
1

Advanced Algorithms

Traveling Salesman Problem and Maximal Independent Set

Exact Algorithms for NP-hard Problems

Diana Sieper · WS22

1+ 11+ 2 1+ 2

A

B

A

B

C

1+ 0

1+ 01+ 0
A B

1+ 0

1+ 1

A B

1+ 1

A
1+ 1
C

1+ 1

B

C

2 - 1

Examples of NP-hard Problems

Many important (practical) problems are NP-hard, for example . . .

2 - 2

Examples of NP-hard Problems

Many important (practical) problems are NP-hard, for example . . .

TSP Bin Packing Scheduling

M1

M2

M3

MIS

2 - 3

Examples of NP-hard Problems

Many important (practical) problems are NP-hard, for example . . .

TSP Bin Packing Scheduling

M1

M2

M3

Graph Drawing Games

MIS

SAT ...
[ADGV15]

(x1 ∨ x2 ∨ ¬x4)∧
(¬x2 ∨ x3 ∨ ¬x4)∧
(x3 ∨ x7 ∨ ¬x8)∧
. . .

3 - 1

Formal View on NP-Hardness

But what does NP-hard/-complete actually mean?

3 - 2

Formal View on NP-Hardness

But what does NP-hard/-complete actually mean?

� NP-hard = non-deterministic polynomial-time hard

3 - 3

Formal View on NP-Hardness

But what does NP-hard/-complete actually mean?

� NP-hard = non-deterministic polynomial-time hard

� A decision problem H is NP-hard when it is “at least as hard as the hardest
problems in NP”.

3 - 4

Formal View on NP-Hardness

But what does NP-hard/-complete actually mean?

� NP-hard = non-deterministic polynomial-time hard

� A decision problem H is NP-hard when it is “at least as hard as the hardest
problems in NP”.

� or: There is a polynomial-time many-one reduction from an NP-hard problem L
to H.

3 - 5

Formal View on NP-Hardness

But what does NP-hard/-complete actually mean?

� NP-hard = non-deterministic polynomial-time hard

� A decision problem H is NP-hard when it is “at least as hard as the hardest
problems in NP”.

� If P 6= NP, then NP-hard problems cannot be solved in polynomial time.

� or: There is a polynomial-time many-one reduction from an NP-hard problem L
to H.

4 - 1

Misconceptions about NP-Hardness

Common misconceptions [Mann ’17]

� If similar problems are NP-hard, then the problem at hand is also NP-hard.

4 - 2

Misconceptions about NP-Hardness

Common misconceptions [Mann ’17]

� If similar problems are NP-hard, then the problem at hand is also NP-hard.

� Problems that are hard to solve in practice by an engineer are NP-hard.

4 - 3

Misconceptions about NP-Hardness

Common misconceptions [Mann ’17]

� If similar problems are NP-hard, then the problem at hand is also NP-hard.

� Problems that are hard to solve in practice by an engineer are NP-hard.

� NP-hard problems cannot be solved optimally.

4 - 4

Misconceptions about NP-Hardness

Common misconceptions [Mann ’17]

� If similar problems are NP-hard, then the problem at hand is also NP-hard.

� Problems that are hard to solve in practice by an engineer are NP-hard.

� NP-hard problems cannot be solved more efficiently than by exhaustive search.

� NP-hard problems cannot be solved optimally.

4 - 5

Misconceptions about NP-Hardness

Common misconceptions [Mann ’17]

� If similar problems are NP-hard, then the problem at hand is also NP-hard.

� Problems that are hard to solve in practice by an engineer are NP-hard.

� NP-hard problems cannot be solved more efficiently than by exhaustive search.

� NP-hard problems cannot be solved optimally.

� For solving NP-hard problems, the only practical possibility is the use of heu-
ristics.

5 - 1

Dealing with NP-Hard Problems

What should we do?

5 - 2

Dealing with NP-Hard Problems

Heuristic

NP-hard

Approximation

� Sacrifice optimality for speed
� Heuristics (Simulated Annealing,

Tabu-Search)
� Approximation Algorithms

(Christofides-Algorithm)

What should we do?

5 - 3

Dealing with NP-Hard Problems

Heuristic

NP-hard

Exponential FPT

Approximation

� Optimal Solutions
� Exact exponential-time algorithms
� Fine-grained analysis –

parameterized algorithms

� Sacrifice optimality for speed
� Heuristics (Simulated Annealing,

Tabu-Search)
� Approximation Algorithms

(Christofides-Algorithm)

What should we do?

5 - 4

Dealing with NP-Hard Problems

Heuristic

NP-hard

Exponential FPT

Approximation

� Optimal Solutions
� Exact exponential-time algorithms
� Fine-grained analysis –

parameterized algorithms

� Sacrifice optimality for speed
� Heuristics (Simulated Annealing,

Tabu-Search)
� Approximation Algorithms

(Christofides-Algorithm)

What should we do?

this lecture

6 - 1

Motivation

2n

n2

efficient (polynomial-time)
vs.

inefficient (super-pol.time)

6 - 2

Motivation

2n

n2

efficient (polynomial-time)
vs.

inefficient (super-pol.time)

Exponential runningtime . . . should we just give up?

