Approximation Algorithms

Lecture 8:

Approximation Schemes and the Knapsack Problem

Part I: KNAPSACK

Given: \blacksquare A set $S = \{a_1, \ldots, a_n\}$ of objects.

Given:

- A set $S = \{a_1, \ldots, a_n\}$ of objects.
- For every object a_i a size size $(a_i) \in \mathbb{N}^+$

Given:

- A set $S = \{a_1, \ldots, a_n\}$ of objects.
- For every object a_i a size size $(a_i) \in \mathbb{N}^+$
- For every object a_i a Profit profit $(a_i) \in \mathbb{N}^+$

Given:

- A set $S = \{a_1, \ldots, a_n\}$ of objects.
- For every object a_i a size size $(a_i) \in \mathbb{N}^+$
- For every object a_i a Profit profit $(a_i) \in \mathbb{N}^+$
- A knapsack capacity $B \in \mathbb{N}^+$

Given:

- A set $S = \{a_1, \ldots, a_n\}$ of objects.
- For every object a_i a size size $(a_i) \in \mathbb{N}^+$
- For every object a_i a Profit profit $(a_i) \in \mathbb{N}^+$
- A knapsack capacity $B \in \mathbb{N}^+$

Task:

Find a subset of objects whose total size is at most *B* and whose total profit is maximum.

Given:

- A set $S = \{a_1, \ldots, a_n\}$ of objects.
- For every object a_i a size size $(a_i) \in \mathbb{N}^+$
- For every object a_i a Profit profit $(a_i) \in \mathbb{N}^+$
- A knapsack capacity $B \in \mathbb{N}^+$

Task:

Find a subset of objects whose total size is at most *B* and whose total profit is maximum.

Given:

- A set $S = \{a_1, \ldots, a_n\}$ of objects.
- For every object a_i a size size $(a_i) \in \mathbb{N}^+$
- For every object a_i a Profit profit $(a_i) \in \mathbb{N}^+$
- A knapsack capacity $B \in \mathbb{N}^+$

Task:

Find a subset of objects whose total size is at most *B* and whose total profit is maximum.

(NP-hard)

Approximation Algorithms

Lecture 8:

Approximation Schemes and the Knapsack Problem

Part II:

Pseudo-Polynomial Algorithms and Strong NP-Hardness

Let Π be an optimization problem whose instances can be represented by **objects** (such as sets, elements, edges, nodes) and **numbers** (such as costs, weights, profits).

Let Π be an optimization problem whose instances can be represented by **objects** (such as sets, elements, edges, nodes) and **numbers** (such as costs, weights, profits).

|*I*|: The size of an instance $I \in D_{\Pi}$, where all numbers in *I* are encoded in **binary**.

Let Π be an optimization problem whose instances can be represented by **objects** (such as sets, elements, edges, nodes) and **numbers** (such as costs, weights, profits).

|*I*|: The size of an instance $I \in D_{\Pi}$, where all numbers in *I* are encoded in **binary**. $(5 = 101 \Rightarrow |I| = 3)$

Let Π be an optimization problem whose instances can be represented by **objects** (such as sets, elements, edges, nodes) and **numbers** (such as costs, weights, profits).

|*I*|: The size of an instance $I \in D_{\Pi}$, where all numbers in *I* are encoded in **binary**. $(5 = 101 \Rightarrow |I| = 3)$

 $|I|_{\mathbf{u}}$: The size of an instance $I \in D_{\Pi}$, where all numbers in I

are encoded in unary.

Let Π be an optimization problem whose instances can be represented by **objects** (such as sets, elements, edges, nodes) and **numbers** (such as costs, weights, profits). |I|: The size of an instance $I \in D_{\Pi}$, where all numbers in I are encoded in **binary**. $(5 = 101 \Rightarrow |I| = 3)$ $|I|_{\mathbf{u}}$: The size of an instance $I \in D_{\Pi}$, where all numbers in I are encoded in **unary**. $(5 = 11111 \Rightarrow |I|_{\mathbf{u}} = 5)$

Let Π be an optimization problem whose instances can be represented by **objects** (such as sets, elements, edges, nodes) and **numbers** (such as costs, weights, profits).

|*I*|: The size of an instance $I \in D_{\Pi}$, where all numbers in *I* are encoded in **binary**. $(5 = 101 \Rightarrow |I| = 3)$

 $|I|_{\rm u}$: The size of an instance $I \in D_{\Pi}$, where all numbers in I are encoded in **unary**. $(5 = 11111) \Rightarrow |I|_{\rm u} = 5)$

The running time of a polynomial algorithm for Π is polynomial in |I|.

Let Π be an optimization problem whose instances can be represented by **objects** (such as sets, elements, edges, nodes) and **numbers** (such as costs, weights, profits).

|I|: The size of an instance $I \in D_{\Pi}$, where all numbers in I are encoded in **binary**. $(5 \triangleq 101 \Rightarrow |I| = 3)$ $|I|_{\mathfrak{u}}$: The size of an instance $I \in D_{\Pi}$, where all numbers in I

are encoded in **unary**. $(5 = 111111) \Rightarrow |I|_u = 5$

The running time of a polynomial algorithm for Π is polynomial in |I|.

The running time of a **pseudo-polynomial algorithm** is polynomial in $|I|_u$.

