
Joachim Spoerhase Winter 2021/22

Lecture 1:
Introduction and Vertex Cover

Part I:
Organizational

Approximation Algorithms

Organizational
Lectures: Zoom (in German or English)

Organizational
Lectures: Zoom (in German or English)

Synchronous (key material)

Organizational
Lectures:

Tutorials: One exercise sheet per lecture

Zoom (in German or English)

Synchronous (key material)

More technical lectures via inverted classroom

Organizational
Lectures:

Tutorials: One exercise sheet per lecture

Zoom (in German or English)

Tuesdays 10:15 - 11:45 (SE I)

Synchronous (key material)

More technical lectures via inverted classroom

Solving assignments and presenting solutions

Organizational
Lectures:

Tutorials: One exercise sheet per lecture

Zoom (in German or English)

Tuesdays 10:15 - 11:45 (SE I)

Synchronous (key material)

More technical lectures via inverted classroom

Solving assignments and presenting solutions

Bonus (+0.3 on final grade) for ≥ 50% points

Organizational
Lectures:

Tutorials: One exercise sheet per lecture

Zoom (in German or English)

Tuesdays 10:15 - 11:45 (SE I)

Synchronous (key material)

More technical lectures via inverted classroom

Solving assignments and presenting solutions

Bonus (+0.3 on final grade) for ≥ 50% points

Questions/Tasks during the lecture

Textbooks

Vijay V. Vazirani:
Approximation
Algorithms
Springer-Verlag, 2003.

Textbooks

Vijay V. Vazirani:
Approximation
Algorithms
Springer-Verlag, 2003.

D. P. Williamson & D. B. Shmoys:
The Design of Approximation Algorithms
Cambridge-Verlag, 2011.
http://www.designofapproxalgs.com/

Approximation Algorithms

”All exact science is
dominated by the idea of
approximation.“ – Bertrand Russell

(1872 – 1970)

Approximation Algorithms
� Many optimization problems are NP-hard (e.g. the

traveling salesperson problem)

Approximation Algorithms
� Many optimization problems are NP-hard (e.g. the

traveling salesperson problem)

� an optimal solution cannot be efficiently computed
unless P=NP.

Approximation Algorithms
� Many optimization problems are NP-hard (e.g. the

traveling salesperson problem)

� an optimal solution cannot be efficiently computed
unless P=NP.

� However, good approximate solutions can often be
found efficiently!

Approximation Algorithms
� Many optimization problems are NP-hard (e.g. the

traveling salesperson problem)

� an optimal solution cannot be efficiently computed
unless P=NP.

� However, good approximate solutions can often be
found efficiently!

� Techniques for the design and analysis of
approximation algorithms arise from studying specific
optimization problems.

Overview

� Introduction (Vertex Cover)

� Set Cover via Greedy

� Shortest Superstring via
reduction to SC

� Steiner Tree via MST

� Multiway Cut via Greedy

� k-Center via param. Pruning

� Min-Deg-Spanning-Tree
& local search

� Knapsack via DP & Scaling

� Euclidean TSP via Quadtrees

Combinatorial Algorithms

Overview

� Introduction (Vertex Cover)

� Set Cover via Greedy

� Shortest Superstring via
reduction to SC

� Steiner Tree via MST

� Multiway Cut via Greedy

� k-Center via param. Pruning

� Min-Deg-Spanning-Tree
& local search

� Knapsack via DP & Scaling

� Euclidean TSP via Quadtrees

Combinatorial Algorithms LP-based Algorithms

� introduction to LP-Duality

� Set Cover via LP Rounding

� Set Cover via Primal-Dual
Schema

� Maximum Satisfiability

� Scheduling und Extreme
Point Solutions

� Steiner Forest via
Primal-Dual

Joachim Spoerhase Winter 2021/22

Lecture 1:
Introduction and Vertex Cover

Part II:
Vertex Cover (card.)

