
1

Joachim Spoerhase Winter 2021/22

Lecture 8:
Approximation Schemes and

the Knapsack Problem

Part I:
Knapsack

Approximation Algorithms



2 - 7

Knapsack

∎ A set S = {a1, . . . , an} of objects.Given:

e2 2 L

1 Le2

e2 1 L

∎ For every object ai a size size(ai) ∈ N+

∎ For every object ai a Profit profit(ai) ∈ N+

∎ A knapsack capacity B ∈ N+

Task: Find a subset of
objects whose total
size is at most B and
whose total profit is
maximum.

e4 12 L

e10 4 L an

a1 a2

ai

ai−1

NP-hard

15 L



3

Lecture 8:
Approximation Schemes and

the Knapsack Problem
Part II:

Pseudo-Polynomial Algorithms and
Strong NP-Hardness

Approximation Algorithms

Joachim Spoerhase Winter 2021/22



4 - 8

Pseudo-Polynomial Algorithms
Let Π be an optimization problem whose instances can be
represented by objects (such as sets, elements, edges,
nodes) and numbers (such as costs, weights, profits).

The running time of a polynomial algorithm for Π is
polynomial in ∣I∣.
The running time of a pseudo-polynomial algorithm is
polynomial in ∣I∣u.

The running time of a pseudo-polynomial algorithm may
not be polynomial in ∣I∣.

∣I∣: The size of an instance I ∈ DΠ, where all numbers in I
are encoded in binary.
∣I∣u: The size of an instance I ∈ DΠ, where all numbers in I
are encoded in unary.

(5 ≙ 101⇒ ∣I∣ = 3)

(5 ≙ 11111⇒ ∣I∣u = 5)



5 - 3

Strong NP-Hardness
An optimization problem is called strongly NP-hard if it
remains NP-hard under unary encoding.

An optimization problem is called weakly NP-hard if it is
NP-hard under binary encoding but has a
pseudo-polynomial algorithm.

Theorem. A strongly NP-hard problem has no
pseudo-polynomial algorithm unless P = NP.



6

Lecture 8:
Approximation Schemes and

the Knapsack Problem

Part III:
Pseudo-Polynomial Algorithm for Knapsack

Approximation Algorithms

Joachim Spoerhase Winter 2021/22



7 - 14

Pseudo-Polynomial Alg. for Knapsack

an
P

Let P ∶= maxi profit(ai)

For every i = 1, . . . , n and every p ∈ {1, . . . , nP},
let Si,p be a subset of {a1, . . . , ai} whose total profit is
precisely p and whose total size is minimum among all
subsets with these properties. Such a set may not exist.

Let A[i, p] be the total size of set
Si,p (set A[i, p] = ∞ if no such
set exists).

If all A[i, p] are known, then we
can compute
OPT = max{ p ∣ A[n, p] ≤ B }.

⇒ P ≤ OPT ≤ nP

e2

e2

e4

e10

e2

Si,4

A[i, 4] = 2

a1 a2

ai

ai−1

2 L

1 L

1 L

12 L

4 L

15 L



8 - 11

Pseudo-Polynomial Alg. for Knapsack

A[1, p] can be computed for all p ∈ {0, . . . , nP}.

A[i + 1, p] = min{A[i, p], size(ai+1) + A[i, p −profit(ai+1)]}
Set A[i, p] ∶= ∞ for p < 0

⇒ All values A[i, p] can be computed in total time O(n2P).

e2

e2

e4

e10

e2

P

Si,4

A[i, 4] = 2

OPT can be computed in
O(n2P) time.

⇒

an

a1 a2

ai

ai−1

2 L

1 L

1 L

12 L

4 L

Knapsack can be solved optimally in
pseudo-polynomial time O(n2P).

Theorem.

Knapsack is weakly NP-hard.Corollary.

15 L



9 - 14

Pseudo-Polynomial Alg. for Knapsack

Running time O(n2P) poly in n if P poly in n.Observe.

Examples. P = n5 ⇒ running time O(n7)

P = 2n

(Bin.) instance size ∣I∣ ≥ n log P = Ω(n log n)
⇒ n ∈ O(∣I∣/ log ∣I∣)
⇒ running time O(∣I∣7/ log7 ∣I∣) = poly(∣I∣)

⇒ running time O(n22n)
(Bin.) instance size ∣I∣ ≤ n log P = O(n2)
⇒ running time O(∣I∣2

√
∣I∣) ≠ poly(∣I∣)

(Un.) instance size ∣I∣u ≤ nP = O(n2n)
⇒ n ∈ O(log ∣I∣u − log log ∣I∣u)
⇒ running time O(∣I∣u log ∣I∣u) = poly(∣I∣u)

Knapsack can be solved optimally in
pseudo-polynomial time O(n2P).

