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Lecture 3:
SteinerTree and MultiwayCut

Part I:
SteinerTree

Approximation Algorithms
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SteinerTree

A graph G = (V, E) with edge weights c : E→ Q+

and a partition of V into a set T of terminals and a
set S of Steiner vertices.

A subtree B = (V′, E′) of G that contains all
terminals, i.e., T ⊆ V′, and has minimum cost
c(E′) := ∑e∈E′ c(e) among all subtrees with this
property.

Find:

Given:
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SteinerTree

A graph G = (V, E) with edge weights c : E→ Q+

and a partition of V into a set T of terminals and a
set S of Steiner vertices.

A subtree B = (V′, E′) of G that contains all
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SteinerTree

A graph G = (V, E) with edge weights c : E→ Q+

and a partition of V into a set T of terminals and a
set S of Steiner vertices.

A subtree B = (V′, E′) of G that contains all
terminals, i.e., T ⊆ V′, and has minimum cost
c(E′) := ∑e∈E′ c(e) among all subtrees with this
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Find:

Given:
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A graph G = (V, E) with edge weights c : E→ Q+

and a partition of V into a set T of terminals and a
set S of Steiner vertices.

A subtree B = (V′, E′) of G that contains all
terminals, i.e., T ⊆ V′, and has minimum cost
c(E′) := ∑e∈E′ c(e) among all subtrees with this
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SteinerTree

A graph G = (V, E) with edge weights c : E→ Q+

and a partition of V into a set T of terminals and a
set S of Steiner vertices.

A subtree B = (V′, E′) of G that contains all
terminals, i.e., T ⊆ V′, and has minimum cost
c(E′) := ∑e∈E′ c(e) among all subtrees with this
property.

Find:

Given:

terminal

Steiner vertex

valid solution with cost 4
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SteinerTree

A graph G = (V, E) with edge weights c : E→ Q+

and a partition of V into a set T of terminals and a
set S of Steiner vertices.

A subtree B = (V′, E′) of G that contains all
terminals, i.e., T ⊆ V′, and has minimum cost
c(E′) := ∑e∈E′ c(e) among all subtrees with this
property.

Find:
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2
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SteinerTree

A graph G = (V, E) with edge weights c : E→ Q+

and a partition of V into a set T of terminals and a
set S of Steiner vertices.

A subtree B = (V′, E′) of G that contains all
terminals, i.e., T ⊆ V′, and has minimum cost
c(E′) := ∑e∈E′ c(e) among all subtrees with this
property.

Find:

Given:

terminal

Steiner vertex

valid solution with cost 4
optimum solution
with cost 3

2

2

21

1 1
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MetricSteinerTree

Restriction of SteinerTree where the graph G is complete
and the cost function is metric, i.e., for every triple u, v, w
of vertices, we have c(u, w) ≤ c(u, v) + c(v, w).
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MetricSteinerTree

Restriction of SteinerTree where the graph G is complete
and the cost function is metric, i.e., for every triple u, v, w
of vertices, we have c(u, w) ≤ c(u, v) + c(v, w).
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MetricSteinerTree

Restriction of SteinerTree where the graph G is complete
and the cost function is metric, i.e., for every triple u, v, w
of vertices, we have c(u, w) ≤ c(u, v) + c(v, w).
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MetricSteinerTree

Restriction of SteinerTree where the graph G is complete
and the cost function is metric, i.e., for every triple u, v, w
of vertices, we have c(u, w) ≤ c(u, v) + c(v, w).
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MetricSteinerTree

Restriction of SteinerTree where the graph G is complete
and the cost function is metric, i.e., for every triple u, v, w
of vertices, we have c(u, w) ≤ c(u, v) + c(v, w).
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not complete
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MetricSteinerTree

Restriction of SteinerTree where the graph G is complete
and the cost function is metric, i.e., for every triple u, v, w
of vertices, we have c(u, w) ≤ c(u, v) + c(v, w).
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MetricSteinerTree

Restriction of SteinerTree where the graph G is complete
and the cost function is metric, i.e., for every triple u, v, w
of vertices, we have c(u, w) ≤ c(u, v) + c(v, w).
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1
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2
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not metric metric
not complete complete
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Approximation Preserving Reduction
Let Π1, Π2 be minimization problems. An approximation
preserving reduction from Π1 to Π2 ist a tuple ( f , g) of
poly-time computable functions with the following
properties.

(i) For each instance I1 of Π1, I2 := f (I1) is an instance
of Π2 with OPTΠ2(I2) ≤ OPTΠ1(I1).

