Approximation Algorithms

Lecture 12:
STEINERFOREST via Primal-Dual

Part I:
STEINERFOREST

Joachim Spoerhase Winter 2021 /22

STEINERFOREST

Given: A graph G = (V, E) with edge costs c: E — IN

STEINERFOREST

Given: A graph G = (V, E) with edge costs c: E — IN
and a set R = {(51,t1),..., (5, tr) } of k pairs of
vertices

STEINERFOREST

Given: A graph G = (V, E) with edge costs c: E — IN
and a set R = {(51,t1),..., (5, tr) } of k pairs of
vertices

STEINERFOREST

Given: A graph G = (V, E) with edge costs c: E — IN
and a set R = {(51,t1),..., (5, tr) } of k pairs of
vertices

Task: Find an edge set F C E with min. total cost ¢(F)

STEINERFOREST

Given: A graph G = (V, E) with edge costs c: E — IN
and a set R = {(51,t1),..., (5, tr) } of k pairs of
vertices

Task: Find an edge set F C E with min. total cost ¢(F)
such that in the subgraph (V, F) each pair
(s;,t;),i=1,...,k is connected.

STEINERFOREST

Given: A graph G = (V, E) with edge costs c: E — IN
and a set R = {(51,t1),..., (5, tr) } of k pairs of
vertices

Task: Find an edge set F C E with min. total cost ¢(F)
such that in the subgraph (V, F) each pair
(s;,t;),i=1,...,k is connected.

STEINERFOREST

Given: A graph G = (V, E) with edge costs c: E — IN
and a set R = {(51,t1),..., (5, tr) } of k pairs of
vertices

Task: Find an edge set F C E with min. total cost ¢(F)
such that in the subgraph (V, F) each pair
(s;,t;),i=1,...,k is connected.

t3 Special cases?

STEINERFOREST

Given: A graph G = (V, E) with edge costs c: E — IN
and a set R = {(51,t1),..., (5, tr) } of k pairs of
vertices

Task: Find an edge set F C E with min. total cost ¢(F)
such that in the subgraph (V, F) each pair
(s;,t;),i=1,...,k is connected.

t3 Special cases?

SHORTESTPATH (R = {s,t})

STEINERFOREST

Given: A graph G = (V, E) with edge costs c: E — IN
and a set R = {(51,t1),..., (5, tr) } of k pairs of
vertices

Task: Find an edge set F C E with min. total cost ¢(F)
such that in the subgraph (V, F) each pair
(s;,t;),i=1,...,k is connected.

t3 Special cases?

SHORTESTPATH (R = {s,t})

MINSPANNINGIREE (R = E)

STEINERFOREST

Given: A graph G = (V, E) with edge costs c: E — IN
and a set R = {(51,t1),..., (5, tr) } of k pairs of
vertices

Task: Find an edge set F C E with min. total cost ¢(F)
such that in the subgraph (V, F) each pair
(s;,t;),i=1,...,k is connected.

t3 Special cases?

SHORTESTPATH (R = {s,t})

MINSPANNINGIREE (R = E)

STEINERTREE (R =T X T)

Approaches?

B Merge k shortest s -t;-paths

Approaches?

B Merge k shortest s -t;-paths

B STEINERTREE on the set of terminals

Approaches?

B Merge k shortest s -t;-paths
B STEINERIREE on the set of terminals

Above approaches perform poorly :-(

Approaches?

B Merge k shortest s -t;-paths
B STEINERIREE on the set of terminals

Above approaches perform poorly :-(

1 at
1 al>
1 all

Approaches?

B Merge k shortest s -t;-paths
B STEINERIREE on the set of terminals

Above approaches perform poorly :-(

Approaches?

B Merge k shortest s -t;-paths
B STEINERIREE on the set of terminals

Above approaches perform poorly :-(

Approaches?

B Merge k shortest s -t;-paths
B STEINERIREE on the set of terminals

Above approaches perform poorly :-(

Approaches?

B Merge k shortest s -t;-paths
B STEINERIREE on the set of terminals

Above approaches perform poorly :-(

Approaches?

B Merge k shortest s -t;-paths
B STEINERTREE on the set of terminals
Above approaches perform poorly :-(

Difficulty: which terminals belong to the same tree of the
forest?

Approximation Algorithms

Lecture 12:
STEINERFOREST via Primal-Dual

Part 1I:
Primal and Dual LP

Joachim Spoerhase Winter 2020/21

An ILP

minimize

subject to

An ILP

subject to

x. €{0,1} e € E

An ILP

minimize Z CoXe
eckE
subject to

x. €{0,1} e € E

An ILP

minimize Z CoXe
eckE
subject to

e c E

x. €{0,1}

An ILP

minimize Z CoXe
eckE
subject to

e c E

x. €{0,1}

An ILP

minimize Z CoXe
eckE
subject to

e c E

x. €{0,1}

An ILP

minimize Z CoXe
eckE
subject to

x. €{0,1}

e c E

An ILP

minimize Z CoXe
eckE
subject to

x. €{0,1} e € E

0(S):={(u,v) e E:ueSandv ¢ S}

An ILP

minimize Z CoXe
eckE
subject to

x. €{0,1} e € E

0(S):={(u,v) e E:ueSandv ¢ S}

An ILP

minimize Z CoXe
ecE
subject to Z Xe > 1

e€d(S)
x. €{0,1}

0(S):={(u,v) e E:ueSandv ¢ S}

An ILP

minimize Z CoXe

subject to

0(S):={(u,v) e E:ueSandv ¢ S}

An ILP

minimize Z CoXe
ecE
subject to Z xe > 1 ses,i=1,...

e€d(S)
x. €{0,1} e € E

where S; :={S C V: |SN{s,t;}| =1}
and §(S) :={(u,v) e E:ueSandv ¢ S}

An ILP

minimize Z CoXo
ecE
subject to Z xe > 1 ses,i=1,...

e€d(S)
x. €{0,1} e € E

where S; :={S C V: |SN{s,t;}| =1}
and §(S) :={(u,v) e E:ueSandv ¢ S}

~ exponentially many constraints!

