
1

Joachim Spoerhase Winter 2021/22

Lecture 3:
SteinerTree and MultiwayCut

Part I:
SteinerTree

Approximation Algorithms

2 - 1

SteinerTree

A graph G = (V, E) with edge weights c : E→ Q+

and a partition of V into a set T of terminals and a
set S of Steiner vertices.

A subtree B = (V′, E′) of G that contains all
terminals, i.e., T ⊆ V′, and has minimum cost
c(E′) := ∑e∈E′ c(e) among all subtrees with this
property.

Find:

Given:

2 - 2

SteinerTree

A graph G = (V, E) with edge weights c : E→ Q+

and a partition of V into a set T of terminals and a
set S of Steiner vertices.

A subtree B = (V′, E′) of G that contains all
terminals, i.e., T ⊆ V′, and has minimum cost
c(E′) := ∑e∈E′ c(e) among all subtrees with this
property.

Find:

Given:

2 - 3

SteinerTree

A graph G = (V, E) with edge weights c : E→ Q+

and a partition of V into a set T of terminals and a
set S of Steiner vertices.

A subtree B = (V′, E′) of G that contains all
terminals, i.e., T ⊆ V′, and has minimum cost
c(E′) := ∑e∈E′ c(e) among all subtrees with this
property.

Find:

Given:

2

2

21

1 1

2 - 4

SteinerTree

A graph G = (V, E) with edge weights c : E→ Q+

and a partition of V into a set T of terminals and a
set S of Steiner vertices.

A subtree B = (V′, E′) of G that contains all
terminals, i.e., T ⊆ V′, and has minimum cost
c(E′) := ∑e∈E′ c(e) among all subtrees with this
property.

Find:

Given:

2

2

21

1 1

2 - 5

SteinerTree

A graph G = (V, E) with edge weights c : E→ Q+

and a partition of V into a set T of terminals and a
set S of Steiner vertices.

A subtree B = (V′, E′) of G that contains all
terminals, i.e., T ⊆ V′, and has minimum cost
c(E′) := ∑e∈E′ c(e) among all subtrees with this
property.

Find:

Given:

terminal2

2

21

1 1

2 - 6

SteinerTree

A graph G = (V, E) with edge weights c : E→ Q+

and a partition of V into a set T of terminals and a
set S of Steiner vertices.

A subtree B = (V′, E′) of G that contains all
terminals, i.e., T ⊆ V′, and has minimum cost
c(E′) := ∑e∈E′ c(e) among all subtrees with this
property.

Find:

Given:

terminal

Steiner vertex
2

2

21

1 1

2 - 7

SteinerTree

A graph G = (V, E) with edge weights c : E→ Q+

and a partition of V into a set T of terminals and a
set S of Steiner vertices.

A subtree B = (V′, E′) of G that contains all
terminals, i.e., T ⊆ V′, and has minimum cost
c(E′) := ∑e∈E′ c(e) among all subtrees with this
property.

Find:

Given:

terminal

Steiner vertex
2

2

21

1 1

2 - 8

SteinerTree

A graph G = (V, E) with edge weights c : E→ Q+

and a partition of V into a set T of terminals and a
set S of Steiner vertices.

A subtree B = (V′, E′) of G that contains all
terminals, i.e., T ⊆ V′, and has minimum cost
c(E′) := ∑e∈E′ c(e) among all subtrees with this
property.

Find:

Given:

terminal

Steiner vertex

valid solution with cost 4

2

2

21

1 1

2 - 9

SteinerTree

A graph G = (V, E) with edge weights c : E→ Q+

and a partition of V into a set T of terminals and a
set S of Steiner vertices.

A subtree B = (V′, E′) of G that contains all
terminals, i.e., T ⊆ V′, and has minimum cost
c(E′) := ∑e∈E′ c(e) among all subtrees with this
property.

Find:

Given:

terminal

Steiner vertex

valid solution with cost 4

2

2

21

1 1

2 - 10

SteinerTree

A graph G = (V, E) with edge weights c : E→ Q+

and a partition of V into a set T of terminals and a
set S of Steiner vertices.

A subtree B = (V′, E′) of G that contains all
terminals, i.e., T ⊆ V′, and has minimum cost
c(E′) := ∑e∈E′ c(e) among all subtrees with this
property.

Find:

Given:

terminal

Steiner vertex

valid solution with cost 4
optimum solution
with cost 3

2

2

21

1 1

3 - 1

MetricSteinerTree

Restriction of SteinerTree where the graph G is complete
and the cost function is metric, i.e., for every triple u, v, w
of vertices, we have c(u, w) ≤ c(u, v) + c(v, w).

3 - 2

MetricSteinerTree

Restriction of SteinerTree where the graph G is complete
and the cost function is metric, i.e., for every triple u, v, w
of vertices, we have c(u, w) ≤ c(u, v) + c(v, w).

3 - 3

MetricSteinerTree

Restriction of SteinerTree where the graph G is complete
and the cost function is metric, i.e., for every triple u, v, w
of vertices, we have c(u, w) ≤ c(u, v) + c(v, w).

1

1

13

5

3 - 4

MetricSteinerTree

Restriction of SteinerTree where the graph G is complete
and the cost function is metric, i.e., for every triple u, v, w
of vertices, we have c(u, w) ≤ c(u, v) + c(v, w).

1

1

13

5
not complete

3 - 5

MetricSteinerTree

Restriction of SteinerTree where the graph G is complete
and the cost function is metric, i.e., for every triple u, v, w
of vertices, we have c(u, w) ≤ c(u, v) + c(v, w).

1

1

13

5

not metric
not complete

3 - 6

MetricSteinerTree

Restriction of SteinerTree where the graph G is complete
and the cost function is metric, i.e., for every triple u, v, w
of vertices, we have c(u, w) ≤ c(u, v) + c(v, w).

1

1

13

5

2

1

1

4

3 2

not metric
not complete

3 - 7

MetricSteinerTree

Restriction of SteinerTree where the graph G is complete
and the cost function is metric, i.e., for every triple u, v, w
of vertices, we have c(u, w) ≤ c(u, v) + c(v, w).

1

1

13

5

2

1

1

4

3 2

not metric metric
not complete complete

4

Lecture 3:
SteinerTree and MultiwayCut

Part II:
Approximation Preserving Reduction

Approximation Algorithms

Joachim Spoerhase Winter 2021/22

5 - 1

Approximation Preserving Reduction
Let Π1, Π2 be minimization problems. An approximation
preserving reduction from Π1 to Π2 ist a tuple (f , g) of
poly-time computable functions with the following
properties.

(i) For each instance I1 of Π1, I2 := f (I1) is an instance
of Π2 with OPTΠ2(I2) ≤ OPTΠ1(I1).

(ii) For each feasible solution t of I2, s := g(I1, t) is a
feasible solution of I1 with objΠ1

(I1, s) ≤ objΠ2
(I2, t).

5 - 2

Approximation Preserving Reduction
Let Π1, Π2 be minimization problems. An approximation
preserving reduction from Π1 to Π2 ist a tuple (f , g) of
poly-time computable functions with the following
properties.

(i) For each instance I1 of Π1, I2 := f (I1) is an instance
of Π2 with OPTΠ2(I2) ≤ OPTΠ1(I1).

(ii) For each feasible solution t of I2, s := g(I1, t) is a
feasible solution of I1 with objΠ1

(I1, s) ≤ objΠ2
(I2, t).

Π1 Π2problems

5 - 3

Approximation Preserving Reduction
Let Π1, Π2 be minimization problems. An approximation
preserving reduction from Π1 to Π2 ist a tuple (f , g) of
poly-time computable functions with the following
properties.

(i) For each instance I1 of Π1, I2 := f (I1) is an instance
of Π2 with OPTΠ2(I2) ≤ OPTΠ1(I1).

(ii) For each feasible solution t of I2, s := g(I1, t) is a
feasible solution of I1 with objΠ1

(I1, s) ≤ objΠ2
(I2, t).

Π1 Π2problems

5 - 4

Approximation Preserving Reduction
Let Π1, Π2 be minimization problems. An approximation
preserving reduction from Π1 to Π2 ist a tuple (f , g) of
poly-time computable functions with the following
properties.

(i) For each instance I1 of Π1, I2 := f (I1) is an instance
of Π2 with OPTΠ2(I2) ≤ OPTΠ1(I1).