6 - 3

Motivation

2n

n2

efficient (polynomial-time)
vs.

inefficient (super-pol.time)

� . . . can be “fast” for medium-sized instances:

Exponential runningtime . . . should we just give up?

6 - 4

Motivation

2n

n2

efficient (polynomial-time)
vs.

inefficient (super-pol.time)

� . . . can be “fast” for medium-sized instances:

� “hidden” constants in polynomial-time
algorithms:
2100n > 2n for n ≤ 100

Exponential runningtime . . . should we just give up?

6 - 5

Motivation

2n

n2

efficient (polynomial-time)
vs.

inefficient (super-pol.time)

� . . . can be “fast” for medium-sized instances:

� “hidden” constants in polynomial-time
algorithms:
2100n > 2n for n ≤ 100

Exponential runningtime . . . should we just give up?

� n4 > 1.2n for n ≤ 100

6 - 6

Motivation

2n

n2

efficient (polynomial-time)
vs.

inefficient (super-pol.time)

� . . . can be “fast” for medium-sized instances:

� “hidden” constants in polynomial-time
algorithms:
2100n > 2n for n ≤ 100

Exponential runningtime . . . should we just give up?

� n4 > 1.2n for n ≤ 100

� TSP solvable exactly for n ≤ 2000 and
specialized instances with n ≤ 85900

6 - 7

Motivation

Exponential runningtime . . . maybe we need better hardware?

6 - 8

Motivation

Exponential runningtime . . . maybe we need better hardware?

� Suppose an algorithm uses an steps & can solve for a fixed amount of time t
instances up to size n0.

6 - 9

Motivation

Exponential runningtime . . . maybe we need better hardware?

� Suppose an algorithm uses an steps & can solve for a fixed amount of time t
instances up to size n0.

� Improving hardware by a constant factor c only adds a constant (relative to c)
to n0:

an′0 = c · an0 n′0 = loga c + n0

6 - 10

Motivation

Exponential runningtime . . . maybe we need better hardware?

� Suppose an algorithm uses an steps & can solve for a fixed amount of time t
instances up to size n0.

� Reducing the base of the runtime to b < a results in a multiplicative increase:

bn′0 = an0 n′0 = n0 · logb a

� Improving hardware by a constant factor c only adds a constant (relative to c)
to n0:

an′0 = c · an0 n′0 = loga c + n0

6 - 11

Motivation

Exponential runningtime . . . but can we at least find exact algorithms that are faster
than brute-force (trivial) approaches?

6 - 12

Motivation

Exponential runningtime . . . but can we at least find exact algorithms that are faster
than brute-force (trivial) approaches?

� TSP: Bellman-Held-Karp algorithm has running time
O(2nn2) compared to an O(n! · n)-time brute-force search.

6 - 13

Motivation

Exponential runningtime . . . but can we at least find exact algorithms that are faster
than brute-force (trivial) approaches?

� TSP: Bellman-Held-Karp algorithm has running time
O(2nn2) compared to an O(n! · n)-time brute-force search.

� MIS: algorithm by Tarjan & Trojanowski runs in O∗(2n/3)
time compared to a trivial O(n2n)-time approach.

O∗ hides polynomial
factors in n (see next slide)

6 - 14

Motivation

Exponential runningtime . . . but can we at least find exact algorithms that are faster
than brute-force (trivial) approaches?

� TSP: Bellman-Held-Karp algorithm has running time
O(2nn2) compared to an O(n! · n)-time brute-force search.

� MIS: algorithm by Tarjan & Trojanowski runs in O∗(2n/3)
time compared to a trivial O(n2n)-time approach.

� Coloring: Lawler gave an O(n(1 + 3
√

3)n) algorithm com-
pared to O(nn+1)-time brute-force.

O∗ hides polynomial
factors in n (see next slide)

6 - 15

Motivation

Exponential runningtime . . . but can we at least find exact algorithms that are faster
than brute-force (trivial) approaches?

� TSP: Bellman-Held-Karp algorithm has running time
O(2nn2) compared to an O(n! · n)-time brute-force search.

� SAT: No better algorithm than trivial brute-force search
known.

� MIS: algorithm by Tarjan & Trojanowski runs in O∗(2n/3)
time compared to a trivial O(n2n)-time approach.

� Coloring: Lawler gave an O(n(1 + 3
√

3)n) algorithm com-
pared to O(nn+1)-time brute-force.

O∗ hides polynomial
factors in n (see next slide)

7 - 1

O∗-Notation

O(1.4n · n2) (O(1.5n · n) (O(2n)

7 - 2

O∗-Notation

O(1.4n · n2) (O(1.5n · n) (O(2n)

� base of exponential part dominates negligible polynomial factors

7 - 3

O∗-Notation

O(1.4n · n2) (O(1.5n · n) (O(2n)

� base of exponential part dominates negligible polynomial factors

f (n) ∈ O∗(g(n)) ⇔ ∃ polynomial p(n) with f (n) ∈ O(g(n)p(n))

7 - 4

O∗-Notation

Approach Runtime in O-Notation O∗-Notation
Brute-Force O(2n) O∗(2n)
Algorithm A O(1.5n · n) O∗(1.5n)
Algorithm B O(1.4n · n2) O∗(1.4n)

