Julius-Maximilians-
UNIVERSITAT
WURZBURG

Advanced Algorithms

Approximation Algorithms
Coloring and Scheduling Problems

Alexander Wolff - WS22

Dealing with NP-Hard Optimization Problems

What should we do?

B Sacrifice optimality for speed
m Heuristics
B Approximation algorithms

this lecture

B Optimal solutions
m Exact exponential-time algorithms
B Fine-grained analysis — parameterized algorithms

Heuristic Approximation

NP-hard

Exponential EPT

Approximation Algorithms

Problem.
B For NP-hard optimization problems, we cannot compute the
optimal solution of every instance efficiently (unless P = NP).

B Heuristics offer no guarantee on the quality of their solutions.

Goal.
B Design approximation algorithms:
B run in polynomial time and
m compute solutions of guaranteed quality.

PTAS
B Study techniques for the design and analysis of (polynomial-time
approximation algorithms. approximation
0 : scheme)
verview.

B Approximation algorithms that compute solutions with /that are ‘/
B additive guarantee, m relative guarantee, m “arbitrarily good".

Approximation with Additive Guarantee

‘Definition.

| et I1 be an optimization problem,

et A be a polynomial-time algorithm for 11,

et I be an instance of I1, and

et ALG(I) be the value of the objective function of
the solution that A computes given 1.

Then A is called an approximation algorithm with
additive guarantee 6 (which can depend on I) if

IOPT(I) — ALG(I)| < 6

for every instance [of 11.

B Most problems that we know do not admit an
approximation algorithm with additive guarantee.

Minimum Vertex Coloring

Input. A graph G = (V,E). Let A be the maximum degree of G.

Output. A minimum vertex coloring, that is, an assignment of the
vertices of G to colors such that no two adjacent vertices
get the same color and the number of colors is minimum.

B Minimum Vertex Coloring is NP-hard.

B Even Vertex 3-Coloring is NP-complete. °

GreedyVertexColoring(connected graph G) .

Color vertices in some order with the lowest feasible color. I
y 3

t i

‘Theorem 1.
The algorithm GreedyVertexColoring computes a vertex
coloring with at most A + 1 colors in O(V + E) time.

Hence, it has an additive approximation gurantee of A — 1. e e returm 2 2reclorine

> (

Minimum Edge Coloring

Input. A graph G = (V,E). Let A be the maximum degree of G.

Output. A minimum edge coloring, that is, an assignment of
colors to the edges of G such that now two adjacent edges
get the same color and the number of colors is minimum.

B Minimum Edge Coloring is NP-hard.
B Even Edge 3-Coloring is NP-complete.

B The minimum number of colors needed for an edge coloring of G
is called the chromatic index x'(G).

B X' (G) is lowerbounded by A.
B We show that ' (G) < A+ 1.

A A

Minimum Edge Coloring — Upper Bound

4 . =)

Vizing's Theorem.

For every graph G = (V, E) with maximum degree A,
it holds that A < x'(G) < A+ 1. '
Proof by induction on m = |E|.

. . . Vadim G. Vizing
B Base case m1 = 1 is trivial. (Kiew 1937 — 2017 Odlessa)

Let G be a graph on m edges, and let e = uv be an edge of G.

B By induction, G —e has a (A(G — e) + 1)-edge coloring.
B If A(G) > A(G —e), color e with color A(G) + 1.

B If A(G) = A(G —e), change the coloring such that u and v

miss the same color «. y .
B Then colorewithe. 4
Lemma 2

Minimum Edge Coloring — Recoloring

()

Lemma 2.

Let G be a graph with a (A + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v) <A.
kThen c can be changed s.t. # and v miss the same color.

y, Uh
Proof. Note that every vertex is missing a color. .
Let u miss 5 and v miss «1; apply the following algorithm:
VizingRecoloring(G,c, u, aq)
1+ 1
while 3w € N(u): c(uw) =a; Aw & {v1,...,0;_1} do
0; < W
®; 1 <— min color missing at w

i ®
return 01, ...,0;, &1, ..., %41

Minimum Edge Coloring — Recoloring

(")

Lemma 2.

Let G be a graph with a (A + 1)-edge coloring c,

let u, v be non-adjacent vertices with deg(u), deg(v) <A.
KThen c can be changed s.t. # and v miss the same color.