Approximation Algorithms

VertexCover (card.)
In: Graph G = (V, E)

Out:

VertexCover (card.)
In: Graph G = (V, E)

Out: a minimum vertex cover: a minimum vertex set
V′ ⊆ V such that every edge is covered (i.e., for
every uv ∈ E, either u ∈ V′ or v ∈ V′).

VertexCover (card.)
In: Graph G = (V, E)

Out: a minimum vertex cover: a minimum vertex set
V′ ⊆ V such that every edge is covered (i.e., for
every uv ∈ E, either u ∈ V′ or v ∈ V′).

VertexCover (card.)
In: Graph G = (V, E)

Out: a minimum vertex cover: a minimum vertex set
V′ ⊆ V such that every edge is covered (i.e., for
every uv ∈ E, either u ∈ V′ or v ∈ V′).

VertexCover (card.)
In: Graph G = (V, E)

Out: a minimum vertex cover: a minimum vertex set
V′ ⊆ V such that every edge is covered (i.e., for
every uv ∈ E, either u ∈ V′ or v ∈ V′).

VertexCover (card.)
In: Graph G = (V, E)

Out: a minimum vertex cover: a minimum vertex set
V′ ⊆ V such that every edge is covered (i.e., for
every uv ∈ E, either u ∈ V′ or v ∈ V′).

VertexCover (card.)
In: Graph G = (V, E)

Out: a minimum vertex cover: a minimum vertex set
V′ ⊆ V such that every edge is covered (i.e., for
every uv ∈ E, either u ∈ V′ or v ∈ V′).

VertexCover (card.)
In: Graph G = (V, E)

Out: a minimum vertex cover: a minimum vertex set
V′ ⊆ V such that every edge is covered (i.e., for
every uv ∈ E, either u ∈ V′ or v ∈ V′).

VertexCover (card.)
In: Graph G = (V, E)

Out: a minimum vertex cover: a minimum vertex set
V′ ⊆ V such that every edge is covered (i.e., for
every uv ∈ E, either u ∈ V′ or v ∈ V′).

VertexCover (card.)
In: Graph G = (V, E)

Out: a minimum vertex cover: a minimum vertex set
V′ ⊆ V such that every edge is covered (i.e., for
every uv ∈ E, either u ∈ V′ or v ∈ V′).

any vertex cover

VertexCover (card.)
In: Graph G = (V, E)

Out: a minimum vertex cover: a minimum vertex set
V′ ⊆ V such that every edge is covered (i.e., for
every uv ∈ E, either u ∈ V′ or v ∈ V′).

any vertex cover

VertexCover (card.)
In: Graph G = (V, E)

Out: a minimum vertex cover: a minimum vertex set
V′ ⊆ V such that every edge is covered (i.e., for
every uv ∈ E, either u ∈ V′ or v ∈ V′).

any vertex cover

VertexCover (card.)
In: Graph G = (V, E)

Out: a minimum vertex cover: a minimum vertex set
V′ ⊆ V such that every edge is covered (i.e., for
every uv ∈ E, either u ∈ V′ or v ∈ V′).

any vertex cover

VertexCover (card.)
In: Graph G = (V, E)

Out: a minimum vertex cover: a minimum vertex set
V′ ⊆ V such that every edge is covered (i.e., for
every uv ∈ E, either u ∈ V′ or v ∈ V′).

Optimum (OPT = 4)

VertexCover (card.)
In: Graph G = (V, E)

Out: a minimum vertex cover: a minimum vertex set
V′ ⊆ V such that every edge is covered (i.e., for
every uv ∈ E, either u ∈ V′ or v ∈ V′).

Optimum (OPT = 4) – but in general NP-hard to find :-(

VertexCover (card.)
In: Graph G = (V, E)

Out: a minimum vertex cover: a minimum vertex set
V′ ⊆ V such that every edge is covered (i.e., for
every uv ∈ E, either u ∈ V′ or v ∈ V′).