(ii) For each feasible solution t of I2, s := g(I1, t) is a
feasible solution of I1 with objΠ1

(I1, s) ≤ objΠ2
(I2, t).

Π1 Π2problems

5 - 5

Approximation Preserving Reduction
Let Π1, Π2 be minimization problems. An approximation
preserving reduction from Π1 to Π2 ist a tuple (f , g) of
poly-time computable functions with the following
properties.

(i) For each instance I1 of Π1, I2 := f (I1) is an instance
of Π2 with OPTΠ2(I2) ≤ OPTΠ1(I1).

(ii) For each feasible solution t of I2, s := g(I1, t) is a
feasible solution of I1 with objΠ1

(I1, s) ≤ objΠ2
(I2, t).

instances I1

Π1 Π2problems

5 - 6

Approximation Preserving Reduction
Let Π1, Π2 be minimization problems. An approximation
preserving reduction from Π1 to Π2 ist a tuple (f , g) of
poly-time computable functions with the following
properties.

(i) For each instance I1 of Π1, I2 := f (I1) is an instance
of Π2 with OPTΠ2(I2) ≤ OPTΠ1(I1).

(ii) For each feasible solution t of I2, s := g(I1, t) is a
feasible solution of I1 with objΠ1

(I1, s) ≤ objΠ2
(I2, t).

instances I1
f

I2

Π1 Π2problems

5 - 7

Approximation Preserving Reduction
Let Π1, Π2 be minimization problems. An approximation
preserving reduction from Π1 to Π2 ist a tuple (f , g) of
poly-time computable functions with the following
properties.

(i) For each instance I1 of Π1, I2 := f (I1) is an instance
of Π2 with OPTΠ2(I2) ≤ OPTΠ1(I1).

(ii) For each feasible solution t of I2, s := g(I1, t) is a
feasible solution of I1 with objΠ1

(I1, s) ≤ objΠ2
(I2, t).

instances I1
f

I2

Π1 Π2problems

5 - 8

Approximation Preserving Reduction
Let Π1, Π2 be minimization problems. An approximation
preserving reduction from Π1 to Π2 ist a tuple (f , g) of
poly-time computable functions with the following
properties.

(i) For each instance I1 of Π1, I2 := f (I1) is an instance
of Π2 with OPTΠ2(I2) ≤ OPTΠ1(I1).

(ii) For each feasible solution t of I2, s := g(I1, t) is a
feasible solution of I1 with objΠ1

(I1, s) ≤ objΠ2
(I2, t).

instances I1
f

I2

tsolutions

Π1 Π2problems

5 - 9

Approximation Preserving Reduction
Let Π1, Π2 be minimization problems. An approximation
preserving reduction from Π1 to Π2 ist a tuple (f , g) of
poly-time computable functions with the following
properties.

(i) For each instance I1 of Π1, I2 := f (I1) is an instance
of Π2 with OPTΠ2(I2) ≤ OPTΠ1(I1).

(ii) For each feasible solution t of I2, s := g(I1, t) is a
feasible solution of I1 with objΠ1

(I1, s) ≤ objΠ2
(I2, t).

instances I1
f

I2

ts
g

solutions

Π1 Π2problems

5 - 10

Approximation Preserving Reduction
Let Π1, Π2 be minimization problems. An approximation
preserving reduction from Π1 to Π2 ist a tuple (f , g) of
poly-time computable functions with the following
properties.

(i) For each instance I1 of Π1, I2 := f (I1) is an instance
of Π2 with OPTΠ2(I2) ≤ OPTΠ1(I1).

(ii) For each feasible solution t of I2, s := g(I1, t) is a
feasible solution of I1 with objΠ1

(I1, s) ≤ objΠ2
(I2, t).

instances I1
f

I2

ts
g

solutions

Π1 Π2problems

6 - 1

Approximation Preserving Reduction
Let Π1, Π2 be minimization problems where
there is an approximation preserving reduction
(f , g) from Π1 to Π2. Then there is a
factor-α-approximation algorithm of Π1 for
each factor-α-approximation algorithm of Π2.

Theorem.

I1
f

I2

ts
g

Π1 Π2

instances

solutions

problems

6 - 2

Approximation Preserving Reduction
Let Π1, Π2 be minimization problems where
there is an approximation preserving reduction
(f , g) from Π1 to Π2. Then there is a
factor-α-approximation algorithm of Π1 for
each factor-α-approximation algorithm of Π2.

Theorem.

?

I1
f

I2

ts
g

Π1 Π2

instances

solutions

problems

6 - 3

Approximation Preserving Reduction
Let Π1, Π2 be minimization problems where
there is an approximation preserving reduction
(f , g) from Π1 to Π2. Then there is a
factor-α-approximation algorithm of Π1 for
each factor-α-approximation algorithm of Π2.

Theorem.

α-approximation

?

I1
f

I2

ts
g

Π1 Π2

instances

solutions

problems

6 - 4

Approximation Preserving Reduction
Let Π1, Π2 be minimization problems where
there is an approximation preserving reduction
(f , g) from Π1 to Π2. Then there is a
factor-α-approximation algorithm of Π1 for
each factor-α-approximation algorithm of Π2.

Theorem.

α-approximationα-approximation

I1
f

I2

ts
g

Π1 Π2

instances

solutions

problems

6 - 5

Approximation Preserving Reduction
Let Π1, Π2 be minimization problems where
there is an approximation preserving reduction
(f , g) from Π1 to Π2. Then there is a
factor-α-approximation algorithm of Π1 for
each factor-α-approximation algorithm of Π2.

Theorem.

Proof.
Let A be a factor-α-approx. alg. for Π2.

I1
f

I2

ts
g

Π1 Π2

6 - 6

Approximation Preserving Reduction
Let Π1, Π2 be minimization problems where
there is an approximation preserving reduction
(f , g) from Π1 to Π2. Then there is a
factor-α-approximation algorithm of Π1 for
each factor-α-approximation algorithm of Π2.

Theorem.

Proof.
Let A be a factor-α-approx. alg. for Π2.

Let I1 be an instance of Π1.

I1
f

I2

ts
g

Π1 Π2

6 - 7

Approximation Preserving Reduction
Let Π1, Π2 be minimization problems where
there is an approximation preserving reduction
(f , g) from Π1 to Π2. Then there is a
factor-α-approximation algorithm of Π1 for
each factor-α-approximation algorithm of Π2.

Theorem.

Proof.
Let A be a factor-α-approx. alg. for Π2.

Set I2 := f (I1), t := A(I2) and s := g(I1, t).

Let I1 be an instance of Π1.

I1
f

I2

ts
g

Π1 Π2

6 - 8

Approximation Preserving Reduction
Let Π1, Π2 be minimization problems where
there is an approximation preserving reduction
(f , g) from Π1 to Π2. Then there is a
factor-α-approximation algorithm of Π1 for
each factor-α-approximation algorithm of Π2.

Theorem.

Proof.
Let A be a factor-α-approx. alg. for Π2.

Set I2 := f (I1), t := A(I2) and s := g(I1, t).

Let I1 be an instance of Π1.

I1
f

I2

ts
g

Π1 Π2

6 - 9

Approximation Preserving Reduction
Let Π1, Π2 be minimization problems where
there is an approximation preserving reduction
(f , g) from Π1 to Π2. Then there is a
factor-α-approximation algorithm of Π1 for
each factor-α-approximation algorithm of Π2.

Theorem.

Proof.
Let A be a factor-α-approx. alg. for Π2.

Set I2 := f (I1), t := A(I2) and s := g(I1, t).

Let I1 be an instance of Π1.

I1
f

I2

ts
g

Π1 Π2

A

6 - 10

Approximation Preserving Reduction
Let Π1, Π2 be minimization problems where
there is an approximation preserving reduction
(f , g) from Π1 to Π2. Then there is a
factor-α-approximation algorithm of Π1 for
each factor-α-approximation algorithm of Π2.

Theorem.

Proof.
Let A be a factor-α-approx. alg. for Π2.

Set I2 := f (I1), t := A(I2) and s := g(I1, t).

Let I1 be an instance of Π1.

