Approximation Algorithms

Lecture 7:

Scheduling Jobs on Parallel Machines

Part I:

ILP & Parametric Pruning

Given: A set \mathcal{J} of jobs,

$$\mathcal{J} = \{J_1, J_2, \dots, J_8\}$$

Given: A set \mathcal{J} of jobs, a set \mathcal{M} of machines, and

$$\mathcal{J} = \{J_1, J_2, \ldots, J_8\}$$

$$\mathcal{M} = \{M_1, M_2, M_3\}$$

Given: A set \mathcal{J} of jobs, a set \mathcal{M} of machines, and for each $M_i \in \mathcal{M}$ and $J_j \in \mathcal{J}$ the processing time $p_{ij} \in \mathbb{N}^+$ of J_i on M_i .

$$\mathcal{J} = \{J_1, J_2, \dots, J_8\}$$
 $\mathcal{M} = \{M_1, M_2, M_3\}$
 $(p_{ij})_{M_i \in \mathcal{M}, J_j \in \mathcal{J}}$

Given: A set \mathcal{J} of jobs, a set \mathcal{M} of machines, and for each $M_i \in \mathcal{M}$ and $J_j \in \mathcal{J}$ the processing time $p_{ij} \in \mathbb{N}^+$ of J_j on M_i .

$$\mathcal{J} = \{J_1, J_2, \dots, J_8\}$$

$$\mathcal{M} = \{M_1, M_2, M_3\}$$

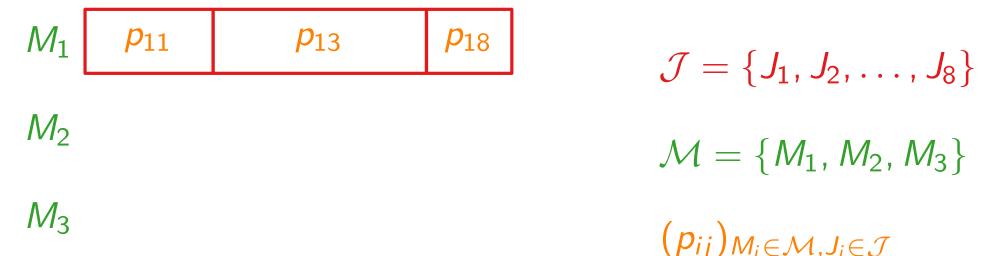
$$(p_{ij})_{M_i \in \mathcal{M}, J_i \in \mathcal{J}}$$

```
Given: A set \mathcal{J} of jobs,
a set \mathcal{M} of machines, and
for each M_i \in \mathcal{M} and J_j \in \mathcal{J}
the processing time p_{ij} \in \mathbb{N}^+ of J_j on M_i.
```

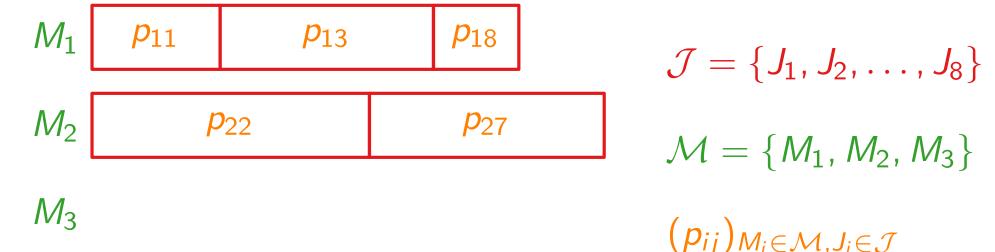
$$M_1$$

$$\mathcal{J} = \{J_1, J_2, \dots, J_8\}$$
 M_2
$$\mathcal{M} = \{M_1, M_2, M_3\}$$
 M_3
$$(p_{ij})_{M_i \in \mathcal{M}, J_i \in \mathcal{J}}$$

Given: A set \mathcal{J} of jobs, a set \mathcal{M} of machines, and for each $M_i \in \mathcal{M}$ and $J_j \in \mathcal{J}$ the processing time $p_{ij} \in \mathbb{N}^+$ of J_i on M_i .

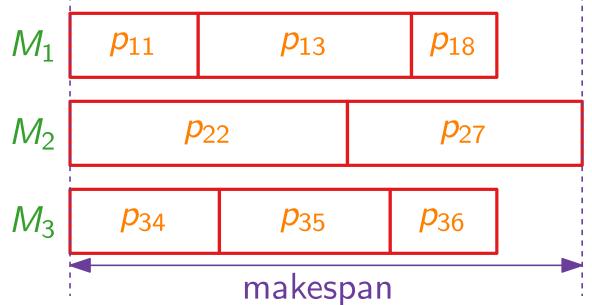


Given: A set \mathcal{J} of jobs, a set \mathcal{M} of machines, and for each $M_i \in \mathcal{M}$ and $J_j \in \mathcal{J}$ the processing time $p_{ij} \in \mathbb{N}^+$ of J_i on M_i .



Given: A set \mathcal{J} of jobs, a set \mathcal{M} of machines, and for each $M_i \in \mathcal{M}$ and $J_j \in \mathcal{J}$ the processing time $p_{ij} \in \mathbb{N}^+$ of J_i on M_i .