“good” approximate solution (5/4-approximation)

Lecture 1:
Introduction and Vertex Cover

Part III:
NP-Optimization Problem

Approximation Algorithms

Joachim Spoerhase Winter 2021/22

NP-Optimization Problem

An NP-optimization problem Π is given by:

NP-Optimization Problem

An NP-optimization problem Π is given by:

� A set DΠ of instances.
We denote the size of an instance I ∈ DΠ by |I|.

NP-Optimization Problem

An NP-optimization problem Π is given by:

� A set DΠ of instances.
We denote the size of an instance I ∈ DΠ by |I|.

� For each instance I ∈ DΠ a set SΠ(I) 6= ∅ of feasible
solutions for I such that:
� for each solution s ∈ SΠ(I), its size |s| is

polynomially bounded in |I|, and
� for each pair (s, I), there is a polynomial time

algorithm to decide whether s ∈ SΠ(I).

NP-Optimization Problem

An NP-optimization problem Π is given by:

� A set DΠ of instances.
We denote the size of an instance I ∈ DΠ by |I|.

� For each instance I ∈ DΠ a set SΠ(I) 6= ∅ of feasible
solutions for I such that:
� for each solution s ∈ SΠ(I), its size |s| is

polynomially bounded in |I|, and
� for each pair (s, I), there is a polynomial time

algorithm to decide whether s ∈ SΠ(I).

NP-Optimization Problem

An NP-optimization problem Π is given by:

� A set DΠ of instances.
We denote the size of an instance I ∈ DΠ by |I|.

� For each instance I ∈ DΠ a set SΠ(I) 6= ∅ of feasible
solutions for I such that:
� for each solution s ∈ SΠ(I), its size |s| is

polynomially bounded in |I|, and
� for each pair (s, I), there is a polynomial time

algorithm to decide whether s ∈ SΠ(I).

NP-Optimization Problem

An NP-optimization problem Π is given by:

� A set DΠ of instances.
We denote the size of an instance I ∈ DΠ by |I|.

� For each instance I ∈ DΠ a set SΠ(I) 6= ∅ of feasible
solutions for I such that:
� for each solution s ∈ SΠ(I), its size |s| is

polynomially bounded in |I|, and
� for each pair (s, I), there is a polynomial time

algorithm to decide whether s ∈ SΠ(I).

� A polynomial time computable objective function objΠ
which assigns a positive objective value objΠ(I, s) ≥ 0
to any given pair (s, I) with s ∈ SΠ(I).

NP-Optimization Problem

An NP-optimization problem Π is given by:

� A set DΠ of instances.
We denote the size of an instance I ∈ DΠ by |I|.

� For each instance I ∈ DΠ a set SΠ(I) 6= ∅ of feasible
solutions for I such that:
� for each solution s ∈ SΠ(I), its size |s| is

polynomially bounded in |I|, and
� for each pair (s, I), there is a polynomial time

algorithm to decide whether s ∈ SΠ(I).

� A polynomial time computable objective function objΠ
which assigns a positive objective value objΠ(I, s) ≥ 0
to any given pair (s, I) with s ∈ SΠ(I).

� Π is either a minimization or maximization problem.

VertexCover: NP-Optimization Problem

Π is M.....imization problem.

Task: Fill in the gaps for Π = Vertex Cover.

DΠ =

For I ∈ DΠ:

SΠ(I) =

|I| =

� Why is |s| ∈ poly(|I|) for every s ∈ SΠ(I)?

� For a given pair (s, I), how can we efficiently decide
whether s ∈ SΠ(I)?

objΠ(I, s) =

VertexCover: NP-Optimization Problem

Π is M.....imization problem.

Task: Fill in the gaps for Π = Vertex Cover.

DΠ =

For I ∈ DΠ:

SΠ(I) =

|I| =

� Why is |s| ∈ poly(|I|) for every s ∈ SΠ(I)?

� For a given pair (s, I), how can we efficiently decide
whether s ∈ SΠ(I)?

objΠ(I, s) =

Set of all graphs

VertexCover: NP-Optimization Problem

Π is M.....imization problem.