I1
f

I2

ts
g

Π1 Π2

A

6 - 11

Approximation Preserving Reduction
Let Π1, Π2 be minimization problems where
there is an approximation preserving reduction
(f , g) from Π1 to Π2. Then there is a
factor-α-approximation algorithm of Π1 for
each factor-α-approximation algorithm of Π2.

Theorem.

Proof.
Let A be a factor-α-approx. alg. for Π2.

Set I2 := f (I1), t := A(I2) and s := g(I1, t).

Then:
objΠ1

(I1, s) ≤ objΠ2
(I2, t) ≤ α ·OPTΠ2(I2) ≤ α ·OPTΠ1(I1)

Let I1 be an instance of Π1.

I1
f

I2

ts
g

Π1 Π2

A

6 - 12

Approximation Preserving Reduction
Let Π1, Π2 be minimization problems where
there is an approximation preserving reduction
(f , g) from Π1 to Π2. Then there is a
factor-α-approximation algorithm of Π1 for
each factor-α-approximation algorithm of Π2.

Theorem.

Proof.
Let A be a factor-α-approx. alg. for Π2.

Set I2 := f (I1), t := A(I2) and s := g(I1, t).

Then:
objΠ1

(I1, s) ≤ objΠ2
(I2, t) ≤ α ·OPTΠ2(I2) ≤ α ·OPTΠ1(I1)

Let I1 be an instance of Π1.

I1
f

I2

ts
g

Π1 Π2

A

6 - 13

Approximation Preserving Reduction
Let Π1, Π2 be minimization problems where
there is an approximation preserving reduction
(f , g) from Π1 to Π2. Then there is a
factor-α-approximation algorithm of Π1 for
each factor-α-approximation algorithm of Π2.

Theorem.

Proof.
Let A be a factor-α-approx. alg. for Π2.

Set I2 := f (I1), t := A(I2) and s := g(I1, t).

Then:
objΠ1

(I1, s) ≤ objΠ2
(I2, t) ≤ α ·OPTΠ2(I2) ≤ α ·OPTΠ1(I1)

Let I1 be an instance of Π1.

I1
f

I2

ts
g

Π1 Π2

A

6 - 14

Approximation Preserving Reduction
Let Π1, Π2 be minimization problems where
there is an approximation preserving reduction
(f , g) from Π1 to Π2. Then there is a
factor-α-approximation algorithm of Π1 for
each factor-α-approximation algorithm of Π2.

Theorem.

Proof.
Let A be a factor-α-approx. alg. for Π2.

Set I2 := f (I1), t := A(I2) and s := g(I1, t).

Then:
objΠ1

(I1, s) ≤ objΠ2
(I2, t) ≤ α ·OPTΠ2(I2) ≤ α ·OPTΠ1(I1)

Let I1 be an instance of Π1.

I1
f

I2

ts
g

Π1 Π2

A

7

Lecture 3:
SteinerTree and MultiwayCut

Part III:
Reduction to MetricSteinerTree

Approximation Algorithms

Joachim Spoerhase Winter 2021/22

8 - 1

MetricSteinerTree

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

8 - 2

MetricSteinerTree

Proof. (1) Mapping f I1 I2
f

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

8 - 3

MetricSteinerTree

Proof.
Instance I1 of SteinerTree: Graph G1 = (V, E1), edge
weights c1, partition V = T ·∪ S

(1) Mapping f I1 I2
f

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

8 - 4

MetricSteinerTree

Proof.
Instance I1 of SteinerTree: Graph G1 = (V, E1), edge
weights c1, partition V = T ·∪ S

(1) Mapping f I1 I2
f

2

1

13

5

I1

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

8 - 5

MetricSteinerTree

Proof.
Instance I1 of SteinerTree: Graph G1 = (V, E1), edge
weights c1, partition V = T ·∪ S
Metric instance I2 := f (I1): Complete graph G2 = (V, E2),
partition T, S as in I1

(1) Mapping f I1 I2
f

2

1

13

5

I1

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

8 - 6

MetricSteinerTree

Proof.
Instance I1 of SteinerTree: Graph G1 = (V, E1), edge
weights c1, partition V = T ·∪ S
Metric instance I2 := f (I1): Complete graph G2 = (V, E2),
partition T, S as in I1

(1) Mapping f I1 I2
f

2

1

13

5

I1 I2
f

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

8 - 7

MetricSteinerTree

Proof.
Instance I1 of SteinerTree: Graph G1 = (V, E1), edge
weights c1, partition V = T ·∪ S
Metric instance I2 := f (I1): Complete graph G2 = (V, E2),
partition T, S as in I1

c2(u, v) := Length of shortest u–v-path in G1

(1) Mapping f I1 I2
f

2

1

13

5

I1 I2
f

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

8 - 8

MetricSteinerTree

Proof.
Instance I1 of SteinerTree: Graph G1 = (V, E1), edge
weights c1, partition V = T ·∪ S
Metric instance I2 := f (I1): Complete graph G2 = (V, E2),
partition T, S as in I1

c2(u, v) := Length of shortest u–v-path in G1

(1) Mapping f I1 I2
f

2

1

13

5

I1 I2
f

2

1

1

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

8 - 9

MetricSteinerTree

Proof.
Instance I1 of SteinerTree: Graph G1 = (V, E1), edge
weights c1, partition V = T ·∪ S
Metric instance I2 := f (I1): Complete graph G2 = (V, E2),
partition T, S as in I1

c2(u, v) := Length of shortest u–v-path in G1

(1) Mapping f I1 I2
f

2

1

13

5

I1 I2
f

2

1

1

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

8 - 10

MetricSteinerTree

Proof.
Instance I1 of SteinerTree: Graph G1 = (V, E1), edge
weights c1, partition V = T ·∪ S
Metric instance I2 := f (I1): Complete graph G2 = (V, E2),
partition T, S as in I1

c2(u, v) := Length of shortest u–v-path in G1

(1) Mapping f I1 I2
f

2

1

13

5

I1 I2
f

2

1

1

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

8 - 11

MetricSteinerTree

Proof.
Instance I1 of SteinerTree: Graph G1 = (V, E1), edge
weights c1, partition V = T ·∪ S
Metric instance I2 := f (I1): Complete graph G2 = (V, E2),
partition T, S as in I1

c2(u, v) := Length of shortest u–v-path in G1

(1) Mapping f I1 I2
f

2

1

13

5

I1 I2
f

2

1

1

4

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

8 - 12

MetricSteinerTree

Proof.
Instance I1 of SteinerTree: Graph G1 = (V, E1), edge
weights c1, partition V = T ·∪ S
Metric instance I2 := f (I1): Complete graph G2 = (V, E2),
partition T, S as in I1

c2(u, v) := Length of shortest u–v-path in G1

(1) Mapping f I1 I2
f

2

1

13

5

I1 I2
f

2

1

1

4

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

8 - 13

MetricSteinerTree

Proof.
Instance I1 of SteinerTree: Graph G1 = (V, E1), edge
weights c1, partition V = T ·∪ S
Metric instance I2 := f (I1): Complete graph G2 = (V, E2),
partition T, S as in I1

c2(u, v) := Length of shortest u–v-path in G1

(1) Mapping f I1 I2
f

2

1

13

5

I1 I2
f

2

1

1

4

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

8 - 14

MetricSteinerTree

Proof.
Instance I1 of SteinerTree: Graph G1 = (V, E1), edge
weights c1, partition V = T ·∪ S
Metric instance I2 := f (I1): Complete graph G2 = (V, E2),
partition T, S as in I1

c2(u, v) := Length of shortest u–v-path in G1

(1) Mapping f I1 I2
f

2

1

13

5

I1 I2
f

2

1

1

4

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

8 - 15

MetricSteinerTree

Proof.
Instance I1 of SteinerTree: Graph G1 = (V, E1), edge
weights c1, partition V = T ·∪ S
Metric instance I2 := f (I1): Complete graph G2 = (V, E2),
partition T, S as in I1

c2(u, v) := Length of shortest u–v-path in G1

(1) Mapping f I1 I2
f

2

1

13

5

I1 I2
f

2

1

1

4
3

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

8 - 16

MetricSteinerTree

Proof.
Instance I1 of SteinerTree: Graph G1 = (V, E1), edge
weights c1, partition V = T ·∪ S
Metric instance I2 := f (I1): Complete graph G2 = (V, E2),
partition T, S as in I1