Let Π be an optimization problem whose instances can be represented by **objects** (such as sets, elements, edges, nodes) and **numbers** (such as costs, weights, profits).

|*I*|: The size of an instance $I \in D_{\Pi}$, where all numbers in *I* are encoded in **binary**. $(5 = 101 \Rightarrow |I| = 3)$

 $|I|_{\rm u}$: The size of an instance $I \in D_{\Pi}$, where all numbers in I are encoded in **unary**. $(5 = 11111) \Rightarrow |I|_{\rm u} = 5)$

The running time of a polynomial algorithm for Π is polynomial in |I|.

The running time of a **pseudo-polynomial algorithm** is polynomial in $|I|_u$.

The running time of a pseudo-polynomial algorithm may not be polynomial in |I|.

Strong NP-Hardness

An optimization problem is called **strongly NP-hard** if it remains NP-hard under unary encoding.

Strong NP-Hardness

An optimization problem is called **strongly NP-hard** if it remains NP-hard under unary encoding.

An optimization problem is called **weakly NP-hard** if it is NP-hard under binary encoding but has a pseudo-polynomial algorithm.

Strong NP-Hardness

An optimization problem is called **strongly NP-hard** if it remains NP-hard under unary encoding.

An optimization problem is called **weakly NP-hard** if it is NP-hard under binary encoding but has a pseudo-polynomial algorithm.

Theorem. A strongly NP-hard problem has no pseudo-polynomial algorithm unless P = NP.

Approximation Algorithms

Lecture 8:

Approximation Schemes and the Knapsack Problem

Part III:

Pseudo-Polynomial Algorithm for KNAPSACK

Let $P := \max_i \operatorname{profit}(a_i)$

Let $P := \max_i \operatorname{profit}(a_i)$

Let $P := \max_i \operatorname{profit}(a_i) \implies \leq \operatorname{OPT} \leq$

Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$

Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$

For every i = 1, ..., n and every $p \in \{1, ..., nP\}$,

Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$

For every i = 1, ..., n and every $p \in \{1, ..., nP\}$, let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p

Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$

For every i = 1, ..., n and every $p \in \{1, ..., nP\}$, let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p

Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$

For every i = 1, ..., n and every $p \in \{1, ..., nP\}$, let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties.

Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$

For every i = 1, ..., n and every $p \in \{1, ..., nP\}$, let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties.

Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$

For every i = 1, ..., n and every $p \in \{1, ..., nP\}$, let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties. Such a set may not exist.

Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$

For every i = 1, ..., n and every $p \in \{1, ..., nP\}$, let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties. Such a set may not exist.

Let A[i, p] be the total size of set $S_{i,p}$ (set $A[i, p] = \infty$ if no such set exists).

Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$

For every i = 1, ..., n and every $p \in \{1, ..., nP\}$, let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties. Such a set may not exist.

Let A[i, p] be the total size of set $S_{i,p}$ (set $A[i, p] = \infty$ if no such set exists).

Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$

For every i = 1, ..., n and every $p \in \{1, ..., nP\}$, let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties. Such a set may not exist.

Let A[i, p] be the total size of set $S_{i,p}$ (set $A[i, p] = \infty$ if no such set exists).

If all A[i, p] are known, then we can compute

OPT =

Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$

For every i = 1, ..., n and every $p \in \{1, ..., nP\}$, let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties. Such a set may not exist.

Let A[i, p] be the total size of set $S_{i,p}$ (set $A[i, p] = \infty$ if no such set exists).

If all A[i, p] are known, then we can compute

$$OPT = \max\{ p \mid A[n, p] \le B \}.$$

A[1, p] can be computed for all $p \in \{0, ..., nP\}$.

A[1, p] can be computed for all $p \in \{0, ..., nP\}$.

Set $A[i, p] := \infty$ for p < 0

Set
$$A[i, p] := \infty$$
 for $p < 0$

$$A[i+1,p] =$$

Set
$$A[i, p] := \infty$$
 for $p < 0$
 $A[i+1, p] = \min\{$

Set
$$A[i, p] := \infty$$
 for $p < 0$

$$A[i+1,p] = \min\{A[i,p],$$

Set
$$A[i, p] := \infty$$
 for $p < 0$

$$A[i+1,p] = \min\{A[i,p], \operatorname{size}(a_{i+1}) + \dots$$

A[1, p] can be computed for all $p \in \{0, ..., nP\}$.

Set $A[i, p] := \infty$ for p < 0

$$A[i+1,p] = \min\{A[i,p], \text{size}(a_{i+1}) + A[i,p-\text{profit}(a_{i+1})]\}$$

A[1, p] can be computed for all $p \in \{0, ..., nP\}$.

Set $A[i, p] := \infty$ for p < 0

$$A[i+1,p] = \min\{A[i,p], \text{size}(a_{i+1}) + A[i,p-\text{profit}(a_{i+1})]\}$$

 \Rightarrow All values A[i, p] can be computed in total time $O(n^2P)$.

Pseudo-Polynomial Alg. for KNAPSACK

A[1, p] can be computed for all $p \in \{0, ..., nP\}$.

Set $A[i, p] := \infty$ for p < 0

$$A[i+1,p] = \min\{A[i,p], \text{size}(a_{i+1}) + A[i,p-\text{profit}(a_{i+1})]\}$$

- \Rightarrow All values A[i, p] can be computed in total time $O(n^2P)$.
- \Rightarrow OPT can be computed in $O(n^2P)$ time.

A[1, p] can be computed for all $p \in \{0, ..., nP\}$.

Set
$$A[i, p] := \infty$$
 for $p < 0$

$$A[i+1,p] = \min\{A[i,p], \text{size}(a_{i+1}) + A[i,p-\text{profit}(a_{i+1})]\}$$

- \Rightarrow All values A[i, p] can be computed in total time $O(n^2P)$.
- \Rightarrow OPT can be computed in $O(n^2P)$ time.