[LLP-Relaxation and Dual LP

minimize Z CoXe
ecE

subject to Z Xe > 1 Ses;i=1,...,k

e€d(S)
xXe > 0 e € E

[LLP-Relaxation and Dual LP

minimize Z CoXe
ecE

subject to Z xXe 2> 1 se€S,i=1,...,k (ys)

e€d(S)
xXe > 0 e € E

[LLP-Relaxation and Dual LP

minimize Z CoXe
ecE

subject to Z xXe 2> 1 seS,i=1,...,k (ys)
e€d(S)

xXe > 0 e € E

maximize

subject to

s = 0

[LLP-Relaxation and Dual LP

minimize Z CoXe
ecE

subject to Z xXe 2> 1 seS,i=1,...,k (ys)
e€d(S)

xXe > 0 e € E

maximize

subject to

[LLP-Relaxation and Dual LP

minimize Z CoXe

subject to

maximize

subject to

Intuition for the Dual

maximize

subject to

Intuition for the Dual

maximize

subject to

The graph is a network of bridges, spanning the moats.

Intuition for the Dual

maximize

subject to

Intuition for the Dual

maximize

subject to

Intuition for the Dual

maximize

subject to

Intuition for the Dual

maximize

subject to

Intuition for the Dual

maximize

subject to

)(S) = set
of edges /
bridges
over the
moat
around S

Intuition for the Dual

maximize

subject to

)(S) = set
of edges /
bridges
over the
moat
around S

/s = width of the moat around S

Intuition for the Dual

maximize

subject to

)(S) = set
of edges /
bridges
over the
moat
around S

/s = width of the moat around S

Intuition for the Dual

maximize

subject to

/s = width of the moat around S

)(S) = set
of edges /
bridges
over the
moat
around S

Intuition for the Dual

maximize

subject to

/s = width of the moat around S

)(S) = set
of edges /
bridges
over the
moat
around S

Intuition for the Dual

maximize

subject to

/s = width of the moat around S

)(S) = set
of edges /
bridges
over the
moat
around S

Intuition for the Dual

maximize

subject to

/s = width of the moat around S

)(S) = set
of edges /
bridges
over the
moat
around S

Intuition for the Dual

maximize

subject to

/s = width of the moat around S

)(S) = set
of edges /
bridges
over the
moat
around S

Intuition for the Dual

maximize

subject to

/s = width of the moat around S

)(S) = set
of edges /
bridges
over the
moat
around S

Intuition for the Dual

maximize

subject to

/s = width of the moat around S

)(S) = set
of edges /
bridges
over the
moat
around S

Intuition for the Dual

maximize

subject to

/s = width of the moat around S

)(S) = set
of edges /
bridges
over the
moat
around S

Intuition for the Dual

maximize

subject to

/s = width of the moat around S

)(S) = set
of edges /
bridges
over the
moat
around S

Approximation Algorithms

Lecture 12:
STEINERFOREST via Primal-Dual

Part 111
A First Primal-Dual Approach

Joachim Spoerhase Winter 2021 /22

Complementary Slackness (Rep.)

minimize maximize DTy
subjectto Ax subjectto ATy

Y

Theorem. Let x = (xq,...,x,) and y = (y1,.. .,V) be valid solutions
for the primal and dual program (resp.). Then x and y are

optimal if and only if the following conditions are met:
Primal CS:
For each j =1,...,n: either x; = 0 or }./"; a;;y; = c;

Dual CS:
For eachi =1,...,m: either y; = 0 or Z};l a;ix; = b

A First Primal-Dual Approach

Complementary slackness: x, >0 =

10 -

A First Primal-Dual Approach

Complementary slackness: x, >0 =) . ecs(S) Ys = Ce-

10 -

A First Primal-Dual Approach

Complementary slackness: x. >0 =).s..c5(5)Ys =

= pick “critical” edges (and only those)

10 -

A First Primal-Dual Approach

Complementary slackness: x. >0 =).s..c5(5)Ys =

= pick “critical” edges (and only those)

Idea: iteratively build a feasible integral Primal-Solution.

10 -

A First Primal-Dual Approach

Complementary slackness: x. >0 =).s..c5(5)Ys =

= pick “critical” edges (and only those)

Idea: iteratively build a feasible integral Primal-Solution.

How to find a violated primal constraint? (}.cs5(s)%e < 1)

10 -

A First Primal-Dual Approach

Complementary slackness: x. >0 =).s..c5(5)Ys =

= pick “critical” edges (and only those)

Idea: iteratively build a feasible integral Primal-Solution.

How to find a violated primal constraint? (}.cs5(s)%e < 1)

~~ Consider related connected component C!

10 -

10-7

A First Primal-Dual Approach

Complementary slackness: x. >0 =).s..c5(5)Ys =

= pick “critical” edges (and only those)

Idea: iteratively build a feasible integral Primal-Solution.