Task: Fill in the gaps for Π = Vertex Cover.

DΠ =

For I ∈ DΠ:

SΠ(I) =

|I| =

� Why is |s| ∈ poly(|I|) for every s ∈ SΠ(I)?

� For a given pair (s, I), how can we efficiently decide
whether s ∈ SΠ(I)?

objΠ(I, s) =

Set of all graphs

G=(V, E)

VertexCover: NP-Optimization Problem

Π is M.....imization problem.

Task: Fill in the gaps for Π = Vertex Cover.

DΠ =

For I ∈ DΠ:

SΠ(I) =

|I| =

� Why is |s| ∈ poly(|I|) for every s ∈ SΠ(I)?

� For a given pair (s, I), how can we efficiently decide
whether s ∈ SΠ(I)?

objΠ(I, s) =

Set of all graphs

Number of vertices |V|

G=(V, E)

VertexCover: NP-Optimization Problem

Π is M.....imization problem.

Task: Fill in the gaps for Π = Vertex Cover.

DΠ =

For I ∈ DΠ:

SΠ(I) =

|I| =

� Why is |s| ∈ poly(|I|) for every s ∈ SΠ(I)?

� For a given pair (s, I), how can we efficiently decide
whether s ∈ SΠ(I)?

objΠ(I, s) =

Set of all graphs

Number of vertices |V|
Set of all vertex covers of GG=(V, E)

VertexCover: NP-Optimization Problem

Π is M.....imization problem.

Task: Fill in the gaps for Π = Vertex Cover.

DΠ =

For I ∈ DΠ:

SΠ(I) =

|I| =

� Why is |s| ∈ poly(|I|) for every s ∈ SΠ(I)?

� For a given pair (s, I), how can we efficiently decide
whether s ∈ SΠ(I)?

objΠ(I, s) =

Set of all graphs

Number of vertices |V|
Set of all vertex covers of GG=(V, E)

s ⊆ V ⇒ |s| ≤ |V| = |I|

VertexCover: NP-Optimization Problem

Π is M.....imization problem.

Task: Fill in the gaps for Π = Vertex Cover.

DΠ =

For I ∈ DΠ:

SΠ(I) =

|I| =

� Why is |s| ∈ poly(|I|) for every s ∈ SΠ(I)?

� For a given pair (s, I), how can we efficiently decide
whether s ∈ SΠ(I)?

objΠ(I, s) =

Set of all graphs

Number of vertices |V|
Set of all vertex covers of GG=(V, E)

s ⊆ V ⇒ |s| ≤ |V| = |I|

Test whether all edges are covered.

VertexCover: NP-Optimization Problem

Π is M.....imization problem.

Task: Fill in the gaps for Π = Vertex Cover.

DΠ =

For I ∈ DΠ:

SΠ(I) =

|I| =

� Why is |s| ∈ poly(|I|) for every s ∈ SΠ(I)?

� For a given pair (s, I), how can we efficiently decide
whether s ∈ SΠ(I)?

objΠ(I, s) =

Set of all graphs

Number of vertices |V|
Set of all vertex covers of GG=(V, E)

s ⊆ V ⇒ |s| ≤ |V| = |I|

Test whether all edges are covered.

|s|

VertexCover: NP-Optimization Problem

Π is M.....imization problem.

Task: Fill in the gaps for Π = Vertex Cover.

DΠ =

For I ∈ DΠ:

SΠ(I) =

|I| =

� Why is |s| ∈ poly(|I|) for every s ∈ SΠ(I)?

� For a given pair (s, I), how can we efficiently decide
whether s ∈ SΠ(I)?

objΠ(I, s) =

Set of all graphs

Number of vertices |V|
Set of all vertex covers of GG=(V, E)

s ⊆ V ⇒ |s| ≤ |V| = |I|

Test whether all edges are covered.

|s|

in

Optimum and optimal objective value

Let Π be a minimization problem and I ∈ DΠ be
an instance of Π.
A feasible solution s∗ ∈ SΠ(I) is optimal if
objΠ(I, s∗) is minimal among objective values
attained by the feasible solutions of I.

