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Cut

B Let G = (V,E) be a graph with edge weights c: E — IN.
B A cut of G is a partition (S, V\S) of Vwith@ £S5 #V.
B The weight of a cut (S,V\S) is

c(S,V\S)= Y  c(uv)
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c({1,2,5},{3,4}) =7




The MinCut Problem

Input.  Graph G = (V, E), edge weights c: E — IN.

Output. Cut (S, V' \ S) of G with minimum weight.

B Has applications in flow networks (max-flow min-cut theorem), finding a bottleneck
In a network, graph partition problems, clustering, ...

B Can be solved optimally in polynomial time, e.g. by the Stoer—\WWagner algorithm.

(S, V\S) =4




The MaxCut Problem

Input.  Graph G = (V, E), edge weights c: E — IN.

Output. Cut (S,V \ S) of G with maximum weight.

B Has applications in statistical physics, where it is used for some models of magnetic
spins in disordered systems, and in integrated circuit design for computer chips.

B NP-complete to find a cut with maximum weight.
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Randomized 0.5-Approximation for (Unweighted) MaxCut

(. )
Theorem 1. CoINFLIPMAXCUT(G,c: E — 1)
COINFLIPMAXCUT is a randomized S @
'0.5-approximation algorithm for MaxCut. | foreach v € V do
Proof L if coin flip shows HEADS then
' | S+ SuU{v}

B Runsin O(n+m). return ¢(S,V'\ S), S

B Compute expected weight of cut:
E[c(COINFLIPMAXCUT(G))] = E[|E(S, V '\ S)]]

= Y Ple€ E(S,V\S),

ecE

1 1 1
=) - =Z|E| > -OPT(G)
= 2 2 2
B Can be “derandomized”. Exercise.



L P-Relaxation

Integer Linear Program

maximize cTx

subject to Ax < b
x > 0
x € 4Z

Solution,

approximation,

or bound

Assignment for ILP

x*

L P-Relaxation

e.g. rounding

Linear Program

maximize cTx

subjectto Ax < b
x > 0
Solve in

polynomial time

Solution for LP

x*



Goemans-Williamson Algorithm for MaxCut

1-dimensional relax to k dimensions

«©
o _
&(’&VP quadratic program \for k<n

quadratic program

G = (V, E), C QPk
g solve
approximation for real-valued solution
MaxCut on G for QP
tr, v\ integer 4/andomized
ns£, T : _
rm b 1-dimensional roundmg
ICk solution



QP (G, c)

Idea. | (QP(G, c) )
B Indicator variable for each vertex v;: n -1
X; € {1, —1} maximize % Y ) Ci]'(l — xix]-)
( e e . =11i=1
1 if 7, 7 in same partition : = g
B oX-Xxj =4 _ subject to x; =1
\—1 otherwise L y

B Weight matrix ¢;;

1 2 3 4 5
- : - Note.
§ 3 5 5 6 2 B Solving QP(G, ¢) is NP-hard.
g o 6 , 2 B Otherwise MaxCut wouldn't
be NP-hard.
B Solution

Xo =Xx4 =1
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X1 =— X3 —



Goemans-Williamson Algorithm for MaxCut

relax to k dimensions

%O(((\ 1-dimensional L <
&va“c’ quadratic program \for =7
- quadratic program
G = (V’ E>’ ¢ B Here explained for k = 2, QPk
B but unknown if QP2 can be solved |
optimally in poly. time. SOIVE
approximation for B QP" can be solved in poly. time. real-valued solution
MaxCut on G for QP
try N .i ntege.r ra ndom.ized
rm b 1-dimensional rounding
ICk solution



Relaxation of QP (G, c)

[ ) (¥ 1N "

QP2(G,c) W " . " is scalar product.
. L, — m x' lies on the unit circle
maximize 5 Y Y ¢;i(1—x'-¥) '
j=li=l ./ X x = x| x| cos(u;)

subject to xt-xt =1 :

] . v ) = cos(ocl]) with 0 < a;; < 71
x'=(x},x5) €R
J

A, B We maximize angles «;; since larger w;; ol ,
£ 4 increase the contribution of ¢;;. i
—1 | >
p) 1 . . . 0 <uw; <7t
X e Hence our objective is: !
45 . 2A 1 — cos(wj;)
. 2 Z Cz]( COS(“Z']'))

] 1i=1 1+




Goemans-Williamson Algorithm for MaxCut

(O
(’3(\6%0
X

G=(V,E),c

approximation for
MaxCut on G

" fory, ,
ac/(

1-dimensional
quadratic program

Integer
1-dimensional
solution

relax to k dimensions
for k <mn

quadratic program

QP*
solve

real-valued solution
for QPk

/a ndomized

rounding

B Here again just for k = 2.
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Algorithm RANDOMIZEDMAXCUT

