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Lecture 12:
SteinerForest via Primal-Dual

Part I:
SteinerForest
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ShortestPath (R = {s, t})

MinSpanningTree (R = E)

SteinerTree (R = T × T)

A graph G = (V, E) with edge costs c : E→N

and a set R = {(s1, t1), . . . , (sk, tk)} of k pairs of
vertices

Find an edge set F ⊆ E with min. total cost c(F)
such that in the subgraph (V, F) each pair
(si, ti), i = 1, . . . , k is connected.
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Approaches?
� Merge k shortest si-ti-paths

� SteinerTree on the set of terminals

Above approaches perform poorly :-(

Difficulty: which terminals belong to the same tree of the
forest?
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An ILP

minimize ∑
e∈E

cexe

subject to ∑
e∈δ(S)

xe ≥ 1 S ∈ Si, i = 1, . . . , k

xe ∈ {0, 1} e ∈ E

where Si := {S ⊆ V : |S ∩ {si, ti}| = 1}

si

ti
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and δ(S) := {(u, v) ∈ E : u ∈ S and v /∈ S}

 exponentially many constraints!
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Complementary Slackness (Rep.)

minimize cᵀx
subject to Ax ≥ b

x ≥ 0

maximize bᵀy
subject to Aᵀy ≤ c

y ≥ 0

Let x = (x1, . . . , xn) and y = (y1, . . . , ym) be valid solutions
for the primal and dual program (resp.). Then x and y are
optimal if and only if the following conditions are met:

Primal CS:
For each j = 1, . . . , n: either xj = 0 or ∑m

i=1 aijyi = cj

Dual CS:
For each i = 1, . . . , m: either yi = 0 or ∑n

j=1 aijxj = bi

Theorem.
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A First Primal-Dual Approach

Complementary slackness: xe > 0 ⇒

⇒ pick “critical” edges (and only those)

Idea: iteratively build a feasible integral Primal-Solution.

How to find a violated primal constraint? (∑e∈δ(S) xe < 1)

 Consider related connected component C!

How do we iteratively improve the Dual-Solution?

 increase yC! (until some edge in δ(C) becomes critical)

∑S : e∈δ(S) yS = ce.
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A First Primal-Dual Approach

PrimalDualSteinerForestNaive(G, c, R)
y← 0, F ← ∅
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C ← comp. in (V, F) with |C ∩ {si, ti}| = 1 for some i
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S : e′∈δ(S)
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F ← F ∪ {e′}
return F
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SteinerForest (as SteinerTree) cannot be approximated
within factor 96

95 ≈ 1.0105 (unless P=NP) [Chlebik & Chlebikova ’08]
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