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Alexander Wolff Winter term 2022/23

Lecture 9:
An Approximation Scheme

for Euclidean TSP

Part I:
The Traveling Salesman Problem

Approximation Algorithms
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Traveling Salesman Problem (TSP)

Question: What’s the fastest way to deliver all parcels to
their destination?
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Traveling Salesman Problem (TSP)

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:
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Traveling Salesman Problem (TSP)

Task: Find a tour (Hamiltonian cycle) of min. length.

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:
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Task: Find a tour (Hamiltonian cycle) of min. length.

A set of n houses (points) in R2.
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their destination?

Given:
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Traveling Salesman Problem (TSP)

Task: Find a tour (Hamiltonian cycle) of min. length.

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:
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Traveling Salesman Problem (TSP)

Task: Find a tour (Hamiltonian cycle) of min. length.

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:

For every polynomial p(n), TSP
cannot be approximated within
factor 2p(n) (unless P=NP).



2 - 7

Traveling Salesman Problem (TSP)

Task: Find a tour (Hamiltonian cycle) of min. length.

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:

For every polynomial p(n), TSP
cannot be approximated within
factor 2p(n) (unless P=NP).
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Traveling Salesman Problem (TSP)

Task: Find a tour (Hamiltonian cycle) of min. length.

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:

Distance between two points?

For every polynomial p(n), TSP
cannot be approximated within
factor 2p(n) (unless P=NP).
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Traveling Salesman Problem (TSP)

Task: Find a tour (Hamiltonian cycle) of min. length.

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:

There is a 3/2-approximation
algorithm for Metric TSP.

Distance between two points?

For every polynomial p(n), TSP
cannot be approximated within
factor 2p(n) (unless P=NP).



2 - 10

Traveling Salesman Problem (TSP)

Task: Find a tour (Hamiltonian cycle) of min. length.

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:

There is a 3/2-approximation
algorithm for Metric TSP.

Metric TSP cannot be approximated
within factor 123/122 (unless P=NP).

Distance between two points?

For every polynomial p(n), TSP
cannot be approximated within
factor 2p(n) (unless P=NP).
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Traveling Salesman Problem (TSP)

Let’s assume that the salesman flies⇒ Euclidean distances.

Task: Find a tour (Hamiltonian cycle) of min. length.

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:

There is a 3/2-approximation
algorithm for Metric TSP.

Metric TSP cannot be approximated
within factor 123/122 (unless P=NP).

For every polynomial p(n), TSP
cannot be approximated within
factor 2p(n) (unless P=NP).
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Traveling Salesman Problem (TSP)

Let’s assume that the salesman flies⇒ Euclidean distances.

Task: Find a tour (Hamiltonian cycle) of min. length.

Simplifying Assumptions

� Houses inside
(L× L)-square

� L := 4n2 = 2k ;
k = 2 + 2 log2 n

� integer coordinates

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:
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Traveling Salesman Problem (TSP)

Let’s assume that the salesman flies⇒ Euclidean distances.

Task: Find a tour (Hamiltonian cycle) of min. length.

Simplifying Assumptions

� Houses inside
(L× L)-square

� L := 4n2 = 2k ;
k = 2 + 2 log2 n

� integer coordinates

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:
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Traveling Salesman Problem (TSP)

Let’s assume that the salesman flies⇒ Euclidean distances.

Task: Find a tour (Hamiltonian cycle) of min. length.

Simplifying Assumptions
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k = 2 + 2 log2 n

� integer coordinates

A set of n houses (points) in R2.
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their destination?
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Traveling Salesman Problem (TSP)

Let’s assume that the salesman flies⇒ Euclidean distances.

Task: Find a tour (Hamiltonian cycle) of min. length.

Simplifying Assumptions
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A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:



2 - 16
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Let’s assume that the salesman flies⇒ Euclidean distances.