O(1.4n · n2) (O(1.5n · n) (O(2n)

� base of exponential part dominates negligible polynomial factors

f (n) ∈ O∗(g(n)) ⇔ ∃ polynomial p(n) with f (n) ∈ O(g(n)p(n))

� typical result

8 - 1

Traveling Salesperson Problem (TSP)

Input. Distinct cities {v1, v2, . . . , vn} with distances d(ci, cj) ∈ Q≥0;
directed, complete graph G with edge weights d

8 - 2

Traveling Salesperson Problem (TSP)

Input. Distinct cities {v1, v2, . . . , vn} with distances d(ci, cj) ∈ Q≥0;
directed, complete graph G with edge weights d

Output. Tour of the traveling salesperson of minimal total length that
visits all the cities and returns to the starting point;

8 - 3

Traveling Salesperson Problem (TSP)

Input. Distinct cities {v1, v2, . . . , vn} with distances d(ci, cj) ∈ Q≥0;
directed, complete graph G with edge weights d

Output. Tour of the traveling salesperson of minimal total length that
visits all the cities and returns to the starting point;

i.e. a Hamiltonian cycle (vπ(1), . . . , vπ(n), vπ(1)) of G
of minimum weight

n−1
∑
i=1

d(vπ(i), vπ(i+1)) + d(vπ(n), vπ(1))

8 - 4

Traveling Salesperson Problem (TSP)

Input. Distinct cities {v1, v2, . . . , vn} with distances d(ci, cj) ∈ Q≥0;
directed, complete graph G with edge weights d

Output. Tour of the traveling salesperson of minimal total length that
visits all the cities and returns to the starting point;

Brute-force.
� Try all permutations and pick the one with smallest

weight.
� Runtime: Θ(n! · n) = n · 2Θ(n log n)

i.e. a Hamiltonian cycle (vπ(1), . . . , vπ(n), vπ(1)) of G
of minimum weight

n−1
∑
i=1

d(vπ(i), vπ(i+1)) + d(vπ(n), vπ(1))

9 - 1

TSP – Dynamic Programming

Richard M. Karp

Richard E. Bellman

Idea.

� Reuse optimal substructures with dynamic programming.

Bellman-Held-Karp Algorithm

9 - 2

TSP – Dynamic Programming

Richard M. Karp

Richard E. Bellman

s

Idea.

� Reuse optimal substructures with dynamic programming.

� Select a starting vertex s ∈ V.

Bellman-Held-Karp Algorithm

9 - 3

TSP – Dynamic Programming

Richard M. Karp

Richard E. Bellman

� For each S ⊆ V − s and v ∈ S, let:

OPT[S, v] = length of a shortest s-v-path
that visits precisely the vertices of S ∪ {s}.

S v

s

Idea.

� Reuse optimal substructures with dynamic programming.

� Select a starting vertex s ∈ V.

Bellman-Held-Karp Algorithm

9 - 4

TSP – Dynamic Programming

Richard M. Karp

Richard E. Bellman

� For each S ⊆ V − s and v ∈ S, let:

OPT[S, v] = length of a shortest s-v-path
that visits precisely the vertices of S ∪ {s}.

S v

s

Idea.

� Reuse optimal substructures with dynamic programming.

� Select a starting vertex s ∈ V.

� Use OPT[S− v, u] to compute OPT[S, v].

Bellman-Held-Karp Algorithm

10 - 1

TSP – Dynamic Programming

Details.

� The base case S = {v} is easy: OPT[{v}, v] = d(s, v).

10 - 2

TSP – Dynamic Programming

Details.

� The base case S = {v} is easy: OPT[{v}, v] = d(s, v).

10 - 3

TSP – Dynamic Programming

Details.

� The base case S = {v} is easy: OPT[{v}, v] = d(s, v).
� When |S| ≥ 2, compute OPT[S, v] recursively:

OPT[S, v] = min{OPT[S− v, u] + d(u, v) | u ∈ S− v}

S

s
u

v

10 - 4

TSP – Dynamic Programming

Details.

� The base case S = {v} is easy: OPT[{v}, v] = d(s, v).
� When |S| ≥ 2, compute OPT[S, v] recursively:

OPT[S, v] = min{OPT[S− v, u] + d(u, v) | u ∈ S− v}

S

s
u

v

10 - 5

TSP – Dynamic Programming

Details.

� The base case S = {v} is easy: OPT[{v}, v] = d(s, v).
� When |S| ≥ 2, compute OPT[S, v] recursively:

OPT[S, v] = min{OPT[S− v, u] + d(u, v) | u ∈ S− v}

S

s
u

v

� After computing OPT[S, v] for each S ⊆ V − s and each
v ∈ V− s, the optimal solution is easily obtained as follows:

s

V − s

v

OPT= min{OPT[V − s, v]}+ d(v, s) | v ∈ V − s }

10 - 6

TSP – Dynamic Programming

Details.