How to find a violated primal constraint? (}.cs5(s)%e < 1)
~~ Consider related connected component C!

How do we iteratively improve the Dual-Solution?

10 - 8

A First Primal-Dual Approach

Complementary slackness: x. >0 =).s..c5(5)Ys =

= pick “critical” edges (and only those)

Idea: iteratively build a feasible integral Primal-Solution.

How to find a violated primal constraint? (}.cs5(s)%e < 1)
~~ Consider related connected component C!

How do we iteratively improve the Dual-Solution?

~~ increase /¢! (until some edge in §(C) becomes critical)

A First Primal-Dual Approach

A First Primal-Dual Approach

A First Primal-Dual Approach

A First Primal-Dual Approach

A First Primal-Dual Approach

A First Primal-Dual Approach

;PrimalDuaISteinerForestNaive (G,,R)

Y+ 0,F+ O

~ while some (,f;) € R not connected in (V, F) do :
| C < comp.in (V,F) with |[CN{ ,f;}| =1 for some i
Increase 1/ :

until) yg = for some ¢’ € 6(C).
S:e'ed(S)

re_turn F

A First Primal-Dual Approach

PrimalDualSteinerForestNaive(G, ¢, R)
Y+ 0,F+ @
- while some (, ;) € R not connected in (V, I) do :
| C < comp. in (V, F) with [CN{ ,t;}| =1 for some i
Increase /¢ ’
until) yg = for some ¢’ € 6(C).
S:e'ed(S)
F+ Fu{e}
return -

A First Primal-Dual Approach

PrimalDualSteinerForestNaive(G, ¢, R)

y<0,F <0

~ while some (,f;) € R not connected in (V,) do .
C + comp. in (V,F) with |CN{ ,#;}| =1 for some i
Increase 1/ |

until) yg = for some ¢’ € 6(C).
S:e'ed(S)

F+ Fu{e}

return -

Running Time?

A First Primal-Dual Approach

PrimalDualSteinerForestNaive(G, ¢, R)
Y+ 0,F+ @
- while some (, ;) € R not connected in (V, I) do :
| C < comp. in (V, F) with [CN{ ,t;}| =1 for some i
Increase /¢ ’
until) yg = for some ¢’ € 6(C).
S:e'ed(S)
F+ Fu{e}
return -

Running Time?
Trick: Handle all 5 with s = 0 implicitly

Analysis

The cost of the solution F can be written as

12 -

Analysis

The cost of the solution F can be written as

Z -

ecF

12 -

Analysis

The cost of the solution F can be written as

D)

eckF eckF

12 -

Analysis

The cost of the solution F can be written as

Yo=Y L ¥s =

ecF eck S:ecéd(S

12 -

Analysis

The cost of the solution F can be written as

Y2y Y vs = LI(S) N Fl-vs.

ecF eck S:e€d(S)

12 -

Analysis

The cost of the solution F can be written as

Y2y Y vs = LI(S) N Fl-vs.

eeF eck S:e€d(S)

Compare to the value of the dual objective function) ¢ s

12 -

Analysis

The cost of the solution F can be written as

Yo=Y Y ys= ;\5(5)WF\'1/5-

eeF eck S:e€d(S)
Compare to the value of the dual objective function) ¢ s

There are examples with |§(S) N F| = k for each y5 > 0:

12 -

12 -8

Analysis

The cost of the solution F can be written as

Y2y Y% vs = LI(S) N Fl-ys.

ecF eck S:ee€d(S)
Compare to the value of the dual objective function) ¢ s

There are examples with |§(S) N F| = k for each y5 > 0:
3l
) c=1

\
/

12-9

Analysis

The cost of the solution F can be written as

Y2y Y vs = LI(S) N Fl-vs.

ecF eck S:e€d(S)
Compare to the value of the dual objective function) ¢ s
There are examples with |§(S) N F| = k for each y5 > 0:

) c=1

12 - 10

Analysis

The cost of the solution F can be written as

Yo=Y % vs = LI(S) N Fl-ys.

ecF e€lF S:e€f(S)
Compare to the value of the dual objective function) ¢ s
There are examples with |§(S) N F| = k for each y5 > 0:

) c=1

12 -11

Analysis

The cost of the solution F can be written as

Yo=Y % vs = LI(S) N Fl-ys.

ecF e€lF S:e€f(S)
Compare to the value of the dual objective function) ¢ s
There are examples with |§(S) N F| = k for each y5 > 0:

) c=1

Yis;p =1

12 -12

Analysis

The cost of the solution F can be written as

Yo=Y % vs = LI(S) N Fl-ys.

ecF eck S:ee€d(S)
Compare to the value of the dual objective function) ¢ s

There are examples with |§(S) N F| = k for each y5 > 0:

But: Average
degree of
component is 2!

) c=1

Yis;p =1

12 -13

Analysis

The cost of the solution F can be written as

Y2y Y vs = LI(S) N Fl-vs.

ecF eck S:e€d(S)
Compare to the value of the dual objective function) ¢ s

There are examples with |§(S) N F| = k for each y5 > 0:

But: Average
degree of
component is 2!

) c=1

= Increase 1/ for
all components C Yisy =1
simultaneously!