Given: A set \mathcal{J} of jobs, a set \mathcal{M} of machines, and for each $M_i \in \mathcal{M}$ and $J_j \in \mathcal{J}$ the processing time $p_{ij} \in \mathbb{N}^+$ of J_j on M_i .



$$\mathcal{J} = \{J_1, J_2, \dots, J_8\}$$

$$\mathcal{M} = \{M_1, M_2, M_3\}$$

$$(p_{ij})_{M_i\in\mathcal{M},J_j\in\mathcal{J}}$$

minimize to

minimize

subject to

$$x_{ij} \in \{0,1\},$$

$$x_{ij} \in \{0, 1\}, \qquad M_i \in \mathcal{M}, J_j \in \mathcal{J}$$

minimize

subject to

$$J_j \in \mathcal{J}$$

$$M_i \in \mathcal{M}$$

$$x_{ij} \in \{0,1\},$$

$$x_{ij} \in \{0, 1\}, \qquad M_i \in \mathcal{M}, J_j \in \mathcal{J}$$

minimize

subject to
$$\sum_{M_i \in \mathcal{M}} x_{ij} = 1$$
, $J_j \in \mathcal{J}$

$$M_i \in \mathcal{M}$$

$$x_{ij} \in \{0,1\}$$

$$x_{ij} \in \{0, 1\}, \qquad M_i \in \mathcal{M}, J_j \in \mathcal{J}$$

$$\begin{array}{ll} \textbf{minimize} & t \\ \textbf{subject to} & \displaystyle \sum_{M_i \in \mathcal{M}} x_{ij} = 1, \quad J_j \in \mathcal{J} \\ & \displaystyle \sum_{M_i \in \mathcal{M}} x_{ij} p_{ij} \leq t, \quad M_i \in \mathcal{M} \\ & \displaystyle \sum_{J_j \in \mathcal{J}} x_{ij} p_{ij} \leq t, \quad M_i \in \mathcal{M}, J_j \in \mathcal{J} \end{array}$$

$$\begin{array}{ll} \textbf{minimize} & t \\ \textbf{subject to} & \displaystyle\sum_{M_i \in \mathcal{M}} x_{ij} = 1, \quad J_j \in \mathcal{J} \\ & \displaystyle\sum_{M_i \in \mathcal{M}} x_{ij} p_{ij} \leq t, \quad M_i \in \mathcal{M} \\ & \displaystyle\sum_{J_j \in \mathcal{J}} x_{ij} p_{ij} \leq t, \quad M_i \in \mathcal{M}, J_j \in \mathcal{J} \end{array}$$

Task: Prove that the integrality gap is unbounded!

```
 \begin{array}{ll} \textbf{minimize} & t \\ \textbf{subject to} & \displaystyle \sum_{M_i \in \mathcal{M}} x_{ij} = 1, \quad J_j \in \mathcal{J} \\ & \displaystyle \sum_{M_i \in \mathcal{M}} x_{ij} p_{ij} \leq t, \quad M_i \in \mathcal{M} \\ & \displaystyle \sum_{J_j \in \mathcal{J}} x_{ij} p_{ij} \leq t, \quad M_i \in \mathcal{M}, J_j \in \mathcal{J} \end{array}
```

Task: Prove that the integrality gap is unbounded!

Solution: *m* machines and one job with processing time *m*

$$\begin{array}{ll} \textbf{minimize} & t \\ \textbf{subject to} & \displaystyle \sum_{M_i \in \mathcal{M}} x_{ij} = 1, \quad J_j \in \mathcal{J} \\ & \displaystyle \sum_{M_i \in \mathcal{M}} x_{ij} p_{ij} \leq t, \quad M_i \in \mathcal{M} \\ & \displaystyle \sum_{J_j \in \mathcal{J}} x_{ij} p_{ij} \leq t, \quad M_i \in \mathcal{M}, J_j \in \mathcal{J} \end{array}$$

Task: Prove that the integrality gap is unbounded!

Solution: m machines and one job with processing time m \Rightarrow OPT = m and OPT_{frac} = 1.

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.

Define $S_T := \{(i,j) : M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T\}.$

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.

Define
$$S_T := \{(i,j) : M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T\}.$$

```
\begin{array}{ll} \textbf{minimize} & t \\ \textbf{subject to} & \displaystyle \sum_{M_i \in \mathcal{M}} x_{ij} = 1, \quad J_j \in \mathcal{J} \\ & \displaystyle \sum_{M_i \in \mathcal{M}} x_{ij} p_{ij} \leq t, \quad M_i \in \mathcal{M} \\ & \displaystyle x_{ij} \in \{0,1\}, \quad M_i \in \mathcal{M}, J_j \in \mathcal{J} \end{array}
```

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.

Define
$$S_T := \{(i,j) : M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T\}.$$

```
\begin{array}{ll} \textbf{minimize} & t \\ \textbf{subject to} & \displaystyle \sum_{M_i \in \mathcal{M}} x_{ij} = 1, \quad J_j \in \mathcal{J} \\ & \displaystyle \sum_{M_i \in \mathcal{M}} x_{ij} p_{ij} \leq t, \quad M_i \in \mathcal{M} \\ & \displaystyle \sum_{J_j \in \mathcal{J}} x_{ij} p_{ij} \leq t, \quad M_i \in \mathcal{M}, J_j \in \mathcal{J} \end{array}
```

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.

Define
$$S_T := \{(i,j) : M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T\}.$$

```
\begin{array}{ll} \textbf{minimize} & t \\ \textbf{subject to} & \displaystyle \sum_{M_i \in \mathcal{M}} x_{ij} = 1, \quad J_j \in \mathcal{J} \\ & \displaystyle \sum_{M_i \in \mathcal{M}} x_{ij} p_{ij} \leq t, \quad M_i \in \mathcal{M} \\ & \displaystyle \sum_{J_j \in \mathcal{J}} x_{ij} p_{ij} \leq t, \quad M_i \in \mathcal{M}, J_j \in \mathcal{J} \quad (i,j) \in \mathcal{S}_T \end{array}
```

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.

Define
$$S_T := \{(i,j) : M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T\}.$$

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.

Define
$$S_T := \{(i,j) : M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T\}.$$

```
minimize t

subject to \sum_{i: (i,j) \in S_T} x_{ij} = 1, J_j \in \mathcal{J}
i: (i,j) \in S_T M_i \in \mathcal{M}
j: (i,j) \in S_T J_j \in \mathcal{J}

x_{ij} \in \{0,1\}, \geq 0 M_i \in \mathcal{M}, J_j \in \mathcal{J} (i,j) \in S_T
```

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.

