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Question: What’s the fastest way to deliver all parcels to
their destination?

Given: A set of n houses (points) in IR?.
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Question: What’s the fastest way to deliver all parcels to
their destination?

Given: A set of n houses (points) in IR?.
Task: Find a tour (Hamiltonian cycle) of min. length.

The Salesman can fly = Euclidean distance.
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Question: What’s the fastest way to deliver all parcels to
their destination?

Given: A set of n houses (points) in IR?.
Task: Find a tour (Hamiltonian cycle) of min. length.
The Salesman can fly = Euclidean distance.
Simplifying Assumptions
A B Houses inside . ~
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Portals

m portals

m power of two in interval

k/e, 2k/ €]
k=2+2log,n
= m = O((logn)/¢)

Portals on lev_el—i—line with
distance L/ (2'm)

Level—i—square: |
size L./2! x [./2}

Level-i-square has at most
4m portals on its boundary.
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A tour is well behaved if
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Well Behaved Tours

A tour is well behaved if

B it involves all houses and a
subset of the portals,

B no edge of the tour crosses a
line of the basic dissection,

M it is crossing-free.

W.lo.g. (homework):
No portal visited more than twice

2\ 2\ 2\ 2\
, N M A , N M @
Crossin A A O No A A O
& A A crossing 7\ A
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Computing a Well Behaved Tour

Lemma. An optimal well behaved tour can be
computed in 200" = nO1/¢) time,

Sketch. B Dynamic Programming!

B Compute sub-structure of an optimal tour
for each square in the dissection tree.

B These solutions can be efficiently
propagated bottom-up through the
dissection tree.
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Dynamic Program (I)

Each well behaved tour
induces the following in each
square Q of the dissection:

B A path cover of the
houses in Q

N A B FEach portal of Q is
1 visited 0,1 or 2 times by
2 4 this path cover

>

1 1

- o 0

= max. 34" = 30((logn)/e) — ;O(1/€) possibilities
\m:O((logn)/s)
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Each well behaved tour
induces the following in each
square Q of the dissection:

B A path cover of the
houses in Q

A A B Each portal of Q is
visited 0,1 or 2 times by
$ this path cover
B A crossing-free pairing
of the visited portals
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A A B Each portal of Q is
visited 0,1 or 2 times by
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Compute:
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Compute:
for each square Q in the
dissection and

each crossing-free pairing P
of O

an optimal path cover that
respects P.
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+ For a given square Q and
T pairing P:

B [terate over all
(nO(l/e))él — n0(17/¢)

pe crossing-free pairings of
L the child-squares

T ¢ M Minimize the cost over
all such pairings that
respect P

4 B Correctness by
4 induction
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Dynamic Program (III)

+ For a given square Q and
T pairing P:

B [terate over all
(nO(l/e))4 — n0(17/¢)

pe crossing-free pairings of
% the child-squares

T ¢ M Minimize the cost over
all such pairings that
respect P

1 B Correctness by
- induction

- o o

Lemma. An optimal well behaved tour can be
computed in 200" = nO1/¢) time,
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are “wrapped around”.
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Shifted Dissections

-~ M The best well behaved tour

al can be a bad approximation.

HEEEEN IIII'I&_

E N | M Consider an (a, b)-shifted

dissection:

x — (x+a) mod L

- T y — (y+b) mod L

T ——1| M Squares in the dissection tree

- — are “wrapped around”.

. B Dynamic program must be
modified accordingly.
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(L x L)-grid. Then we have N(77) < /2-OPT.
Proof. B Consider a tour as an

ordered cyclic sequence.
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Let 77 be an optimal tour and N(77) be the
number of crossings of 7t with the lines of the

(L x L)-grid. Then we have N(77) < /2-OPT.

Proof.

B Consider a tour as an Ax
ordered cyclic sequence. e Ay

B Each edge ¢ generates A
N, < Ax + Ay crossings.

B Crossings at the endpoint
of an edge are counted for
the next edge.

B N2 < (Ax+ Ay)2 <
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Let 77 be an optimal tour and N(77) be the
number of crossings of 7t with the lines of the

(L x L)-grid. Then we have N(77) < /2-OPT.