13

Approximation Algorithms

Lecture 12:
STEINERFOREST via Primal-Dual

Part 1V:
Primal-Dual with Synchronized Increases

Joachim Spoerhase Winter 2021 /22

Primal-Dual with Synchronized Increases

14 - 2

Primal-Dual with Synchronized Increases

PrimalDualSteinerForest(G, -, R)

Y+ 0,F Q4+ 0

‘while some (,#;) € R not connected in (V, F) do

| =141

C < {comp. Cin (V,F) with |[CN{ ,t;}| =1 for some i}

L F+ FU{es}

14 -3

Primal-Dual with Synchronized Increases

PrimalDualSteinerForest(G, -, R)

Y+ 0,F Q4+ 0

‘while some (,#;) € R not connected in (V, F) do

| =141

C < {comp. Cin (V,F) with |[CN{ ,t;}| =1 for some i}
Increase 1 for all C € C simultaneously

L F+ FU{es}

Primal-Dual with Synchronized Increases

PrimalDualSteinerForest(G, , R)

Yy<0,F D0+ 0
while some (,f;) € R not connected in (V, F) do
£+ C+1
C < {comp. Cin (V,F) with |[CN{ ,t;}| =1 for some i}
Increase 1 for all C € C simultaneously
until)~ ys = forsomee, € 5(C), C e C.
S:e/€6(S)
F+ FU {Bg}

Primal-Dual with Synchronized Increases

PrimalDualSteinerForest(G, , R)

Yy<0,F D0+ 0
while some (,f;) € R not connected in (V, F) do
£+ C+1
C < {comp. Cin (V,F) with |[CN{ ,t;}| =1 for some i}
Increase 1 for all C € C simultaneously
until)~ ys = forsomee, € 5(C), C e C.
S:e/€6(S)
F+ FU {Bg}

Fl' « F

return I’

14 -6

Primal-Dual with Synchronized Increases

PrimalDualSteinerForest(G, -, R)

Y+ 0,F Q4+ 0
‘while some (,#;) € R not connected in (V, F) do
| =141
C < {comp. Cin (V,F) with |[CN{ ,t;}| =1 for some i}
Increase 1 for all C € C simultaneously
until)~ ys = forsomee, € 5(C), C e C.
; S:e/€6(S)
F+ FU{es}

2l e
// Pruning

‘return [’

Primal-Dual with Synchronized Increases

PrimalDualSteinerForest(G, , R)

Yy<0,F D0+ 0
while some (,f;) € R not connected in (V, F) do
£+ C+1
C < {comp. Cin (V,F) with |[CN{ ,t;}| =1 for some i}
Increase 1 for all C € C simultaneously
until)~ ys = forsomee, € 5(C), C e C.
S:e/€6(S)
F+ FU {Eg}

Fl' « F

for j < ¢ down to 1 do

return I’

Primal-Dual with Synchronized Increases

PrimalDualSteinerForest(G, , R)

Yy<0,F D0+ 0
while some (,f;) € R not connected in (V, F) do
£+ C+1
C < {comp. Cin (V,F) with |[CN{ ,t;}| =1 for some i}
Increase 1 for all C € C simultaneously
until)~ ys = forsomee, € 5(C), C e C.

Fl' « F

for j < ¢ down to 1 do
if /' \ {¢;} is feasible solution then

L

return I’

Primal-Dual with Synchronized Increases

PrimalDualSteinerForest(G, , R)

Yy<0,F D0+ 0
while some (,f;) € R not connected in (V, F) do
£+ C+1
C < {comp. Cin (V,F) with |[CN{ ,t;}| =1 for some i}
Increase 1 for all C € C simultaneously
until)~ ys = forsomee, € 5(C), C e C.

Fl' « F

for j < ¢ down to 1 do
if /' \ {¢;} is feasible solution then

L e g)

return I’

[1lustration

G = K¢ with Euclidean edge costs

15 -

[1lustration

G = K¢ with Euclidean edge costs

() @
&

(&

(&

(o7

15 -

[1lustration

G = K¢ with Euclidean edge costs

W @
()

(2
(o

15 -

[1lustration

G = K with Euclidean edge costs

) @
()

(2
(o

15 -

[1lustration

G = K¢ with Euclidean edge costs

GONO
()

©
O

15 -

[1lustration

G = K with Euclidean edge costs

O

©
O

15 -

[1lustration

G = K with Euclidean edge costs

15 -

[1lustration

G = K with Euclidean edge costs

[1lustration

G = K with Euclidean edge costs

15-10

[1lustration

G = K with Euclidean edge costs O

Approximation Algorithms

Lecture 12:
STEINERFOREST via Primal-Dual

Part V:
Structure Lemma

Joachim Spoerhase Winter 2021 /22

17 -

Structure Lemma

17 -

Structure Lemma

17 -

Structure Lemma

17 -

Structure Lemma

Proof. First the intuition. ..

17 -

Structure Lemma

Proof. First the intuition. ..

Structure Lemma

Proof. First the intuition. ..

Structure Lemma

Proof. First the intuition. ..

—F'NC

Structure Lemma

Proof. First the intuition. ..

—F'NC

Structure Lemma

Proof. First the intuition. ..

17 - 10

Structure Lemma

Proof. First the intuition. ..

17 -11

Structure Lemma

Proof. First the intuition. ..

[T 5(C) ﬂ F/
—F'NnC

Structure Lemma

17 - 12

Proof. First the intuition. ..
[T 5(C) ﬂ F/
——F'NC

[|

]

1

|

]

1

[|

]
~

(e

Structure Lemm
a

17 -13

p
Lemma

\ Z

Proof
| . ceC
First the intuiti
ion. ..

each con

n. co

°a m

e donres ponent C of Fisa f

orest in F’

KRR 5(C) ﬂ F/ X

— F/ NC
\\\O =

Structure Lemm
a

each con

n. co

°a m

e doren Eoznent Cof Fisaf

P orest in F’

KRR 5(C) ﬂ F/ X

— F/ NC
\\\O =

Structure Lemma

‘Lemma. For each C of an iteration of the algorithm: .
Y 16(C)n | <2)C].