Define
$$S_T := \{(i,j) : M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T\}.$$

```
minimize t

subject to \sum_{i: (i,j) \in S_T} x_{ij} = 1, J_j \in \mathcal{J}
i: (i,j) \in S_T M_i \in \mathcal{M}
j: (i,j) \in S_T J_j \in \mathcal{J}

x_{ij} \in \{0,1\}, \geq 0 M_i \in \mathcal{M}, J_j \in \mathcal{J} (i,j) \in S_T
```

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.

Define
$$S_T := \{(i,j) : M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T\}.$$

```
minimize f

subject to \sum_{i: (i,j) \in S_T} x_{ij} = 1, J_j \in \mathcal{J}
\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq X, T M_i \in \mathcal{M}
j: (i,j) \in S_T J_j \in \mathcal{J}
x_{ij} \in \{0,1\}, \geq 0 M_i \in \mathcal{M}, J_j \in \mathcal{J} (i,j) \in S_T
```

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.

Define
$$S_T := \{(i,j) : M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T\}.$$

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$j: (i,j) \in S_T$$

$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.

Define
$$S_T := \{(i,j) : M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T\}.$$

Define the "pruned" relaxation LP(T):

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$j: (i,j) \in S_T$$

$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Note:

LP(*T*) has no objective function; we just need to check whether a feasible solution exists.

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.

Define
$$S_T := \{(i,j) : M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T\}.$$

Define the "pruned" relaxation LP(T):

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$j: (i,j) \in S_T$$

$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Note:

LP(*T*) has no objective function; we just need to check whether a feasible solution exists.

But why does this LP give a good integrality gap?

Approximation Algorithms

Lecture 7:

Scheduling Jobs on Parallel Machines

Part II:

Properties of Extreme-Point Solutions

Use binary search to find the smallest T so that LP(T) has a solution.

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$j: (i,j) \in S_T$$

$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Use binary search to find the smallest T so that LP(T) has a solution. Let T^* be this value of T.

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$j: (i,j) \in S_T$$

$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Use binary search to find the smallest T so that LP(T) has a solution. Let T^* be this value of T.

What are the bounds for our search?

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$j: (i,j) \in S_T$$

$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Use binary search to find the smallest T so that LP(T) has a solution. Let T^* be this value of T.

What are the bounds for our search?

Observe: $T^* \leq \mathsf{OPT}$

$$\sum_{i:\;(i,j)\in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$
 $\sum_{i:\;(i,j)\in S_T} x_{ij}p_{ij} \leq T, \quad M_i \in \mathcal{M}$
 $j:\;(i,j)\in S_T$
 $x_{ij} \geq 0, \quad (i,j)\in S_T$

Properties of Extreme Point Solutions

Use binary search to find the smallest T so that LP(T) has a solution. Let T^* be this value of T.

What are the bounds for our search?

Observe: $T^* \leq \mathsf{OPT}$

Idea: Round an extreme-point solution of $LP(T^*)$ to a schedule whose makespan is at most $2T^*$.

LP(*T*):

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$j: (i,j) \in S_T$$

$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Properties of Extreme Point Solutions

Use binary search to find the smallest T so that LP(T) has a solution. Let T^* be this value of T.

What are the bounds for our search?

Observe: $T^* \leq \mathsf{OPT}$

Idea: Round an extreme-point solution of $LP(T^*)$ to a schedule whose makespan is at most $2T^*$.

LP(*T*):

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$
 $\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$
 $j: (i,j) \in S_T$
 $x_{ij} \geq 0, \quad (i,j) \in S_T$

Lemma 1.

Every extreme-point solution of LP(T) has at most $|\mathcal{M}| + |\mathcal{J}|$ positive variables.

Properties of Extreme Point Solutions

Use binary search to find the smallest T so that LP(T) has a solution. Let T^* be this value of T.

What are the bounds for our search?

Observe: $T^* \leq \mathsf{OPT}$

Idea: Round an extreme-point solution of $LP(T^*)$ to a schedule whose makespan is at most $2T^*$.

LP(*T*):

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$
 $\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$
 $j: (i,j) \in S_T$
 $x_{ij} \geq 0, \quad (i,j) \in S_T$

Lemma 1.

Every extreme-point solution of LP(T) has at most $|\mathcal{M}| + |\mathcal{J}|$ positive variables.

Lemma 2.

Every extreme-point solution of LP(T) sets at least $|\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$j: (i,j) \in S_T$$

$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Lemma 1.

Every extreme-point solution of LP(T) has at most $|\mathcal{M}| + |\mathcal{J}|$ positive variables.

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$j: (i,j) \in S_T$$

$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Lemma 1.

Every extreme-point solution of LP(T) has at most $|\mathcal{M}| + |\mathcal{J}|$ positive variables.

Proof. L(T): $|S_T|$ variables

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$j: (i,j) \in S_T$$

$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Lemma 1.

Every extreme-point solution of LP(T) has at most $|\mathcal{M}| + |\mathcal{J}|$ positive variables.

Proof. L(T): $|S_T|$ variables extreme-point solution: $|S_T|$ inequalities tight

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$j: (i,j) \in S_T$$

$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Lemma 1.

Every extreme-point solution of LP(T) has at most $|\mathcal{M}| + |\mathcal{J}|$ positive variables.

Proof. L(T): $|S_T|$ variables extreme-point solution: $|S_T|$ inequalities tight at most $|\mathcal{J}|$ inequalities

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$
 $\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$
 $j: (i,j) \in S_T$
 $x_{ij} \geq 0, \quad (i,j) \in S_T$

Lemma 1.

Every extreme-point solution of LP(T) has at most $|\mathcal{M}| + |\mathcal{J}|$ positive variables.

Proof. L(T): $|S_T|$ variables extreme-point solution: $|S_T|$ inequalities tight

lacktriangle at most $|\mathcal{J}|$ inequalities

→ at most |M| inequalities

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$j: (i,j) \in S_T$$

$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Lemma 1.

