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of G[T] with cost 2(n—1)
. . . > 2
Optimal solution with cost 7 n

B terminal

Kn cost 2
better?
The best-known approximation factor for |
. [Byrka, Grandoni,
STEINERTREE is In(4) + ¢ ~ 1.39 Rothvof & Sanita “10]

STEINERTREE cannot be approximated within factor

o2 ~ 1.0105 (unless P=NP) [Chlebik & Chlebikova “08]
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A multiway cut of T is a subset E’ of edges such that no
two terminals in the graph (V,E — E’) are connected.

Find: A minimum cost multiway cut of T.

Connected components after
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k = 2:
Min-s-t-Cut

k > 3:
NP-hard
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An isolating cut for a terminal ¢; is a set of edges
separating ¢; from all other terminals.

Minimum cost isolating cut can be computed efficiently!
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Algorithm MurtiwayCut

Fori=1,..., k:
Compute a minimum cost isolating cut C; for f;.

Return the union of C of the k — 1 cheapest such isolating
cuts.

In other words:
Ienore the most expensive of the isolating cuts Cq, . .., Ck.

k
= < (1 — %) Z because:

=1
for the most expensive cut of Cy, ..., C, say Cq, we have
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Fori=1,..., k:
Compute a minimum cost isolating cut C; for f;.
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cuts.

In other words:
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k
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Analysis Sharp?

better?
The best known approximation factor for
MuLTIWAYCUT is 1.2965 — % [Sharma & Vondrék ‘14]

MuLtiwaYCUT cannot be approximated within factor

1.20016 — O(1/k) (unless P=NP).
[Bérczi, Chandrasekaran, Kirdly & Madan "18]
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