
1

Alexander Wolff Winter term 2022/23

Lecture 9:
An Approximation Scheme

for Euclidean TSP

Part I:
The Traveling Salesman Problem

Approximation Algorithms

2 - 1

Traveling Salesman Problem (TSP)

Question: What’s the fastest way to deliver all parcels to
their destination?

2 - 2

Traveling Salesman Problem (TSP)

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:

2 - 3

Traveling Salesman Problem (TSP)

Task: Find a tour (Hamiltonian cycle) of min. length.

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:

2 - 4

Traveling Salesman Problem (TSP)

Task: Find a tour (Hamiltonian cycle) of min. length.

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:

2 - 5

Traveling Salesman Problem (TSP)

Task: Find a tour (Hamiltonian cycle) of min. length.

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:

2 - 6

Traveling Salesman Problem (TSP)

Task: Find a tour (Hamiltonian cycle) of min. length.

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:

For every polynomial p(n), TSP
cannot be approximated within
factor 2p(n) (unless P=NP).

2 - 7

Traveling Salesman Problem (TSP)

Task: Find a tour (Hamiltonian cycle) of min. length.

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:

For every polynomial p(n), TSP
cannot be approximated within
factor 2p(n) (unless P=NP).

2 - 8

Traveling Salesman Problem (TSP)

Task: Find a tour (Hamiltonian cycle) of min. length.

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:

Distance between two points?

For every polynomial p(n), TSP
cannot be approximated within
factor 2p(n) (unless P=NP).

2 - 9

Traveling Salesman Problem (TSP)

Task: Find a tour (Hamiltonian cycle) of min. length.

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:

There is a 3/2-approximation
algorithm for Metric TSP.

Distance between two points?

For every polynomial p(n), TSP
cannot be approximated within
factor 2p(n) (unless P=NP).

2 - 10

Traveling Salesman Problem (TSP)

Task: Find a tour (Hamiltonian cycle) of min. length.

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:

There is a 3/2-approximation
algorithm for Metric TSP.

Metric TSP cannot be approximated
within factor 123/122 (unless P=NP).

Distance between two points?

For every polynomial p(n), TSP
cannot be approximated within
factor 2p(n) (unless P=NP).

2 - 11

Traveling Salesman Problem (TSP)

Let’s assume that the salesman flies⇒ Euclidean distances.

Task: Find a tour (Hamiltonian cycle) of min. length.

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:

There is a 3/2-approximation
algorithm for Metric TSP.

Metric TSP cannot be approximated
within factor 123/122 (unless P=NP).

For every polynomial p(n), TSP
cannot be approximated within
factor 2p(n) (unless P=NP).

2 - 12

Traveling Salesman Problem (TSP)

Let’s assume that the salesman flies⇒ Euclidean distances.

Task: Find a tour (Hamiltonian cycle) of min. length.

Simplifying Assumptions

� Houses inside
(L× L)-square

� L := 4n2 = 2k ;
k = 2 + 2 log2 n

� integer coordinates

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:

2 - 13

Traveling Salesman Problem (TSP)

Let’s assume that the salesman flies⇒ Euclidean distances.

Task: Find a tour (Hamiltonian cycle) of min. length.

Simplifying Assumptions

� Houses inside
(L× L)-square

� L := 4n2 = 2k ;
k = 2 + 2 log2 n

� integer coordinates

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:

2 - 14

Traveling Salesman Problem (TSP)

Let’s assume that the salesman flies⇒ Euclidean distances.

Task: Find a tour (Hamiltonian cycle) of min. length.

Simplifying Assumptions

� Houses inside
(L× L)-square

� L := 4n2 = 2k ;
k = 2 + 2 log2 n

� integer coordinates

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:

2 - 15

Traveling Salesman Problem (TSP)

Let’s assume that the salesman flies⇒ Euclidean distances.

Task: Find a tour (Hamiltonian cycle) of min. length.

Simplifying Assumptions

� Houses inside
(L× L)-square

� L := 4n2 = 2k ;
k = 2 + 2 log2 n

� integer coordinates

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:

2 - 16

Traveling Salesman Problem (TSP)

Let’s assume that the salesman flies⇒ Euclidean distances.

Task: Find a tour (Hamiltonian cycle) of min. length.

Simplifying Assumptions

� Houses inside
(L× L)-square

� L := 4n2 = 2k ;
k = 2 + 2 log2 n

� integer coordinates

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:

2 - 17

Traveling Salesman Problem (TSP)

Let’s assume that the salesman flies⇒ Euclidean distances.

Task: Find a tour (Hamiltonian cycle) of min. length.

Simplifying Assumptions

� Houses inside
(L× L)-square

� L := 4n2 = 2k ;
k = 2 + 2 log2 n

� integer coordinates

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:

2 - 18

Traveling Salesman Problem (TSP)

Let’s assume that the salesman flies⇒ Euclidean distances.

Task: Find a tour (Hamiltonian cycle) of min. length.

Simplifying Assumptions

� Houses inside
(L× L)-square

� L := 4n2 = 2k ;
k = 2 + 2 log2 n

� integer coordinates

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:

2 - 19

Traveling Salesman Problem (TSP)

Let’s assume that the salesman flies⇒ Euclidean distances.

Task: Find a tour (Hamiltonian cycle) of min. length.

Simplifying Assumptions

� Houses inside
(L× L)-square

� L := 4n2 = 2k ;
k = 2 + 2 log2 n

� integer coordinates

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:

2 - 20

Traveling Salesman Problem (TSP)

Let’s assume that the salesman flies⇒ Euclidean distances.

Task: Find a tour (Hamiltonian cycle) of min. length.

Simplifying Assumptions

� Houses inside
(L× L)-square

� L := 4n2 = 2k ;
k = 2 + 2 log2 n

� integer coordinates

A set of n houses (points) in R2.

(“justification”: homework)

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:

2 - 21

Traveling Salesman Problem (TSP)

Let’s assume that the salesman flies⇒ Euclidean distances.