Every extreme-point solution of LP(T) has at most $|\mathcal{M}| + |\mathcal{J}|$ positive variables.

Proof. L(T): $|S_T|$ variables extreme-point solution: $|S_T|$ inequalities tight

- lacktriangle at most $|\mathcal{J}|$ inequalities
- → at most |M| inequalities
 - \Rightarrow At least $|S_T| |\mathcal{J}| |\mathcal{M}|$ variables are 0.

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$j: (i,j) \in S_T$$

$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Lemma 1.

Every extreme-point solution of LP(T) has at most $|\mathcal{M}| + |\mathcal{J}|$ positive variables.

Proof. L(T): $|S_T|$ variables extreme-point solution: $|S_T|$ inequalities tight

- lacktriangle at most $|\mathcal{J}|$ inequalities
- → at most |M| inequalities
 - \Rightarrow At least $|S_T| |\mathcal{J}| |\mathcal{M}|$ variables are 0.
 - \Rightarrow At most $|\mathcal{M}| + |\mathcal{J}|$ variables are positive.

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$j: (i,j) \in S_T$$

$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Lemma 2.

Every extreme-point solution of LP(T) sets at least $|\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

$$\sum_{i:\;(i,j)\in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$
 $\sum_{i:\;(i,j)\in S_T} x_{ij}p_{ij} \leq T, \quad M_i \in \mathcal{M}$
 $j:\;(i,j)\in S_T$
 $x_{ij} \geq 0, \quad (i,j)\in S_T$

Lemma 2.

Every extreme-point solution of LP(T) sets at least $|\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

Proof. Let x be an extreme-point solution of LP(T).

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$j: (i,j) \in S_T$$

$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Lemma 2.

Every extreme-point solution of LP(T) sets at least $|\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

Proof. Let x be an extreme-point solution of LP(T). Assume x has α integral jobs und β fractional jobs.

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$j: (i,j) \in S_T$$

$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Lemma 2.

Every extreme-point solution of LP(T) sets at least $|\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

Proof. Let x be an extreme-point solution of LP(T). Assume x has α integral jobs und β fractional jobs. $\Rightarrow \alpha + \beta = |\mathcal{J}|$

$$\sum_{i:\;(i,j)\in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$
 $\sum_{i:\;(i,j)\in S_T} x_{ij}p_{ij} \leq T, \quad M_i \in \mathcal{M}$
 $j:\;(i,j)\in S_T$
 $x_{ij} \geq 0, \quad (i,j)\in S_T$

Lemma 2.

Every extreme-point solution of LP(T) sets at least $|\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

Proof. Let x be an extreme-point solution of LP(T). Assume x has α integral jobs und β fractional jobs. $\Rightarrow \alpha + \beta = |\mathcal{J}|$ Each fractional job runs on at least two machines.

$$\sum_{i:\;(i,j)\in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$
 $\sum_{i:\;(i,j)\in S_T} x_{ij}p_{ij} \leq T, \quad M_i \in \mathcal{M}$
 $j:\;(i,j)\in S_T$
 $x_{ij} \geq 0, \quad (i,j)\in S_T$

Lemma 2.

Every extreme-point solution of LP(T) sets at least $|\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

Proof. Let x be an extreme-point solution of LP(T). Assume x has α integral jobs und β fractional jobs. $\Rightarrow \alpha + \beta = |\mathcal{J}|$ Each fractional job runs on at least two machines.

 \Rightarrow For each such job, at least two variables are pos.

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$j: (i,j) \in S_T$$

$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Lemma 2.

Every extreme-point solution of LP(T) sets at least $|\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

Proof. Let x be an extreme-point solution of LP(T). Assume x has α integral jobs und β fractional jobs. $\Rightarrow \alpha + \beta = |\mathcal{J}|$ Each fractional job runs on at least two machines. \Rightarrow For each such job, at least two variables are pos.

 $\Rightarrow \alpha + 2\beta \le |\mathcal{J}| + |\mathcal{M}|$ (Lemma 1)

$$\sum_{i:\;(i,j)\in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$
 $\sum_{i:\;(i,j)\in S_T} x_{ij}p_{ij} \leq T, \quad M_i \in \mathcal{M}$
 $j:\;(i,j)\in S_T$
 $x_{ij} \geq 0, \quad (i,j)\in S_T$

Lemma 2.

Every extreme-point solution of LP(T) sets at least $|\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

Proof. Let x be an extreme-point solution of LP(\mathcal{T}). Assume x has α integral jobs und β fractional jobs. $\Rightarrow \alpha + \beta = |\mathcal{J}|$ Each fractional job runs on at least two machines. \Rightarrow For each such job, at least two variables are pos. $\Rightarrow \alpha + 2\beta \leq |\mathcal{J}| + |\mathcal{M}|$ (Lemma 1) $\Rightarrow \beta < |\mathcal{M}|$

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$
 $\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$
 $j: (i,j) \in S_T$
 $x_{ij} \geq 0, \quad (i,j) \in S_T$

Lemma 2.

Every extreme-point solution of LP(T) sets at least $|\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

Proof. Let x be an extreme-point solution of LP(T). Assume x has α integral jobs und β fractional jobs. $\Rightarrow \alpha + \beta = |\mathcal{J}|$ Each fractional job runs on at least two machines.

⇒ For each such job, at least two variables are pos.

$$\Rightarrow \alpha + 2\beta \leq |\mathcal{J}| + |\mathcal{M}|$$
 (Lemma 1)

$$\Rightarrow \beta \leq |\mathcal{M}| \quad \text{and} \quad \alpha \geq |\mathcal{J}| - |\mathcal{M}|$$

Approximation Algorithms

Lecture 7:

Scheduling Jobs on Parallel Machines

Part III:
An Algorithm

Definition: Bipartite graph

Bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{ij} \neq 0$ (in extreme-point sol.).

Definition: Bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ with $(i,j) \in E \Leftrightarrow x_{ij} \neq 0$ (in extreme-point sol.).