c2(u, v) := Length of shortest u–v-path in G1

(1) Mapping f I1 I2
f

2

1

13

5

I1 I2
f

2

1

1

4
3

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

8 - 17

MetricSteinerTree

Proof.
Instance I1 of SteinerTree: Graph G1 = (V, E1), edge
weights c1, partition V = T ·∪ S
Metric instance I2 := f (I1): Complete graph G2 = (V, E2),
partition T, S as in I1

c2(u, v) := Length of shortest u–v-path in G1

(1) Mapping f I1 I2
f

2

1

13

5

I1 I2
f

2

1

1

4
3

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

8 - 18

MetricSteinerTree

Proof.
Instance I1 of SteinerTree: Graph G1 = (V, E1), edge
weights c1, partition V = T ·∪ S
Metric instance I2 := f (I1): Complete graph G2 = (V, E2),
partition T, S as in I1

c2(u, v) := Length of shortest u–v-path in G1

(1) Mapping f I1 I2
f

2

1

13

5

I1 I2
f

2

1

1

4
3

2

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

8 - 19

MetricSteinerTree

Proof.
Instance I1 of SteinerTree: Graph G1 = (V, E1), edge
weights c1, partition V = T ·∪ S
Metric instance I2 := f (I1): Complete graph G2 = (V, E2),
partition T, S as in I1

c2(u, v) := Length of shortest u–v-path in G1

(1) Mapping f I1 I2
f

2

1

13

5

I1 I2
f

2

1

1

4
3

2

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

8 - 20

MetricSteinerTree

Proof.
Instance I1 of SteinerTree: Graph G1 = (V, E1), edge
weights c1, partition V = T ·∪ S
Metric instance I2 := f (I1): Complete graph G2 = (V, E2),
partition T, S as in I1

c2(u, v) := Length of shortest u–v-path in G1

c2(u, v) ≤ c1(u, v) for all (u, v) ∈ E

(1) Mapping f I1 I2
f

2

1

13

5

I1 I2
f

2

1

1

4
3

2

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

9 - 1

MetricSteinerTree

Proof. (2) OPT(I2) ≤ OPT(I1)

2

1

13

5

I1 I2
f

2

1

1

4
3

2

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

9 - 2

MetricSteinerTree

Proof.
Let B∗ be optimal Steiner tree for I1

(2) OPT(I2) ≤ OPT(I1)

2

1

13

5

I1 I2
f

2

1

1

4
3

2

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

9 - 3

MetricSteinerTree

Proof.
Let B∗ be optimal Steiner tree for I1

(2) OPT(I2) ≤ OPT(I1)

2

1

13

5

I1 I2
f

2

1

1

4
3

2

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

9 - 4

MetricSteinerTree

Proof.
Let B∗ be optimal Steiner tree for I1
B∗ is also a feasible solution for I2, since E1 ⊆ E2 and the
vertex sets V, T, S are the same

(2) OPT(I2) ≤ OPT(I1)

2

1

13

5

I1 I2
f

2

1

1

4
3

2

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

9 - 5

MetricSteinerTree

Proof.
Let B∗ be optimal Steiner tree for I1
B∗ is also a feasible solution for I2, since E1 ⊆ E2 and the
vertex sets V, T, S are the same

(2) OPT(I2) ≤ OPT(I1)

2

1

13

5

I1 I2
f

2

1

1

4
3

2

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

9 - 6

MetricSteinerTree

Proof.
Let B∗ be optimal Steiner tree for I1
B∗ is also a feasible solution for I2, since E1 ⊆ E2 and the
vertex sets V, T, S are the same

(2) OPT(I2) ≤ OPT(I1)

OPT(I2) ≤ c2(B∗) ≤ c1(B∗) = OPT(I1)

2

1

13

5

I1 I2
f

2

1

1

4
3

2

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

9 - 7

MetricSteinerTree

Proof.
Let B∗ be optimal Steiner tree for I1
B∗ is also a feasible solution for I2, since E1 ⊆ E2 and the
vertex sets V, T, S are the same

(2) OPT(I2) ≤ OPT(I1)

OPT(I2) ≤ c2(B∗) ≤ c1(B∗) = OPT(I1)

2

1

13

5

I1 I2
f

2

1

1

4
3

2

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

9 - 8

MetricSteinerTree

Proof.
Let B∗ be optimal Steiner tree for I1
B∗ is also a feasible solution for I2, since E1 ⊆ E2 and the
vertex sets V, T, S are the same

(2) OPT(I2) ≤ OPT(I1)

OPT(I2) ≤ c2(B∗) ≤ c1(B∗) = OPT(I1)

2

1

13

5

I1 I2
f

2

1

1

4
3

2

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

9 - 9

MetricSteinerTree

Proof.
Let B∗ be optimal Steiner tree for I1
B∗ is also a feasible solution for I2, since E1 ⊆ E2 and the
vertex sets V, T, S are the same

(2) OPT(I2) ≤ OPT(I1)

OPT(I2) ≤ c2(B∗) ≤ c1(B∗) = OPT(I1)

2

1

13

5

I1 I2
f

2

1

1

4
3

2

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

10 - 1

MetricSteinerTree

Proof. (3) Mapping g ts
g

5

I1 I2
f 1

1
2

2

4
3

3

1

2 1

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

10 - 2

MetricSteinerTree

Let B2 be Steiner tree of G2

Proof. (3) Mapping g ts
g

5

I1 I2
f 1

1
2

2

4
3

3

1

2 1

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

10 - 3

MetricSteinerTree

Let B2 be Steiner tree of G2

Proof. (3) Mapping g ts
g

5

I1 I2
f 1

1
2

2

4
3

3

1

2 1

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

10 - 4

MetricSteinerTree

Let B2 be Steiner tree of G2
Construct G′1 ⊆ G1 from B2 by replacing each edge (u, v)
of B2 by a shortest u–v-path in G1.

Proof. (3) Mapping g ts
g

5

I1 I2
f 1

1
2

2

4
3

3

1

2 1

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

10 - 5

MetricSteinerTree

Let B2 be Steiner tree of G2
Construct G′1 ⊆ G1 from B2 by replacing each edge (u, v)
of B2 by a shortest u–v-path in G1.

Proof. (3) Mapping g ts
g

5

I1 I2
f 1

1
2

2

4
3

3
g

1

2 1

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

10 - 6

MetricSteinerTree

Let B2 be Steiner tree of G2
Construct G′1 ⊆ G1 from B2 by replacing each edge (u, v)
of B2 by a shortest u–v-path in G1.

Proof. (3) Mapping g ts
g

5

I1 I2
f 1

1
2

2

4
3

3
g

1

2 1

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

10 - 7

MetricSteinerTree

Let B2 be Steiner tree of G2
Construct G′1 ⊆ G1 from B2 by replacing each edge (u, v)
of B2 by a shortest u–v-path in G1.

Proof. (3) Mapping g ts
g

5

I1 I2
f 1

1
2

2

4
3

3
g

1

2 1

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

10 - 8

MetricSteinerTree

Let B2 be Steiner tree of G2
Construct G′1 ⊆ G1 from B2 by replacing each edge (u, v)
of B2 by a shortest u–v-path in G1.