Task: Find a tour (Hamiltonian cycle) of min. length.

Simplifying Assumptions

� Houses inside
(L× L)-square

� L := 4n2 = 2k ;
k = 2 + 2 log2 n

� integer coordinates

A set of n houses (points) in R2.

(“justification”: homework)

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:

Goal:
(1 + ε)-
approximation!

3

Lecture 9:
A PTAS for Euclidean TSP

Part II:
Dissection

Approximation Algorithms

4 - 1

Basic Dissection

L = 2k

4 - 2

Basic Dissection

Level 0

L = 2k

4 - 3

Basic Dissection

Level 0

Level 1

L = 2k

L/2

4 - 4

Basic Dissection

.

Level 0

Level 1

L = 2k

Level 2
. . .

L/2

L/22

4 - 5

Basic Dissection

.

Level 0

Level 1

L = 2k

Level 2
. . .

...

Level k

...
...

...

L/2

L/22

(squares of size 1× 1)

4 - 6

Basic Dissection

.

Level 0

Level 1

L = 2k

Level 2
. . .

...

Level k

...
...

...

L/2

L/22

(squares of size 1× 1)

5 - 1

Portals

L = 2k

� Let m be a power of 2 in the
interval [k/ε, 2k/ε].

5 - 2

Portals

L = 2k

� Let m be a power of 2 in the
interval [k/ε, 2k/ε].

Recall that k = 2 + 2 log2 n.

5 - 3

Portals

L = 2k

� Let m be a power of 2 in the
interval [k/ε, 2k/ε].

⇒ m ∈ O((log n)/ε)
Recall that k = 2 + 2 log2 n.

5 - 4

Portals

L = 2k

� Let m be a power of 2 in the
interval [k/ε, 2k/ε].

� Portals on level-i line are at
a distance of L/(2im).

⇒ m ∈ O((log n)/ε)
Recall that k = 2 + 2 log2 n.

5 - 5

Portals

L = 2k

� Let m be a power of 2 in the
interval [k/ε, 2k/ε].

� Portals on level-i line are at
a distance of L/(2im).

⇒ m ∈ O((log n)/ε)

� Every level-i square has
size L/2i × L/2i .

Recall that k = 2 + 2 log2 n.

5 - 6

Portals

L = 2k

� Let m be a power of 2 in the
interval [k/ε, 2k/ε].

� Portals on level-i line are at
a distance of L/(2im).

⇒ m ∈ O((log n)/ε)

� Every level-i square has
size L/2i × L/2i .

Recall that k = 2 + 2 log2 n.

5 - 7

Portals

L = 2k

� Let m be a power of 2 in the
interval [k/ε, 2k/ε].

� Portals on level-i line are at
a distance of L/(2im).

⇒ m ∈ O((log n)/ε)

� Every level-i square has
size L/2i × L/2i .

Recall that k = 2 + 2 log2 n.

5 - 8

Portals

L = 2k

� Let m be a power of 2 in the
interval [k/ε, 2k/ε].

� Portals on level-i line are at
a distance of L/(2im).

m portals

⇒ m ∈ O((log n)/ε)

� Every level-i square has
size L/2i × L/2i .

Recall that k = 2 + 2 log2 n.

5 - 9

Portals

L = 2k

� Let m be a power of 2 in the
interval [k/ε, 2k/ε].

� Portals on level-i line are at
a distance of L/(2im).

m portals

⇒ m ∈ O((log n)/ε)

� Every level-i square has
size L/2i × L/2i .

Recall that k = 2 + 2 log2 n.

5 - 10

Portals

L = 2k

� Let m be a power of 2 in the
interval [k/ε, 2k/ε].

� Portals on level-i line are at
a distance of L/(2im).

m portals

⇒ m ∈ O((log n)/ε)

� Every level-i square has
size L/2i × L/2i .

Recall that k = 2 + 2 log2 n.

5 - 11

Portals

L = 2k

� Let m be a power of 2 in the
interval [k/ε, 2k/ε].

� Portals on level-i line are at
a distance of L/(2im).

m portals

m portals ⇒ m ∈ O((log n)/ε)

� Every level-i square has
size L/2i × L/2i .

Recall that k = 2 + 2 log2 n.

5 - 12

Portals

L = 2k

� Let m be a power of 2 in the
interval [k/ε, 2k/ε].

� Portals on level-i line are at
a distance of L/(2im).

m portals

m portals

� A level-i square has ≤ 4m
portals on its boundary.

⇒ m ∈ O((log n)/ε)

� Every level-i square has
size L/2i × L/2i .

Recall that k = 2 + 2 log2 n.

6

Lecture 9:
A PTAS for Euclidean TSP

Part III:
Well-Behaved Tours

Approximation Algorithms

7 - 1

Well-Behaved Tours

7 - 2

Well-Behaved Tours

7 - 3

Well-Behaved Tours

7 - 4

Well-Behaved Tours

A tour is well-behaved if

� it involves all houses and a
subset of the portals,

� no edge of the tour crosses a
line of the basic dissection,

� it is crossing-free.

7 - 5

Well-Behaved Tours

A tour is well-behaved if

� it involves all houses and a
subset of the portals,

� no edge of the tour crosses a
line of the basic dissection,

� it is crossing-free.

7 - 6

Well-Behaved Tours

A tour is well-behaved if

� it involves all houses and a
subset of the portals,

� no edge of the tour crosses a
line of the basic dissection,

� it is crossing-free.

7 - 7

Well-Behaved Tours

A tour is well-behaved if

� it involves all houses and a
subset of the portals,

� no edge of the tour crosses a
line of the basic dissection,

� it is crossing-free.

7 - 8

Well-Behaved Tours

A tour is well-behaved if

� it involves all houses and a
subset of the portals,

� no edge of the tour crosses a
line of the basic dissection,

� it is crossing-free.