� The base case S = {v} is easy: OPT[{v}, v] = d(s, v).
� When |S| ≥ 2, compute OPT[S, v] recursively:

OPT[S, v] = min{OPT[S− v, u] + d(u, v) | u ∈ S− v}

S

s
u

v

� After computing OPT[S, v] for each S ⊆ V − s and each
v ∈ V− s, the optimal solution is easily obtained as follows:

s

V − s

v

OPT= min{OPT[V − s, v]}+ d(v, s) | v ∈ V − s }

11 - 1

TSP – Dynamic Programming

Pseudocode.
Algorithm Bellmann-Held-Karp(G, c)

foreach v ∈ V − s do
OPT[{v}, v] = c(s, v)

for j← 2 to n− 1 do
foreach S ⊆ V − s with |S| = j do

foreach v ∈ S do
OPT[S, v]← min{OPT[S− v, u]

+c(u, v) | u ∈ S− v }

return min{OPT[V − s, v] + c(v, s) | v ∈ V − s }

11 - 2

TSP – Dynamic Programming

Pseudocode.
Algorithm Bellmann-Held-Karp(G, c)

foreach v ∈ V − s do
OPT[{v}, v] = c(s, v)

for j← 2 to n− 1 do
foreach S ⊆ V − s with |S| = j do

foreach v ∈ S do
OPT[S, v]← min{OPT[S− v, u]

+c(u, v) | u ∈ S− v }

return min{OPT[V − s, v] + c(v, s) | v ∈ V − s }

� A shortest tour can be produced by back-
tracking the DP table (as usual).

11 - 3

TSP – Dynamic Programming

Pseudocode.
Algorithm Bellmann-Held-Karp(G, c)

foreach v ∈ V − s do
OPT[{v}, v] = c(s, v)

for j← 2 to n− 1 do
foreach S ⊆ V − s with |S| = j do

foreach v ∈ S do
OPT[S, v]← min{OPT[S− v, u]

+c(u, v) | u ∈ S− v }

return min{OPT[V − s, v] + c(v, s) | v ∈ V − s }

Analysis.

� A shortest tour can be produced by back-
tracking the DP table (as usual).

11 - 4

TSP – Dynamic Programming

Pseudocode.
Algorithm Bellmann-Held-Karp(G, c)

foreach v ∈ V − s do
OPT[{v}, v] = c(s, v)

for j← 2 to n− 1 do
foreach S ⊆ V − s with |S| = j do

foreach v ∈ S do
OPT[S, v]← min{OPT[S− v, u]

+c(u, v) | u ∈ S− v }

return min{OPT[V − s, v] + c(v, s) | v ∈ V − s }

Analysis.

}O(n)

� A shortest tour can be produced by back-
tracking the DP table (as usual).

11 - 5

TSP – Dynamic Programming

Pseudocode.
Algorithm Bellmann-Held-Karp(G, c)

foreach v ∈ V − s do
OPT[{v}, v] = c(s, v)

for j← 2 to n− 1 do
foreach S ⊆ V − s with |S| = j do

foreach v ∈ S do
OPT[S, v]← min{OPT[S− v, u]

+c(u, v) | u ∈ S− v }

return min{OPT[V − s, v] + c(v, s) | v ∈ V − s }

Analysis.

}O(n)
O(2n)}

� A shortest tour can be produced by back-
tracking the DP table (as usual).

11 - 6

TSP – Dynamic Programming

Pseudocode.
Algorithm Bellmann-Held-Karp(G, c)

foreach v ∈ V − s do
OPT[{v}, v] = c(s, v)

for j← 2 to n− 1 do
foreach S ⊆ V − s with |S| = j do

foreach v ∈ S do
OPT[S, v]← min{OPT[S− v, u]

+c(u, v) | u ∈ S− v }

return min{OPT[V − s, v] + c(v, s) | v ∈ V − s }

Analysis.

}O(n)
O(2n)}

� innermost loop executes
O(2n · n) iterations

� each takes O(n) time
� total of O(2nn2) = O∗(2n)

� A shortest tour can be produced by back-
tracking the DP table (as usual).

11 - 7

TSP – Dynamic Programming

Pseudocode.
Algorithm Bellmann-Held-Karp(G, c)

foreach v ∈ V − s do
OPT[{v}, v] = c(s, v)

for j← 2 to n− 1 do
foreach S ⊆ V − s with |S| = j do

foreach v ∈ S do
OPT[S, v]← min{OPT[S− v, u]

+c(u, v) | u ∈ S− v }

return min{OPT[V − s, v] + c(v, s) | v ∈ V − s }

Analysis.

}O(n)
O(2n)}

� innermost loop executes
O(2n · n) iterations

� each takes O(n) time
� total of O(2nn2) = O∗(2n)

� Space usage in Θ(2n · n)

� A shortest tour can be produced by back-
tracking the DP table (as usual).

11 - 8

TSP – Dynamic Programming

Pseudocode.
Algorithm Bellmann-Held-Karp(G, c)

foreach v ∈ V − s do
OPT[{v}, v] = c(s, v)

for j← 2 to n− 1 do
foreach S ⊆ V − s with |S| = j do

foreach v ∈ S do
OPT[S, v]← min{OPT[S− v, u]

+c(u, v) | u ∈ S− v }

return min{OPT[V − s, v] + c(v, s) | v ∈ V − s }

Analysis.

}O(n)
O(2n)}

� innermost loop executes
O(2n · n) iterations

� each takes O(n) time
� total of O(2nn2) = O∗(2n)

� Space usage in Θ(2n · n)

� A shortest tour can be produced by back-
tracking the DP table (as usual).