Proof. (3) Mapping g ts
g

5

I1 I2
f 1

1
2

2

4
3

3
g

1

2 1

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

10 - 9

MetricSteinerTree

Let B2 be Steiner tree of G2
Construct G′1 ⊆ G1 from B2 by replacing each edge (u, v)
of B2 by a shortest u–v-path in G1.
c1(G′1) ≤ c2(B2)

Proof. (3) Mapping g ts
g

5

I1 I2
f 1

1
2

2

4
3

3
g

1

2 1

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

10 - 10

MetricSteinerTree

Let B2 be Steiner tree of G2
Construct G′1 ⊆ G1 from B2 by replacing each edge (u, v)
of B2 by a shortest u–v-path in G1.
c1(G′1) ≤ c2(B2); G′1 connects all terminals

Proof. (3) Mapping g ts
g

5

I1 I2
f 1

1
2

2

4
3

3
g

1

2 1

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

10 - 11

MetricSteinerTree

Let B2 be Steiner tree of G2
Construct G′1 ⊆ G1 from B2 by replacing each edge (u, v)
of B2 by a shortest u–v-path in G1.
c1(G′1) ≤ c2(B2); G′1 connects all terminals ; not nec. a tree

Proof. (3) Mapping g ts
g

5

I1 I2
f 1

1
2

2

4
3

3
g

1

2 1

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

10 - 12

MetricSteinerTree

Let B2 be Steiner tree of G2
Construct G′1 ⊆ G1 from B2 by replacing each edge (u, v)
of B2 by a shortest u–v-path in G1.
c1(G′1) ≤ c2(B2); G′1 connects all terminals ; not nec. a tree
Consider spanning tree B1 of G′1

Proof. (3) Mapping g ts
g

5

I1 I2
f 1

1
2

2

4
3

3
g

1

2 1

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

10 - 13

MetricSteinerTree

Let B2 be Steiner tree of G2
Construct G′1 ⊆ G1 from B2 by replacing each edge (u, v)
of B2 by a shortest u–v-path in G1.
c1(G′1) ≤ c2(B2); G′1 connects all terminals ; not nec. a tree
Consider spanning tree B1 of G′1

Proof. (3) Mapping g ts
g

5

I1 I2
f 1

1
2

2

4
3

3
g

1

2 1

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

10 - 14

MetricSteinerTree

Let B2 be Steiner tree of G2
Construct G′1 ⊆ G1 from B2 by replacing each edge (u, v)
of B2 by a shortest u–v-path in G1.
c1(G′1) ≤ c2(B2); G′1 connects all terminals ; not nec. a tree
Consider spanning tree B1 of G′1 Steiner tree B1 of G1

Proof. (3) Mapping g ts
g

5

I1 I2
f 1

1
2

2

4
3

3
g

1

2 1

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

10 - 15

MetricSteinerTree

Let B2 be Steiner tree of G2
Construct G′1 ⊆ G1 from B2 by replacing each edge (u, v)
of B2 by a shortest u–v-path in G1.
c1(G′1) ≤ c2(B2); G′1 connects all terminals ; not nec. a tree
Consider spanning tree B1 of G′1 Steiner tree B1 of G1

c1(B1) ≤ c1(G′1) ≤ c2(B2)

Proof. (3) Mapping g ts
g

5

I1 I2
f 1

1
2

2

4
3

3
g

1

2 1

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.

11

Lecture 3:
SteinerTree and MultiwayCut

Part IV:
2-Approximation for SteinerTree

Approximation Algorithms

Joachim Spoerhase Winter 2021/22

12 - 1

2-Approximation for SteinerTree

12 - 2

2-Approximation for SteinerTree

For an instance of MetricSteinerTree, let B be
a minimum spanning tree (MST) of the
subgraph G[T] induced by the terminal set T.
Then c(B) ≤ 2 ·OPT.

Theorem.

12 - 3

2-Approximation for SteinerTree

G

2

1

1

4

3 2

For an instance of MetricSteinerTree, let B be
a minimum spanning tree (MST) of the
subgraph G[T] induced by the terminal set T.
Then c(B) ≤ 2 ·OPT.

Theorem.

12 - 4

2-Approximation for SteinerTree

2

G

2

4
G[T]

2

1

1

4

3 2

For an instance of MetricSteinerTree, let B be
a minimum spanning tree (MST) of the
subgraph G[T] induced by the terminal set T.
Then c(B) ≤ 2 ·OPT.

Theorem.

12 - 5

2-Approximation for SteinerTree

2

G

2

4
G[T]

2

1

1

4

3 2

For an instance of MetricSteinerTree, let B be
a minimum spanning tree (MST) of the
subgraph G[T] induced by the terminal set T.
Then c(B) ≤ 2 ·OPT.

Theorem.

12 - 6

2-Approximation for SteinerTree

2

G

2

4
G[T]

2

1

1

4

3 2

For an instance of MetricSteinerTree, let B be
a minimum spanning tree (MST) of the
subgraph G[T] induced by the terminal set T.
Then c(B) ≤ 2 ·OPT.

Theorem.

13 - 1

Proof of Approximation Factor
Consider optimal Steiner tree B∗

13 - 2

Proof of Approximation Factor
Consider optimal Steiner tree B∗

B∗

13 - 3

Proof of Approximation Factor
Consider optimal Steiner tree B∗

Duplicate all edges in B∗ Eulerian (multi-)graph B′ with cost
c(B′) = 2 ·OPT

B∗

13 - 4

Proof of Approximation Factor
Consider optimal Steiner tree B∗

Duplicate all edges in B∗ Eulerian (multi-)graph B′ with cost
c(B′) = 2 ·OPT

B∗

B′

13 - 5

Proof of Approximation Factor
Consider optimal Steiner tree B∗

Find an Eulerian tour T′ in B′ c(T′) = c(B′) = 2 ·OPT

Duplicate all edges in B∗ Eulerian (multi-)graph B′ with cost
c(B′) = 2 ·OPT

B∗

B′

13 - 6

Proof of Approximation Factor
Consider optimal Steiner tree B∗

Find an Eulerian tour T′ in B′ c(T′) = c(B′) = 2 ·OPT

Duplicate all edges in B∗ Eulerian (multi-)graph B′ with cost
c(B′) = 2 ·OPT

B∗

T′

13 - 7

Proof of Approximation Factor
Consider optimal Steiner tree B∗

Find an Eulerian tour T′ in B′ c(T′) = c(B′) = 2 ·OPT
Find a Hamiltonian path H in G[T] by “short-cutting” Steiner
vertices and previously visited terminals
 c(H) ≤ c(T′) = 2 ·OPT, since G is metric

Duplicate all edges in B∗ Eulerian (multi-)graph B′ with cost
c(B′) = 2 ·OPT

B∗

T′

13 - 8

Proof of Approximation Factor
Consider optimal Steiner tree B∗

Find an Eulerian tour T′ in B′ c(T′) = c(B′) = 2 ·OPT
Find a Hamiltonian path H in G[T] by “short-cutting” Steiner
vertices and previously visited terminals
 c(H) ≤ c(T′) = 2 ·OPT, since G is metric

Duplicate all edges in B∗ Eulerian (multi-)graph B′ with cost
c(B′) = 2 ·OPT

B∗

T′

H

13 - 9

Proof of Approximation Factor
Consider optimal Steiner tree B∗

Find an Eulerian tour T′ in B′ c(T′) = c(B′) = 2 ·OPT
Find a Hamiltonian path H in G[T] by “short-cutting” Steiner
vertices and previously visited terminals
 c(H) ≤ c(T′) = 2 ·OPT, since G is metric

Duplicate all edges in B∗ Eulerian (multi-)graph B′ with cost
c(B′) = 2 ·OPT

B∗

T′

H

13 - 10

Proof of Approximation Factor
Consider optimal Steiner tree B∗

Find an Eulerian tour T′ in B′ c(T′) = c(B′) = 2 ·OPT
Find a Hamiltonian path H in G[T] by “short-cutting” Steiner
vertices and previously visited terminals
 c(H) ≤ c(T′) = 2 ·OPT, since G is metric

Duplicate all edges in B∗ Eulerian (multi-)graph B′ with cost
c(B′) = 2 ·OPT

B∗

T′

H

13 - 11

Proof of Approximation Factor
Consider optimal Steiner tree B∗

Find an Eulerian tour T′ in B′ c(T′) = c(B′) = 2 ·OPT
Find a Hamiltonian path H in G[T] by “short-cutting” Steiner
vertices and previously visited terminals
 c(H) ≤ c(T′) = 2 ·OPT, since G is metric

Duplicate all edges in B∗ Eulerian (multi-)graph B′ with cost
c(B′) = 2 ·OPT

B∗

T′

H

13 - 12

Proof of Approximation Factor
Consider optimal Steiner tree B∗

Find an Eulerian tour T′ in B′ c(T′) = c(B′) = 2 ·OPT
Find a Hamiltonian path H in G[T] by “short-cutting” Steiner
vertices and previously visited terminals
 c(H) ≤ c(T′) = 2 ·OPT, since G is metric

Duplicate all edges in B∗ Eulerian (multi-)graph B′ with cost
c(B′) = 2 ·OPT

B∗

T′

H

13 - 13

Proof of Approximation Factor
Consider optimal Steiner tree B∗

Find an Eulerian tour T′ in B′ c(T′) = c(B′) = 2 ·OPT
Find a Hamiltonian path H in G[T] by “short-cutting” Steiner
vertices and previously visited terminals
 c(H) ≤ c(T′) = 2 ·OPT, since G is metric