7 - 9

Well-Behaved Tours

A tour is well-behaved if

� it involves all houses and a
subset of the portals,

� no edge of the tour crosses a
line of the basic dissection,

� it is crossing-free.

7 - 10

Well-Behaved Tours

A tour is well-behaved if

� it involves all houses and a
subset of the portals,

� no edge of the tour crosses a
line of the basic dissection,

� it is crossing-free.

7 - 11

Well-Behaved Tours

A tour is well-behaved if

� it involves all houses and a
subset of the portals,

� no edge of the tour crosses a
line of the basic dissection,

� it is crossing-free.

7 - 12

Well-Behaved Tours

A tour is well-behaved if

� it involves all houses and a
subset of the portals,

� no edge of the tour crosses a
line of the basic dissection,

� it is crossing-free.

Crossing

7 - 13

Well-Behaved Tours

A tour is well-behaved if

� it involves all houses and a
subset of the portals,

� no edge of the tour crosses a
line of the basic dissection,

� it is crossing-free.

Crossing

7 - 14

Well-Behaved Tours

A tour is well-behaved if

� it involves all houses and a
subset of the portals,

� no edge of the tour crosses a
line of the basic dissection,

� it is crossing-free.

Crossing
No
crossing

7 - 15

Well-Behaved Tours

A tour is well-behaved if

� it involves all houses and a
subset of the portals,

� no edge of the tour crosses a
line of the basic dissection,

� it is crossing-free.

Crossing
No
crossing

7 - 16

Well-Behaved Tours

A tour is well-behaved if

� it involves all houses and a
subset of the portals,

� no edge of the tour crosses a
line of the basic dissection,

� it is crossing-free.

W.l.o.g. (homework):
No portal visited more than twice

Crossing
No
crossing

8 - 1

Computing a Well-Behaved Tour

8 - 2

Computing a Well-Behaved Tour

Lemma. An optimal well-behaved tour can be
computed in 2O(m) = nO(1/ε) time.

8 - 3

Computing a Well-Behaved Tour

Sketch.

Lemma. An optimal well-behaved tour can be
computed in 2O(m) = nO(1/ε) time.

8 - 4

Computing a Well-Behaved Tour

Sketch. � Dynamic programming!

� Compute sub-structure of an optimal tour
for each square in the dissection tree.

� These solutions can be efficiently
propagated bottom-up through the
dissection tree.

Lemma. An optimal well-behaved tour can be
computed in 2O(m) = nO(1/ε) time.

8 - 5

Computing a Well-Behaved Tour

Sketch. � Dynamic programming!

� Compute sub-structure of an optimal tour
for each square in the dissection tree.

� These solutions can be efficiently
propagated bottom-up through the
dissection tree.

Lemma. An optimal well-behaved tour can be
computed in 2O(m) = nO(1/ε) time.

8 - 6

Computing a Well-Behaved Tour

Sketch. � Dynamic programming!

� Compute sub-structure of an optimal tour
for each square in the dissection tree.

� These solutions can be efficiently
propagated bottom-up through the
dissection tree.

Lemma. An optimal well-behaved tour can be
computed in 2O(m) = nO(1/ε) time.

9

Lecture 9:
A PTAS for Euclidean TSP

Part IV:
Dynamic Program

Approximation Algorithms

10 - 1

Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

10 - 2

Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

10 - 3

Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

10 - 4

Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

1

1 1

1

2

11

10 - 5

Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

⇒ max. 34m ∈ 3O((log n)/ε) = nO(1/ε) possibilities

1

1 1

1

2

11

10 - 6

Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

⇒ max. 34m ∈ 3O((log n)/ε) = nO(1/ε) possibilities

1

1 1

1

2

11

10 - 7

Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

⇒ max. 34m ∈ 3O((log n)/ε) = nO(1/ε) possibilities

1

1 1

1

2

11

m = O((log n)/ε)

10 - 8

Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

⇒ max. 34m ∈ 3O((log n)/ε) = nO(1/ε) possibilities

1

1 1

1

2

11

m = O((log n)/ε)

10 - 9

Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

⇒ max. 34m ∈ 3O((log n)/ε) = nO(1/ε) possibilities

1

1 1

1

2

11

m = O((log n)/ε)

10 - 10

Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

� a crossing-free pairing
of the visited portals.

10 - 11

Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

� a crossing-free pairing
of the visited portals.

10 - 12

Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

� a crossing-free pairing
of the visited portals.

10 - 13

Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

� a crossing-free pairing
of the visited portals.

10 - 14

Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

� a crossing-free pairing
of the visited portals.

10 - 15

Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

� a crossing-free pairing
of the visited portals.

10 - 16

Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

� a crossing-free pairing
of the visited portals.

10 - 17

Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

� a crossing-free pairing
of the visited portals.

10 - 18

Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

� a crossing-free pairing
of the visited portals.

⇒ max. nO(1/ε)︸ ︷︷ ︸
#visit vectors

× 2O(m)︸ ︷︷ ︸
#realizable pairings

= nO(1/ε) crossing-free pairings

10 - 19

Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

� a crossing-free pairing
of the visited portals.

⇒ max. nO(1/ε)︸ ︷︷ ︸
#visit vectors

× 2O(m)︸ ︷︷ ︸
#realizable pairings

= nO(1/ε) crossing-free pairings

10 - 20

Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

� a crossing-free pairing
of the visited portals.

⇒ max. nO(1/ε)︸ ︷︷ ︸
#visit vectors

× 2O(m)︸ ︷︷ ︸
#realizable pairings

= nO(1/ε) crossing-free pairings

10 - 21

Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

� a crossing-free pairing
of the visited portals.

⇒ max. nO(1/ε)︸ ︷︷ ︸
#visit vectors

× 2O(m)︸ ︷︷ ︸
#realizable pairings

= nO(1/ε) crossing-free pairings

10 - 22

Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

� a crossing-free pairing
of the visited portals.

⇒ max. nO(1/ε)︸ ︷︷ ︸
#visit vectors

× 2O(m)︸ ︷︷ ︸
#realizable pairings

= nO(1/ε) crossing-free pairings

10 - 23

Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

� a crossing-free pairing
of the visited portals.