X ceC)

Proof. First the intuition. ..

each conn. component C of F is a forest in F’
~ avg. degree < 2

Difficulty: Some C not in C.

KRR 5(C) ﬂ F/ X

s” J////////
PYe = /////////
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\O iy,)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ = iy, -
F/ M C 1l am m,

|}
|
|
|}
|
|
|}
|
~
\\\\HH\\\\H\\\\\\\\\\\\\\\HH\\\\\ LR

Proof of Structure Lemma

18 -

Proof.

)
)

Proof of Structure Lemma |

‘Lemma. For each C of an iteration of the algorithm: :
Y 16(C)n | <2)C].

X ceC)

Proof.

Consider i-th iteration after ¢; was added to F, i =0,

A

[

)

))
nmmnmmmnnu\@/}

Proof of Structure Lemma |

‘Lemma. For each C of an iteration of the algorithm: .
Y 16(C)n | <2)C].

X ceC)

Proof.

Consider i-th iteration after ¢; was added to F, i =0,...,/
Let F; = {eqy,...,¢}

Proof of Structure Lemma |

‘Lemma. For each C of an iteration of the algorithm: .
Y 16(C)n | <2)C].

X ceC)

Proof.

Consider i-th iteration after ¢; was added to F, i =0,...,/
Let F;, = {61, .. .,ei}, G; = (V, F)

18 -

Proof of Structure Lemma

‘Lemma. For each C of an iteration of the algorithm: .
Y 16(C)n | <2)C].

X ceC)

Proof.

Consider i-th iteration after ¢; was added to F, i =0,...,/
Let F;, = {61, .. .,ei}, G; = (V, F)

Proof of Structure Lemma

18 -

‘Lemma. For each C of an iteration of the algorithm:
Y 16(C)n | <2)C].

X ceC)

Proof.

Consider i-th iteration after ¢; was added to F, i =0,...,/

Let Fi — {61,. . .,81'}, Gi — (V,Fi), and GZ* — (V,Fi UF/).

R

O=0—0

2N

Proof of Structure Lemma

18 -

‘Lemma. For each C of an iteration of the algorithm:
Y 16(C)n | <2)C].

X ceC)

Proof.

Consider i-th iteration after ¢; was added to F, i =0,...,/

Let Fi — {61,. . .,81'}, Gi — (V,Fi), and GZ* — (V,Fi UF/).

R

O=0—0

2N

Proof of Structure Lemma

18 -

‘Lemma. For each C of an iteration of the algorithm:
Y 16(C)n | <2)C].

X ceC)

Proof.

Consider i-th iteration after ¢; was added to F, i =0,...,/

Let Fi — {61,. . .,81'}, Gi — (V, Fi)/ and GZ* — (V, Fi U F/)
Contract each comp. C of G; in G to a single vertex ~» G!.

A

1 I
s ///////
o iy
97 \\\\\\\\\\\\\\\\\\\\\\\\\\\\ = ///////////////////

O=0—0

2N

Proof of Structure Lemma |

‘Lemma. For each C of an iteration of the algorithm: .
Y 16(C)n | <2)C].

X ceC)

Proof.

Consider i-th iteration after ¢; was added to F, i =0,...,/

Let Fi — {61,. . .,81'}, Gi — (V, Fi)/ and GZ* — (V, Fi U F/)
Contract each comp. C of G; in G to a single vertex ~» G!.

OA -
o)
'
'
\\\\\\\\\\\\\\\\\\\\\H\i\@/)

Proof of Structure Lemma |

Lemma. For each C of an iteration of the algorithm: .
Y 16(C)n | <2)C].
X ceC)
Proof.

Consider i-th iteration after ¢; was added to F, i =0,...,/
Let F; = {ey,...,ei}, Gi=(V,F),and G = (V,F,UF").
Contract each comp. C of G; in G to a single vertex ~» G!.

Ignore all comp. C with 5(C) n F’ =Q.)

lllll

04 -
o
'
'
\\\\\\H\\\\\\\\H\\\\\\M

Proof of Structure Lemma |

Lemma. For each C of an iteration of the algorithm: .
Y 16(C)n | <2)C].
X ceC)
Proof.

Consider i-th iteration after ¢; was added to F, i =0,...,/
Let F; = {ey,...,ei}, Gi=(V,F),and G = (V,F,UF").
Contract each comp. C of G; in G to a single vertex ~» G!.

Ignore all comp. C with 5(C) n F’ =Q.)

lllll

04 -
o
'
'
\\\\\\H\\\\\\\\H\\\\\\M

‘Lemma. For each C of an iteration of the algorithm: .
Y 16(C)n | <2)C].

X ceC)

Proof.

Proof of Structure Lemma

18 -12

Consider i-th iteration after ¢; was added to F, i =0
Let F; = {eq, ..

e}, Gi=(V,E),and Gf = (V,FUF).

,oe b

Contract each comp. C of G; in G to a single vertex ~» G!.

Claim. G/ is a forest.

Ignore all comp. C with 5(C) n F’ =Q.)

lllll

‘Lemma. For each C of an iteration of the algorithm: .
Y 16(C)n | <2)C].