J

Proof. Note that every vertex is missing a color.
Let u miss 5 and v miss «1; apply the following algorithm:

VizingRecoloring(G,c, u, aq)

141
while 3w € N(u): c(uw) = a; Nw & {v1,...,
0; < W
®; 1 <— min color missing at w 4
i it 1 y color o'
i Nee

return 01,...,0;,&1,...,&j41

Minimum Edge Coloring — Recoloring

Proof continued for Case 2: w1 = a;, j <h,

and we need to find a color for edge uv;. ﬁlg‘.xMﬁ.«“

m Consider subgraph G’ of G induced by
the edges of colors 5 and «;. . B B

B Since A(G") < 2, we can recolor components. T - B

B Nodes u, v;, vy, are all leaves in G'.

= They are not all in the same component of G’.
m If u and v; are not in the same component:

m recolor component ending at v;,

B U; now misses [5;

m color uv; with p.

B What if u and v; are in the same component?

Minimum Edge Coloring — Algorithm

VizingEdgeColoring(graph G, coloring ¢ = 0)

if £(G) # @ then ‘Theorem 4.
Let e = uv be an arbitrary edge of G. VIZINGEDGECOLORING is an
Gg % G—e | approximation algorithm with
}/’121ngEdgeColor1ng(Ge, c) additive approximation guarantee
if A(Ge) < A(G) then ALG(G) — OPT(G) < 1.

L Color e with lowest free color.

else
Recolor G, as in Lemma 2.
Color e with color now missing at u# and v.

Approximation with Relative Factor

B An additive approximation guarantee can rarely be achieved;
but sometimes, there is a multiplicative approximation!

(« s_»

Definition. maximization

Let IT be a minimization problem, and let « € Q.

A factor-a approximation algorithm for I1 is a
polynomial-time algorithm A that computes, for every
instance I of I'l, a solution of value ALG(I) such that

ALG(I)
OPT(1)

INTV

X.

‘We call « the approximation factor of A.

2-Approximation for Metric TSP (from AGT)

Input. Complete graph G = (V, E) and a distance function
d: E — R>q that satisfies the triangle inequality,
e, Vu,o,we V:du,w) <d(u,v)+d(v,w).

Output. A shortest Hamiltonian cycle in G.

Algorithm.
B Compute MST.

2-Approximation for Metric TSP (from AGT)

Input. Complete graph G = (V, E) and a distance function
d: E — R>q that satisfies the triangle inequality,
e, Vu,o,we V:du,w) <d(u,v)+d(v,w).

Output. A shortest Hamiltonian cycle in G.

Algorithm.
B Compute MST.

B Double edges.
B Walk along tree,

11-21

2-Approximation for Metric TSP (from AGT)

Input. Complete graph G = (V, E) and a distance function

d: E — R>q that satisfies the triangle inequality, u.ﬁv

e, Vu,o,we V:du,w) <d(u,v)+d(v,w).
w

Output. A shortest Hamiltonian cycle in G.

Algorithm.

m Compute MST. Theorem 5.
The MST edge doubling algorithm

Is a 2-approximation algorithm for
B Walk along tree, metric TSP.

B Double edges.

J

B skipping visited vertices Proof.

B and adding shortcuts. ALG < d(cycle) = 2d(MST) < 20PT.

12 - 12

Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.

Set tour T to go from i to k to i (clockwise).
while T C V do

Find pair (i,j) € T x (V \ T) minimizing d(i, j).
Let k be vertex afteriin T.
 Add j between i and k.

‘Theorem 6. Proof.
NearestAdditionAlgorithm is a

imati i - B Exercise.
2-approximation algorithm for metric TSP. XEMCISE

B Hints: MST and Prim’s algorithm.

Approximation Schemes

B In some cases, we can get arbitrarily good approximations.

‘Definition.

Let IT be a minimization problem. An algorithm A is called
a polynomial-time approximation scheme (PTAS) if A
computes, for every input (I, e) (consisting of an instance I
of I'T and a real € > 0), a value ALG(I) such that:

B ALG(I) <
B the runtime of A is polynomial in |I| for every € > 0.