A[1, p] can be computed for all $p \in \{0, ..., nP\}$.

Set
$$A[i, p] := \infty$$
 for $p < 0$

$$A[i+1,p] = \min\{A[i,p], \text{size}(a_{i+1}) + A[i,p-\text{profit}(a_{i+1})]\}$$

- \Rightarrow All values A[i, p] can be computed in total time $O(n^2P)$.
- \Rightarrow OPT can be computed in $O(n^2P)$ time.

Theorem. KNAPSACK can be solved optimally in pseudo-polynomial time $O(n^2P)$.

Corollary. KNAPSACK is weakly NP-hard.

Theorem. Knapsack can be solved optimally in pseudo-polynomial time $O(n^2P)$.

Examples. $P = n^5$

Theorem. Knapsack can be solved optimally in pseudo-polynomial time $O(n^2P)$.

Examples. $P = n^5 \implies \text{running time } O(n^7)$

Theorem. Knapsack can be solved optimally in pseudo-polynomial time $O(n^2P)$.

Examples. $P = n^5$ \Rightarrow running time $O(n^7)$ (Bin.) instance size $|I| \ge n \log P = \Omega(n \log n)$

Theorem. Knapsack can be solved optimally in pseudo-polynomial time $O(n^2P)$.

Examples. $P = n^5$ \Rightarrow running time $O(n^7)$ (Bin.) instance size $|I| \ge n \log P = \Omega(n \log n)$ $\Rightarrow n \in O(|I|/\log |I|)$


```
Examples. P = n^5 \Rightarrow running time O(n^7)

(Bin.) instance size |I| \ge n \log P = \Omega(n \log n)

\Rightarrow n \in O(|I|/\log |I|)

\Rightarrow running time O(|I|^7/\log^7 |I|) = \text{poly}(|I|)
```

Pseudo-Polynomial Alg. for KNAPSACK

Examples.
$$P = n^5$$
 \Rightarrow running time $O(n^7)$ (Bin.) instance size $|I| \ge n \log P = \Omega(n \log n)$ $\Rightarrow n \in O(|I|/\log |I|)$ \Rightarrow running time $O(|I|^7/\log^7 |I|) = \text{poly}(|I|)$ $P = 2^n$

```
Examples. P = n^5 \Rightarrow running time O(n^7) (Bin.) instance size |I| \ge n \log P = \Omega(n \log n) \Rightarrow n \in O(|I|/\log |I|) \Rightarrow running time O(|I|^7/\log^7 |I|) = \text{poly}(|I|) \Rightarrow running time O(n^2 2^n)
```

```
Examples. P = n^5 \Rightarrow running time O(n^7)

(Bin.) instance size |I| \ge n \log P = \Omega(n \log n)

\Rightarrow n \in O(|I|/\log |I|)

\Rightarrow running time O(|I|^7/\log^7 |I|) = \text{poly}(|I|)

P = 2^n \Rightarrow running time O(n^2 2^n)

(Bin.) instance size |I| \le n \log P = O(n^2)
```

Examples.
$$P = n^5$$
 \Rightarrow running time $O(n^7)$
(Bin.) instance size $|I| \ge n \log P = \Omega(n \log n)$
 $\Rightarrow n \in O(|I|/\log |I|)$
 \Rightarrow running time $O(|I|^7/\log^7 |I|) = \text{poly}(|I|)$
 $P = 2^n$ \Rightarrow running time $O(n^2 2^n)$
(Bin.) instance size $|I| \le n \log P = O(n^2)$
 \Rightarrow running time $O(|I|2^{\sqrt{|I|}}) \ne \text{poly}(|I|)$

Pseudo-Polynomial Alg. for KNAPSACK

```
Examples. P = n^5 \Rightarrow running time O(n^7)

(Bin.) instance size |I| \ge n \log P = \Omega(n \log n)

\Rightarrow n \in O(|I|/\log |I|)

\Rightarrow running time O(|I|^7/\log^7 |I|) = \text{poly}(|I|)

P = 2^n \Rightarrow running time O(n^2 2^n)

(Bin.) instance size |I| \le n \log P = O(n^2)

\Rightarrow running time O(|I|2^{\sqrt{|I|}}) \ne \text{poly}(|I|)

(Un.) instance size |I|_u \le nP = O(n2^n)
```

Examples.
$$P = n^5$$
 \Rightarrow running time $O(n^7)$
(Bin.) instance size $|I| \ge n \log P = \Omega(n \log n)$
 $\Rightarrow n \in O(|I|/\log |I|)$
 \Rightarrow running time $O(|I|^7/\log^7 |I|) = \text{poly}(|I|)$
 $P = 2^n$ \Rightarrow running time $O(n^2 2^n)$
(Bin.) instance size $|I| \le n \log P = O(n^2)$
 \Rightarrow running time $O(|I|2^{\sqrt{|I|}}) \ne \text{poly}(|I|)$
(Un.) instance size $|I|_u \le nP = O(n2^n)$
 $\Rightarrow n \in O(\log |I|_u - \log \log |I|_u)$

```
Examples. P = n^5
                                 \Rightarrow running time O(n^7)
                                  (Bin.) instance size |I| \ge n \log P = \Omega(n \log n)
                                  \Rightarrow n \in O(|I|/\log|I|)
                                  \Rightarrow running time O(|I|^7/\log^7 |I|) = \text{poly}(|I|)
                                  \Rightarrow running time O(n^2 2^n)
                    P = 2^{n}
                                  (Bin.) instance size |I| \le n \log P = O(n^2)
                                  \Rightarrow running time O(|I|2^{\sqrt{|I|}}) \neq \text{poly}(|I|)
                                  (Un.) instance size |I|_{u} \le nP = O(n2^{n})
                                  \Rightarrow n \in O(\log |I|_{u} - \log \log |I|_{u})
                                  \Rightarrow running time O(|I|_u \log |I|_u) = \text{poly}(|I|_u)
```