Jobs can be assigned integrally or fractionally.

Definition: Bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{ij} \neq 0$ (in extreme-point sol.).

Jobs can be assigned integrally or fractionally.

 $(\exists M_i \in \mathcal{M} : 0 < x_{ij} < 1)$

Definition: Bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{ij} \neq 0$ (in extreme-point sol.).

Jobs can be assigned integrally or fractionally.

$$(\exists M_i \in \mathcal{M} : 0 < x_{ij} < 1)$$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs.

Definition:

Bipartite graph
$$G = (\mathcal{M} \cup \mathcal{J}, E)$$
 with $(i, j) \in E \Leftrightarrow x_{ij} \neq 0$ (in extreme-point sol.).

Jobs can be assigned integrally or fractionally.

$$(\exists M_i \in \mathcal{M} : 0 < x_{ij} < 1)$$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs.

Let $H := G[\mathcal{M} \cup F]$.

Definition:

Bipartite graph
$$G = (\mathcal{M} \cup \mathcal{J}, E)$$
 with $(i, j) \in E \Leftrightarrow x_{ij} \neq 0$ (in extreme-point sol.).

Jobs can be assigned integrally or fractionally.

$$(\exists M_i \in \mathcal{M} : 0 < x_{ij} < 1)$$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs.

Let $H := G[\mathcal{M} \cup F]$.

Observe:

(i,j) is an edge in $H \Leftrightarrow 0 < x_{ij} < 1$

Definition:

Bipartite graph
$$G = (\mathcal{M} \cup \mathcal{J}, E)$$
 with $(i, j) \in E \Leftrightarrow x_{ij} \neq 0$ (in extreme-point sol.).

Jobs can be assigned integrally or fractionally.

$$(\exists M_i \in \mathcal{M} : 0 < x_{ij} < 1)$$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs.

Let $H := G[\mathcal{M} \cup F]$.

Observe:

$$(i,j)$$
 is an edge in $H \Leftrightarrow 0 < x_{ij} < 1$

A matching in H is called F-perfect if it matches every vertex in F.

Definition:

Bipartite graph
$$G = (\mathcal{M} \cup \mathcal{J}, E)$$
 with $(i, j) \in E \Leftrightarrow x_{ij} \neq 0$ (in extreme-point sol.).

Jobs can be assigned integrally or fractionally.

$$(\exists M_i \in \mathcal{M} : 0 < x_{ij} < 1)$$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs.

Let $H := G[\mathcal{M} \cup F]$.

Observe:

$$(i,j)$$
 is an edge in $H \Leftrightarrow 0 < x_{ij} < 1$

A matching in H is called F-perfect if it matches every vertex in F.

Main step:

Show that H always has an F-perfect matching.

Definition:

Bipartite graph
$$G = (\mathcal{M} \cup \mathcal{J}, E)$$
 with $(i, j) \in E \Leftrightarrow x_{ij} \neq 0$ (in extreme-point sol.).

Jobs can be assigned integrally or fractionally.

$$(\exists M_i \in \mathcal{M} : 0 < x_{ij} < 1)$$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs.

Let $H := G[\mathcal{M} \cup F]$.

Observe:

$$(i,j)$$
 is an edge in $H \Leftrightarrow 0 < x_{ij} < 1$

A matching in H is called F-perfect if it matches every vertex in F.

Main step:

Show that H always has an F-perfect matching.

And why is this useful ...?

Assign job J_i to machine M_i that minimizes p_{ij} .

Assign job J_j to machine M_i that minimizes p_{ij} . Let τ be the makespan of this schedule.

Assign job J_j to machine M_i that minimizes p_{ij} . Let τ be the makespan of this schedule.

Do a binary search in the interval $\left[\frac{\tau}{|\mathcal{M}|}, \tau\right]$ to find the smallest value T^* of $T \in \mathbb{Z}^+$ s.t. LP(T) has a feasible solution.

Assign job J_j to machine M_i that minimizes p_{ij} . Let τ be the makespan of this schedule.

Do a binary search in the interval $\left[\frac{\tau}{|\mathcal{M}|}, \tau\right]$ to find the smallest value T^* of $T \in \mathbb{Z}^+$ s.t. LP(T) has a feasible solution.

Find an extreme-point solution \times for LP(T^*).

Assign job J_j to machine M_i that minimizes p_{ij} . Let τ be the makespan of this schedule.

Do a binary search in the interval $\left[\frac{\tau}{|\mathcal{M}|}, \tau\right]$ to find the smallest value T^* of $T \in \mathbb{Z}^+$ s.t. LP(T) has a feasible solution.

Find an extreme-point solution \times for LP(T^*).

Assign all integrally set jobs to machines as in x.

Assign job J_j to machine M_i that minimizes p_{ij} . Let τ be the makespan of this schedule.

Do a binary search in the interval $\left[\frac{\tau}{|\mathcal{M}|}, \tau\right]$ to find the smallest value T^* of $T \in \mathbb{Z}^+$ s.t. LP(T) has a feasible solution.

Find an extreme-point solution \times for LP(T^*).

Assign all integrally set jobs to machines as in x.

Construct the graph H and find an F-perfect matching P in it (see Lemma 4 later, F is set of fractionally assg. jobs)

Assign job J_j to machine M_i that minimizes p_{ij} . Let τ be the makespan of this schedule.

Do a binary search in the interval $\left[\frac{\tau}{|\mathcal{M}|}, \tau\right]$ to find the smallest value T^* of $T \in \mathbb{Z}^+$ s.t. LP(T) has a feasible solution.

Find an extreme-point solution \times for LP(T^*).

Assign all integrally set jobs to machines as in x.

Construct the graph H and find an F-perfect matching P in it (see Lemma 4 later, F is set of fractionally assg. jobs)

Assign the fractional jobs to machines using P.

Algorithm

Assign job J_j to machine M_i that minimizes p_{ij} . Let τ be the makespan of this schedule.