J

Proof.

B Consider a tour as an Ax
ordered cyclic sequence. e Ay

B Each edge ¢ generates A
N, < Ax + Ay crossings.

B Crossings at the endpoint
of an edge are counted for
the next edge.

B N2 < (Ax+ Ay)? < 2(Ax* + Ay?) = 2|e|*.
N(ﬂ) — ZeEﬂNe <
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Lemma. Let 77 be an optimal tour and N(77) be the
number of crossings of 7t with the lines of the
(L x L)-grid. Then we have N(77) < /2-OPT.
Proof. B Consider a tour as an . Ax
ordered cyclic sequence. ] e | | Ay
B Each edge ¢ generates A
N, < Ax + Ay crossings.
B Crossings at the endpoint A
of an edge are counted for
the next edge. 1t
B N2 < (Ax + Ay)? < 2(Ax? 4+ Ay?) = 2|e|?.
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p
Lemma.

Let 77 be an optimal tour and N(77) be the

number of crossings of 7t with the lines of the

(L x L)-grid. Then we have N(77) < /2-OPT.

J

Proof.

B Crossings at the endpoint

B Consider a tour as an Ax

ordered cyclic sequence. e IAy

B Each edge ¢ generates A

N, < Ax + Ay crossings.

of an edge are counted for
the next edge.

B N2 < (Ax+ Ay)? < 2(Ax* + Ay?) = 2|e|*.

N(ﬂ) — ZBEHNE < 2667'5 \V 2’6‘ — \/i OPT.




Approximation Algorithms

Lecture 9:
PTAS for EucLIDEANTSP

Part VI:
Approximation Factor

Joachim Spoerhase Winter 2021 /22



Shifted Dissections (III)




17 -

Shifted Dissections (III)

‘Theorem. Let a,b € 0, L — 1] be chosen independently and
uniformaly at random. Then the expected cost of
an optimal well behaved tour with respect to the

(a,b)-shifted dissection is < (1 +2+/2¢)OPT.
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Shifted Dissections (I11I)

B Consider an intersection point between 7t and a line |
of the (L x L)-grid.

B With probability at most 2'/L, [ is a level-i-line |
~ an increase in tour length by a maximum of L/ (2'm)
(inter-portal distance).

B Thus, the expected increase in tour length due to this
intersection is at most:

koot [
D
L 2'm

1=0
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B With probability at most 2'/L, [ is a level-i-line |
~ an increase in tour length by a maximum of L/ (2'm)
(inter-portal distance).

B Thus, the expected increase in tour length due to this
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B Consider an intersection point between 7t and a line |
of the (L x L)-grid.

B With probability at most 2'/L, [ is a level-i-line |
~ an increase in tour length by a maximum of L/ (2'm)
(inter-portal distance).

B Thus, the expected increase in tour length due to this
intersection is at most: m € k/e, 2k /¢
koot 1 k41

Z L < < 2e.
z‘:oL 2'm m
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B Consider an intersection point between 7t and a line |
of the (L x L)-grid.

B With probability at most 2'/L, [ is a level-i-line |
~ an increase in tour length by a maximum of L/ (2'm)
(inter-portal distance).

B Thus, the expected increase in tour length due to this

intersection 1s at most: m € [k/e 2k/ €]
k ni

~ | 2 m

1=0

B Summing over all N(77) < v/2-OPT intersection points,
and applying linearity of expectation, provides the
claim.
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time.

Proof. Try all L? many (a, b)-shifted dissections.
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Approximation Scheme

‘Theorem. Let a,b € 0, L — 1| be chosen independently and
uniformaly at random. Then the expected cost of
an optimal well behaved tour with respect to the

(a,b)-shifted dissection is < (1 + 2+/2¢)OPT.

\. J

\

‘Theorem. There is a deterministic algorithm (PTAS) for
EucLIDEANTSP that provides for every e > 0 a

(1 + ¢)-approximation in nO(1/¢)

time.

Proof. Try all L? many (a, b)-shifted dissections.
By the previous theorem, one of them is good
enough.
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