⇒ max. nO(1/ε)︸ ︷︷ ︸
#visit vectors

× 2O(m)︸ ︷︷ ︸
#realizable pairings

= nO(1/ε) crossing-free pairings

11 - 1

Dynamic Program (II)

Compute

� for each square Q in the
dissection and

� for each crossing-free
pairing P of Q,

an optimal path cover that
respects P.

11 - 2

Dynamic Program (II)

Compute

� for each square Q in the
dissection and

� for each crossing-free
pairing P of Q,

an optimal path cover that
respects P.

11 - 3

Dynamic Program (II)

Compute

� for each square Q in the
dissection and

� for each crossing-free
pairing P of Q,

an optimal path cover that
respects P.

11 - 4

Dynamic Program (II)

Compute

� for each square Q in the
dissection and

� for each crossing-free
pairing P of Q,

an optimal path cover that
respects P.

12 - 1

Dynamic Program (III)

For a given square Q and
pairing P:

12 - 2

Dynamic Program (III)

For a given square Q and
pairing P:

12 - 3

Dynamic Program (III)

For a given square Q and
pairing P:

� Iterate over all
(nO(1/ε))4 = nO(1/ε)

crossing-free pairings of
the child squares.

12 - 4

Dynamic Program (III)

For a given square Q and
pairing P:

� Iterate over all
(nO(1/ε))4 = nO(1/ε)

crossing-free pairings of
the child squares.

12 - 5

Dynamic Program (III)

For a given square Q and
pairing P:

� Iterate over all
(nO(1/ε))4 = nO(1/ε)

crossing-free pairings of
the child squares.

12 - 6

Dynamic Program (III)

For a given square Q and
pairing P:

� Iterate over all
(nO(1/ε))4 = nO(1/ε)

crossing-free pairings of
the child squares.

12 - 7

Dynamic Program (III)

For a given square Q and
pairing P:

� Iterate over all
(nO(1/ε))4 = nO(1/ε)

crossing-free pairings of
the child squares.

� Minimize the cost over
all such pairings that
additionally respect P.

12 - 8

Dynamic Program (III)

For a given square Q and
pairing P:

� Iterate over all
(nO(1/ε))4 = nO(1/ε)

crossing-free pairings of
the child squares.

� Minimize the cost over
all such pairings that
additionally respect P.

12 - 9

Dynamic Program (III)

For a given square Q and
pairing P:

� Iterate over all
(nO(1/ε))4 = nO(1/ε)

crossing-free pairings of
the child squares.

� Minimize the cost over
all such pairings that
additionally respect P.

12 - 10

Dynamic Program (III)

For a given square Q and
pairing P:

� Iterate over all
(nO(1/ε))4 = nO(1/ε)

crossing-free pairings of
the child squares.

� Minimize the cost over
all such pairings that
additionally respect P.

12 - 11

Dynamic Program (III)

For a given square Q and
pairing P:

� Iterate over all
(nO(1/ε))4 = nO(1/ε)

crossing-free pairings of
the child squares.

� Minimize the cost over
all such pairings that
additionally respect P.

12 - 12

Dynamic Program (III)

For a given square Q and
pairing P:

� Iterate over all
(nO(1/ε))4 = nO(1/ε)

crossing-free pairings of
the child squares.

� Minimize the cost over
all such pairings that
additionally respect P.

12 - 13

Dynamic Program (III)

For a given square Q and
pairing P:

� Iterate over all
(nO(1/ε))4 = nO(1/ε)

crossing-free pairings of
the child squares.

� Minimize the cost over
all such pairings that
additionally respect P.

12 - 14

Dynamic Program (III)

For a given square Q and
pairing P:

� Iterate over all
(nO(1/ε))4 = nO(1/ε)

crossing-free pairings of
the child squares.

� Minimize the cost over
all such pairings that
additionally respect P.

12 - 15

Dynamic Program (III)

For a given square Q and
pairing P:

� Iterate over all
(nO(1/ε))4 = nO(1/ε)

crossing-free pairings of
the child squares.

� Minimize the cost over
all such pairings that
additionally respect P.

12 - 16

Dynamic Program (III)

For a given square Q and
pairing P:

� Iterate over all
(nO(1/ε))4 = nO(1/ε)

crossing-free pairings of
the child squares.

� Minimize the cost over
all such pairings that
additionally respect P.

� Correctness follows by
induction.

12 - 17

Dynamic Program (III)

For a given square Q and
pairing P:

� Iterate over all
(nO(1/ε))4 = nO(1/ε)

crossing-free pairings of
the child squares.

� Minimize the cost over
all such pairings that
additionally respect P.

� Correctness follows by
induction.

Lemma. An optimal well-behaved tour can be
computed in 2O(m) = nO(1/ε) time.

13

Lecture 9:
A PTAS for Euclidean TSP

Part V:
Shifted Dissections

Approximation Algorithms

14 - 1

Shifted Dissections

� The best well-behaved tour
can be a bad approximation.

14 - 2

Shifted Dissections

� The best well-behaved tour
can be a bad approximation.

14 - 3

Shifted Dissections

� The best well-behaved tour
can be a bad approximation.

� Consider an (a, b)-shifted
dissection:

x 7→ (x + a) mod L
y 7→ (y + b) mod L

14 - 4

Shifted Dissections

� The best well-behaved tour
can be a bad approximation.

a

b

� Consider an (a, b)-shifted
dissection:

x 7→ (x + a) mod L
y 7→ (y + b) mod L

14 - 5

Shifted Dissections

� The best well-behaved tour
can be a bad approximation.

a

b

� Consider an (a, b)-shifted
dissection:

x 7→ (x + a) mod L
y 7→ (y + b) mod L

14 - 6

Shifted Dissections

� The best well-behaved tour
can be a bad approximation.

a

b

� Consider an (a, b)-shifted
dissection:

x 7→ (x + a) mod L
y 7→ (y + b) mod L

14 - 7

Shifted Dissections

� The best well-behaved tour
can be a bad approximation.

a

b

� Consider an (a, b)-shifted
dissection:

x 7→ (x + a) mod L
y 7→ (y + b) mod L

14 - 8

Shifted Dissections

� The best well-behaved tour
can be a bad approximation.

a

b

� Consider an (a, b)-shifted
dissection:

x 7→ (x + a) mod L
y 7→ (y + b) mod L

14 - 9

Shifted Dissections

� The best well-behaved tour
can be a bad approximation.