Do a binary search in the interval $\left[\frac{\tau}{|\mathcal{M}|}, \tau\right]$ to find the smallest value T^* of $T \in \mathbb{Z}^+$ s.t. LP(T) has a feasible solution.

Find an extreme-point solution \times for LP(T^*).

Assign all integrally set jobs to machines as in x.

Construct the graph H and find an F-perfect matching P in it (see Lemma 4 later, F is set of fractionally assg. jobs)

Assign the fractional jobs to machines using P.

Theorem. This is a factor-2 approximation algorithm (assuming that we have an F-perfect matching).

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$j: (i,j) \in S_T$$

$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Theorem. This is a factor-2 approximation algorithm (assuming that we have an F-perfect matching).

Proof. $T^* \leq \mathsf{OPT}$.

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$j: (i,j) \in S_T$$

$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Theorem. This is a factor-2 approximation algorithm (assuming that we have an F-perfect matching).

Proof. $T^* \leq OPT$. Let x be an extreme-point solution for $LP(T^*)$

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$j: (i,j) \in S_T$$

$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Theorem. This is a factor-2 approximation algorithm (assuming that we have an F-perfect matching).

Proof. $T^* \leq \mathsf{OPT}$.

Let x be an extreme-point solution for $LP(T^*)$ Fractional solution: makespan $\leq T^*$.

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$j: (i,j) \in S_T$$

$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Theorem. This is a factor-2 approximation algorithm (assuming that we have an F-perfect matching).

Proof. $T^* \leq \mathsf{OPT}$.

Let x be an extreme-point solution for $LP(T^*)$ Fractional solution: makespan $\leq T^*$.

 \Rightarrow Restriction to integral jobs has makespan $\leq T^*$.

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$j: (i,j) \in S_T$$

$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Theorem. This is a factor-2 approximation algorithm (assuming that we have an F-perfect matching).

Proof.
$$T^* \leq \mathsf{OPT}$$
.

Let x be an extreme-point solution for $LP(T^*)$ Fractional solution: makespan $\leq T^*$.

 \Rightarrow Restriction to integral jobs has makespan $\leq T^*$.

For each edge $(i,j) \in S_{T^*}$, it holds that $p_{ij} \leq T^*$.

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$j: (i,j) \in S_T$$

$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Theorem. This is a factor-2 approximation algorithm (assuming that we have an F-perfect matching).

Proof.
$$T^* \leq \mathsf{OPT}$$
.

Let x be an extreme-point solution for $LP(T^*)$ Fractional solution: makespan $\leq T^*$.

 \Rightarrow Restriction to integral jobs has makespan $\leq T^*$. For each edge $(i,j) \in S_{T^*}$, it holds that $p_{ij} \leq T^*$. Matching: at most one extra job per maschine.

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$j: (i,j) \in S_T$$

$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Theorem. This is a factor-2 approximation algorithm (assuming that we have an F-perfect matching).

Proof.
$$T^* \leq \mathsf{OPT}$$
.

Let x be an extreme-point solution for $LP(T^*)$ Fractional solution: makespan $\leq T^*$.

- \Rightarrow Restriction to integral jobs has makespan $\leq T^*$.
- For each edge $(i,j) \in S_{T^*}$, it holds that $p_{ij} \leq T^*$.

Matching: at most one extra job per maschine.

 \Rightarrow total makespan $\leq 2T^* \leq 20PT$

Approximation Algorithms

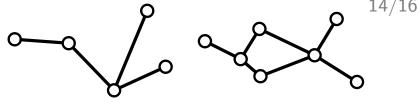
Lecture 7:

Scheduling Jobs on Parallel Machines

Part IV:

Pseudo-Trees and -Forests

Pseudo-Trees and -Forests — <



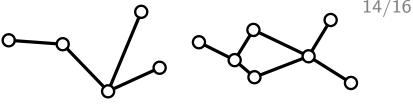
Pseudo-tree: a connected graph with at most as many edges as vertices.

Pseudo-Trees and -Forests [→] <

Pseudo-tree: a connected graph with at most as many edges as vertices.

(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-Trees and -Forests [→]¬

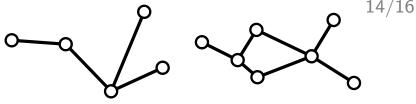


Pseudo-tree: a connected graph with at most as many edges as vertices.

(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest:

Pseudo-Trees and -Forests ~~~

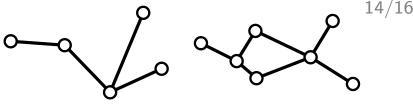


Pseudo-tree: a connected graph with at most as many edges as vertices.

(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest: a collection of disjoint pseudo-trees.

Pseudo-Trees and -Forests [→]¬



Pseudo-tree: a connected graph with at most as many edges as vertices.

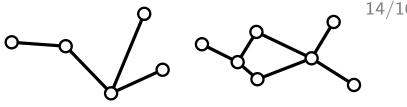
(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Pseudo-Trees and -Forests [→] ¬



Pseudo-tree: a connected graph with at most as many edges as vertices.

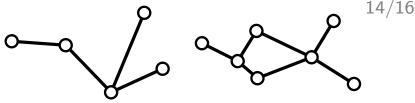
(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme-point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ positive variables (Lemma 1).



Pseudo-tree: a connected graph with at most as many edges as vertices.

(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

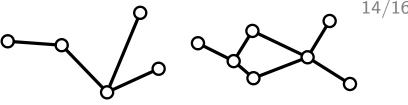
The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme-point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ positive variables (Lemma 1).

Each conn. component C of G corresponds to an extreme-point solution.

(Suppose not. Then the solution that corresponds to C is the convex combination of other solutions. But this contradicts the definition of G.)

Pseudo-Trees and -Forests ←



Pseudo-tree: a connected graph with at most as many edges as vertices.

(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

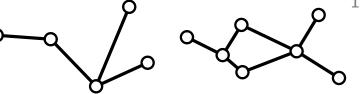
Extreme-point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ positive variables (Lemma 1).