Duplicate all edges in B∗ Eulerian (multi-)graph B′ with cost
c(B′) = 2 ·OPT

B∗

T′

H

13 - 14

Proof of Approximation Factor
Consider optimal Steiner tree B∗

Find an Eulerian tour T′ in B′ c(T′) = c(B′) = 2 ·OPT
Find a Hamiltonian path H in G[T] by “short-cutting” Steiner
vertices and previously visited terminals
 c(H) ≤ c(T′) = 2 ·OPT, since G is metric

Duplicate all edges in B∗ Eulerian (multi-)graph B′ with cost
c(B′) = 2 ·OPT

B∗

T′

H

13 - 15

Proof of Approximation Factor
Consider optimal Steiner tree B∗

Find an Eulerian tour T′ in B′ c(T′) = c(B′) = 2 ·OPT
Find a Hamiltonian path H in G[T] by “short-cutting” Steiner
vertices and previously visited terminals
 c(H) ≤ c(T′) = 2 ·OPT, since G is metric

Duplicate all edges in B∗ Eulerian (multi-)graph B′ with cost
c(B′) = 2 ·OPT

B∗

T′

H

13 - 16

Proof of Approximation Factor
Consider optimal Steiner tree B∗

Find an Eulerian tour T′ in B′ c(T′) = c(B′) = 2 ·OPT
Find a Hamiltonian path H in G[T] by “short-cutting” Steiner
vertices and previously visited terminals
 c(H) ≤ c(T′) = 2 ·OPT, since G is metric

Duplicate all edges in B∗ Eulerian (multi-)graph B′ with cost
c(B′) = 2 ·OPT

B∗

T′

H

13 - 17

Proof of Approximation Factor
Consider optimal Steiner tree B∗

Find an Eulerian tour T′ in B′ c(T′) = c(B′) = 2 ·OPT
Find a Hamiltonian path H in G[T] by “short-cutting” Steiner
vertices and previously visited terminals
 c(H) ≤ c(T′) = 2 ·OPT, since G is metric

Duplicate all edges in B∗ Eulerian (multi-)graph B′ with cost
c(B′) = 2 ·OPT

B∗

MST B of G[T] has c(B) ≤ c(H) ≤ 2 ·OPT,
since H is a spanning tree of G[T]

T′

H

13 - 18

Proof of Approximation Factor
Consider optimal Steiner tree B∗

Find an Eulerian tour T′ in B′ c(T′) = c(B′) = 2 ·OPT
Find a Hamiltonian path H in G[T] by “short-cutting” Steiner
vertices and previously visited terminals
 c(H) ≤ c(T′) = 2 ·OPT, since G is metric

Duplicate all edges in B∗ Eulerian (multi-)graph B′ with cost
c(B′) = 2 ·OPT

B∗

MST B of G[T] has c(B) ≤ c(H) ≤ 2 ·OPT,
since H is a spanning tree of G[T]

T′

H

14 - 1

Analysis Sharp?

14 - 2

Analysis Sharp?

Kn

terminal

14 - 3

Analysis Sharp?

Kn cost 2

terminal

14 - 4

Analysis Sharp?

Kn cost 2

terminal

Steiner vertex

14 - 5

Analysis Sharp?

Kn cost 2

terminal

Steiner vertex

14 - 6

Analysis Sharp?

Kn

cost 1

cost 2

terminal

Steiner vertex

14 - 7

Analysis Sharp?

Kn

cost 1

cost 2

MST of G[T] with cost 2(n− 1)

terminal

Steiner vertex

14 - 8

Analysis Sharp?

Kn

cost 1

cost 2

MST of G[T] with cost 2(n− 1)
Optimal solution with cost n

terminal

Steiner vertex

14 - 9

Analysis Sharp?

Kn

cost 1

cost 2

MST of G[T] with cost 2(n− 1)
Optimal solution with cost n

2(n− 1)
n

→ 2

terminal

Steiner vertex

14 - 10

Analysis Sharp?

Kn

cost 1

cost 2

MST of G[T] with cost 2(n− 1)
Optimal solution with cost n

2(n− 1)
n

→ 2

terminal

Steiner vertex

better?

14 - 11

Analysis Sharp?

Kn

cost 1

cost 2

MST of G[T] with cost 2(n− 1)
Optimal solution with cost n

2(n− 1)
n

→ 2

terminal

Steiner vertex

better?
The best-known approximation factor for
SteinerTree is ln(4) + ε ≈ 1.39

[Byrka, Grandoni,
Rothvoß & Sanita ’10]

14 - 12

Analysis Sharp?

Kn

cost 1

cost 2

MST of G[T] with cost 2(n− 1)
Optimal solution with cost n

2(n− 1)
n

→ 2

terminal

Steiner vertex

better?
The best-known approximation factor for
SteinerTree is ln(4) + ε ≈ 1.39
SteinerTree cannot be approximated within factor
96
95 ≈ 1.0105 (unless P=NP)

[Byrka, Grandoni,
Rothvoß & Sanita ’10]

[Chlebik & Chlebikova ’08]

15

Lecture 3:
SteinerTree and MultiwayCut

Part V:
MultiwayCut

Approximation Algorithms

Joachim Spoerhase Winter 2021/22

16 - 1

MultiwayCut

A connected graph G = (V, E) with edge costs
c : E→ Q+ and a set T = {t1, . . . , tk} ⊆ V of
terminals.

Given:

A multiway cut of T is a subset E′ of edges such that no
two terminals in the graph (V, E− E′) are connected.

16 - 2

MultiwayCut

A connected graph G = (V, E) with edge costs
c : E→ Q+ and a set T = {t1, . . . , tk} ⊆ V of
terminals.

Given:

A multiway cut of T is a subset E′ of edges such that no
two terminals in the graph (V, E− E′) are connected.

16 - 3

MultiwayCut

A connected graph G = (V, E) with edge costs
c : E→ Q+ and a set T = {t1, . . . , tk} ⊆ V of
terminals.

Given:

A multiway cut of T is a subset E′ of edges such that no
two terminals in the graph (V, E− E′) are connected.

16 - 4

MultiwayCut

A connected graph G = (V, E) with edge costs
c : E→ Q+ and a set T = {t1, . . . , tk} ⊆ V of
terminals.

Given:

A multiway cut of T is a subset E′ of edges such that no
two terminals in the graph (V, E− E′) are connected.

1

2

2

3

6

4
32

4

2
3

7

68

5

9
8

6

5

16 - 5

MultiwayCut

A connected graph G = (V, E) with edge costs
c : E→ Q+ and a set T = {t1, . . . , tk} ⊆ V of
terminals.

Given:

A multiway cut of T is a subset E′ of edges such that no
two terminals in the graph (V, E− E′) are connected.

1

2

2

3

6

4
32

4

2
3

7

68

5

9
8

6

5

16 - 6

MultiwayCut

A connected graph G = (V, E) with edge costs
c : E→ Q+ and a set T = {t1, . . . , tk} ⊆ V of
terminals.

Given:

A multiway cut of T is a subset E′ of edges such that no
two terminals in the graph (V, E− E′) are connected.

1

2

2

3

6

4
32

4

2
3

7

68

5

9
8

6

5

t1

t2

t3

16 - 7

MultiwayCut

A connected graph G = (V, E) with edge costs
c : E→ Q+ and a set T = {t1, . . . , tk} ⊆ V of
terminals.

Given:

A multiway cut of T is a subset E′ of edges such that no
two terminals in the graph (V, E− E′) are connected.

1

2

2

3

6

4
32

4

2
3

7

68

5

9
8

6

5

t1

t2

t3

16 - 8

MultiwayCut

A connected graph G = (V, E) with edge costs
c : E→ Q+ and a set T = {t1, . . . , tk} ⊆ V of
terminals.

Given:

A multiway cut of T is a subset E′ of edges such that no
two terminals in the graph (V, E− E′) are connected.

1

2

2

3

6

4
32

4

2
3

7

68

5

9
8

6

5

t1

t2

t3

16 - 9

MultiwayCut

A connected graph G = (V, E) with edge costs
c : E→ Q+ and a set T = {t1, . . . , tk} ⊆ V of
terminals.

