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STEINERFOREST

Given: A graph G = (V, E) with edge costs c: E — IN
and a set R = {(51,t1),..., (5, tr) } of k pairs of
vertices

Task: Find an edge set F C E with min. total cost ¢(F)
such that in the subgraph (V, F) each pair
(s;,t;),i=1,...,k is connected.

t3 Special cases?

SHORTESTPATH (R = {s,t})

MINSPANNINGIREE (R = E)

STEINERTREE (R =T X T)
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Approaches?

B Merge k shortest s -t;-paths
B STEINERTREE on the set of terminals
Above approaches perform poorly :-(

Difficulty: which terminals belong to the same tree of the
forest?
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minimize Z CoXo
ecE
subject to Z xe > 1 ses,i=1,...

e€d(S)
x. €{0,1} e € E

where S; :={S C V: |SN{s,t;}| =1}
and §(S) :={(u,v) e E:ueSandv ¢ S}

~ exponentially many constraints!
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Complementary Slackness (Rep.)

minimize maximize DTy
subjectto Ax subjectto ATy

Y

Theorem. Let x = (xq,...,x,) and y = (y1,.. .,V ) be valid solutions
for the primal and dual program (resp.). Then x and y are

optimal if and only if the following conditions are met:
Primal CS:
For each j =1,...,n: either x; = 0 or }./"; a;;y; = c;

Dual CS:
For eachi =1,...,m: either y; = 0 or Z};l a;ix; = b
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A First Primal-Dual Approach

Complementary slackness: x. >0 = ).s..c5(5)Ys =

= pick “critical” edges (and only those)

Idea: iteratively build a feasible integral Primal-Solution.

How to find a violated primal constraint? (}.cs5(s)%e < 1)
~~ Consider related connected component C!

How do we iteratively improve the Dual-Solution?

~~ increase /¢! (until some edge in §(C) becomes critical)
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A First Primal-Dual Approach

PrimalDualSteinerForestNaive(G, ¢, R)
Y+ 0,F+ @
- while some ( , ;) € R not connected in (V, I) do :
| C < comp. in (V, F) with [CN{ ,t;}| =1 for some i
Increase /¢ ’
until ) yg = for some ¢’ € 6(C).
S:e'ed(S)
F+ Fu{e}
return -

Running Time?
Trick: Handle all 5 with s = 0 implicitly
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Analysis

The cost of the solution F can be written as

Y2y Y vs = LI(S) N Fl-vs.

ecF eck S:e€d(S)
Compare to the value of the dual objective function ) ¢ s

There are examples with |§(S) N F| = k for each y5 > 0:

But: Average
degree of
component is 2!

) c=1

= Increase 1/ for
all components C Yisy =1
simultaneously!
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Primal-Dual with Synchronized Increases

PrimalDualSteinerForest(G, -, R)

Y+ 0,F Q4+ 0
‘while some ( ,#;) € R not connected in (V, F) do
| =141
C < {comp. Cin (V,F) with |[CN{ ,t;}| =1 for some i}
Increase 1 for all C € C simultaneously
until )~ ys = forsomee, € 5(C), C e C.
; S:e/€6(S)
F+ FU{es}

2l e
// Pruning

‘return [’
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Primal-Dual with Synchronized Increases

PrimalDualSteinerForest(G, , R)

Yy<0,F D0+ 0
while some ( ,f;) € R not connected in (V, F) do
£+ C+1
C < {comp. Cin (V,F) with |[CN{ ,t;}| =1 for some i}
Increase 1 for all C € C simultaneously
until )~ ys = forsomee, € 5(C), C e C.

Fl' « F

for j < ¢ down to 1 do
if /' \ {¢;} is feasible solution then

L e g)

return I’
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[1lustration

G = K with Euclidean edge costs O
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Structure Lemma

‘Lemma. For each C of an iteration of the algorithm: .
Y 16(C)n | <2)C].

X ceC )

Proof.  First the intuition. ..

each conn. component C of F is a forest in F’
~ avg. degree < 2

Difficulty: Some C not in C.

KRR 5(C) ﬂ F/ X
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‘Lemma. For each C of an iteration of the algorithm: :
Y 16(C)n | <2)C].

X ceC )

Proof.

Consider i-th iteration after ¢; was added to F, i =0,
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Consider i-th iteration after ¢; was added to F, i =0,...,/
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From that, the claim of the theorem follows.
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Proof. Y 15(S) N F| - ys <2Y ys. (%)
S S

Base case trivial since we start with 15 = 0 for each S.

Assume that (x) holds at the start of each iteration.

In the active iteration, we increase ¢ for all C € C by the
same amount, say ¢ > 0.

This increases the left side of (x) by e }  [6(C) N F|
and the right side by 2¢|C|. cec

Thus, by the Structure Lemma, (*) also holds after the
active iteration.
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Summary

‘Theorem. The Primal-Dual algorithm with
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\

TR t
Analysis tight: h 2 ALG = (2—¢)(n—1)

OPT =n

J

t3

ty
better?
No better approximation factor is known.
The integrality gap is 2 — 1/n.

STEINERFOREST (as STEINERTREE) cannot be approximated
within factor % ~ 1.0105 (unless P:NP) [Chlebik & Chlebikova ‘08]
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