Theorem. KNAPSACK can be solved optimally in pseudo-polynomial time $O(n^2P)$.

```
Examples. P = n^5
                                  \Rightarrow running time O(n^7)
                                  (Bin.) instance size |I| \ge n \log P = \Omega(n \log n)
                                  \Rightarrow n \in O(|I|/\log|I|)
                                  \Rightarrow running time O(|I|^7/\log^7 |I|) = \text{poly}(|I|)
                                  \Rightarrow running time O(n^2 2^n)
                    P = 2^{n}
                                  (Bin.) instance size |I| \le n \log P = O(n^2)
                                  \Rightarrow running time O(|I|2^{\sqrt{|I|}}) \neq \text{poly}(|I|)
                                  (Un.) instance size |I|_{u} \le nP = O(n2^{n})
                                  \Rightarrow n \in O(\log |I|_{u} - \log \log |I|_{u})
                                  \Rightarrow running time O(|I|_u \log |I|_u) = \text{poly}(|I|_u)
```

Observe. Running time $O(n^2P)$ poly in n if P poly in n.

Approximation Algorithms

Lecture 8:

Approximation Schemes and the Knapsack Problem

Part IV:

Approximation Schemes

Let Π be an optimization problem.

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme** (PTAS), if it outputs for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon > 0$ a solution $s \in S_{\Pi}(I)$ such that the following holds:

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme** (PTAS), if it outputs for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon > 0$ a solution $s \in S_{\Pi}(I)$ such that the following holds:

• $\operatorname{obj}_{\Pi}(I,s) \leq (1+\varepsilon) \cdot \operatorname{OPT}$, if Π min problem,

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme** (PTAS), if it outputs for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon > 0$ a solution $s \in S_{\Pi}(I)$ such that the following holds:

- $\operatorname{obj}_{\Pi}(I,s) \leq (1+\varepsilon) \cdot \operatorname{OPT}$, if Π min problem,
- $\operatorname{obj}_{\Pi}(I,s) \geq (1-\varepsilon) \cdot \operatorname{OPT}$, if Π max problem.

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme** (PTAS), if it outputs for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon > 0$ a solution $s \in S_{\Pi}(I)$ such that the following holds:

- $\operatorname{obj}_{\Pi}(I,s) \leq (1+\varepsilon) \cdot \operatorname{OPT}$, if Π min problem,
- $\operatorname{obj}_{\Pi}(I,s) \geq (1-\varepsilon) \cdot \operatorname{OPT}$, if Π max problem.

The runtime of \mathcal{A} is polynomial in |I| for **every fixed** $\varepsilon > 0$.

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme** (PTAS), if it outputs for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon > 0$ a solution $s \in S_{\Pi}(I)$ such that the following holds:

- $\operatorname{obj}_{\Pi}(I,s) \leq (1+\varepsilon) \cdot \operatorname{OPT}$, if Π min problem,
- $\operatorname{obj}_{\Pi}(I,s) \geq (1-\varepsilon) \cdot \operatorname{OPT}$, if Π max problem.

The runtime of \mathcal{A} is polynomial in |I| for **every fixed** $\varepsilon > 0$.

 \mathcal{A} is called **fully polynomial-time approximation scheme** (FPTAS) if its running time is polynomial in |I| and $1/\varepsilon$.

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme** (PTAS), if it outputs for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon > 0$ a solution $s \in S_{\Pi}(I)$ such that the following holds:

- $\operatorname{obj}_{\Pi}(I,s) \leq (1+\varepsilon) \cdot \operatorname{OPT}$, if Π min problem,
- $\operatorname{obj}_{\Pi}(I,s) \geq (1-\varepsilon) \cdot \operatorname{OPT}$, if Π max problem.

The runtime of \mathcal{A} is polynomial in |I| for **every fixed** $\varepsilon > 0$.

 \mathcal{A} is called **fully polynomial-time approximation scheme** (FPTAS) if its running time is polynomial in |I| and $1/\varepsilon$.

- $O(n^{1/\epsilon}) \sim$
- $O(2^{1/\epsilon}n^4) \sim$
- $O(n^3/\epsilon^2) \sim$

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme** (PTAS), if it outputs for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon > 0$ a solution $s \in S_{\Pi}(I)$ such that the following holds:

- $\operatorname{obj}_{\Pi}(I,s) \leq (1+\varepsilon) \cdot \operatorname{OPT}$, if Π min problem,
- $\operatorname{obj}_{\Pi}(I,s) \geq (1-\varepsilon) \cdot \operatorname{OPT}$, if Π max problem.

The runtime of \mathcal{A} is polynomial in |I| for **every fixed** $\varepsilon > 0$.

 \mathcal{A} is called **fully polynomial-time approximation scheme** (FPTAS) if its running time is polynomial in |I| and $1/\varepsilon$.

- $O(n^{1/\epsilon}) \sim PTAS$
- $O(2^{1/\epsilon}n^4) \sim$
- $O(n^3/\epsilon^2) \sim$

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme** (PTAS), if it outputs for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon > 0$ a solution $s \in S_{\Pi}(I)$ such that the following holds:

- $\operatorname{obj}_{\Pi}(I,s) \leq (1+\varepsilon) \cdot \operatorname{OPT}$, if Π min problem,
- $\operatorname{obj}_{\Pi}(I,s) \geq (1-\varepsilon) \cdot \operatorname{OPT}$, if Π max problem.