Theorem.



10

Lecture 8:
Approximation Schemes and

the Knapsack Problem

Part IV:
Approximation Schemes

Approximation Algorithms

Joachim Spoerhase Winter 2021/22



11 - 10

Approximation Schemes
Let Π be an optimization problem. An algorithm A is
called a polynomial-time approximation scheme (PTAS),
if it outputs for every input (I, ε) with I ∈ DΠ and ε > 0 a
solution s ∈ SΠ(I) such that the following holds:
∎ objΠ(I, s) ≤ (1+ ε) ⋅OPT, if Π min problem,
∎ objΠ(I, s) ≥ (1− ε) ⋅OPT, if Π max problem.

The runtime of A is polynomial in ∣I∣ for every fixed ε > 0.

A is called fully polynomial-time approximation scheme
(FPTAS) if its running time is polynomial in ∣I∣ and 1/ε.

Example running times
∎ O(n1/ε) ↝ PTAS
∎ O(21/εn4) ↝ PTAS
∎ O(n3/ε2) ↝ FPTAS



12

Lecture 8:
Approximation Schemes and

the Knapsack Problem

Part V:
FPTAS for Knapsack

Approximation Algorithms

Joachim Spoerhase Winter 2021/22



13 - 27

FPTAS for Knapsack via Scaling

FPTAS idea: Scale profits to polynomial size (as required
by the error parameter ε). . .

KnapsackScaling (I, ε)
K ← εP/n
profit′(ai) ∶= ⌊profit(ai)/K⌋
Compute optimal solution S′ for I w.r.t. profit′(⋅)
return S′

Proof. Let OPT = {o1, . . . , ok}.
For i = 1, . . . , k, profit(oi) −K ≤ K ⋅profit′(oi) ≤ profit(oi)

profit(S′) ≥ K ⋅profit′(S′) ≥ K ⋅ ∑i profit′(oi)
⇒ profit(S′) ≥ OPT− εP ≥ OPT− ε OPT = (1− ε) ⋅OPT

⇒ K ⋅ ∑i profit′(oi) ≥ OPT− kK ≥ OPT− nK = OPT− εP

// scaling factor

Lemma. profit(S′) ≥ (1− ε) ⋅OPT.

Obs. 1.

Obs. 2.

[Ibarra & Kim, ’75]

Theorem. KnapsackScaling is an FPTAS for Knapsack

with running time O(n3/ε)= O (n2 ⋅ P
εP/n).



14

Lecture 8:
Approximation Schemes and

the Knapsack Problem

Part VI:
Connections

Approximation Algorithms

Joachim Spoerhase Winter 2021/22



15 - 16

FPTAS and Pseudo-Poly. Algorithms

Theorem. Let p be a polynomial and let Π be an NP-hard
minimization problem with integral objective
function and OPT(I) < p(∣I∣u) for all instances I
of Π. If Π has an FPTAS, then there is a
pseudo-polynomial algorithm for Π.

Proof.
Assuming there is an FPTAS for Π (in q(∣I∣, 1/ε) time).
Set ε = 1/p(∣I∣u).
⇒ ALG ≤ (1+ ε)OPT < OPT+ εp(∣I∣u) = OPT + 1.
⇒ ALG = OPT.
Running time: q(∣I∣, p(∣I∣u)), so poly(∣I∣u).



16 - 2

FPTAS and Strong NP-Hardness

Corollary. Let Π be an NP-hard optimization problem
that fulfils the restrictions above. If Π is
strongly NP-hard, then there is no FPTAS for Π
(unless P = NP).

Theorem. A strongly NP-hard problem has no
pseudo-polynomial algorithm unless P = NP.

Theorem. Let p be a polynomial and let Π be an NP-hard
minimization problem with integral objective
function and OPT(I) < p(∣I∣u) for all instances I
of Π. If Π has an FPTAS, then there is a
pseudo-polynomial algorithm for Π.


	Knapsack
	Pseudo-Polynomial Algorithms and Strong NP-Hardness
	Pseudo-Polynomial Algorithms
	Strong NP-Hardness

	Pseudo-Polynomial Algorithm for Knapsack
	Definitions
	Algorithm
	Examples

	Approximation Schemes
	FPTAS for Knapsack
	Connections
	FPTAS and Pseudo-Polynomial Algorithms
	FPTAS and Strong NP-Hardness