(ii) For each feasible solution t of I2, s := g(I1, t) is a
feasible solution of I1 with objΠ1

(I1, s) ≤ objΠ2
(I2, t).
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Π1 Π2problems
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Approximation Preserving Reduction
Let Π1, Π2 be minimization problems. An approximation
preserving reduction from Π1 to Π2 ist a tuple ( f , g) of
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(I1, s) ≤ objΠ2
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Π1 Π2problems



5 - 6
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Approximation Preserving Reduction
Let Π1, Π2 be minimization problems where
there is an approximation preserving reduction
( f , g) from Π1 to Π2. Then there is a
factor-α-approximation algorithm of Π1 for
each factor-α-approximation algorithm of Π2.

Theorem.

I1
f

I2

ts
g

Π1 Π2

instances

solutions

problems
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Let Π1, Π2 be minimization problems where
there is an approximation preserving reduction
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Let Π1, Π2 be minimization problems where
there is an approximation preserving reduction
( f , g) from Π1 to Π2. Then there is a
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Approximation Preserving Reduction
Let Π1, Π2 be minimization problems where
there is an approximation preserving reduction
( f , g) from Π1 to Π2. Then there is a
factor-α-approximation algorithm of Π1 for
each factor-α-approximation algorithm of Π2.
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Approximation Preserving Reduction
Let Π1, Π2 be minimization problems where
there is an approximation preserving reduction
( f , g) from Π1 to Π2. Then there is a
factor-α-approximation algorithm of Π1 for
each factor-α-approximation algorithm of Π2.

Theorem.
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MetricSteinerTree

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.
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MetricSteinerTree

Proof. (1) Mapping f I1 I2
f

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.
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MetricSteinerTree

Proof.
Instance I1 of SteinerTree: Graph G1 = (V, E1), edge
weights c1, partition V = T ·∪ S

(1) Mapping f I1 I2
f

There is an approximation preserving
reduction from SteinerTree to
MetricSteinerTree.

Theorem.
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MetricSteinerTree

Proof.
Instance I1 of SteinerTree: Graph G1 = (V, E1), edge
weights c1, partition V = T ·∪ S

(1) Mapping f I1 I2
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MetricSteinerTree

Proof.
Instance I1 of SteinerTree: Graph G1 = (V, E1), edge
weights c1, partition V = T ·∪ S
Metric instance I2 := f (I1): Complete graph G2 = (V, E2),
partition T, S as in I1
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Theorem.
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MetricSteinerTree

Proof.
Instance I1 of SteinerTree: Graph G1 = (V, E1), edge
weights c1, partition V = T ·∪ S
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MetricSteinerTree

Proof.
Instance I1 of SteinerTree: Graph G1 = (V, E1), edge
weights c1, partition V = T ·∪ S
Metric instance I2 := f (I1): Complete graph G2 = (V, E2),
partition T, S as in I1

c2(u, v) := Length of shortest u–v-path in G1
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MetricSteinerTree

Proof.
Instance I1 of SteinerTree: Graph G1 = (V, E1), edge
weights c1, partition V = T ·∪ S
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MetricSteinerTree

Proof.
Instance I1 of SteinerTree: Graph G1 = (V, E1), edge
weights c1, partition V = T ·∪ S
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f

2

1

13

5

I1 I2
f

2

1

1

There is an approximation preserving
reduction from SteinerTree to
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MetricSteinerTree

Proof.
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weights c1, partition V = T ·∪ S
Metric instance I2 := f (I1): Complete graph G2 = (V, E2),
partition T, S as in I1
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1
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MetricSteinerTree

Proof.
Instance I1 of SteinerTree: Graph G1 = (V, E1), edge
weights c1, partition V = T ·∪ S
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(1) Mapping f I1 I2
f

2

1

13

5

I1 I2
f

2

1

1

4

There is an approximation preserving
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Proof.
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MetricSteinerTree

Proof.
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Metric instance I2 := f (I1): Complete graph G2 = (V, E2),
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MetricSteinerTree

Proof.
Instance I1 of SteinerTree: Graph G1 = (V, E1), edge
weights c1, partition V = T ·∪ S
Metric instance I2 := f (I1): Complete graph G2 = (V, E2),
partition T, S as in I1
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better?
The best known approximation factor for
MultiwayCut is 1.2965− 1

k .
MultiwayCut cannot be approximated within factor
1.20016−O(1/k) (unless P=NP).

[Sharma & Vondrák ’14]

[Bérczi, Chandrasekaran, Király & Madan ’18]
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