Each conn. component C of G corresponds to an extreme-point solution.

(Suppose not. Then the solution that corresponds to C is the convex combination of other solutions. But this contradicts the definition of G.)

 \Rightarrow C has at most as many edges (pos. var.) as vertices (jobs+machines).

Pseudo-Trees and -Forests ~~



Pseudo-tree: a connected graph with at most as many edges as vertices.

(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme-point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ positive variables (Lemma 1).

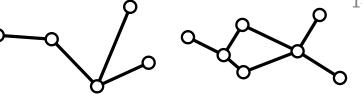
Each conn. component C of G corresponds to an extreme-point solution.

(Suppose not. Then the solution that corresponds to C is the convex combination of other solutions. But this contradicts the definition of G.)

 \Rightarrow C has at most as many edges (pos. var.) as vertices (jobs+machines).

Lemma 4. The graph H has an F-perfect matching.

Pseudo-Trees and -Forests —



Pseudo-tree: a connected graph with at most as many edges as vertices.

(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme-point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ positive variables (Lemma 1).

Each conn. component C of G corresponds to an extreme-point solution.

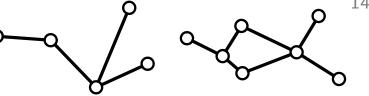
(Suppose not. Then the solution that corresponds to C is the convex combination of other solutions. But this contradicts the definition of G.)

 \Rightarrow C has at most as many edges (pos. var.) as vertices (jobs+machines).

Lemma 4. The graph H has an F-perfect matching.

In G, every vertex in $\mathcal{J} \setminus F$ is a leaf. \Rightarrow

Pseudo-Trees and -Forests —



Pseudo-tree: a connected graph with at most as many edges as vertices.

(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme-point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ positive variables (Lemma 1).

Each conn. component C of G corresponds to an extreme-point solution.

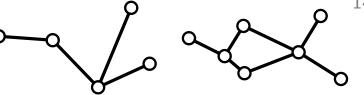
(Suppose not. Then the solution that corresponds to C is the convex combination of other solutions. But this contradicts the definition of G.)

 \Rightarrow C has at most as many edges (pos. var.) as vertices (jobs+machines).

Lemma 4. The graph H has an F-perfect matching.

In G, every vertex in $\mathcal{J} \setminus F$ is a leaf. $\stackrel{\text{remove leaves}}{\Rightarrow}$

Pseudo-Trees and -Forests ~~



Pseudo-tree: a connected graph with at most as many edges as vertices.

(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme-point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ positive variables (Lemma 1).

Each conn. component C of G corresponds to an extreme-point solution.

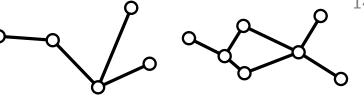
(Suppose not. Then the solution that corresponds to C is the convex combination of other solutions. But this contradicts the definition of G.)

 \Rightarrow C has at most as many edges (pos. var.) as vertices (jobs+machines).

Lemma 4. The graph H has an F-perfect matching.

In G, every vertex in $\mathcal{J} \setminus F$ is a leaf. $\stackrel{\text{remove leaves}}{\Rightarrow} H$ is a pseudo-forest, too.

Pseudo-Trees and -Forests ~



Pseudo-tree: a connected graph with at most as many edges as vertices.

(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme-point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ positive variables (Lemma 1).

Each conn. component C of G corresponds to an extreme-point solution.

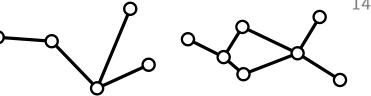
(Suppose not. Then the solution that corresponds to C is the convex combination of other solutions. But this contradicts the definition of G.)

 \Rightarrow C has at most as many edges (pos. var.) as vertices (jobs+machines).

Lemma 4. The graph H has an F-perfect matching.

In G, every vertex in $\mathcal{J} \setminus F$ is a leaf. $\stackrel{\text{remove leaves}}{\Rightarrow} H$ is a pseudo-forest, too. Vertices in F have minimum degree 2.

Pseudo-Trees and -Forests ←



Pseudo-tree: a connected graph with at most as many edges as vertices.

(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme-point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ positive variables (Lemma 1).

Each conn. component C of G corresponds to an extreme-point solution.

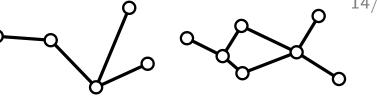
(Suppose not. Then the solution that corresponds to C is the convex combination of other solutions. But this contradicts the definition of G.)

 \Rightarrow C has at most as many edges (pos. var.) as vertices (jobs+machines).

Lemma 4. The graph H has an F-perfect matching.

In G, every vertex in $\mathcal{J} \setminus F$ is a leaf. $\stackrel{\text{remove leaves}}{\Rightarrow} H$ is a pseudo-forest, too. Vertices in F have minimum degree 2. \Rightarrow The leaves in H are machines.

Pseudo-Trees and -Forests ◦



Pseudo-tree: a connected graph with at most as many edges as vertices.

(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme-point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ positive variables (Lemma 1).

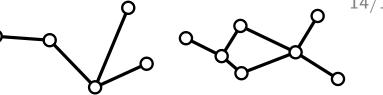
Each conn. component C of G corresponds to an extreme-point solution.

(Suppose not. Then the solution that corresponds to C is the convex combination of other solutions. But this contradicts the definition of G.)

 \Rightarrow C has at most as many edges (pos. var.) as vertices (jobs+machines).

Lemma 4. The graph H has an F-perfect matching.

In G, every vertex in $\mathcal{J} \setminus F$ is a leaf. $\stackrel{\text{remove leaves}}{\Rightarrow} H$ is a pseudo-forest, too. Vertices in F have minimum degree 2. \Rightarrow The leaves in H are machines. After iteratively matching all leaves,



a connected graph with at most as many edges as vertices. Pseudo-tree: (A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme-point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ positive variables (Lemma 1).