� Squares in the dissection tree
are “wrapped around”.

a

b

� Consider an (a, b)-shifted
dissection:

x 7→ (x + a) mod L
y 7→ (y + b) mod L

14 - 10

Shifted Dissections

� The best well-behaved tour
can be a bad approximation.

� Squares in the dissection tree
are “wrapped around”.

� Dynamic program must be
modified accordingly.

a

b

� Consider an (a, b)-shifted
dissection:

x 7→ (x + a) mod L
y 7→ (y + b) mod L

15 - 1

Shifted Dissections (II)
Lemma. Let π be an optimal tour, and let N(π) be the

number of crossings of π with the lines of the
(L× L)-grid. Then we have N(π) ≤

√
2 ·OPT.

15 - 2

Shifted Dissections (II)
Lemma. Let π be an optimal tour, and let N(π) be the

number of crossings of π with the lines of the
(L× L)-grid. Then we have N(π) ≤

√
2 ·OPT.

15 - 3

Shifted Dissections (II)

Proof. � Consider a tour as an
ordered cyclic sequence.

Lemma. Let π be an optimal tour, and let N(π) be the
number of crossings of π with the lines of the
(L× L)-grid. Then we have N(π) ≤

√
2 ·OPT.

15 - 4

Shifted Dissections (II)

Proof. � Consider a tour as an
ordered cyclic sequence.

π

Lemma. Let π be an optimal tour, and let N(π) be the
number of crossings of π with the lines of the
(L× L)-grid. Then we have N(π) ≤

√
2 ·OPT.

15 - 5

Shifted Dissections (II)

Proof. � Consider a tour as an
ordered cyclic sequence.

π

Lemma. Let π be an optimal tour, and let N(π) be the
number of crossings of π with the lines of the
(L× L)-grid. Then we have N(π) ≤

√
2 ·OPT.

15 - 6

Shifted Dissections (II)

Proof. � Consider a tour as an
ordered cyclic sequence.

π

Lemma. Let π be an optimal tour, and let N(π) be the
number of crossings of π with the lines of the
(L× L)-grid. Then we have N(π) ≤

√
2 ·OPT.

15 - 7

Shifted Dissections (II)

Proof. � Consider a tour as an
ordered cyclic sequence.

π

e

Lemma. Let π be an optimal tour, and let N(π) be the
number of crossings of π with the lines of the
(L× L)-grid. Then we have N(π) ≤

√
2 ·OPT.

15 - 8

Shifted Dissections (II)

Proof. � Consider a tour as an
ordered cyclic sequence.

π

e

Lemma. Let π be an optimal tour, and let N(π) be the
number of crossings of π with the lines of the
(L× L)-grid. Then we have N(π) ≤

√
2 ·OPT.

15 - 9

Shifted Dissections (II)

Proof. � Consider a tour as an
ordered cyclic sequence.

π

∆x
∆ye

Lemma. Let π be an optimal tour, and let N(π) be the
number of crossings of π with the lines of the
(L× L)-grid. Then we have N(π) ≤

√
2 ·OPT.

15 - 10

Shifted Dissections (II)

Proof. � Consider a tour as an
ordered cyclic sequence.

π

∆x
∆y

� Each edge e generates
Ne ≤ ∆x + ∆y crossings.

e

Lemma. Let π be an optimal tour, and let N(π) be the
number of crossings of π with the lines of the
(L× L)-grid. Then we have N(π) ≤

√
2 ·OPT.

15 - 11

Shifted Dissections (II)

Proof. � Consider a tour as an
ordered cyclic sequence.

π

∆x
∆y

� Each edge e generates
Ne ≤ ∆x + ∆y crossings.

� Crossings at the endpoint
of an edge are counted for
the next edge.

e

Lemma. Let π be an optimal tour, and let N(π) be the
number of crossings of π with the lines of the
(L× L)-grid. Then we have N(π) ≤

√
2 ·OPT.

15 - 12

Shifted Dissections (II)

Proof. � Consider a tour as an
ordered cyclic sequence.

π

∆x
∆y

� Each edge e generates
Ne ≤ ∆x + ∆y crossings.

� Crossings at the endpoint
of an edge are counted for
the next edge.

� Ne
2 ≤ (∆x + ∆y)2 ≤ 2(∆x2 + ∆y2) = 2|e|2.

e

Lemma. Let π be an optimal tour, and let N(π) be the
number of crossings of π with the lines of the
(L× L)-grid. Then we have N(π) ≤

√
2 ·OPT.

15 - 13

Shifted Dissections (II)

Proof. � Consider a tour as an
ordered cyclic sequence.

π

∆x
∆y

� Each edge e generates
Ne ≤ ∆x + ∆y crossings.

� Crossings at the endpoint
of an edge are counted for
the next edge.

� Ne
2 ≤ (∆x + ∆y)2 ≤ 2(∆x2 + ∆y2) = 2|e|2.

e

Lemma. Let π be an optimal tour, and let N(π) be the
number of crossings of π with the lines of the
(L× L)-grid. Then we have N(π) ≤

√
2 ·OPT.

15 - 14

Shifted Dissections (II)

Proof. � Consider a tour as an
ordered cyclic sequence.

π

∆x
∆y

� Each edge e generates
Ne ≤ ∆x + ∆y crossings.

� Crossings at the endpoint
of an edge are counted for
the next edge.