Given:

A multiway cut of T is a subset E′ of edges such that no
two terminals in the graph (V, E− E′) are connected.

1

2

2

3

6

4
32

4

2
3

7

68

5

9
8

6

5

t1

t2

t3

Find: A minimum cost multiway cut of T.

16 - 10

MultiwayCut

A connected graph G = (V, E) with edge costs
c : E→ Q+ and a set T = {t1, . . . , tk} ⊆ V of
terminals.

Given:

A multiway cut of T is a subset E′ of edges such that no
two terminals in the graph (V, E− E′) are connected.

1

2

2

3

6

4
32

4

2
3

7

68

5

9
8

6

5

t1

t2

t3

Find: A minimum cost multiway cut of T.

16 - 11

MultiwayCut

A connected graph G = (V, E) with edge costs
c : E→ Q+ and a set T = {t1, . . . , tk} ⊆ V of
terminals.

Given:

A multiway cut of T is a subset E′ of edges such that no
two terminals in the graph (V, E− E′) are connected.

Connected components after
removing the multiway cut

1

2

2

3

6

4
32

4

2
3

7

68

5

9
8

6

5

t1

t2

t3

Find: A minimum cost multiway cut of T.

16 - 12

MultiwayCut

A connected graph G = (V, E) with edge costs
c : E→ Q+ and a set T = {t1, . . . , tk} ⊆ V of
terminals.

Given:

A multiway cut of T is a subset E′ of edges such that no
two terminals in the graph (V, E− E′) are connected.

Connected components after
removing the multiway cut

1

2

2

3

6

4
32

4

2
3

7

68

5

9
8

6

5

t1

t2

t3

k = 2:
Min-s-t-Cut

Find: A minimum cost multiway cut of T.

16 - 13

MultiwayCut

A connected graph G = (V, E) with edge costs
c : E→ Q+ and a set T = {t1, . . . , tk} ⊆ V of
terminals.

Given:

A multiway cut of T is a subset E′ of edges such that no
two terminals in the graph (V, E− E′) are connected.

k ≥ 3:
NP-hard

Connected components after
removing the multiway cut

1

2

2

3

6

4
32

4

2
3

7

68

5

9
8

6

5

t1

t2

t3

k = 2:
Min-s-t-Cut

Find: A minimum cost multiway cut of T.

17 - 1

Isolating Cuts
An isolating cut for a terminal ti is a set of edges
separating ti from all other terminals.

17 - 2

Isolating Cuts
An isolating cut for a terminal ti is a set of edges
separating ti from all other terminals.

ti

17 - 3

Isolating Cuts
An isolating cut for a terminal ti is a set of edges
separating ti from all other terminals.

ti

Minimum cost isolating cut can be computed efficiently!

17 - 4

Isolating Cuts
An isolating cut for a terminal ti is a set of edges
separating ti from all other terminals.

ti

Add dummy terminal s and find minimum cost s-ti-cut.

s

Minimum cost isolating cut can be computed efficiently!

17 - 5

Isolating Cuts
An isolating cut for a terminal ti is a set of edges
separating ti from all other terminals.

ti

Add dummy terminal s and find minimum cost s-ti-cut.

s

Minimum cost isolating cut can be computed efficiently!

17 - 6

Isolating Cuts
An isolating cut for a terminal ti is a set of edges
separating ti from all other terminals.

ti

Add dummy terminal s and find minimum cost s-ti-cut.

s

Minimum cost isolating cut can be computed efficiently!

∞
∞
∞

17 - 7

Isolating Cuts
An isolating cut for a terminal ti is a set of edges
separating ti from all other terminals.

ti

Add dummy terminal s and find minimum cost s-ti-cut.

s

Minimum cost isolating cut can be computed efficiently!

∞
∞
∞

17 - 8

Isolating Cuts
An isolating cut for a terminal ti is a set of edges
separating ti from all other terminals.

ti

Add dummy terminal s and find minimum cost s-ti-cut.

s

Minimum cost isolating cut can be computed efficiently!

∞
∞
∞

18

Lecture 3:
SteinerTree and MultiwayCut

Part VI:
Algorithm for MultiwayCut

Approximation Algorithms

Joachim Spoerhase Winter 2021/22

19 - 1

Algorithm MultiwayCut

For i = 1, . . . , k:
Compute a minimum cost isolating cut Ci for ti.

19 - 2

Algorithm MultiwayCut

For i = 1, . . . , k:
Compute a minimum cost isolating cut Ci for ti.

Return the union of C of the k− 1 cheapest such isolating
cuts.

19 - 3

Algorithm MultiwayCut

For i = 1, . . . , k:
Compute a minimum cost isolating cut Ci for ti.

Return the union of C of the k− 1 cheapest such isolating
cuts.
In other words:
Ignore the most expensive of the isolating cuts C1, . . . , Ck.

19 - 4

Algorithm MultiwayCut

For i = 1, . . . , k:
Compute a minimum cost isolating cut Ci for ti.

Return the union of C of the k− 1 cheapest such isolating
cuts.
In other words:
Ignore the most expensive of the isolating cuts C1, . . . , Ck.

⇒ c(C) ≤
(

1− 1
k

) k

∑
i=1

c(Ci)?

19 - 5

Algorithm MultiwayCut

For i = 1, . . . , k:
Compute a minimum cost isolating cut Ci for ti.

Return the union of C of the k− 1 cheapest such isolating
cuts.
In other words:
Ignore the most expensive of the isolating cuts C1, . . . , Ck.

⇒ c(C) ≤
(

1− 1
k

) k

∑
i=1

c(Ci)

19 - 6

Algorithm MultiwayCut

For i = 1, . . . , k:
Compute a minimum cost isolating cut Ci for ti.

Return the union of C of the k− 1 cheapest such isolating
cuts.
In other words:
Ignore the most expensive of the isolating cuts C1, . . . , Ck.

⇒ c(C) ≤
(

1− 1
k

) k

∑
i=1

c(Ci) because:

19 - 7

Algorithm MultiwayCut

For i = 1, . . . , k:
Compute a minimum cost isolating cut Ci for ti.

Return the union of C of the k− 1 cheapest such isolating
cuts.
In other words:
Ignore the most expensive of the isolating cuts C1, . . . , Ck.

⇒ c(C) ≤
(

1− 1
k

) k

∑
i=1

c(Ci) because:

for the most expensive cut of C1, . . . , Ck, say C1, we have

c(C1) ≥

19 - 8

Algorithm MultiwayCut

For i = 1, . . . , k:
Compute a minimum cost isolating cut Ci for ti.

Return the union of C of the k− 1 cheapest such isolating
cuts.
In other words:
Ignore the most expensive of the isolating cuts C1, . . . , Ck.

⇒ c(C) ≤
(

1− 1
k

) k

∑
i=1

c(Ci) because:

for the most expensive cut of C1, . . . , Ck, say C1, we have

c(C1) ≥
1
k

k

∑
i=1

c(Ci).

20 - 1

Approximation Factor
This algorithm is a factor-(2− 2/k)-
approximation algorithm for MultiwayCut.

Theorem.

20 - 2

Approximation Factor
This algorithm is a factor-(2− 2/k)-
approximation algorithm for MultiwayCut.

Theorem.

20 - 3

Approximation Factor
This algorithm is a factor-(2− 2/k)-
approximation algorithm for MultiwayCut.

Theorem.

Consider optimal multiway cut A:Proof.

20 - 4

Approximation Factor
This algorithm is a factor-(2− 2/k)-
approximation algorithm for MultiwayCut.

Theorem.

ti

Consider optimal multiway cut A:

Ki

tjKj

Proof.

20 - 5

Approximation Factor
This algorithm is a factor-(2− 2/k)-
approximation algorithm for MultiwayCut.

Theorem.

ti

Consider optimal multiway cut A:

Ki

tjKj

Proof.

20 - 6

Approximation Factor
This algorithm is a factor-(2− 2/k)-
approximation algorithm for MultiwayCut.

Theorem.

ti

Ai = {uv ∈ A : u ∈ Ki, v 6∈ Ki}

Consider optimal multiway cut A:

Ki

tjKj

Proof.

20 - 7

Approximation Factor
This algorithm is a factor-(2− 2/k)-
approximation algorithm for MultiwayCut.

Theorem.

ti

Ai = {uv ∈ A : u ∈ Ki, v 6∈ Ki}

Consider optimal multiway cut A:

Ki

tjKj

Aj

Proof.

