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Portals

Let m be a power of 2 in the
interval |k/¢e,2k/¢€].

Recall that k = 2 + 2log, n.
= m € O((logn)/e)

Portals on level-i Line are at
a distance of L/ (2'm).

Every level-i square has
size L/2" x L/2".

A level-i square has < 4m
portals on its boundary.
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Well-Behaved Tours

A tour is well-behaved if

B it involves all houses and a
subset of the portals,

B no edge of the tour crosses a
line of the basic dissection,

M it is crossing-free.

W.lo.g. (homework):
No portal visited more than twice

2\ 2\ 2\ 2\
, N M A , N M @
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Computing a Well-Behaved Tour

Lemma. An optimal well-behaved tour can be
computed in 200" = nO1/¢) time,

Sketch. B Dynamic programming!

B Compute sub-structure of an optimal tour
for each square in the dissection tree.

B These solutions can be efficiently
propagated bottom-up through the
dissection tree.
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() B for each crossing-free
A pairing P of Q,
o an optimal path cover that
A P
respects F.
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+ For a given square Q and
T pairing P:

- o

B [terate over all
(nO(l/e))él — n0(1/¢)

pe crossing-free pairings of
b the child squares.

il s, I Minimize the cost over
1 all such pairings that
+ additionally respect P.

1 B Correctness follows by
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- o o

Lemma. An optimal well-behaved tour can be
computed in 200" = nO1/¢) time,
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Shifted Dissections

-~ M The best well-behaved tour

al can be a bad approximation.

HEEEEN IIII'I&_

E N | M Consider an (a, b)-shifted

dissection:

x — (x+a) mod L

- T y — (y+b) mod L

T ——1| M Squares in the dissection tree

- — are “wrapped around”.

. B Dynamic program must be
modified accordingly.
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B Consider an intersection point between 7/t and a line /
of the (L x L)-grid.

B With probability at most 2!/ L, the line [ is a level-i line.
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Consider an intersection point between 77 and a line |
of the (L x L)-grid.

With probability at most 2 /L, the line [ is a level-i line.
= Increase in tour length < L/ (2'm)

Thus, the expected increase in tour length due to this
intersection is at most: m
2 L k+1

y — — < < 2e.
i:OL 2'm m

Summing over all N(77) < /2 - OPT intersection points
and applying linearity of expectation yields the claim.
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‘Theorem. There is a deterministic algorithm (PTAS) for
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Polynomial-Time Approximation Scheme

‘Theorem. Leta, b € 0, L — 1| be chosen independently and
uniformly at random. Then the expected cost of
an optimal well-behaved tour with respect to the

(a,b)-shifted dissection is < (1 +2+/2¢)OPT.

\. J

~\

‘Theorem. There is a deterministic algorithm (PTAS) for
EucLIDEAN TSP that provides, for every ¢ > 0,

a (1 -+ ¢)-approximation in n°(1/¢) time.

Proof. Try all L? many (a, b)-shifted dissections.
By the previous theorem and the pigeon-hole
principle, one of them is good enough.
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Randomized, O (n(logn)°1/€) time.
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