Task: Find a tour (Hamiltonian cycle) of min. length.
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k = 2 + 2 log2 n

� integer coordinates

A set of n houses (points) in R2.
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Traveling Salesman Problem (TSP)

Let’s assume that the salesman flies⇒ Euclidean distances.

Task: Find a tour (Hamiltonian cycle) of min. length.

Simplifying Assumptions

� Houses inside
(L× L)-square

� L := 4n2 = 2k ;
k = 2 + 2 log2 n

� integer coordinates

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:
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Traveling Salesman Problem (TSP)

Let’s assume that the salesman flies⇒ Euclidean distances.

Task: Find a tour (Hamiltonian cycle) of min. length.

Simplifying Assumptions

� Houses inside
(L× L)-square

� L := 4n2 = 2k ;
k = 2 + 2 log2 n

� integer coordinates

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:
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Traveling Salesman Problem (TSP)

Let’s assume that the salesman flies⇒ Euclidean distances.

Task: Find a tour (Hamiltonian cycle) of min. length.

Simplifying Assumptions

� Houses inside
(L× L)-square

� L := 4n2 = 2k ;
k = 2 + 2 log2 n

� integer coordinates

A set of n houses (points) in R2.

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:
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Traveling Salesman Problem (TSP)

Let’s assume that the salesman flies⇒ Euclidean distances.

Task: Find a tour (Hamiltonian cycle) of min. length.

Simplifying Assumptions

� Houses inside
(L× L)-square

� L := 4n2 = 2k ;
k = 2 + 2 log2 n

� integer coordinates

A set of n houses (points) in R2.

(“justification”: homework)

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:



2 - 21

Traveling Salesman Problem (TSP)

Let’s assume that the salesman flies⇒ Euclidean distances.

Task: Find a tour (Hamiltonian cycle) of min. length.

Simplifying Assumptions

� Houses inside
(L× L)-square

� L := 4n2 = 2k ;
k = 2 + 2 log2 n

� integer coordinates

A set of n houses (points) in R2.

(“justification”: homework)

Question: What’s the fastest way to deliver all parcels to
their destination?

Given:

Goal:
(1 + ε)-
approximation!
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Lecture 9:
A PTAS for Euclidean TSP

Part II:
Dissection

Approximation Algorithms
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Basic Dissection

L = 2k
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Basic Dissection

Level 0

L = 2k
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Basic Dissection

Level 0

Level 1

L = 2k

L/2
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Basic Dissection

. . . . . .

Level 0

Level 1

L = 2k

Level 2
. . .

L/2

L/22
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Basic Dissection

. . . . . .

Level 0

Level 1

L = 2k

Level 2
. . .

...

Level k

...
...

...

L/2

L/22

(squares of size 1× 1)
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Basic Dissection

. . . . . .

Level 0

Level 1

L = 2k

Level 2
. . .

...

Level k

...
...

...

L/2

L/22

(squares of size 1× 1)
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Portals

L = 2k

� Let m be a power of 2 in the
interval [k/ε, 2k/ε].
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Portals

L = 2k

� Let m be a power of 2 in the
interval [k/ε, 2k/ε].

Recall that k = 2 + 2 log2 n.
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Portals

L = 2k

� Let m be a power of 2 in the
interval [k/ε, 2k/ε].

⇒ m ∈ O((log n)/ε)
Recall that k = 2 + 2 log2 n.
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Portals

L = 2k

� Let m be a power of 2 in the
interval [k/ε, 2k/ε].

� Portals on level-i line are at
a distance of L/(2im).

⇒ m ∈ O((log n)/ε)
Recall that k = 2 + 2 log2 n.
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Portals

L = 2k

� Let m be a power of 2 in the
interval [k/ε, 2k/ε].

� Portals on level-i line are at
a distance of L/(2im).

⇒ m ∈ O((log n)/ε)

� Every level-i square has
size L/2i × L/2i .