Each conn. component C of G corresponds to an extreme-point solution.

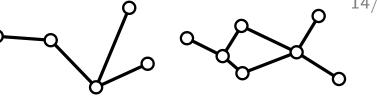
(Suppose not. Then the solution that corresponds to C is the convex combination of other solutions. But this contradicts the definition of G.)

 \Rightarrow C has at most as many edges (pos. var.) as vertices (jobs+machines).

Lemma 4. The graph H has an F-perfect matching.

In G, every vertex in $\mathcal{J} \setminus F$ is a leaf. $\stackrel{\text{remove leaves}}{\Rightarrow} H$ is a pseudo-forest, too. Vertices in F have minimum degree 2. \Rightarrow The leaves in H are machines. After iteratively matching all leaves, only even cycles remain.

Pseudo-Trees and -Forests ←



a connected graph with at most as many edges as vertices. Pseudo-tree: (A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme-point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ positive variables (Lemma 1).

Each conn. component C of G corresponds to an extreme-point solution.

(Suppose not. Then the solution that corresponds to C is the convex combination of other solutions. But this contradicts the definition of G.)

 \Rightarrow C has at most as many edges (pos. var.) as vertices (jobs+machines).

Lemma 4. The graph H has an F-perfect matching.

In G, every vertex in $\mathcal{J} \setminus F$ is a leaf. $\stackrel{\text{remove leaves}}{\Rightarrow} H$ is a pseudo-forest, too. Vertices in F have minimum degree 2. \Rightarrow The leaves in H are machines. After iteratively matching all leaves, only even cycles remain. (H is bipartite :-)

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?

Yes!

Instance I_m :

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight? Yes!

Instance I_m :

m machines and $m^2 - m + 1$ jobs

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight? Yes!

Instance I_m :

m machines and $m^2 - m + 1$ jobs Job J_1 has processing time m on every machine,

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight? Yes!

Instance I_m :

m machines and $m^2 - m + 1$ jobs Job J_1 has processing time m on every machine, all other jobs have processing time 1 on every machine.

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight? Yes!

Instance I_m :

m machines and m^2-m+1 jobs Job J_1 has processing time m on every machine, all other jobs have processing time 1 on every machine.

Optimum:

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight? Yes!

Instance I_m :

m machines and m^2-m+1 jobs Job J_1 has processing time m on every machine, all other jobs have processing time 1 on every machine.

Optimum: one machine gets J_1 , and all others spread evenly.

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight? Yes!

Instance I_m :

m machines and $m^2 - m + 1$ jobs Job J_1 has processing time m on every machine, all other jobs have processing time 1 on every machine.

Optimum: one machine gets J_1 , and all others spread evenly. \Rightarrow makespan = m.

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

```
Tight? Yes!
```

Instance I_m :

m machines and m^2-m+1 jobs Job J_1 has processing time m on every machine,

all other jobs have processing time 1 on every machine.

Optimum: one machine gets J_1 , and all others spread evenly.

Algorithm: \Rightarrow makespan = m.

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

```
Tight? Yes!
```

Instance I_m :

m machines and m^2-m+1 jobs

Job J_1 has processing time m on every machine, all other jobs have processing time 1 on every machine.

Optimum: one machine gets J_1 , and all others spread evenly.

Algorithm:

 \Rightarrow makespan = m.

LP(T) has no feasible solution for any T < m.

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight? Yes!

Instance I_m :

m machines and $m^2 - m + 1$ jobs

Job J_1 has processing time m on every machine, all other jobs have processing time 1 on every machine.

Optimum: one machine gets J_1 , and all others spread evenly.

Algorithm:

 \Rightarrow makespan = m.

LP(T) has no feasible solution for any T < m.

Extreme-point solution:

Assign 1/m of J_1 and m-1 other jobs to each machine.

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

```
Tight? Yes!
```

Instance I_m :

m machines and $m^2 - m + 1$ jobs

Job J_1 has processing time m on every machine, all other jobs have processing time 1 on every machine.

Optimum: one machine gets J_1 , and all others spread evenly.

Algorithm:

 \Rightarrow makespan = m.

LP(T) has no feasible solution for any T < m.

Extreme-point solution:

Assign 1/m of J_1 and m-1 other jobs to each machine.

 \Rightarrow makespan 2m-1.

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Can we do better?

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Can we do better?

No better approximation algorithm is known.

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Can we do better?

No better approximation algorithm is known.

The problem cannot be approximated within factor < 3/2 (unless P=NP). [Lenstra, Shmoys & Tardos '90]

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Can we do better?

No better approximation algorithm is known.

The problem cannot be approximated within factor < 3/2 (unless P=NP). [Lenstra, Shmoys & Tardos '90]

For a constant number of machines, for every $\varepsilon > 0$ there is a factor- $(1+\varepsilon)$ approximation algorithm. [Horowitz & Sahni '76]

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Can we do better?

No better approximation algorithm is known.

The problem cannot be approximated within factor < 3/2 (unless P=NP). [Lenstra, Shmoys & Tardos '90]

For a constant number of machines, for every $\varepsilon > 0$ there is a factor- $(1+\varepsilon)$ approximation algorithm. [Horowitz & Sahni '76]

For uniform machines, for every $\varepsilon>0$ there is a factor- $(1+\varepsilon)$ approximation algorithm. [Hochbaum & Shmoys '87]

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Can we do better?

No better approximation algorithm is known.

The problem cannot be approximated within factor < 3/2 (unless P=NP). [Lenstra, Shmoys & Tardos '90]

For a constant number of machines, for every $\varepsilon > 0$ there is a factor- $(1+\varepsilon)$ approximation algorithm. [Horowitz & Sahni '76]

For uniform machines, for every $\varepsilon>0$ there is a factor- $(1+\varepsilon)$ approximation algorithm. [Hochbaum & Shmoys '87]

(Machines may have different speeds, but process jobs uniformly.)