X ceC)

Proof.

Proof of Structure Lemma

18-13

Consider i-th iteration after ¢; was added to F, i =0
Let F; = {eq, ..

e}, Gi=(V,E),and Gf = (V,FUF).

,oe b

Contract each comp. C of G; in G to a single vertex ~» G!.

Claim. G’ is a forest.

Note: ZC comp. S(C)NF'| = ZvéV(Gf) degG’(U)

Ignore all comp. C with 5(C) n F’ =Q.)

lllll

Proof of Structure Lemma |

‘Lemma. For each C of an iteration of the algorithm: .
Y 16(C)n | <2)C].

X ceC)

Proof.

Consider i-th iteration after ¢; was added to F, i =0

o b
Let F; = {eq, ..

e}, Gi=(V,E),and Gf = (V,FUF).
Contract each comp. C of G; in G to a single vertex ~» G!.

| Glisaf Ignore all comp. C with 6(C) N F’ =Q.)
Claim. G; is a forest.

lllll

\\\\\\\\\\\‘\ ::E: ”””"’O G l{
Note: }.c comp. S(C)NF| =Yy (G!) deg. (v) °
= 2|E(G’)\

Proof of Structure Lemma |

‘Lemma. For each C of an iteration of the algorithm: .
Y 16(C)n | <2)C].

X ceC)

Proof.

Consider i-th iteration after ¢; was added to F, i =0,...,/
Let F; = {ey,...,ei}, Gi=(V,F),and G = (V,F,UF").

Contract each comp. C of G; in G to a single vertex ~» G!.

Ignore all comp. C with 5(C) n F’ =Q.)
Claim. G/ is a forest.
Note: ZC comp. 6(C) N

lllll

F'l = Yoev (G dega/(v) °
—Z\E(G’)\<2\ (G})]

‘Lemma. For each C of an iteration of the algorithm: .
Y 16(C)n | <2)C].

X ceC)

Proof.

Proof of Structure Lemma

18 -16

Consider i-th iteration after ¢; was added to F, i =0

Let F; = {ey,...,ei}, Gi = (V,F), and G =

=(V,F, UF’).

,oe b

Contract each comp. C of G; in G to a single vertex ~» G!.

Claim. G/ is a forest.
Note: ZC comp. 6(C) N

F'l = Yoev (G degq (v)

= Z\E(G’)\ < 2|V(G)

G*

;1\\\\\\\\\\\\\\ i

s
s
\\\
o
R
o

Ignore all comp. C with 5(C) n F’ =Q.)

lllll

‘Lemma. For each C of an iteration of the algorithm: .
Y 16(C)n | <2)C].

X ceC)

Proof.

Proof of Structure Lemma

18-17

Consider i-th iteration after ¢; was added to F, i =0

Let F; = {ey,...,ei}, Gi = (V,F), and G =

=(V,F, UF’).

,oe b

Contract each comp. C of G; in G to a single vertex ~» G!.

Claim. G/ is a forest.
Note: ZC comp. 6(C) N

F'l = Yoev (G degq (v)

= Z\E(G’)\ < 2|V(G)

G*

&\\\\H\\\\\\\\ Il

O
N
W
\
W
W
O

Ignore all comp. C with 5(C) n F’ =Q.)

lllll

‘Lemma. For each C of an iteration of the algorithm: .
Y 16(C)n | <2)C].

X ceC)

Proof.

Proof of Structure Lemma

18 -18

Consider i-th iteration after ¢; was added to F, i =0
Let F; = {eq, ..

e}, Gi=(V,E),and Gf = (V,FUF).

,oe b

Contract each comp. C of G; in G to a single vertex ~» G!.

Claim. G/ is a forest.
Note: ZC comp. 6(C) N

F'l = Yoev (G degq (v)

= Z\E(G’)\ < 2|V(G)

G*

\
W
W
W
W
\
W
O\\

fm

Ignore all comp. C with 5(C) n F’ =Q.)

lllll

) G/
act1ve

Proof of Structure Lemma |

‘Lemma. For each C of an iteration of the algorithm: .
Y 16(C)n | <2)C].

X ceC)

Proof.

Consider i-th iteration after ¢; was added to F, i =0,...,/
Let F; = {ey,...,ei}, Gi=(V,F),and G = (V,F,UF").

Contract each comp. C of G; in G to a single vertex ~» G!.

| Glisaf Ignore all comp. C with 5(C) ﬁ F’ = Q@.)
Claim. G; is a forest.

et Q) G/
Note: ¢ comp. |0(C) NF'| = Loey(cr) dega(v) © 5mggE¥g
-2 2[V(G))

Proof of Structure Lemma |

‘Lemma. For each C of an iteration of the algorithm: .
Y 16(C)n | <2)C].

X ceC)

Proof.

Consider i-th iteration after ¢; was added to F, i =0

o b
Let F; = {eq, ..

e}, Gi=(V,E),and Gf = (V,FUF).
Contract each comp. C of G; in G to a single vertex ~» G!.

| Glisaf Ignore all comp. C with 5(C) p! F’ =Q.)
Claim. G; is a forest.

o G
Note: ZC comp. ’5() A F/‘ =) eV (G}) degG’() ° émggtgg
_oF O 2(G))

Claim. Inactive vertices have degree > 2

|
X
|
|
X
]
]
X
|
X
S
X
S
X
]
=
5
\

1R

OA .
2
—
=
=
=
=
—
=

!