RANDOMIZEDMAXCUT(G, ¢)

Compute optimal solution (#%,..., &) for QP?(G,¢c)
Pick random vector 7 € R?
S« {v;ecV:&.r>0}
7 \_ ~‘ L] "
return c(S, V' 5) B X' lies above line ¢ orthogonal to r
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(Sketch)
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RANDOMMAXCUT — Expected Value

é )
Lemma 2.
Let X be the solution of RANDOMIZEDMAXCUT(G, c). B i
If 7 is picked uniformally at random, then Z]r? .
; o § \
E[X] = Z Z Cij 7 =3 \ /
==
. J 2N
Proof. 32
PR = R
B EX] = Z Z cij P|€ separates ¥, %/| = Y.} cij+ & L B,
j=1li= j=1i=1 \ ._,
W P[{ separates &', %/] = P[s or ! lies on B;j| = g;]T | g;]T = “—7;] \/x

O] Bij has length K-

B If & (or &) lies < w;j before s or t on the perimter of the unit disk, s or ¢ lies on B;;.



RANDOMMAXCUT — Quality

‘Theorem 3.

Let X be the solution of RANDOMIZEDMAXCUT(G, c).
Then

E[X]

\. J

Proof.
n j—1

B lemma2: E[X]= )Y Z CZ][X”
==

B Optimal solution for QP2:

n j—1 1—cos(u;;)

0 i—1
QPZ(G c) = 1 y ¥ cz](l—x x]) 21]2 Cij 5

]111 j

B QP?(G,¢) is relaxation of QP(G, ¢):
QP?(G,c) > QP(G,c) = OPT(G,¢c)

14 - 14

E[X] E[X]  _
OPT(G,c) = QP?(G,c)
n j—1 ;i
.;1 .;1 Cij 7
n ]]:11_ 1—cos(« Z 0.8785
2. ) Cij p) .
j=11=1
(XZ]
ey > 0.8785
2
OCZ']' 1—COS(0€Z']'>
& -1 >(0.8785——
A
4T 2u
31| Y = (1 — cosw) = 0.8785
2 for0<a<rm
1+ - 0.8785

554"



Example

1. Step: Build QP Weight matrix c;;

6 j—1
maximize % Y, ). Ci]'(]. —xix]-) 1 2 3 4 5
j=1i=1 1 2 1
subject to x2 =1 § 2 1 1 2
2 4 |1 2
2. Step: Relax QP to QP 5 3 4 2
6 j—1 S 6 2 3
maximize DY cij(1—x'-x/)
j=1i=1 -
subject to xt-xt =

3. Step: Solve QP2 Variable | xl x2 x3 14 X5 +6
t Angle | 0 180 120 165 345 210

4. Step: Guess r
5. Step: Derive S




Goemans-Williamson Algorithm for MaxCut

1-dimensional

o© -
\ quadratic program

X2

G=(V,E),c

B So far, k = 2.

B QP" can be solved in

approximation for polynomial time.

MaxCut on G
t Integer
m 4 -dimensiona
ICk solution

relax to k dimensions
for k <mn

quadratic program
QP*

l solve

real-valued solution
for QPk

randomized
rounding
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QP" (G, ¢)

QP?(G,c) QP"(G,¢)
n j—1 S
maximize % Y Y ci(l—xt-o) maximize
j=1i=1 -
subject to xt-xt =1 subject to

xt = (x},x5) € R?

B A matrix M is called positive semidefinite
if for any vector v € R”":
Y ol-M-0v>0

B M= (m) = (x' - x/) is positive semidefinite.

B QP"(G, c) becomes problem SEMIDEFINITECUT(G, ¢).
m Can be approximated in time polynomial in (G, c¢) and
1/¢e with additive guarantee ¢.

17

cij(1— xt )
xt - i
Xt



18 -

Discussion

If the Unique Games Conjecture is true, then the approximation ratio of = 0.8785
achieved by SEMIDEFINITECUT (and RANDOMIZEDMAXCUT) is best possible.

Otherwise, no approximation ratio better than %—g ~ 0.941 is possible.
In particular no polynomial-time approximation scheme (PTAS) exists.

On planar graphs, the MaxCut problem can be solved optimally in polynomial time.

Semidefinite programming is a powerful tool to develop approximation algorithms
Whole book on this topic:

m [Gartner, Matousek| “Approximation Algorithms and Semidefinite Progamming”
Using randomness is another tool to design approximation algorithms.

See future lectures.



| iterature

Original paper:

B [GW '95] “Improved approximation
algorithms for maximum cut and satisfiability
problems using semidefinite programming”

Source:

B [Vazirani Ch26] “Approximation Algorithms"

Whole book on this topic:

B [Géartner, Matousek] “Approximation
Algorithms and Semidefinite Progamming”
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Bernd Gartner - Jifi Matousek
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