� Or actually better? What table
values do we need to store?

12 - 1

TSP – Discussion

� DP algorithm that runs in O∗(2n) time and O(2n · n) space

� Brute-force runs in 2O(n log n) time
⇒ Sacrifice space for speedup

?

12 - 2

TSP – Discussion

� DP algorithm that runs in O∗(2n) time and O(2n · n) space

� Brute-force runs in 2O(n log n) time
⇒ Sacrifice space for speedup

� Many variants of TSP: symmetric, assymetric, metric, vehicle routing problems, . . .

?

12 - 3

TSP – Discussion

� DP algorithm that runs in O∗(2n) time and O(2n · n) space

� Brute-force runs in 2O(n log n) time
⇒ Sacrifice space for speedup

� Many variants of TSP: symmetric, assymetric, metric, vehicle routing problems, . . .

?

� Metric TSP can easily be 2-approximated. (Do you remember how?)

� Eucledian TSP is considered in the course Approxiomation Algorithms.

12 - 4

TSP – Discussion

� DP algorithm that runs in O∗(2n) time and O(2n · n) space

� Brute-force runs in 2O(n log n) time
⇒ Sacrifice space for speedup

� Many variants of TSP: symmetric, assymetric, metric, vehicle routing problems, . . .

?

� In practice, one successful approach is to start with a greedily computed Hamiltonian
cycle and then use 2-OPT and 3-OPT swaps to improve it.

� Metric TSP can easily be 2-approximated. (Do you remember how?)

� Eucledian TSP is considered in the course Approxiomation Algorithms.

13 - 1

Maximum Independent Set (MIS)

Input. Graph G = (V, E) with n vertices.

13 - 2

Maximum Independent Set (MIS)

Input. Graph G = (V, E) with n vertices.

Output. Maximum size independent set, i.e., a largest set U ⊆ V, such
that no pair of vertices in U are adjacent in G.

13 - 3

Maximum Independent Set (MIS)

Input. Graph G = (V, E) with n vertices.

Output. Maximum size independent set, i.e., a largest set U ⊆ V, such
that no pair of vertices in U are adjacent in G.

Brute-force.
� Try all subets of V.
� Runtime: O(2n · n)

13 - 4

Maximum Independent Set (MIS)

Input. Graph G = (V, E) with n vertices.

Output. Maximum size independent set, i.e., a largest set U ⊆ V, such
that no pair of vertices in U are adjacent in G.

Brute-force.
� Try all subets of V.
� Runtime: O(2n · n)

Naive MIS branching.
� Take a vertex v or don’t take it.

13 - 5

Maximum Independent Set (MIS)

Input. Graph G = (V, E) with n vertices.

Output. Maximum size independent set, i.e., a largest set U ⊆ V, such
that no pair of vertices in U are adjacent in G.

Brute-force.
� Try all subets of V.
� Runtime: O(2n · n)

Naive MIS branching.
� Take a vertex v or don’t take it.

Algorithm NaiveMIS(G)

if V = ∅ then
return 0

v← arbitrary vertex in V(G)
return max{1+ NaiveMIS(G− N(v)− {v}),
NaiveMIS(G− {v})}

14 - 1

14 - 2

14 - 3

3?

14 - 4

1 + 13? ?

14 - 5

1 + 13? ?

14 - 6

1 + 13

1

? ?

?

14 - 7

1 + 13

1 1 + 0

? ?

? ?

14 - 8

1 + 13

1 1 + 0

0

? ?

?

14 - 9

1 + 13

1 1 + 0

01

? ?

14 - 10

1 + 13

1 1 + 0

01

? ?

14 - 11

1 + 13

1 1 + 0

01

1

? ?

14 - 12

1 + 13

1 1 + 0

01

1

?

14 - 13

1 + 13

1 1 + 0

01

1

?

14 - 14

1 + 13

3 1 1 + 0

01

1

?

?

14 - 15

1 + 13

3 1 1 + 0

01

1

?

?

14 - 16

1 + 13

3 1 1 + 0

013

1

?

?

14 - 17

1 + 13

3 1 1 + 0

013

1

?

14 - 18

1 + 13

3 1 + 2 1 1 + 0

013

1

?

?

14 - 19

1 + 13

3 1 + 2 1 1 + 0

0123

1

?

?

14 - 20

1 + 13

3 1 + 2 1 1 + 0

0123

1

?

14 - 21

1 + 13

3 1 + 2 1 1 + 0

0123

1

?

3

14 - 22

1 + 13

3 1 + 2 1 1 + 0

0123

13

14 - 23

1 + 13

3 1 + 2 1 1 + 0

0123

13

3

15 - 1

MIS – Smarter Branching

Lemma.
Let U be a maximum independent set in G. Then
for each v ∈ V:
1. v ∈ U ⇒ N(v) ∩U = ∅
2. v 6∈ U ⇒ |N(v) ∩U| ≥ 1
Thus, N[v] := N(v) ∪ {v} contains some y ∈ U
and no other vertex of N[y] is in U.

v

y

15 - 2

MIS – Smarter Branching

Lemma.
Let U be a maximum independent set in G. Then
for each v ∈ V:
1. v ∈ U ⇒ N(v) ∩U = ∅
2. v 6∈ U ⇒ |N(v) ∩U| ≥ 1
Thus, N[v] := N(v) ∪ {v} contains some y ∈ U
and no other vertex of N[y] is in U.

v

y

Smarter MIS branching.