20 - 8

Approximation Factor
This algorithm is a factor-(2− 2/k)-
approximation algorithm for MultiwayCut.

Theorem.

ti

Ai = {uv ∈ A : u ∈ Ki, v 6∈ Ki}

Consider optimal multiway cut A:

Ki

tjKj

Aj

Observation.A =

Proof.

20 - 9

Approximation Factor
This algorithm is a factor-(2− 2/k)-
approximation algorithm for MultiwayCut.

Theorem.

ti

Ai = {uv ∈ A : u ∈ Ki, v 6∈ Ki}

Consider optimal multiway cut A:

Ki

tjKj

Aj

Observation.A =
⋃k

i=1 Ai

Proof.

20 - 10

Approximation Factor
This algorithm is a factor-(2− 2/k)-
approximation algorithm for MultiwayCut.

Theorem.

ti

Ai = {uv ∈ A : u ∈ Ki, v 6∈ Ki}

Consider optimal multiway cut A:

Ki

tjKj

Aj

Observation. and ∑k
i=1 c(Ai) ≤ 2 · c(A) = 2 ·OPTA =

⋃k
i=1 Ai

Proof.

20 - 11

Approximation Factor
This algorithm is a factor-(2− 2/k)-
approximation algorithm for MultiwayCut.

Theorem.

ti

Ai = {uv ∈ A : u ∈ Ki, v 6∈ Ki}

Consider optimal multiway cut A:

Ki

tjKj

Aj

Observation. and ∑k
i=1 c(Ai) ≤ 2 · c(A) = 2 ·OPTA =

⋃k
i=1 Ai

Proof.

c(C)

20 - 12

Approximation Factor
This algorithm is a factor-(2− 2/k)-
approximation algorithm for MultiwayCut.

Theorem.

ti

Ai = {uv ∈ A : u ∈ Ki, v 6∈ Ki}

Consider optimal multiway cut A:

Ki

tjKj

Aj

Observation. and ∑k
i=1 c(Ai) ≤ 2 · c(A) = 2 ·OPTA =

⋃k
i=1 Ai

≤
(

1− 1
k

)
∑k

i=1 c(Ci)

Proof.

c(C)

20 - 13

Approximation Factor
This algorithm is a factor-(2− 2/k)-
approximation algorithm for MultiwayCut.

Theorem.

ti

Ai = {uv ∈ A : u ∈ Ki, v 6∈ Ki}

Consider optimal multiway cut A:

Ki

tjKj

Aj

Observation. and ∑k
i=1 c(Ai) ≤ 2 · c(A) = 2 ·OPTA =

⋃k
i=1 Ai

≤
(

1− 1
k

)
∑k

i=1 c(Ci)

Proof.

≤
(

1− 1
k

)
∑k

i=1 c(Ai)

c(C)

20 - 14

Approximation Factor
This algorithm is a factor-(2− 2/k)-
approximation algorithm for MultiwayCut.

Theorem.

ti

Ai = {uv ∈ A : u ∈ Ki, v 6∈ Ki}

Consider optimal multiway cut A:

Ki

tjKj

Aj

Observation. and ∑k
i=1 c(Ai) ≤ 2 · c(A) = 2 ·OPTA =

⋃k
i=1 Ai

≤ 2 ·
(

1− 1
k

)
c(A)

≤
(

1− 1
k

)
∑k

i=1 c(Ci)

Proof.

≤
(

1− 1
k

)
∑k

i=1 c(Ai)

c(C)

20 - 15

Approximation Factor
This algorithm is a factor-(2− 2/k)-
approximation algorithm for MultiwayCut.

Theorem.

ti

Ai = {uv ∈ A : u ∈ Ki, v 6∈ Ki}

Consider optimal multiway cut A:

Ki

tjKj

Aj

Observation. and ∑k
i=1 c(Ai) ≤ 2 · c(A) = 2 ·OPTA =

⋃k
i=1 Ai

≤ 2 ·
(

1− 1
k

)
c(A)

≤
(

1− 1
k

)
∑k

i=1 c(Ci)

Proof.

≤
(

1− 1
k

)
∑k

i=1 c(Ai)

c(C)

≤
(
2− 2

k
)
OPT

21 - 1

Analysis Sharp?

Kk

21 - 2

Analysis Sharp?

Kk

21 - 3

Analysis Sharp?

Kk

21 - 4

Analysis Sharp?

1Kk 1

1

1

1

1

1 1

1

1

1

1

21 - 5

Analysis Sharp?

1Kk 1

1

1

1

1

1 1

1

1

1

1

21 - 6

Analysis Sharp?

1Kk 1

1

1

1

1

1 1

1

1

1

1

21 - 7

Analysis Sharp?

1Kk 1

1

1

1

1

1 1

1

1

1

1

21 - 8

Analysis Sharp?

1 ALG = (k− 1)(k− 1)Kk 1

1

1

1

1

1 1

1

1

1

1

21 - 9

Analysis Sharp?

1 ALG = (k− 1)(k− 1)Kk 1

1

1

1

1

1 1

1

1

1

1

21 - 10

Analysis Sharp?

1 ALG = (k− 1)(k− 1)Kk 1

1

1

1

1

1 1

1

1

1

1

21 - 11

Analysis Sharp?

1 ALG = (k− 1)(k− 1)Kk 1

1

1

1

1

1 1

1

1

1

1

21 - 12

Analysis Sharp?

1

OPT = ∑k−1
i=1 i = k·(k−1)

2

ALG = (k− 1)(k− 1)Kk 1

1

1

1

1

1 1

1

1

1

1

21 - 13

Analysis Sharp?

1

OPT = ∑k−1
i=1 i = k·(k−1)

2

ALG = (k− 1)(k− 1)Kk 1

1

1

1

1

1 1

1

1

1

1

21 - 14

Analysis Sharp?

1

OPT = ∑k−1
i=1 i = k·(k−1)

2

ALG/OPT = 2k−2
k = 2− 2

k

ALG = (k− 1)(k− 1)Kk 1

1

1

1

1

1 1

1

1

1

1

21 - 15

Analysis Sharp?

1

OPT = ∑k−1
i=1 i = k·(k−1)

2

ALG/OPT = 2k−2
k = 2− 2

k

ALG = (k− 1)(k− 1)Kk 1

1

1

1

1

1 1

1

1

1

1

21 - 16

Analysis Sharp?

1

OPT = ∑k−1
i=1 i = k·(k−1)

2

ALG/OPT = 2k−2
k = 2− 2

k

ALG = (k− 1)(k− 1)Kk 1

1

1

1

1

1 1

1

1

1

1

21 - 17

Analysis Sharp?

1

OPT = ∑k−1
i=1 i = k·(k−1)

2

ALG/OPT = 2k−2
k = 2− 2

k

ALG = (k− 1)(k− 1)

better?

Kk 1

1

1

1

1

1 1

1

1

1

1

21 - 18

Analysis Sharp?

1

OPT = ∑k−1
i=1 i = k·(k−1)

2

ALG/OPT = 2k−2
k = 2− 2

k

ALG = (k− 1)(k− 1)

better?
The best known approximation factor for
MultiwayCut is 1.2965− 1

k . [Sharma & Vondrák ’14]

Kk 1

1

1

1

1

1 1

1

1

1

1

21 - 19

Analysis Sharp?

1

OPT = ∑k−1
i=1 i = k·(k−1)

2

ALG/OPT = 2k−2
k = 2− 2

k

ALG = (k− 1)(k− 1)

better?
The best known approximation factor for
MultiwayCut is 1.2965− 1

k .
MultiwayCut cannot be approximated within factor
1.20016−O(1/k) (unless P=NP).

[Sharma & Vondrák ’14]

[Bérczi, Chandrasekaran, Király & Madan ’18]

Kk 1

1

1

1

1

1 1

1

1

1

1

	SteinerTree
	MetricSteinerTree

	Approximation Preserving Reduction
	Reduction to MetricSteinerTree
	Step (1)
	Step (2)
	Step (3)

	2-Approximation for SteinerTree
	Proof of Approximation Factor
	Analysis Sharp?

	MultiwayCut
	Isolating Cuts

	Algorithm for MultiwayCut
	Approximation Factor
	Analysis Sharp?