The runtime of \mathcal{A} is polynomial in |I| for **every fixed** $\varepsilon > 0$.

 \mathcal{A} is called **fully polynomial-time approximation scheme** (FPTAS) if its running time is polynomial in |I| and $1/\varepsilon$.

- $O(n^{1/\epsilon}) \rightsquigarrow \text{PTAS}$
- $O(2^{1/\epsilon}n^4) \sim PTAS$
- $O(n^3/\epsilon^2) \sim$

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme** (PTAS), if it outputs for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon > 0$ a solution $s \in S_{\Pi}(I)$ such that the following holds:

- $\operatorname{obj}_{\Pi}(I,s) \leq (1+\varepsilon) \cdot \operatorname{OPT}$, if Π min problem,
- $\operatorname{obj}_{\Pi}(I,s) \geq (1-\varepsilon) \cdot \operatorname{OPT}$, if Π max problem.

The runtime of \mathcal{A} is polynomial in |I| for **every fixed** $\varepsilon > 0$.

 \mathcal{A} is called **fully polynomial-time approximation scheme** (FPTAS) if its running time is polynomial in |I| and $1/\varepsilon$.

- $O(n^{1/\epsilon}) \sim \text{PTAS}$
- $O(2^{1/\epsilon}n^4) \sim PTAS$
- $O(n^3/\epsilon^2) \sim \text{FPTAS}$

Approximation Algorithms

Lecture 8:

Approximation Schemes and the Knapsack Problem

Part V: FPTAS for KNAPSACK

KnapsackScaling (I, E)

KnapsackScaling (I, ε)

$$K \leftarrow \varepsilon P/n$$

```
KnapsackScaling (I, \varepsilon)
K \leftarrow \varepsilon P/n \qquad // \text{ scaling factor}
```

```
KnapsackScaling (I, \varepsilon)

K \leftarrow \varepsilon P/n // scaling factor

profit'(a_i) :=
```

```
KnapsackScaling (I, \varepsilon)

K \leftarrow \varepsilon P/n  // scaling factor

profit'(a_i) := [profit(a_i)/K]

Compute optimal solution S' for I w.r.t. profit'(\cdot)
```

```
KnapsackScaling (I, \varepsilon)

K \leftarrow \varepsilon P/n  // scaling factor

profit'(a_i) := [profit(a_i)/K]

Compute optimal solution S' for I w.r.t. profit'(\cdot)

return S'
```

```
KnapsackScaling (I, \varepsilon)

K \leftarrow \varepsilon P/n // scaling factor

\operatorname{profit}'(a_i) \coloneqq [\operatorname{profit}(a_i)/K]

Compute optimal solution S' for I w.r.t. \operatorname{profit}'(\cdot)

\operatorname{return} S'
```

Lemma. $\operatorname{profit}(S') \geq (1 - \varepsilon) \cdot \operatorname{OPT}$.

Proof. Let OPT = $\{o_1, ..., o_k\}$.

```
KnapsackScaling (I, \varepsilon)

K \leftarrow \varepsilon P/n // scaling factor

profit'(a_i) := [profit(a_i)/K]

Compute optimal solution S' for I w.r.t. profit'(\cdot)

return S'

Lemma. profit(S') \geq (1 - \varepsilon) \cdot OPT.
```

```
KnapsackScaling (I, ε)
  K \leftarrow \varepsilon P/n // scaling factor
  profit'(a_i) := |profit(a_i)/K|
  Compute optimal solution S' for I w.r.t. profit'(\cdot)
  return S'
Lemma. profit(S') \geq (1 - \varepsilon) \cdot OPT.
Proof. Let OPT = \{o_1, ..., o_k\}.
                                                \leq K \cdot \operatorname{profit}'(o_i) \leq 1
 Obs. 1. For i = 1, ..., k,
```

 $\leq K \cdot \operatorname{profit}'(o_i) \leq \operatorname{profit}(o_i)$

FPTAS for Knapsack via Scaling

Obs. 1. For i = 1, ..., k,

```
KnapsackScaling (I, \varepsilon)

K \leftarrow \varepsilon P/n // scaling factor

profit'(a_i) := [profit(a_i)/K]

Compute optimal solution S' for I w.r.t. profit'(\cdot)

return S'

Lemma. profit(S') \geq (1 - \varepsilon) \cdot OPT.

Proof. Let OPT = {o_1, \ldots, o_k}.
```

```
KnapsackScaling (I, \varepsilon)

K \leftarrow \varepsilon P/n  // scaling factor

profit'(a_i) := [profit(a_i)/K]

Compute optimal solution S' for I w.r.t. profit'(\cdot)

return S'

Lemma. profit(S') \geq (1 - \varepsilon) \cdot \text{OPT}.
```

```
Proof. Let OPT = \{o_1, \dots, o_k\}.

Obs. 1. For i = 1, \dots, k, profit(o_i) - K \le K \cdot \text{profit}'(o_i) \le \text{profit}(o_i)
```

 $\Rightarrow K \cdot \sum_{i} \operatorname{profit}'(o_i) \geq$

```
KnapsackScaling (I, \varepsilon)

K \leftarrow \varepsilon P/n // scaling factor

profit'(a_i) := [profit(a_i)/K]

Compute optimal solution S' for I w.r.t. profit'(\cdot)

return S'

Lemma. profit(S') \geq (1 - \varepsilon) \cdot OPT.

Proof. Let OPT = {o_1, \ldots, o_k}.

Obs. 1. For i = 1, \ldots, k, profit(o_i) – K \leq K \cdot \text{profit}'(o_i) \leq \text{profit}(o_i)
```