� For some vertex v, branch on vertices in N[v].

15 - 3

MIS – Smarter Branching

Lemma.
Let U be a maximum independent set in G. Then
for each v ∈ V:
1. v ∈ U ⇒ N(v) ∩U = ∅
2. v 6∈ U ⇒ |N(v) ∩U| ≥ 1
Thus, N[v] := N(v) ∪ {v} contains some y ∈ U
and no other vertex of N[y] is in U.

v

y

Smarter MIS branching.

� For some vertex v, branch on vertices in N[v].
Algorithm MIS(G)

if V = ∅ then
return 0

v← vertex of minimum degree in V(G)
return 1+max{MIS(G− N[y]) | y ∈ N[v]}

15 - 4

MIS – Smarter Branching

Lemma.
Let U be a maximum independent set in G. Then
for each v ∈ V:
1. v ∈ U ⇒ N(v) ∩U = ∅
2. v 6∈ U ⇒ |N(v) ∩U| ≥ 1
Thus, N[v] := N(v) ∪ {v} contains some y ∈ U
and no other vertex of N[y] is in U.

v

y

Smarter MIS branching.

� For some vertex v, branch on vertices in N[v].
Algorithm MIS(G)

if V = ∅ then
return 0

v← vertex of minimum degree in V(G)
return 1+max{MIS(G− N[y]) | y ∈ N[v]}

� Correctness follows from
Lemma.

� We prove a runtime of
O∗(3n/3) = O∗(1.4423n).

16 - 1

MIS – Branching Analysis

Execution corresponds to a search tree whose vertices are
labeled with the input of the respective recursive call.

G

G− N[v1] G− N[v2]

. . .

∅ ∅ ∅ ∅∅

16 - 2

MIS – Branching Analysis

Execution corresponds to a search tree whose vertices are
labeled with the input of the respective recursive call.

G

G− N[v1] G− N[v2]

. . .

∅ ∅ ∅ ∅∅

� Let B(n) be the maximum num-
ber of leaves of a search tree for a
graph with n vertices.

16 - 3

MIS – Branching Analysis

Execution corresponds to a search tree whose vertices are
labeled with the input of the respective recursive call.

G

G− N[v1] G− N[v2]

. . .

∅ ∅ ∅ ∅∅

� Let B(n) be the maximum num-
ber of leaves of a search tree for a
graph with n vertices.

� Search-tree has height ≤ n.

16 - 4

MIS – Branching Analysis

Execution corresponds to a search tree whose vertices are
labeled with the input of the respective recursive call.

G

G− N[v1] G− N[v2]

. . .

∅ ∅ ∅ ∅∅

� Let B(n) be the maximum num-
ber of leaves of a search tree for a
graph with n vertices.

� Search-tree has height ≤ n.

 The algorithm’s runtime is

T(n) ∈ O∗(nB(n)) = O∗(B(n)).

16 - 5

MIS – Branching Analysis

Execution corresponds to a search tree whose vertices are
labeled with the input of the respective recursive call.

G

G− N[v1] G− N[v2]

. . .

∅ ∅ ∅ ∅∅

� Let B(n) be the maximum num-
ber of leaves of a search tree for a
graph with n vertices.

� Search-tree has height ≤ n.

� Let’s consider an example run.

 The algorithm’s runtime is

T(n) ∈ O∗(nB(n)) = O∗(B(n)).

17 - 1

17 - 2

A

B

C

17 - 3

1 + 2?

A

B

C
A

17 - 4

1 + 2?

A

B

C
A

A

B

C

17 - 5

1 + 2?

A

B

C
A

A

B

C

1 + 1

A

?

17 - 6

1 + 2?

A

B

C
A

A

B

C

1 + 1

A

17 - 7

1 + 2?

A

B

C
A

A

B

C

1 + 1

A

1 + 1

B

17 - 8

1 + 2?

A

B

C
A

A

B

C

1 + 1

A
1 + 1
C

1 + 1

B

17 - 9

1 + 2?

2

A

B

C
A

A

B

C

1 + 1

A
1 + 1
C

1 + 1

B

17 - 10

1 + 2

2

A

B

C
A

A

B

C

1 + 1

A
1 + 1
C

1 + 1

B

17 - 11

1 + 2 1 + 2?

2

A

B

C
A

B

A

B

C

1 + 1

A
1 + 1
C

1 + 1

B

17 - 12

1 + 2 1 + 2?

2

A

B

C
A

B

A

B

C
A

B

1 + 1

A
1 + 1
C

1 + 1

B

17 - 13

1 + 2 1 + 2?

2

A

B

C
A

B

A

B

C
A

B

1 + 1

A

1 + 1

A
1 + 1
C

1 + 1

B

17 - 14

1 + 2 1 + 2?

2

A

B

C
A

B

A

B

C
A

B

1 + 01 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

17 - 15

1 + 2 1 + 2?