A is called a fully polynomial-time approximation scheme
(FPTAS) if it runs in time polynomial in |I| and 1/¢.

maX|m|zat|on

> (1 —¢)
(1+¢)-OPT(I), and

Examples.

O (n2 - 3%) — PTAS but not FPTAS

2 1
O (n +n8) = PTAS but not FPTAS (n4, <%)2) . EPTAS

13 -

Multiprocessor Scheduling

Input. M n jobs [1,...,], with B m identical machines (m < n)
durations p1,..., Pu.
P1|:i ’92[i | - c-r=x=ecaass Makespan
] P4

Output. Assignment of jobs to machines such that the time when all
jobs have been processed is minimum.
This is called the makespan of the assignment.

B Multiprocessor scheduling is NP-hard.

14 -

Multiprocessor Scheduling — List Scheduling

LISTSCHEDULING(J1, ..., Ju, m)

Put the first m jobs on the m machines.
Put the next job on the first free machine.

wey

J1 ’y I:i
i
Js Pe i P7[i

Example.

15 -

Multiprocessor Scheduling — List Scheduling

LISTSCHEDULING(J1, ..., Jn, m)
Put the first m jobs on the m machines.

Put the next job on the first free machine.

Example.

LR
1 ”[i
Ai ’%i p{i

J5

B LISTSCHEDULING runs in O(n) time.

‘Theorem 7.
LISTSCHEDULING is a factor-

(2 — %) approximation algorithm.

J

-
p7

P1

o o B
6
" — —— p5_ P4
pz_ p3: i

16-9

Multiprocessor Scheduling — List Scheduling (Proof)

Put the first m jobs on the m machines.

LISTSCHEDULING(/1, - . ., Jn, m) [Theorem 7.
Put the next job on the first free machine.

LISTSCHEDULING is a (2 — %)-approximation alg]

Proof. Let J, = (Si, Ty) be the last job, that is, T; determines the makespan.

B No machine idles at time 5. B Hence:
Sp < — Z p; weight of all jobs but Jj Tie = Sk + Pr
'iZk evenly distributed on m machines 1 Z D+ Py
— 1
. m
B For the optimal makespan TopT, we have: i#k
1 & : ; 1 & 1
" Topt = P& B Topt = 7 L pi Weight of all jobs =—-) pit|(l-—] m
=1 evenly distributed moi3 m
1
My < TopT + (1 - —> TopT
M3 J
M2 . 1
My : ; — (2 - _> TopT
Sk T, = MAKESPAN m

Multiprocessor Scheduling — PTAS

For a constant ¢ (1 < ¢ < n) define the algorithm A, as follows.

Sort jobs in descending order of runtime.
Schedule the ¢ longest jobs [q,..., Jy optimally.
Use LISTSCHEDULING for the remaining jobs [y, 1, ..., T

Example.
¢ =06

sorted jobs

I1 |
P |

I3 |

T4 |

5 |

J6 | M3 J? J5
| M I3
| My Ja | J6

JUHTTO

17 - 11

17 - 15

Multiprocessor Scheduling — PTAS

For a constant ¢ (1 < ¢ < n) define the algorithm A, as follows.

Ag(J1, -, Jn, m) B Polynomial time for
Sort jobs in descending order of runtime. O(nlogn) constant /-
Schedule the ¢ longest jobs [, ..., J; optimally. O(m") O(mt + nlogn)
Use LISTSCHEDULING for the remaining jobs J,_ 1, ..., Ju- O(nlogm)

\

‘Theorem 8.

For constant 1 < ¢ < n, the algorithm A,
1

: | = .. :
s a1 T+ L] approximation algorithm.

m
. J

B For ¢ > 0, choose ¢ such that A, = Ay (Corollary 9.
is a (1 + ¢)-approximation algorithm. For a constant number of machines,

m {A.|e> 0} is not an FPTAS since the \{‘AE e >0} isa PTAS.

running time is not polynomial in %

18-5

Multiprocessor Scheduling — PTAS (Proof)

(Theorem 8.) Ao(J1,..., Jn, m)

For cons;cant 1 < ¢ <mn, the algorithm A, is a Sort jobs in descending order of runtime.

1+ 1_? —approximation algorithm. Schedule the ¢ longest jobs [1,..., J; optimally.
Ml)] Use LISTSCHEDULING for the remaining jobs Jr.1, ..., Jx.

