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TRAVELING SALESMAN PROBLEM (TSP)

Question: What’s the fastest way to deliver all parcels to
their destination?

Given: A set of n houses (points) in IR?.
Task: Find a tour (Hamiltonian cycle) of min. length.
A
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TRAVELING SALESMAN PROBLEM (TSP)

Question: What’s the fastest way to deliver all parcels to
their destination?

Given: A set of n houses (points) in IR?.
Task: Find a tour (Hamiltonian cycle) of min. length.

Distance between two points?

A For every polynomial p(7), TSP
cannot be approximated within

a
factor 27" (unless P = NP).
'/ﬁ\ . J
There is a 3/2-approximation
() algorithm for MEeTrIC TSP.

A MEtrIC TSP cannot be approximated
70 within factor 123/122 (unless P = NP).




TRAVELING SALESMAN PROBLEM (TSP)

Question: What’s the fastest way to deliver all parcels to
their destination?

Given: A set of n houses (points) in IR?.
Task: Find a tour (Hamiltonian cycle) of min. length.
Let’s assume that the salesman flies = Euclidean distances.
Simplifying Assumptions
A B Houses inside ~
(L x L)-square | Goal:
A\
i B [ :=4n? =2k (1+€)'
. _ ' ion!
A + k=2+2log,n kapproxlmatlon. )
G a B integer coordinates
(“Justification”: homework)
()
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Basic Dissection

Level O

Level 1

--Level 2

Level k A

(squares of size 1 x 1)




Portals

Let m be a power of 2 in the
interval |k/¢e,2k/¢€].

Recall that k = 2 + 2log, n.
= m € O((logn)/e)

Portals on level-i Line are at
a distance of L/ (2'm).

Every level-i square has
size L/2" x L/2".

A level-i square has < 4m
portals on its boundary.
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Well-Behaved Tours

A tour is well-behaved if

B it involves all houses and a
subset of the portals,

B no edge of the tour crosses a
line of the basic dissection,

M it is crossing-free.

W.lo.g. (homework):
No portal visited more than twice

2\ 2\ 2\ 2\
, N M A , N M @
Crossin A A O No A A O
& A A crossing 7\ A

- 16



Computing a Well-Behaved Tour

Lemma. An optimal well-behaved tour can be
computed in 200" = nO1/¢) time,

Sketch. B Dynamic programming!

B Compute sub-structure of an optimal tour
for each square in the dissection tree.

B These solutions can be efficiently
propagated bottom-up through the
dissection tree.
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Dynamic Program (I)

~ Each well-behaved tour
induces the following in each
square Q of the dissection:

A\ A\ 1 1
& & B a path cover of the
houses in Q,
A YA 2
& N A A R B ..such that each portal
1 A A of Q is visited 0, 1 or 2
2 times,
A
A
()
1 1

= max. 34" ¢ 30((logn)/e) — ;O(1/¢) possibilities
\m:O((logn)/s)



Dynamic Program (II)

»

»

Compute

> M for each square Q in the
dissection and

() B for each crossing-free
A pairing P of Q,
o an optimal path cover that
A P
respects F.
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Dynamic Program (III)
I

+ For a given square Q and
T pairing P:

- o

B [terate over all
(nO(l/e))él — n0(1/¢)

pe crossing-free pairings of
b the child squares.

il s, I Minimize the cost over
1 all such pairings that
+ additionally respect P.

1 B Correctness follows by
+ induction.

- o o

Lemma. An optimal well-behaved tour can be
computed in 200" = nO1/¢) time,
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Shifted Dissections

-~ M The best well-behaved tour

al can be a bad approximation.

HEEEEN IIII'I&_

E N | M Consider an (a, b)-shifted

dissection:

x — (x+a) mod L

- T y — (y+b) mod L

T ——1| M Squares in the dissection tree

- — are “wrapped around”.

. B Dynamic program must be
modified accordingly.




Shifted Dissections (II)

15-20

\

Lemma. Let 77 be an optimal tour, and let N(77) be the
number of crossings of 7t with the lines of the
(L x L)-grid. Then we have N(77) < /2-OPT.
Proof. B Consider a tour as an . Ax
ordered cyclic sequence. ] e | | Ay
B Each edge ¢ generates A
N, < Ax + Ay crossings.
B Crossings at the endpoint A
of an edge are counted for
the next edge. 1t
B N2 < (Ax + Ay)? < 2(Ax% + Ay?) = 2|e|?.
B N(7) =Yoer Ne < Xoe e v/2e]2 = v2- OPT,
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Shifted Dissections (I11I)

‘Theorem. Let a,b € 0, L — 1] be chosen independently and
uniformly at random. Then the expected cost of
an optimal well-behaved tour with respect to the

(a,b)-shifted dissection is < (1 +2+/2¢)OPT.

\

J

Proof.  Consider optimal tour 7. Make 77 well-behaved
by moving each intersection point with the
(L x L)-grid to the nearest portal.

A A

Detour per intersection < inter-portal distance.



Shifted Dissections (I11I)

Consider an intersection point between 77 and a line |
of the (L x L)-grid.

With probability at most 2 /L, the line [ is a level-i line.
= Increase in tour length < L/ (2'm)

Thus, the expected increase in tour length due to this
intersection is at most: m
2 L k+1

y — — < < 2e.
i:OL 2'm m

Summing over all N(77) < /2 - OPT intersection points
and applying linearity of expectation yields the claim.
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Polynomial-Time Approximation Scheme

‘Theorem. Leta, b € 0, L — 1| be chosen independently and
uniformly at random. Then the expected cost of
an optimal well-behaved tour with respect to the

(a,b)-shifted dissection is < (1 +2+/2¢)OPT.

\. J

~\

‘Theorem. There is a deterministic algorithm (PTAS) for
EucLIDEAN TSP that provides, for every ¢ > 0,

a (1 -+ ¢)-approximation in n°(1/¢) time.

Proof. Try all L? many (a, b)-shifted dissections.
By the previous theorem and the pigeon-hole
principle, one of them is good enough.
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Mathematics at the Limits of Computation.

B Sanjeev Arora: Polynomial Time Approximation Schemes for
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Euclidean Traveling Salesman and other Geometric Problems.

B Joseph S. B. Mitchell: Guillotine Subdivisions Approximate
Polygonal Subdivisions: A Simple Polynomial-Time
Approximation Scheme for Geometric TSP, k-MST, and
Related Problems.

B Sanjeev Arora: Nearly linear time approximation schemes for
Euclidean TSP and other geometric problems.

Randomized, O (n(logn)°1/€) time.
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Runtime O (no(l/ 82)
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