied parameters.
 - It is defined like pathwidth, except that the bags form a tree instead of a path.
 - Nice tree decomposition only have one additional bag type ...
 - ... and can be constructed efficiently from a tree decomposition.

Discussion

- The fixed-parameter tractability of a problem may be studied with respect to various structural parameters.
- The assumption that the chosen parameter is small should be plausible!
- Treewidth is among the most studied parameters.
 - It is defined like pathwidth, except that the bags form a tree instead of a path.
 - Nice tree decomposition only have one additional bag type ...
 - ... and can be constructed efficiently from a tree decomposition.
- Our $\leq 2^{\mathsf{pw}(G)}\mathsf{pw}(G)^{\mathcal{O}(1)}|V|$ time Algorithm for INDEPENDENT SET can easily be turned into an algorithm with running time $\leq 2^{\mathsf{tw}(G)}\mathsf{tw}(G)^{\mathcal{O}(1)}|V|$.

Theorem. Independent Set is FPT with respect to the treewidth.

References and Literature

- [1] Parameterized Algorithms,
 - M. Cygan, F. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
 - M. Pilipczuk, S. Saurabh, Springer International Publishing 2015.

Sections 1, 7.1, 7.2, 7.3