 $\Rightarrow K \cdot \sum_{i} \operatorname{profit}'(o_i) \geq \operatorname{OPT} - kK \geq$

```
KnapsackScaling (I, \varepsilon)

K \leftarrow \varepsilon P/n // scaling factor

profit'(a_i) := [profit(a_i)/K]

Compute optimal solution S' for I w.r.t. profit'(\cdot)

return S'

Lemma. profit(S') \geq (1 - \varepsilon) \cdot OPT.

Proof. Let OPT = {o_1, \ldots, o_k}.

Obs. 1. For i = 1, \ldots, k, profit(o_i) – K \leq K \cdot \text{profit}'(o_i) \leq \text{profit}(o_i)
```

```
KnapsackScaling (I, \varepsilon)

K \leftarrow \varepsilon P/n  // scaling factor

profit'(a_i) := [profit(a_i)/K]

Compute optimal solution S' for I w.r.t. profit'(\cdot)

return S'

Lemma. profit(S') \geq (1 - \varepsilon) \cdot OPT.
```

```
Proof. Let OPT = \{o_1, \ldots, o_k\}.

Obs. 1. For i = 1, \ldots, k, \operatorname{profit}(o_i) - K \le K \cdot \operatorname{profit}'(o_i) \le \operatorname{profit}(o_i)

\Rightarrow K \cdot \sum_i \operatorname{profit}'(o_i) \ge \operatorname{OPT} - kK \ge \operatorname{OPT} - nK =
```

KnapsackScaling (*I*, ε)

```
K \leftarrow \varepsilon P/n // scaling factor
   profit'(a_i) := |profit(a_i)/K|
   Compute optimal solution S' for I w.r.t. profit'(\cdot)
   return S'
Lemma. profit(S') \geq (1 - \varepsilon) \cdot OPT.
Proof. Let OPT = \{o_1, ..., o_k\}.
  Obs. 1. For i = 1, ..., k, profit(o_i) - K \le K \cdot \text{profit}'(o_i) \le \text{profit}(o_i)
         \Rightarrow K \cdot \sum_{i} \operatorname{profit}'(o_i) \geq \operatorname{OPT} - kK \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P
```

```
KnapsackScaling (I, ε)
   K \leftarrow \varepsilon P/n // scaling factor
   profit'(a_i) := |profit(a_i)/K|
   Compute optimal solution S' for I w.r.t. profit'(\cdot)
   return S'
Lemma. profit(S') \geq (1 - \varepsilon) \cdot OPT.
               Let OPT = \{o_1, ..., o_k\}.
Proof.
  Obs. 1. For i = 1, ..., k, profit(o_i) - K \le K \cdot \text{profit}'(o_i) \le \text{profit}(o_i)
         \Rightarrow K \cdot \sum_{i} \operatorname{profit}'(o_i) \geq \operatorname{OPT} - kK \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P
                                                       \geq K \cdot \sum_{i} \operatorname{profit}'(o_{i})
  Obs. 2.
```

```
KnapsackScaling (I, ε)
   K \leftarrow \varepsilon P/n // scaling factor
   profit'(a_i) := |profit(a_i)/K|
   Compute optimal solution S' for I w.r.t. profit'(\cdot)
   return S'
Lemma. profit(S') \geq (1 - \varepsilon) \cdot OPT.
               Let OPT = \{o_1, ..., o_k\}.
Proof.
  Obs. 1. For i = 1, ..., k, profit(o_i) - K \le K \cdot \text{profit}'(o_i) \le \text{profit}(o_i)
         \Rightarrow K \cdot \sum_{i} \operatorname{profit}'(o_i) \geq \operatorname{OPT} - kK \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P
                                 \geq K \cdot \operatorname{profit}'(S') \geq K \cdot \sum_{i} \operatorname{profit}'(o_{i})
  Obs. 2.
```

```
KnapsackScaling (I, ε)
   K \leftarrow \varepsilon P/n // scaling factor
   profit'(a_i) := |profit(a_i)/K|
   Compute optimal solution S' for I w.r.t. profit'(\cdot)
   return S'
Lemma. profit(S') \geq (1 - \varepsilon) \cdot OPT.
               Let OPT = \{o_1, ..., o_k\}.
Proof.
  Obs. 1. For i = 1, ..., k, profit(o_i) - K \le K \cdot \text{profit}'(o_i) \le \text{profit}(o_i)
          \Rightarrow K \cdot \sum_{i} \operatorname{profit}'(o_i) \geq \operatorname{OPT} - kK \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P
  Obs. 2. \operatorname{profit}(S') \geq K \cdot \operatorname{profit}'(S') \geq K \cdot \sum_{i} \operatorname{profit}'(o_{i})
```

```
KnapsackScaling (I, \varepsilon)
                   // scaling factor
   K \leftarrow \varepsilon P/n
   profit'(a_i) := |profit(a_i)/K|
   Compute optimal solution S' for I w.r.t. profit'(\cdot)
   return S'
Lemma. profit(S') \geq (1 - \varepsilon) \cdot OPT.
Proof. Let OPT = \{o_1, ..., o_k\}.
  Obs. 1. For i = 1, ..., k, profit(o_i) - K \le K \cdot \text{profit}'(o_i) \le \text{profit}(o_i)
          \Rightarrow K \cdot \sum_{i} \operatorname{profit}'(o_i) \geq \operatorname{OPT} - kK \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P
  Obs. 2. profit(S') \geq K \cdot \text{profit}'(S') \geq K \cdot \sum_{i} \text{profit}'(o_{i})
          \Rightarrow \operatorname{profit}(S') \geq
```

```
KnapsackScaling (I, \varepsilon)
                    // scaling factor
   K \leftarrow \varepsilon P/n
   profit'(a_i) := |profit(a_i)/K|
   Compute optimal solution S' for I w.r.t. profit'(\cdot)
   return S'
Lemma. profit(S') \geq (1 - \varepsilon) \cdot OPT.
Proof. Let OPT = \{o_1, ..., o_k\}.
  Obs. 1. For i = 1, ..., k, profit(o_i) - K \le K \cdot \text{profit}'(o_i) \le \text{profit}(o_i)
          \Rightarrow K \cdot \sum_{i} \operatorname{profit}'(o_i) \geq \operatorname{OPT} - kK \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P
  Obs. 2. profit(S') \geq K \cdot \text{profit}'(S') \geq K \cdot \sum_{i} \text{profit}'(o_{i})
          \Rightarrow \operatorname{profit}(S') \geq \operatorname{OPT} - \varepsilon P \geq
```

```
KnapsackScaling (I, \varepsilon)
                      // scaling factor
   K \leftarrow \varepsilon P/n
   profit'(a_i) := |profit(a_i)/K|
   Compute optimal solution S' for I w.r.t. profit'(\cdot)
   return S'
Lemma. profit(S') \geq (1 - \varepsilon) \cdot OPT.
                 Let OPT = \{o_1, ..., o_k\}.
Proof.
  Obs. 1. For i = 1, ..., k, profit(o_i) - K \le K \cdot \text{profit}'(o_i) \le \text{profit}(o_i)
           \Rightarrow K \cdot \sum_{i} \operatorname{profit}'(o_i) \geq \operatorname{OPT} - kK \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P
  Obs. 2. \operatorname{profit}(S') \geq K \cdot \operatorname{profit}'(S') \geq K \cdot \sum_{i} \operatorname{profit}'(o_{i})
           \Rightarrow \operatorname{profit}(S') \ge \operatorname{OPT} - \varepsilon P \ge \operatorname{OPT} - \varepsilon \operatorname{OPT}
```

