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KNAPSACK

Given: m AsetS=1{ay,...,a,} of objects.
m For every object 4; a
m For every object a; a Profit profit(a;) e IN"
m A knapsack capacity B e IN*

Task: Find a subset of

objects whose

is at most B and
whose total profit is
maximum.

(NP-hard)
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Pseudo-Polynomial Algorithms

Let I] be an optimization problem whose instances can be
represented by objects (such as sets, elements, edges,
nodes) and (such as costs, weights, profits).

I|: The size of an instance | € Dy, where all numbers in |
are encoded in binary. (5= 101 = |I| =3)

I|: The size of an instance [ € Dy, where all numbers in |
are encoded in unary. (5= 11111 = |1}, =5)

The running time of a polynomial algorithm for IT is
polynomial in |I|.

The running time of a pseudo-polynomial algorithm is
polynomial in |/;.

The running time of a pseudo-polynomial algorithm may
not be polynomial in |/|.



Strong NP-Hardness

An optimization problem is called strongly NP-hard if it
remains NP-hard under unary encoding.

An optimization problem is called weakly NP-hard if it is
NP-hard under binary encoding but has a
pseudo-polynomial algorithm.

Theorem. A strongly NP-hard problem has no
pseudo-polynomial algorithm unless P = NP.
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Pseudo-Polynomial Alg. for KNAPSACK

Let P := max; = <OPT <n

Foreveryi=1,...,nand every v e{1,...,nP},

let 5; , be a subset of {a1,...,a;} whose total profit is
precisely p and whose total size is minimum among all
subsets with these properties. Such a set may not exist.

a
@ LSia AL
Let be the total size of set @

5ip (set if no such
set exists).

If all are known, then we

can compute
OPT =max{ p | <B}.



Pseudo-Polynomial Alg. for KNAPSACK

can be computed for all p € {0, ..., nP}.

Set for p <0
= min{ , + p —profit(a;;1)]}
= All values can be computed in total time O(n?P).

— OPT can be computed in

O(n?P) time. Q— B Sia /\é

5L
i1 !
Fay . ~

‘Theorem. KNAPSACK can be solved optimally in
pseudo-polynomial time O(n° ). j

\.

‘Corollary. KNAPSACK is weakly NP-hard.

l B gl




Pseudo-Polynomial Alg. for KNAPSACK

Theorem. KNAPSACK can be solved optimally in
pseudo-polynomial time O(n? ).

Examples.

Observe.

= running time O(n’)
(Bin.) instance size |[| > nlog P’ = ()(nlogn)
=n e O(|I|/log|l|)

= running time O(|1"/ log7 1]) =poly(|])
— running time O(n%2")

(Bin.) instance size |[| < nlog P = O(n?)

— running time O(|712Y!") % poly(|1])
(Un.) instance size |I|, < nP = O(n2")

= n € O(log|/|u —loglog|I|u)
= running time O(|[|u log|/|u) = poly(|/|u)

Running time O(n?P) poly in n if P poly in .
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Approximation Schemes

Let I'I be an optimization problem. An algorithm A is
called a polynomial-time approximation scheme (PTAS),
if it outputs for every input (I,¢) with [ € Diyand € >0 a

solution s € S1y( ) such that the following holds:
m < (1+¢)-OPT, if Il min problem,
m > (1-¢)-OPT, if IT max problem.

The runtime of A is polynomial in |/| for every fixed ¢ > 0.

A is called fully polynomial-time approximation scheme
(FPTAS) if its running time is polynomial in |/| and 1/e.

Example running times
s O(n'/%) ~ PTAS

s O(2Y¢n*) ~ PTAS
s O(n3/e?) ~ FPTAS

11 - 10
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13-27

FPTAS for KNAPSACK via Scaling

?KnapsackScaling (I, €)

K<« ¢lIn // scaling factor

profit’(a;) := |profit(a;) /K]

Compute optimal solution S’ for [ w.r.t. profit’ ()
return 5’

[Lemma. profit(S") > (1 -¢) - OPT. ]
Proof. Let OPT = {0q,...,0;}.
Obs.1. Fori=1,...,k, profit(o;) - K < K-profit' (0;) < profit(o;)
= K-¥;profit'(0;) > OPT - kK > OPT - nK = OPT - &P
Obs. 2. profit(S") > K-profit' (S") > K- ¥; profit’ (0;)
= profit(5’) > OPT - ¢P > OPT- ¢ OPT = (1-¢)-OPT

\

‘Theorem. KnapsackScaling is an FPTAS for KNAPSACK

with running time O(n°> /)

\. /
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FPTAS and Pseudo-Poly. Algorithms

N

‘Theorem. Let p be a polynomial and let I'I be an NP-hard
minimization problem with integral objective
function and OPT(/) < (|/],) for all instances |

of ['I. If I'T has an FPTAS, then there is a
pseudo-polynomial algorithm for 1.

\. J

Proof.
Assuming there is an FPTAS for I (in (][], 1/¢) time).

Set e =1/p(|1],).
= ALG < (1+¢)OPT < OPT+ ep(|I],) = OPT + 1.

= ALG = OPT.
Running time: ¢(|/|, 7(|I|)), so poly(|],,).



16 -

FPTAS and Strong NP-Hardness

[Theorem.

A strongly NP-hard problem has no
pseudo-polynomial algorithm unless P = NP.

)
Theorem.

\.

Let © be a polynomial and let ['] be an NP-hard
minimization problem with integral objective
function and OPT(/) < 1(|/,) for all instances |
of ['[. If I] has an FPTAS, then there is a

pseudo-polynomial algorithm for I1.

J

(Corollary.

\

Let I be an NP-hard optimization problem
that fulfils the restrictions above. If I is

strongly NP-hard, then there is no FPTAS for I]
(unless P = NP).

J




	Knapsack
	Pseudo-Polynomial Algorithms and Strong NP-Hardness
	Pseudo-Polynomial Algorithms
	Strong NP-Hardness

	Pseudo-Polynomial Algorithm for Knapsack
	Definitions
	Algorithm
	Examples

	Approximation Schemes
	FPTAS for Knapsack
	Connections
	FPTAS and Pseudo-Polynomial Algorithms
	FPTAS and Strong NP-Hardness