Proof of Structure Lemma |

‘Lemma. For each C of an iteration of the algorithm: .
Y 16(C)n | <2)C].

X ceC)

Proof.

Consider i-th iteration after ¢; was added to F, i =0

o b
Let F; = {eq, ..

e}, Gi=(V,E),and Gf = (V,FUF).
Contract each comp. C of G; in G to a single vertex ~» G!.

| Glisaf Ignore all comp. C with 6(C) 1 F’ =Q.)
Claim. G; is a forest.

\\\\\\\\\\\\\\ o G
N e q N A
Note: ZC comp. ’5() ars ‘ — ZUEV G’) degG,() O mggﬂgg
= Z\E(G’)\ < 2[V(G))
Claim. Inactive vertices have degree > 2. .xsgxx///////// =
Then Z ’ de g (U) ’ < \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\O % //////////////////////// J
v active G/ ~ .7 =

Proof of Structure Lemma |

‘Lemma. For each C of an iteration of the algorithm: .
Y 16(C)n | <2)C].

X ceC)

Proof.

Consider i-th iteration after ¢; was added to F, i =0,...,/
Let F; = {ey,...,ei}, Gi=(V,F),and G = (V,F,UF").
Contract each comp. C of G; in G to a single vertex ~» G!.

| Glisaf Ignore all comp. C with 5(C) ﬁ F’ = Q@.)
Claim. G; is a forest.

o G
Note: ZC comp. 6(C)NF] = LveV(G! i) degq/(v) © émgggzg
—Z\E(G’)\<2\ (G)
Claim. Inactive vertices have degree Z 2. \\\\\\\\\\\\O‘xé//////////// t/)
N = ///////////////////
Then ZZ) active ’ degG / (U) ’ S -7\\\\\\\\\\\\\\\ % "
2-|V(G")| — 2 #(inactive) Y

Proof of Structure Lemma |

‘Lemma. For each C of an iteration of the algorithm: .
Y 16(C)n | <2)C].

X ceC)

Proof.

Consider i-th iteration after ¢; was added to F, i =0,...,/
Let F; = {ey,...,ei}, Gi=(V,F),and G = (V,F,UF").
Contract each comp. C of G; in G to a single vertex ~» G!.

| Glisaf Ignore all comp. C with 5(C) ﬁ F’ = Q@.)
Claim. G; is a forest.

o G
Note: ZC comp. o(C)NE /‘ — ZUEV G’) degG’(v) © émgggzg
—Z\E(G’)\<2\ (G})]
Claim. Inactive vertices have degree > 2. \\ \o_x%/ J\
L ///////////////////////)
Then ZZ) active ’ degG/ (U)’ S -7\\\\\\\ ,:% I
2-|V(G")| — 2 #(inactive) = 2|C|. o

Approximation Algorithms

Lecture 12:
STEINERFOREST via Primal-Dual

Part VI:
Analysis

Joachim Spoerhase Winter 2021 /22

20 -

Analysis

Proof.

Analysis

20 -

\

‘Theorem. The Primal-Dual algorithm with
synchronized increases gives a

2-approximation for STEINERFOREST.

Proof.
As before

)3

ecF/

=L L ys—Z!5

ecF’ S:e€d(S

ﬂF,l " Ys.

20 -

Analysis

‘Theorem. The Primal-Dual algorithm with
synchronized increases gives a
2-approximation for STEINERFOREST.

kProof. ’
As before

Yo=Y Y% ys—Z!(S) VF'] - ys.

ecF’ ecF’ S:e€d(S

We prove by induction over the number of iterations of the
algorithm that

20 -

Analysis

‘Theorem. The Primal-Dual algorithm with
synchronized increases gives a
2-approximation for STEINERFOREST.

kProof. ’
As before

Yo=Y Y% ys—Z!(S) VF'] - ys.

ecF’ ecF’ S:e€d(S

We prove by induction over the number of iterations of the
algorithm that

> 16(S)NF|-ys <
S

20 -

Analysis

‘Theorem. The Primal-Dual algorithm with
synchronized increases gives a
2-approximation for STEINERFOREST.

kProof. ’
As before

Yo=Y Y% ys—Z!(S) VF'] - ys.

ecF’ ecF S:e€d(S

We prove by induction over the number of iterations of the
algorithm that

> 16(S)NE|-ys <2} ys. (%)
5 5

20 -

Analysis

‘Theorem. The Primal-Dual algorithm with
synchronized increases gives a
2-approximation for STEINERFOREST.

LProof. .
As before

Yo=Y Y% ys—Z!(S) VF'] - ys.

ecF’ ecF S:e€d(S

We prove by induction over the number of iterations of the
algorithm that

> 16(S)NE|-ys <2} ys. (%)
5 5

From that, the claim of the theorem follows.

Analysis

21 -

\

‘Theorem. The Primal-Dual algorithm with

synchronized increases gives a
2-approximation for STEINERFOREST.

Proof.

Y 16(S) N '] -ys <2) v
S S

(%)

Analysis

21 -

‘Theorem. The Primal-Dual algorithm with
synchronized increases gives a
2-approximation for STEINERFOREST.

.

Proof. Y 16(S) M| -ys <2Y ys. (%)
S S

Base case trivial since we start with 15 = 0 for each S.

Analysis

21 -

‘Theorem. The Primal-Dual algorithm with
synchronized increases gives a
2-approximation for STEINERFOREST.

.

Proof. Y 16(S) M| -ys <2Y ys. (%)
S S

Base case trivial since we start with 15 = 0 for each S.