2 2

A

B

C
A

B

A

B

C
A

B

1 + 01 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

17 - 16

1 + 2 1 + 2

2 2

A

B

C
A

B

A

B

C
A

B

1 + 01 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

17 - 17

1 + 1?1 + 2 1 + 2

2 2

A

B

C
A

B

C

A

B

C
A

B

1 + 01 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

17 - 18

1 + 1?1 + 2 1 + 2

2 2

A

B

C
A

B

C

A

B

C
A

B

A

B

1 + 01 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

17 - 19

1 + 1?1 + 2 1 + 2

2 2

A

B

C
A

B

C

A

B

C
A

B

A

B

1 + 0

1 + 0
A

1 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

17 - 20

1 + 1?1 + 2 1 + 2

2 2

A

B

C
A

B

C

A

B

C
A

B

A

B

1 + 0

1 + 01 + 0
A B

1 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

17 - 21

1 + 1?1 + 2 1 + 2

2 2 1

A

B

C
A

B

C

A

B

C
A

B

A

B

1 + 0

1 + 01 + 0
A B

1 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

17 - 22

1 + 11 + 2 1 + 2

2 2 1

A

B

C
A

B

C

A

B

C
A

B

A

B

1 + 0

1 + 01 + 0
A B

1 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

17 - 23

1 + 1

3

1 + 2 1 + 2

2 2 1

A

B

C
A

B

C

A

B

C
A

B

A

B

1 + 0

1 + 01 + 0
A B

1 + 0

1 + 1

A B

1 + 1

A
1 + 1
C

1 + 1

B

18 - 1

MIS – Runtime Analysis

For a worst-case n-vertex graph G (n ≥ 1):

B(n) ≤ ∑y∈N[v] B(n− (deg(y) + 1)) ≤ (deg(v) + 1) · B(n− (deg(v) + 1))

where v is a minimum degree vertex of G, and we note that
B(n′) ≤ B(n) for any n′ ≤ n.

18 - 2

MIS – Runtime Analysis

For a worst-case n-vertex graph G (n ≥ 1):

B(n) ≤ ∑y∈N[v] B(n− (deg(y) + 1)) ≤ (deg(v) + 1) · B(n− (deg(v) + 1))

where v is a minimum degree vertex of G, and we note that
B(n′) ≤ B(n) for any n′ ≤ n.

18 - 3

MIS – Runtime Analysis

For a worst-case n-vertex graph G (n ≥ 1):

B(n) ≤ ∑y∈N[v] B(n− (deg(y) + 1)) ≤ (deg(v) + 1) · B(n− (deg(v) + 1))

where v is a minimum degree vertex of G, and we note that
B(n′) ≤ B(n) for any n′ ≤ n.

18 - 4

MIS – Runtime Analysis

For a worst-case n-vertex graph G (n ≥ 1):

B(n) ≤ ∑y∈N[v] B(n− (deg(y) + 1)) ≤ (deg(v) + 1) · B(n− (deg(v) + 1))

where v is a minimum degree vertex of G, and we note that
B(n′) ≤ B(n) for any n′ ≤ n.

We prove by induction that B(n) ≤ 3n/3.

18 - 5

MIS – Runtime Analysis

For a worst-case n-vertex graph G (n ≥ 1):

B(n) ≤ ∑y∈N[v] B(n− (deg(y) + 1)) ≤ (deg(v) + 1) · B(n− (deg(v) + 1))

where v is a minimum degree vertex of G, and we note that
B(n′) ≤ B(n) for any n′ ≤ n.

We prove by induction that B(n) ≤ 3n/3.

� Base case: B(0) = 1 ≤ 30/3

18 - 6

MIS – Runtime Analysis

For a worst-case n-vertex graph G (n ≥ 1):

B(n) ≤ ∑y∈N[v] B(n− (deg(y) + 1)) ≤ (deg(v) + 1) · B(n− (deg(v) + 1))

where v is a minimum degree vertex of G, and we note that
B(n′) ≤ B(n) for any n′ ≤ n.

We prove by induction that B(n) ≤ 3n/3.

� Base case: B(0) = 1 ≤ 30/3

� Hypothesis: for n ≥ 1, set s = deg(v) + 1
in the above inequality

B(n) ≤ s · B(n− s) ≤ s · 3(n−s)/3 = s
3s/3 · 3n/3 ≤ 3n/3

18 - 7

MIS – Runtime Analysis

For a worst-case n-vertex graph G (n ≥ 1):

B(n) ≤ ∑y∈N[v] B(n− (deg(y) + 1)) ≤ (deg(v) + 1) · B(n− (deg(v) + 1))

where v is a minimum degree vertex of G, and we note that
B(n′) ≤ B(n) for any n′ ≤ n.

We prove by induction that B(n) ≤ 3n/3.

� Base case: B(0) = 1 ≤ 30/3

� Hypothesis: for n ≥ 1, set s = deg(v) + 1
in the above inequality

B(n) ≤ s · B(n− s) ≤ s · 3(n−s)/3 = s
3s/3 · 3n/3 ≤ 3n/3

18 - 8

MIS – Runtime Analysis

For a worst-case n-vertex graph G (n ≥ 1):

B(n) ≤ ∑y∈N[v] B(n− (deg(y) + 1)) ≤ (deg(v) + 1) · B(n− (deg(v) + 1))

where v is a minimum degree vertex of G, and we note that
B(n′) ≤ B(n) for any n′ ≤ n.