KnapsackScaling (I, ε)

```
// scaling factor
   K \leftarrow \varepsilon P/n
   profit'(a_i) := |profit(a_i)/K|
   Compute optimal solution S' for I w.r.t. profit'(\cdot)
   return S'
Lemma. profit(S') \geq (1 - \varepsilon) \cdot OPT.
                 Let OPT = \{o_1, ..., o_k\}.
Proof.
  Obs. 1. For i = 1, ..., k, profit(o_i) - K \le K \cdot \text{profit}'(o_i) \le \text{profit}(o_i)
           \Rightarrow K \cdot \sum_{i} \operatorname{profit}'(o_i) \geq \operatorname{OPT} - kK \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P
  Obs. 2. profit(S') \geq K \cdot \text{profit}'(S') \geq K \cdot \sum_{i} \text{profit}'(o_{i})
           \Rightarrow \operatorname{profit}(S') \ge \operatorname{OPT} - \varepsilon P \ge \operatorname{OPT} - \varepsilon \operatorname{OPT} = (1 - \varepsilon) \cdot \operatorname{OPT}
```

```
KnapsackScaling (I, \varepsilon)
                     // scaling factor
   K \leftarrow \varepsilon P/n
   profit'(a_i) := |profit(a_i)/K|
   Compute optimal solution S' for I w.r.t. profit'(\cdot)
   return S'
Lemma. profit(S') \geq (1 - \varepsilon) \cdot OPT.
                 Let OPT = \{o_1, ..., o_k\}.
Proof.
  Obs. 1. For i = 1, ..., k, profit(o_i) - K \le K \cdot \text{profit}'(o_i) \le \text{profit}(o_i)
          \Rightarrow K \cdot \sum_{i} \operatorname{profit}'(o_i) \geq \operatorname{OPT} - kK \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P
  Obs. 2. profit(S') \geq K \cdot \text{profit}'(S') \geq K \cdot \sum_{i} \text{profit}'(o_{i})
          \Rightarrow \operatorname{profit}(S') \ge \operatorname{OPT} - \varepsilon P \ge \operatorname{OPT} - \varepsilon \operatorname{OPT} = (1 - \varepsilon) \cdot \operatorname{OPT}
```

CI / 11 /

FPTAS for Knapsack via Scaling

```
KnapsackScaling (I, ε)
                     // scaling factor
   K \leftarrow \varepsilon P/n
   profit'(a_i) := |profit(a_i)/K|
   Compute optimal solution S' for I w.r.t. profit'(\cdot)
   return S'
Lemma. profit(S') \geq (1 - \varepsilon) \cdot OPT.
                Let OPT = \{o_1, ..., o_k\}.
Proof.
  Obs. 1. For i = 1, ..., k, profit(o_i) - K \le K \cdot \text{profit}'(o_i) \le \text{profit}(o_i)
          \Rightarrow K \cdot \sum_{i} \operatorname{profit}'(o_i) \geq \operatorname{OPT} - kK \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P
  Obs. 2. \operatorname{profit}(S') \geq K \cdot \operatorname{profit}'(S') \geq K \cdot \sum_{i} \operatorname{profit}'(o_{i})
          \Rightarrow \operatorname{profit}(S') \ge \operatorname{OPT} - \varepsilon P \ge \operatorname{OPT} - \varepsilon \operatorname{OPT} = (1 - \varepsilon) \cdot \operatorname{OPT}
Theorem. KnapsackScaling is an FPTAS for KNAPSACK
```