� Ne
2 ≤ (∆x + ∆y)2 ≤ 2(∆x2 + ∆y2) = 2|e|2.

e

Lemma. Let π be an optimal tour, and let N(π) be the
number of crossings of π with the lines of the
(L× L)-grid. Then we have N(π) ≤

√
2 ·OPT.

0 ≤ (∆x− ∆y)2

15 - 15

Shifted Dissections (II)

Proof. � Consider a tour as an
ordered cyclic sequence.

π

∆x
∆y

� Each edge e generates
Ne ≤ ∆x + ∆y crossings.

� Crossings at the endpoint
of an edge are counted for
the next edge.

� Ne
2 ≤ (∆x + ∆y)2 ≤ 2(∆x2 + ∆y2) = 2|e|2.

e

Lemma. Let π be an optimal tour, and let N(π) be the
number of crossings of π with the lines of the
(L× L)-grid. Then we have N(π) ≤

√
2 ·OPT.

0 ≤ (∆x− ∆y)2

15 - 16

Shifted Dissections (II)

Proof. � Consider a tour as an
ordered cyclic sequence.

π

∆x
∆y

� Each edge e generates
Ne ≤ ∆x + ∆y crossings.

� Crossings at the endpoint
of an edge are counted for
the next edge.

� Ne
2 ≤ (∆x + ∆y)2 ≤ 2(∆x2 + ∆y2) = 2|e|2.

e

Lemma. Let π be an optimal tour, and let N(π) be the
number of crossings of π with the lines of the
(L× L)-grid. Then we have N(π) ≤

√
2 ·OPT.

0 ≤ (∆x− ∆y)2

15 - 17

Shifted Dissections (II)

Proof. � Consider a tour as an
ordered cyclic sequence.

π

∆x
∆y

� Each edge e generates
Ne ≤ ∆x + ∆y crossings.

� Crossings at the endpoint
of an edge are counted for
the next edge.

� Ne
2 ≤ (∆x + ∆y)2 ≤ 2(∆x2 + ∆y2) = 2|e|2.

e

� N(π) = ∑e∈π Ne ≤ ∑e∈π

√
2|e|2 =

√
2 ·OPT.

Lemma. Let π be an optimal tour, and let N(π) be the
number of crossings of π with the lines of the
(L× L)-grid. Then we have N(π) ≤

√
2 ·OPT.

0 ≤ (∆x− ∆y)2

15 - 18

Shifted Dissections (II)

Proof. � Consider a tour as an
ordered cyclic sequence.

π

∆x
∆y

� Each edge e generates
Ne ≤ ∆x + ∆y crossings.

� Crossings at the endpoint
of an edge are counted for
the next edge.

� Ne
2 ≤ (∆x + ∆y)2 ≤ 2(∆x2 + ∆y2) = 2|e|2.

e

� N(π) = ∑e∈π Ne ≤ ∑e∈π

√
2|e|2 =

√
2 ·OPT.

Lemma. Let π be an optimal tour, and let N(π) be the
number of crossings of π with the lines of the
(L× L)-grid. Then we have N(π) ≤

√
2 ·OPT.

0 ≤ (∆x− ∆y)2

15 - 19

Shifted Dissections (II)

Proof. � Consider a tour as an
ordered cyclic sequence.

π

∆x
∆y

� Each edge e generates
Ne ≤ ∆x + ∆y crossings.

� Crossings at the endpoint
of an edge are counted for
the next edge.

� Ne
2 ≤ (∆x + ∆y)2 ≤ 2(∆x2 + ∆y2) = 2|e|2.

e

� N(π) = ∑e∈π Ne ≤ ∑e∈π

√
2|e|2 =

√
2 ·OPT.

Lemma. Let π be an optimal tour, and let N(π) be the
number of crossings of π with the lines of the
(L× L)-grid. Then we have N(π) ≤

√
2 ·OPT.

0 ≤ (∆x− ∆y)2

15 - 20

Shifted Dissections (II)

Proof. � Consider a tour as an
ordered cyclic sequence.

π

∆x
∆y

� Each edge e generates
Ne ≤ ∆x + ∆y crossings.

� Crossings at the endpoint
of an edge are counted for
the next edge.

� Ne
2 ≤ (∆x + ∆y)2 ≤ 2(∆x2 + ∆y2) = 2|e|2.

e

� N(π) = ∑e∈π Ne ≤ ∑e∈π

√
2|e|2 =

√
2 ·OPT.

Lemma. Let π be an optimal tour, and let N(π) be the
number of crossings of π with the lines of the
(L× L)-grid. Then we have N(π) ≤

√
2 ·OPT.

�

0 ≤ (∆x− ∆y)2

16

Lecture 9:
A PTAS for Euclidean TSP

Part VI:
Approximation Factor

Approximation Algorithms

17 - 1

Shifted Dissections (III)
Theorem. Let a, b ∈ [0, L− 1] be chosen independently and

uniformly at random. Then the expected cost of
an optimal well-behaved tour with respect to the
(a, b)-shifted dissection is ≤ (1 + 2

√
2ε)OPT.

17 - 2

Shifted Dissections (III)
Theorem. Let a, b ∈ [0, L− 1] be chosen independently and

uniformly at random. Then the expected cost of
an optimal well-behaved tour with respect to the
(a, b)-shifted dissection is ≤ (1 + 2

√
2ε)OPT.

17 - 3

Shifted Dissections (III)
Theorem. Let a, b ∈ [0, L− 1] be chosen independently and

uniformly at random. Then the expected cost of
an optimal well-behaved tour with respect to the
(a, b)-shifted dissection is ≤ (1 + 2

√
2ε)OPT.

Proof. Consider optimal tour π. Make π well-behaved
by moving each intersection point with the
(L× L)-grid to the nearest portal.

17 - 4

Shifted Dissections (III)
Theorem. Let a, b ∈ [0, L− 1] be chosen independently and

uniformly at random. Then the expected cost of
an optimal well-behaved tour with respect to the
(a, b)-shifted dissection is ≤ (1 + 2

√
2ε)OPT.