We prove by induction that B(n) ≤ 3n/3.

� Base case: B(0) = 1 ≤ 30/3

� Hypothesis: for n ≥ 1, set s = deg(v) + 1
in the above inequality

B(n) ≤ s · B(n− s) ≤ s · 3(n−s)/3 = s
3s/3 · 3n/3 ≤ 3n/3

18 - 9

MIS – Runtime Analysis

For a worst-case n-vertex graph G (n ≥ 1):

B(n) ≤ ∑y∈N[v] B(n− (deg(y) + 1)) ≤ (deg(v) + 1) · B(n− (deg(v) + 1))

where v is a minimum degree vertex of G, and we note that
B(n′) ≤ B(n) for any n′ ≤ n.

We prove by induction that B(n) ≤ 3n/3.

� Base case: B(0) = 1 ≤ 30/3

� Hypothesis: for n ≥ 1, set s = deg(v) + 1
in the above inequality

B(n) ≤ s · B(n− s) ≤ s · 3(n−s)/3 = s
3s/3 · 3n/3 ≤ 3n/3?

18 - 10

MIS – Runtime Analysis

For a worst-case n-vertex graph G (n ≥ 1):

B(n) ≤ ∑y∈N[v] B(n− (deg(y) + 1)) ≤ (deg(v) + 1) · B(n− (deg(v) + 1))

where v is a minimum degree vertex of G, and we note that
B(n′) ≤ B(n) for any n′ ≤ n.

We prove by induction that B(n) ≤ 3n/3.

� Base case: B(0) = 1 ≤ 30/3

� Hypothesis: for n ≥ 1, set s = deg(v) + 1
in the above inequality

B(n) ≤ s · B(n− s) ≤ s · 3(n−s)/3 = s
3s/3 · 3n/3 ≤ 3n/3?

s 7→ s
3s/3

18 - 11

MIS – Runtime Analysis

For a worst-case n-vertex graph G (n ≥ 1):

B(n) ≤ ∑y∈N[v] B(n− (deg(y) + 1)) ≤ (deg(v) + 1) · B(n− (deg(v) + 1))

where v is a minimum degree vertex of G, and we note that
B(n′) ≤ B(n) for any n′ ≤ n.

We prove by induction that B(n) ≤ 3n/3.

� Base case: B(0) = 1 ≤ 30/3

� Hypothesis: for n ≥ 1, set s = deg(v) + 1
in the above inequality

B(n) ≤ s · B(n− s) ≤ s · 3(n−s)/3 = s
3s/3 · 3n/3 ≤ 3n/3?

s 7→ s
3s/3B(n) ∈ O∗(3

√
3

n
) ⊂ O∗(1.44225n)

19 - 1

MIS – Discussion

� Smarter branching leads to O∗(1.44225n)-time algorithm,

� compared to brute-force, which runs in O∗(2n) time.

19 - 2

MIS – Discussion

� Smarter branching leads to O∗(1.44225n)-time algorithm,

� compared to brute-force, which runs in O∗(2n) time.

� Algorithms for MIS known that run in O∗(1.2202n) time and
polynomial space,

� and in O∗(1.2109n) time and exponential space.

19 - 3

MIS – Discussion

� Smarter branching leads to O∗(1.44225n)-time algorithm,

� compared to brute-force, which runs in O∗(2n) time.

� Algorithms for MIS known that run in O∗(1.2202n) time and
polynomial space,

� and in O∗(1.2109n) time and exponential space.

� What vertices are always in a MIS?

� What vertices can we savely assume are in a MIS?

� Advanced case analysis in [Fomin, Kratsch Ch 2.3] leading to a
O∗(1.2786n)-time algorithm.

19 - 4

MIS – Discussion

� Smarter branching leads to O∗(1.44225n)-time algorithm,

� compared to brute-force, which runs in O∗(2n) time.

� Algorithms for MIS known that run in O∗(1.2202n) time and
polynomial space,

� and in O∗(1.2109n) time and exponential space.

� What vertices are always in a MIS?

� What vertices can we savely assume are in a MIS?

� Advanced case analysis in [Fomin, Kratsch Ch 2.3] leading to a
O∗(1.2786n)-time algorithm.

� Exercise: Enumerating MISs

� Exercise: Edge-branching for MIS

20

Literature

Main source:
� [Fomin, Kratsch Ch1] “Exact Exponential Algorithms”

Referenced papers:
� [ADMV ’15] Classic Nintendo Games are (Computationally) Hard

� [Mann ’17] The Top Eight Misconceptions about NP-Hardness

	Title page
	NP-hardness
	Examples
	Formal view
	Misconceptions
	Dealing with NP-Hard Problems

	Motivation for exact algorithms
	Give up? Better Hardware?
	O*-notation

	Traveling Salesperson Problem (TSP)
	Definition & Brute-force
	Dynamic programming idea
	Dynamic programming details
	DP pseudocode & analysis
	Discussion

	Maximum Independent Set (MIS)
	Definition & Brute-force
	Naive branching example
	Smarter branching
	Branching analysis
	Smarter branching example
	Smater branching analysis
	Discussion

	Literature