Recall that k = 2 + 2 log2 n.
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Portals

L = 2k

� Let m be a power of 2 in the
interval [k/ε, 2k/ε].

� Portals on level-i line are at
a distance of L/(2im).

⇒ m ∈ O((log n)/ε)

� Every level-i square has
size L/2i × L/2i .

Recall that k = 2 + 2 log2 n.
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Portals

L = 2k

� Let m be a power of 2 in the
interval [k/ε, 2k/ε].

� Portals on level-i line are at
a distance of L/(2im).

⇒ m ∈ O((log n)/ε)

� Every level-i square has
size L/2i × L/2i .

Recall that k = 2 + 2 log2 n.
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Portals

L = 2k

� Let m be a power of 2 in the
interval [k/ε, 2k/ε].

� Portals on level-i line are at
a distance of L/(2im).

m portals

⇒ m ∈ O((log n)/ε)

� Every level-i square has
size L/2i × L/2i .

Recall that k = 2 + 2 log2 n.
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Portals

L = 2k

� Let m be a power of 2 in the
interval [k/ε, 2k/ε].

� Portals on level-i line are at
a distance of L/(2im).

m portals

⇒ m ∈ O((log n)/ε)

� Every level-i square has
size L/2i × L/2i .

Recall that k = 2 + 2 log2 n.
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Portals

L = 2k

� Let m be a power of 2 in the
interval [k/ε, 2k/ε].

� Portals on level-i line are at
a distance of L/(2im).

m portals

⇒ m ∈ O((log n)/ε)

� Every level-i square has
size L/2i × L/2i .

Recall that k = 2 + 2 log2 n.
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Portals

L = 2k

� Let m be a power of 2 in the
interval [k/ε, 2k/ε].

� Portals on level-i line are at
a distance of L/(2im).

m portals

m portals ⇒ m ∈ O((log n)/ε)

� Every level-i square has
size L/2i × L/2i .

Recall that k = 2 + 2 log2 n.
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Portals

L = 2k

� Let m be a power of 2 in the
interval [k/ε, 2k/ε].

� Portals on level-i line are at
a distance of L/(2im).

m portals

m portals

� A level-i square has ≤ 4m
portals on its boundary.

⇒ m ∈ O((log n)/ε)

� Every level-i square has
size L/2i × L/2i .

Recall that k = 2 + 2 log2 n.
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Lecture 9:
A PTAS for Euclidean TSP

Part III:
Well-Behaved Tours

Approximation Algorithms
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Well-Behaved Tours
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Well-Behaved Tours
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Well-Behaved Tours
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Well-Behaved Tours

A tour is well-behaved if

� it involves all houses and a
subset of the portals,

� no edge of the tour crosses a
line of the basic dissection,

� it is crossing-free.
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Well-Behaved Tours

A tour is well-behaved if

� it involves all houses and a
subset of the portals,

� no edge of the tour crosses a
line of the basic dissection,

� it is crossing-free.
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Well-Behaved Tours

A tour is well-behaved if

� it involves all houses and a
subset of the portals,

� no edge of the tour crosses a
line of the basic dissection,

� it is crossing-free.
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Well-Behaved Tours

A tour is well-behaved if

� it involves all houses and a
subset of the portals,

� no edge of the tour crosses a
line of the basic dissection,

� it is crossing-free.
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Well-Behaved Tours

A tour is well-behaved if

� it involves all houses and a
subset of the portals,

� no edge of the tour crosses a
line of the basic dissection,

� it is crossing-free.
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Well-Behaved Tours

A tour is well-behaved if

� it involves all houses and a
subset of the portals,

� no edge of the tour crosses a
line of the basic dissection,

� it is crossing-free.
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Well-Behaved Tours

A tour is well-behaved if

� it involves all houses and a
subset of the portals,

� no edge of the tour crosses a
line of the basic dissection,

� it is crossing-free.
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Well-Behaved Tours

A tour is well-behaved if

� it involves all houses and a
subset of the portals,

� no edge of the tour crosses a
line of the basic dissection,

� it is crossing-free.
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Well-Behaved Tours

A tour is well-behaved if

� it involves all houses and a
subset of the portals,

� no edge of the tour crosses a
line of the basic dissection,

� it is crossing-free.