with running time O(1, 1)

```
KnapsackScaling (I, ε)
                    // scaling factor
   K \leftarrow \varepsilon P/n
   profit'(a_i) := |profit(a_i)/K|
   Compute optimal solution S' for I w.r.t. profit'(\cdot)
   return S'
Lemma. profit(S') \geq (1 - \varepsilon) \cdot OPT.
                Let OPT = \{o_1, ..., o_k\}.
Proof.
  Obs. 1. For i = 1, ..., k, profit(o_i) - K \le K \cdot \text{profit}'(o_i) \le \text{profit}(o_i)
          \Rightarrow K \cdot \sum_{i} \operatorname{profit}'(o_i) \geq \operatorname{OPT} - kK \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P
  Obs. 2. \operatorname{profit}(S') \geq K \cdot \operatorname{profit}'(S') \geq K \cdot \sum_{i} \operatorname{profit}'(o_{i})
          \Rightarrow \operatorname{profit}(S') \ge \operatorname{OPT} - \varepsilon P \ge \operatorname{OPT} - \varepsilon \operatorname{OPT} = (1 - \varepsilon) \cdot \operatorname{OPT}
Theorem. KnapsackScaling is an FPTAS for KNAPSACK
```

with running time $O(n^3/\varepsilon) = O\left(n^2 \cdot \frac{P}{\varepsilon P/n}\right)$.

Approximation Algorithms

Lecture 8:

Approximation Schemes and the Knapsack Problem

Part VI:

Connections

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function

of Π .

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective

function and $OPT(I) < p(|I|_u)$ for all instances I

of Π . If Π has an FPTAS,

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I

of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Theorem.

Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and OPT(I) < p($|I|_u$) for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assuming there is an FPTAS for Π (in $q(|I|, 1/\epsilon)$ time).

Set *€* =

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assuming there is an FPTAS for Π (in $q(|I|, 1/\epsilon)$ time). Set $\epsilon = 1/p(|I|_u)$.

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Set
$$\varepsilon = 1/p(|I|_{\mathbf{u}})$$
.

$$\Rightarrow$$
 ALG \leq $(1 + \varepsilon)$ OPT $<$

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_{\mathfrak{u}})$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Set
$$\varepsilon = 1/p(|I|_{\mathrm{u}})$$
.

$$\Rightarrow$$
 ALG $\leq (1 + \varepsilon)OPT < OPT + \varepsilon p(|I|_u) =$

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_{\mathfrak{u}})$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Set
$$\varepsilon = 1/p(|I|_{\mathrm{u}})$$
.

$$\Rightarrow$$
 ALG $\leq (1 + \varepsilon)$ OPT $<$ OPT + $\varepsilon p(|I|_u) =$ OPT + 1.

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Set
$$\varepsilon = 1/p(|I|_{\mathbf{u}})$$
.

$$\Rightarrow$$
 ALG $\leq (1 + \varepsilon)$ OPT $<$ OPT + $\varepsilon p(|I|_u) =$ OPT + 1.

$$\Rightarrow$$
 ALG = OPT.

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assuming there is an FPTAS for Π (in $q(|I|, 1/\epsilon)$ time).

Set
$$\varepsilon = 1/p(|I|_{\mathrm{u}})$$
.

$$\Rightarrow$$
 ALG $\leq (1 + \varepsilon)$ OPT $<$ OPT + $\varepsilon p(|I|_u) =$ OPT + 1.

$$\Rightarrow$$
 ALG = OPT.

Running time:

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assuming there is an FPTAS for Π (in $q(|I|, 1/\epsilon)$ time).

Set
$$\varepsilon = 1/p(|I|_{\mathrm{u}})$$
.

$$\Rightarrow$$
 ALG $\leq (1 + \varepsilon)$ OPT $<$ OPT + $\varepsilon p(|I|_u) =$ OPT + 1.

$$\Rightarrow$$
 ALG = OPT.

Running time: $q(|I|, p(|I|_u))$

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assuming there is an FPTAS for Π (in $q(|I|, 1/\epsilon)$ time).

Set
$$\varepsilon = 1/p(|I|_{\mathbf{u}})$$
.

$$\Rightarrow$$
 ALG $\leq (1 + \varepsilon)$ OPT $<$ OPT + $\varepsilon p(|I|_u) =$ OPT + 1.

$$\Rightarrow$$
 ALG = OPT.

Running time: $q(|I|, p(|I|_u))$, so

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assuming there is an FPTAS for Π (in $q(|I|, 1/\epsilon)$ time).

Set
$$\varepsilon = 1/p(|I|_{\mathbf{u}})$$
.

$$\Rightarrow$$
 ALG $\leq (1 + \varepsilon)$ OPT $<$ OPT + $\varepsilon p(|I|_u) =$ OPT + 1.

$$\Rightarrow$$
 ALG = OPT.

Running time: $q(|I|, p(|I|_u))$, so $poly(|I|_u)$.

FPTAS and Strong NP-Hardness

Theorem. A strongly NP-hard problem has no pseudo-polynomial algorithm unless P = NP.

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

FPTAS and Strong NP-Hardness

Theorem. A strongly NP-hard problem has no pseudo-polynomial algorithm unless P = NP.

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Corollary. Let Π be an NP-hard optimization problem that fulfils the restrictions above. If Π is strongly NP-hard, then there is no FPTAS for Π (unless P = NP).