Proof. Consider optimal tour π. Make π well-behaved
by moving each intersection point with the
(L× L)-grid to the nearest portal.

17 - 5

Shifted Dissections (III)
Theorem. Let a, b ∈ [0, L− 1] be chosen independently and

uniformly at random. Then the expected cost of
an optimal well-behaved tour with respect to the
(a, b)-shifted dissection is ≤ (1 + 2

√
2ε)OPT.

Proof. Consider optimal tour π. Make π well-behaved
by moving each intersection point with the
(L× L)-grid to the nearest portal.

17 - 6

Shifted Dissections (III)
Theorem. Let a, b ∈ [0, L− 1] be chosen independently and

uniformly at random. Then the expected cost of
an optimal well-behaved tour with respect to the
(a, b)-shifted dissection is ≤ (1 + 2

√
2ε)OPT.

Proof. Consider optimal tour π. Make π well-behaved
by moving each intersection point with the
(L× L)-grid to the nearest portal.

Detour per intersection ≤ inter-portal distance.

17 - 7

Shifted Dissections (III)
Theorem. Let a, b ∈ [0, L− 1] be chosen independently and

uniformly at random. Then the expected cost of
an optimal well-behaved tour with respect to the
(a, b)-shifted dissection is ≤ (1 + 2

√
2ε)OPT.

Proof. Consider optimal tour π. Make π well-behaved
by moving each intersection point with the
(L× L)-grid to the nearest portal.

Detour per intersection ≤ inter-portal distance.

18 - 1

Shifted Dissections (III)
� Consider an intersection point between π and a line l

of the (L× L)-grid.

18 - 2

Shifted Dissections (III)
� Consider an intersection point between π and a line l

of the (L× L)-grid.

� With probability at most 2i/L, the line l is a level-i line.
⇒ Increase in tour length ≤ L/(2im) (inter-portal distance).

18 - 3

Shifted Dissections (III)
� Consider an intersection point between π and a line l

of the (L× L)-grid.

� With probability at most 2i/L, the line l is a level-i line.
⇒ Increase in tour length ≤ L/(2im) (inter-portal distance).

18 - 4

Shifted Dissections (III)
� Consider an intersection point between π and a line l

of the (L× L)-grid.

� With probability at most 2i/L, the line l is a level-i line.
⇒ Increase in tour length ≤ L/(2im) (inter-portal distance).

18 - 5

Shifted Dissections (III)
� Consider an intersection point between π and a line l

of the (L× L)-grid.

� With probability at most 2i/L, the line l is a level-i line.
⇒ Increase in tour length ≤ L/(2im) (inter-portal distance).

18 - 6

Shifted Dissections (III)
� Consider an intersection point between π and a line l

of the (L× L)-grid.

� With probability at most 2i/L, the line l is a level-i line.
⇒ Increase in tour length ≤ L/(2im) (inter-portal distance).

� Thus, the expected increase in tour length due to this
intersection is at most:

18 - 7

Shifted Dissections (III)
� Consider an intersection point between π and a line l

of the (L× L)-grid.

� With probability at most 2i/L, the line l is a level-i line.
⇒ Increase in tour length ≤ L/(2im) (inter-portal distance).

� Thus, the expected increase in tour length due to this
intersection is at most:

k

∑
i=0

2i

L
· L

2im
≤ k + 1

m
≤ 2ε.

18 - 8

Shifted Dissections (III)
� Consider an intersection point between π and a line l

of the (L× L)-grid.

� With probability at most 2i/L, the line l is a level-i line.
⇒ Increase in tour length ≤ L/(2im) (inter-portal distance).

� Thus, the expected increase in tour length due to this
intersection is at most:

k

∑
i=0

2i

L
· L

2im
≤ k + 1

m
≤ 2ε.

18 - 9

Shifted Dissections (III)
� Consider an intersection point between π and a line l

of the (L× L)-grid.

� With probability at most 2i/L, the line l is a level-i line.
⇒ Increase in tour length ≤ L/(2im) (inter-portal distance).

� Thus, the expected increase in tour length due to this
intersection is at most:

k

∑
i=0

2i

L
· L

2im
≤ k + 1

m
≤ 2ε.

18 - 10

Shifted Dissections (III)
� Consider an intersection point between π and a line l

of the (L× L)-grid.

� With probability at most 2i/L, the line l is a level-i line.
⇒ Increase in tour length ≤ L/(2im) (inter-portal distance).

� Thus, the expected increase in tour length due to this
intersection is at most:

k

∑
i=0

2i

L
· L

2im
≤ k + 1

m
≤ 2ε.

18 - 11

Shifted Dissections (III)
� Consider an intersection point between π and a line l

of the (L× L)-grid.

� With probability at most 2i/L, the line l is a level-i line.
⇒ Increase in tour length ≤ L/(2im) (inter-portal distance).

� Thus, the expected increase in tour length due to this
intersection is at most:

k

∑
i=0

2i

L
· L

2im
≤ k + 1

m
≤ 2ε.

m ∈ [k/ε, 2k/ε]

18 - 12

Shifted Dissections (III)
� Consider an intersection point between π and a line l

of the (L× L)-grid.

� With probability at most 2i/L, the line l is a level-i line.
⇒ Increase in tour length ≤ L/(2im) (inter-portal distance).

� Thus, the expected increase in tour length due to this
intersection is at most:

k

∑
i=0

2i

L
· L

2im
≤ k + 1

m
≤ 2ε.

m ∈ [k/ε, 2k/ε]

18 - 13

Shifted Dissections (III)
� Consider an intersection point between π and a line l

of the (L× L)-grid.

� With probability at most 2i/L, the line l is a level-i line.
⇒ Increase in tour length ≤ L/(2im) (inter-portal distance).

� Summing over all N(π) ≤
√

2 ·OPT intersection points
and applying linearity of expectation yields the claim.