Crossing
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Well-Behaved Tours

A tour is well-behaved if

� it involves all houses and a
subset of the portals,

� no edge of the tour crosses a
line of the basic dissection,

� it is crossing-free.

Crossing
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Well-Behaved Tours

A tour is well-behaved if

� it involves all houses and a
subset of the portals,

� no edge of the tour crosses a
line of the basic dissection,

� it is crossing-free.

Crossing
No
crossing
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Well-Behaved Tours

A tour is well-behaved if

� it involves all houses and a
subset of the portals,

� no edge of the tour crosses a
line of the basic dissection,

� it is crossing-free.

Crossing
No
crossing
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Well-Behaved Tours

A tour is well-behaved if

� it involves all houses and a
subset of the portals,

� no edge of the tour crosses a
line of the basic dissection,

� it is crossing-free.

W.l.o.g. (homework):
No portal visited more than twice

Crossing
No
crossing
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Computing a Well-Behaved Tour
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Computing a Well-Behaved Tour

Lemma. An optimal well-behaved tour can be
computed in 2O(m) = nO(1/ε) time.
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Computing a Well-Behaved Tour

Sketch.

Lemma. An optimal well-behaved tour can be
computed in 2O(m) = nO(1/ε) time.
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Computing a Well-Behaved Tour

Sketch. � Dynamic programming!

� Compute sub-structure of an optimal tour
for each square in the dissection tree.

� These solutions can be efficiently
propagated bottom-up through the
dissection tree.

Lemma. An optimal well-behaved tour can be
computed in 2O(m) = nO(1/ε) time.
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Computing a Well-Behaved Tour

Sketch. � Dynamic programming!

� Compute sub-structure of an optimal tour
for each square in the dissection tree.

� These solutions can be efficiently
propagated bottom-up through the
dissection tree.

Lemma. An optimal well-behaved tour can be
computed in 2O(m) = nO(1/ε) time.
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Computing a Well-Behaved Tour

Sketch. � Dynamic programming!

� Compute sub-structure of an optimal tour
for each square in the dissection tree.

� These solutions can be efficiently
propagated bottom-up through the
dissection tree.

Lemma. An optimal well-behaved tour can be
computed in 2O(m) = nO(1/ε) time.
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Lecture 9:
A PTAS for Euclidean TSP

Part IV:
Dynamic Program

Approximation Algorithms
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Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:
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Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,
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Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,
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Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

1

1 1

1

2

11
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Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

⇒ max. 34m ∈ 3O((log n)/ε) = nO(1/ε) possibilities

1

1 1

1

2

11
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Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

⇒ max. 34m ∈ 3O((log n)/ε) = nO(1/ε) possibilities

1

1 1

1

2

11
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Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

⇒ max. 34m ∈ 3O((log n)/ε) = nO(1/ε) possibilities

1

1 1

1

2

11

m = O((log n)/ε)
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Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

⇒ max. 34m ∈ 3O((log n)/ε) = nO(1/ε) possibilities

1

1 1

1

2

11

m = O((log n)/ε)



10 - 9

Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

⇒ max. 34m ∈ 3O((log n)/ε) = nO(1/ε) possibilities

1

1 1

1

2

11

m = O((log n)/ε)
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Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

� a crossing-free pairing
of the visited portals.
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Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

� a crossing-free pairing
of the visited portals.
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Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

� a crossing-free pairing
of the visited portals.
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Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

� a crossing-free pairing
of the visited portals.
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Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

� a crossing-free pairing
of the visited portals.
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Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

� a crossing-free pairing
of the visited portals.
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Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

� a crossing-free pairing
of the visited portals.
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Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

� a crossing-free pairing
of the visited portals.
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Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

� a crossing-free pairing
of the visited portals.