Assume that (x) holds at the start of each iteration.

Analysis

‘Theorem. The Primal-Dual algorithm with
synchronized increases gives a
2-approximation for STEINERFOREST.

.

Proof. Y 16(S) M| -ys <2Y ys. (%)
S S

Base case trivial since we start with 15 = 0 for each S.

Assume that (x) holds at the start of each iteration.

In the active iteration, we increase ¢ for all C € C by the
same amount, say ¢ > 0.

Analysis

‘Theorem. The Primal-Dual algorithm with
synchronized increases gives a
2-approximation for STEINERFOREST.

.

Proof. Y U6(S)NE |- ys <2Y . (+)
S S

Base case trivial since we start with 15 = 0 for each S.

Assume that (x) holds at the start of each iteration.

In the active iteration, we increase ¢ for all C € C by the
same amount, say ¢ > 0.

This increases the left side of (x) by

Analysis

‘Theorem. The Primal-Dual algorithm with
synchronized increases gives a
2-approximation for STEINERFOREST.

.

Proof. Y 16(S) M| -ys <2Y ys. (+)
S S

Base case trivial since we start with 15 = 0 for each S.

Assume that (x) holds at the start of each iteration.

In the active iteration, we increase ¢ for all C € C by the
same amount, say ¢ > 0.

This increases the left side of (x) by e } [6(C) N F|
ceC

Analysis

‘Theorem. The Primal-Dual algorithm with
synchronized increases gives a
2-approximation for STEINERFOREST.

.

Proof. Y 16(S) M| -ys <2Y ys. (%)
S S

Base case trivial since we start with 15 = 0 for each S.

Assume that (x) holds at the start of each iteration.

In the active iteration, we increase ¢ for all C € C by the
same amount, say ¢ > 0.

This increases the left side of (x) by e } [6(C) N F|
and the right side by ceC

Analysis

‘Theorem. The Primal-Dual algorithm with
synchronized increases gives a
2-approximation for STEINERFOREST.

.

Proof. Y 16(S) M| -ys <2Y ys. (%)
S S

Base case trivial since we start with 15 = 0 for each S.

Assume that (x) holds at the start of each iteration.

In the active iteration, we increase ¢ for all C € C by the
same amount, say ¢ > 0.

This increases the left side of (x) by e } [6(C) N F|
and the right side by 2¢|C|. cec

21 -

Analysis

‘Theorem. The Primal-Dual algorithm with
synchronized increases gives a
2-approximation for STEINERFOREST.

Proof. Y 15(S) N F| - ys <2Y ys. (%)
S S

Base case trivial since we start with 15 = 0 for each S.

Assume that (x) holds at the start of each iteration.

In the active iteration, we increase ¢ for all C € C by the
same amount, say ¢ > 0.

This increases the left side of (x) by e } [6(C) N F|
and the right side by 2¢|C|. cec

Thus, by the Structure Lemma, (*) also holds after the
active iteration.

22 -

Summary

22 -

Summary

Analysis tight?

22 -

Summary

Analysis tight?

22 -

Summary

Analysis tight?

22 -

Summary

Analysis tight?

22 -

Summary

Analysis tight?

22 -

Summary

Analysis tight?

22 -

Summary

Analysis tight?

22 -

Summary

‘Theorem. The Primal-Dual algorithm with
synchronized increases gives a
2-approximation for STEINERFOREST.

J

. . 9 t
Analysis tight® h 2 ALG = (2—¢)(n—1

22 -10

Summary

‘Theorem. The Primal-Dual algorithm with
synchronized increases gives a
2-approximation for STEINERFOREST.

J

TR t
Analysis tight: h 2 ALG = (2—¢)(n—1)

OPT =n
t3

22 -11

Summary

‘Theorem. The Primal-Dual algorithm with
synchronized increases gives a
2-approximation for STEINERFOREST.

ST t
Analysis tight: h 2 ALG = (2—¢)(n—1)
OPT =n

t3

better?

Summary

22 -12

7

Theorem. The Primal-Dual algorithm with
synchronized increases gives a
2-approximation for STEINERFOREST.

\

J

Analysis tight? 2

t ALG=(2—-¢)(n—1

OPT =mn
t3

ty
better?
No better approximation factor is known.

Summary

22-13

7

Theorem. The Primal-Dual algorithm with
synchronized increases gives a
2-approximation for STEINERFOREST.

\

J

Analysis tight? 2

t ALG=(2—-¢)(n—1

OPT =mn
t3

ty
better?
No better approximation factor is known.
The integrality gap is 2 — 1/n.

22-14

Summary

‘Theorem. The Primal-Dual algorithm with
synchronized increases gives a
2-approximation for STEINERFOREST.

\

TR t
Analysis tight: h 2 ALG = (2—¢)(n—1)

OPT =n

J

t3

ty
better?
No better approximation factor is known.
The integrality gap is 2 — 1/n.

STEINERFOREST (as STEINERTREE) cannot be approximated
within factor % ~ 1.0105 (unless P:NP) [Chlebik & Chlebikova ‘08]

	SteinerForest
	Approaches?

	Primal and Dual LP
	An ILP
	LP-Relaxation and Dual LP
	Intuition for the Dual

	A First Primal-Dual Approach
	Complementary Slackness (Rep.)
	A First Primal-Dual Approach
	Analysis

	Primal-Dual with Synchronized Increases
	Illustration

	Structure Lemma
	Proof of Structure Lemma

	Analysis
	Summary