� Thus, the expected increase in tour length due to this
intersection is at most:

k

∑
i=0

2i

L
· L

2im
≤ k + 1

m
≤ 2ε.

m ∈ [k/ε, 2k/ε]

19 - 1

Polynomial-Time Approximation Scheme

Theorem. Let a, b ∈ [0, L− 1] be chosen independently and
uniformly at random. Then the expected cost of
an optimal well-behaved tour with respect to the
(a, b)-shifted dissection is ≤ (1 + 2

√
2ε)OPT.

19 - 2

Polynomial-Time Approximation Scheme

Theorem. Let a, b ∈ [0, L− 1] be chosen independently and
uniformly at random. Then the expected cost of
an optimal well-behaved tour with respect to the
(a, b)-shifted dissection is ≤ (1 + 2

√
2ε)OPT.

Theorem. There is a deterministic algorithm (PTAS) for
Euclidean TSP that provides, for every ε > 0,
a (1 + ε)-approximation in nO(1/ε) time.

19 - 3

Polynomial-Time Approximation Scheme

Proof. Try all L2 many (a, b)-shifted dissections.
By the previous theorem and the pigeon-hole
principle, one of them is good enough.

Theorem. Let a, b ∈ [0, L− 1] be chosen independently and
uniformly at random. Then the expected cost of
an optimal well-behaved tour with respect to the
(a, b)-shifted dissection is ≤ (1 + 2

√
2ε)OPT.

Theorem. There is a deterministic algorithm (PTAS) for
Euclidean TSP that provides, for every ε > 0,
a (1 + ε)-approximation in nO(1/ε) time.

19 - 4

Polynomial-Time Approximation Scheme

Proof. Try all L2 many (a, b)-shifted dissections.
By the previous theorem and the pigeon-hole
principle, one of them is good enough.

Theorem. Let a, b ∈ [0, L− 1] be chosen independently and
uniformly at random. Then the expected cost of
an optimal well-behaved tour with respect to the
(a, b)-shifted dissection is ≤ (1 + 2

√
2ε)OPT.

Theorem. There is a deterministic algorithm (PTAS) for
Euclidean TSP that provides, for every ε > 0,
a (1 + ε)-approximation in nO(1/ε) time.

�

20 - 1

Literature

� William J. Cook: Pursuit of the Traveling Salesman:
Mathematics at the Limits of Computation.
Princeton University Press, 2011.

20 - 2

Literature

� Sanjeev Arora: Polynomial Time Approximation Schemes for
Euclidean Traveling Salesman and other Geometric Problems.
J. ACM, 45(5):753–782, 1998.

� Joseph S. B. Mitchell: Guillotine Subdivisions Approximate
Polygonal Subdivisions: A Simple Polynomial-Time
Approximation Scheme for Geometric TSP, k-MST, and
Related Problems. SIAM J. Comput., 28(4):1298–1309, 1999.

� William J. Cook: Pursuit of the Traveling Salesman:
Mathematics at the Limits of Computation.
Princeton University Press, 2011.

20 - 3

Literature

� Sanjeev Arora: Polynomial Time Approximation Schemes for
Euclidean Traveling Salesman and other Geometric Problems.
J. ACM, 45(5):753–782, 1998.

� Joseph S. B. Mitchell: Guillotine Subdivisions Approximate
Polygonal Subdivisions: A Simple Polynomial-Time
Approximation Scheme for Geometric TSP, k-MST, and
Related Problems. SIAM J. Comput., 28(4):1298–1309, 1999.

� William J. Cook: Pursuit of the Traveling Salesman:
Mathematics at the Limits of Computation.
Princeton University Press, 2011.

� Sanjeev Arora: Nearly linear time approximation schemes for
Euclidean TSP and other geometric problems.
Network Design 1–2, 1997

20 - 4

Literature

� Sanjeev Arora: Polynomial Time Approximation Schemes for
Euclidean Traveling Salesman and other Geometric Problems.
J. ACM, 45(5):753–782, 1998.

� Joseph S. B. Mitchell: Guillotine Subdivisions Approximate
Polygonal Subdivisions: A Simple Polynomial-Time
Approximation Scheme for Geometric TSP, k-MST, and
Related Problems. SIAM J. Comput., 28(4):1298–1309, 1999.

� William J. Cook: Pursuit of the Traveling Salesman:
Mathematics at the Limits of Computation.
Princeton University Press, 2011.

� Sanjeev Arora: Nearly linear time approximation schemes for
Euclidean TSP and other geometric problems.
Network Design 1–2, 1997 Randomized, O

(
n(log n)O(1/ε)

)
time.

21 - 1

Literature (cont’d)

� Sanjeev Arora, Michelangelo Grigni, David Karger, Philip Klein,
Andrzej Woloszyn: Polynomial time approximation scheme for
Weighted Planar Graph TSP. Proc. SIAM-ACM SODA, p. 33–41, 1998.

21 - 2

Literature (cont’d)

� Sanjeev Arora, Michelangelo Grigni, David Karger, Philip Klein,
Andrzej Woloszyn: Polynomial time approximation scheme for
Weighted Planar Graph TSP. Proc. SIAM-ACM SODA, p. 33–41, 1998.

Runtime O
(

nO(1/ε2
)

	Traveling Salesman Problem
	\textsc{Traveling Salesman Problem} (\textsc{TSP})
	Dissection
	Basic Dissection
	Portals

	Well Behaved Tours
	Well-Behaved Tours
	Computing a Well-Behaved Tour
	Computing a Well-Behaved Tour

	Dynamic Program
	Dynamic Program (I)
	Dynamic Program (II)
	Dynamic Program (III)

	Shifted Dissections
	Shifted Dissections (I)
	Shifted Dissections (II)

	Approximation Factor
	Shifted Dissections (III)

	Polynomial-Time Approximation Scheme
	Polynomial-Time Approximation Scheme

	Literature
	Literature (cont'd)