⇒ max. nO(1/ε)︸ ︷︷ ︸
#visit vectors

× 2O(m)︸ ︷︷ ︸
#realizable pairings

= nO(1/ε) crossing-free pairings
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Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

� a crossing-free pairing
of the visited portals.

⇒ max. nO(1/ε)︸ ︷︷ ︸
#visit vectors

× 2O(m)︸ ︷︷ ︸
#realizable pairings

= nO(1/ε) crossing-free pairings
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Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

� a crossing-free pairing
of the visited portals.

⇒ max. nO(1/ε)︸ ︷︷ ︸
#visit vectors

× 2O(m)︸ ︷︷ ︸
#realizable pairings

= nO(1/ε) crossing-free pairings
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Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

� a crossing-free pairing
of the visited portals.
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× 2O(m)︸ ︷︷ ︸
#realizable pairings

= nO(1/ε) crossing-free pairings
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Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

� a crossing-free pairing
of the visited portals.

⇒ max. nO(1/ε)︸ ︷︷ ︸
#visit vectors

× 2O(m)︸ ︷︷ ︸
#realizable pairings

= nO(1/ε) crossing-free pairings
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Dynamic Program (I)

Each well-behaved tour
induces the following in each
square Q of the dissection:

� a path cover of the
houses in Q,

� ...such that each portal
of Q is visited 0, 1 or 2
times,

� a crossing-free pairing
of the visited portals.

⇒ max. nO(1/ε)︸ ︷︷ ︸
#visit vectors

× 2O(m)︸ ︷︷ ︸
#realizable pairings

= nO(1/ε) crossing-free pairings
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Dynamic Program (II)

Compute

� for each square Q in the
dissection and

� for each crossing-free
pairing P of Q,

an optimal path cover that
respects P.
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Dynamic Program (II)

Compute

� for each square Q in the
dissection and

� for each crossing-free
pairing P of Q,

an optimal path cover that
respects P.
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Dynamic Program (II)

Compute

� for each square Q in the
dissection and

� for each crossing-free
pairing P of Q,

an optimal path cover that
respects P.
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Dynamic Program (II)

Compute

� for each square Q in the
dissection and

� for each crossing-free
pairing P of Q,

an optimal path cover that
respects P.
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Dynamic Program (III)

For a given square Q and
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Dynamic Program (III)

For a given square Q and
pairing P:

� Iterate over all
(nO(1/ε))4 = nO(1/ε)

crossing-free pairings of
the child squares.

� Minimize the cost over
all such pairings that
additionally respect P.

� Correctness follows by
induction.

Lemma. An optimal well-behaved tour can be
computed in 2O(m) = nO(1/ε) time.
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Shifted Dissections

� The best well-behaved tour
can be a bad approximation.

� Squares in the dissection tree
are “wrapped around”.

� Dynamic program must be
modified accordingly.

a

b

� Consider an (a, b)-shifted
dissection:

x 7→ (x + a) mod L
y 7→ (y + b) mod L
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Lemma. Let π be an optimal tour, and let N(π) be the
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(L× L)-grid. Then we have N(π) ≤

√
2 ·OPT.
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� With probability at most 2i/L, the line l is a level-i line.
⇒ Increase in tour length ≤ L/(2im) (inter-portal distance).

� Summing over all N(π) ≤
√

2 ·OPT intersection points
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Polynomial-Time Approximation Scheme

Theorem. Let a, b ∈ [0, L− 1] be chosen independently and
uniformly at random. Then the expected cost of
an optimal well-behaved tour with respect to the
(a, b)-shifted dissection is ≤ (1 + 2

√
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Theorem. There is a deterministic algorithm (PTAS) for
Euclidean TSP that provides, for every ε > 0,
a (1 + ε)-approximation in nO(1/ε) time.
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