Proof. Let J, = (Si, T) be the last job, that is, T determines the makespan.

Case 1. [is one of the longest £ jobs [1,...,Js. ﬁg]2]1 | 15:1!< |
. . . M]
B Solution is optimal for J1,..., Ji v ———" - .
B Hence, solution is optimal for J1, ..., [x % e = MAKESPANA
. . M]
Case 2. [i is not one of the longest ¢ jobs [, ..., Jy. ﬁg ?1 - |I]Il
B Similar analysis to LISTSCHEDULING M] 7 S T NS

S.k Tk = MAKES.PAN Ag

B Use that there are £ + 1 jobs that are at least as
long as J; (including Ji).

18 - 17

Multiprocessor Scheduling — PTAS (Proof)

(Theorem 8.) Ao(J1, ..., Jn, m)
For cons;cant 1 < ¢ < mn, the algorithm A, is a Sort jobs in descending order of runtime.
1 _|_ 1_? _approximation algorithm_ SChedU|e the E IOngeSt jObS]]_, c ooy]g optlmally
. 14| 7 | y Use LISTSCHEDULING for the remaining jobs [y 1,..., Ju.
Proof of Case 2.
n
1 1 :
B S < Yixp M TOPTZWZle T = S + i
1=
B Consider only J1,..., Js, Ji: < 1. Z i + Di
T ~ 1+ i one machine has " 7k
OPT = Pk m this many jobs* 1 1
each has length > p; Z—'ZPH- 1——) Pk
m i—1 m
B ~ on average, each machine has more than % of the £ + 1 jobs 1
B at least one machine achieves the average < TOPT n 1 — m | TOPT
_ I

My J1 | | | 1 -+ \‘%J
M3 I2 I | |
My I3 Ik
My I | I | |

S.k Tk = MAKES.PAN Ag

19 -

Discussion

B Only “easy” NP-hard problems admit FPTAS (PTAS).

B Some problems cannot be approximated very well (e.g., Maximum Clique).

B Study of approximability of NP-hard problems yields a more fine-grained classifica-
tion of the difficulty.

B Approximation algorithms exist also for non-NP-hard problems

B Approximation algorithms can be of various types:
greedy, local search, geometric, DP, ...

B One important technique is LP-relaxation (next lecture).

B Minimum Vertex Coloring on planar graphs can be approximated
with an additive approximation guarantee of 2.

B Christofides’ approximation algorithm for Metric TSP has appro-
ximation factor 1.5.

20

| iterature

Main references R

Marian Margraf

B [Jansen & Margraf, 2008: Ch3]
“Approximative Algorithmen und
Nichtapproximierbarkeit”

B [Williamson & Shmoys, 2011: Ch3]
“The Design of Approximation Algorithms”

The DESIGN of
APPROXIMATION
ALGORITHMS

Another book recommendation:

B [Vazirani, 2013] “Approximation Algorithms”

Approximation
Algorithms

	Title page
	Dealing with NP-Hard Optimization Problems
	Dealing with NP-Hard Optimization Problems

	Approximation Algorithms
	Approximation with Additive Guarantee
	Minimum Vertex Coloring
	Minimum Vertex Coloring

	Minimum Edge Coloring
	Minimum Edge Coloring

	Minimum Edge Coloring -- Upper Bound
	Minimum Edge Coloring -- Upper Bound

	Minimum Edge Coloring -- Recoloring
	Minimum Edge Coloring -- Recoloring

	Minimum Edge Coloring -- Algorithm
	Minimum Edge Coloring -- Algorithm

	Approximation with Relative Factor
	2-Approximation for Metric TSP (from AGT)
	2-Approximation for Metric TSP (from AGT)

	Nearest Addition Algorithm for Metric TSP
	Nearest Addition Algorithm for Metric TSP

	Approximation Schemes
	Multiprocessor Scheduling

	Multiprocessor Scheduling -- List Scheduling
	Multiprocessor Scheduling -- List Scheduling
	Multiprocessor Scheduling -- List Scheduling (Proof)
	Multiprocessor Scheduling -- PTAS
	Multiprocessor Scheduling -- PTAS (Proof)

	Discussion
	Literature