Optimum and optimal objective value

Let Π be a minimization problem and I ∈ DΠ be
an instance of Π.
A feasible solution s∗ ∈ SΠ(I) is optimal if
objΠ(I, s∗) is minimal among objective values
attained by the feasible solutions of I.

Optimum and optimal objective value

Let Π be a minimization problem and I ∈ DΠ be
an instance of Π.
A feasible solution s∗ ∈ SΠ(I) is optimal if
objΠ(I, s∗) is minimal among objective values
attained by the feasible solutions of I.

maximization problem

maximal

Optimum and optimal objective value

Let Π be a minimization problem and I ∈ DΠ be
an instance of Π.
A feasible solution s∗ ∈ SΠ(I) is optimal if
objΠ(I, s∗) is minimal among objective values
attained by the feasible solutions of I.

The optimal value objΠ(I, s∗) of the objective function is
also denoted by OPTΠ(I) or simply OPT in context.

maximization problem

maximal

Approximation Algorithms

Let Π be a minimization problem and α ∈ Q+.
A factor-α-approximation algorithm for Π is an efficient
algorithm which provides for any instance I ∈ DΠ a
feasible solution s ∈ SΠ(I) such that

objΠ(I, s)
OPTΠ(I)

≤ α.

Approximation Algorithms

Let Π be a minimization problem and α ∈ Q+.
A factor-α-approximation algorithm for Π is an efficient
algorithm which provides for any instance I ∈ DΠ a
feasible solution s ∈ SΠ(I) such that

objΠ(I, s)
OPTΠ(I)

≤ α.

Approximation Algorithms

Let Π be a minimization problem and α ∈ Q+.
A factor-α-approximation algorithm for Π is an efficient
algorithm which provides for any instance I ∈ DΠ a
feasible solution s ∈ SΠ(I) such that

objΠ(I, s)
OPTΠ(I)

≤ α.

Approximation Algorithms

Let Π be a minimization problem and α ∈ Q+.
A factor-α-approximation algorithm for Π is an efficient
algorithm which provides for any instance I ∈ DΠ a
feasible solution s ∈ SΠ(I) such that

objΠ(I, s)
OPTΠ(I)

≤ α.

Approximation Algorithms

Let Π be a minimization problem and α ∈ Q+.
A factor-α-approximation algorithm for Π is an efficient
algorithm which provides for any instance I ∈ DΠ a
feasible solution s ∈ SΠ(I) such that

objΠ(I, s)
OPTΠ(I)

≤ α. α(|I|)

α : N→ Q

Approximation Algorithms

Let Π be a minimization problem and α ∈ Q+.
A factor-α-approximation algorithm for Π is an efficient
algorithm which provides for any instance I ∈ DΠ a
feasible solution s ∈ SΠ(I) such that

objΠ(I, s)
OPTΠ(I)

≤ α. α(|I|)

α : N→ Qmaximization problem

≥

Lecture 1:
Introduction and Vertex Cover

Part IV:
Approximation Algorithm for VertexCover

Approximation Algorithms

Joachim Spoerhase Winter 2021/22

Approximation Alg. for VertexCover

Ideas?

Approximation Alg. for VertexCover

Ideas?

� Edge-Greedy

Approximation Alg. for VertexCover

Ideas?

� Edge-Greedy
� Vertex-Greedy

Approximation Alg. for VertexCover

Ideas?

� Edge-Greedy
� Vertex-Greedy

Approximation Alg. for VertexCover

Ideas?

� Edge-Greedy
� Vertex-Greedy

Approximation Alg. for VertexCover

Ideas?

� Edge-Greedy
� Vertex-Greedy

Approximation Alg. for VertexCover

Ideas?

� Edge-Greedy
� Vertex-Greedy

Approximation Alg. for VertexCover

Ideas?

� Edge-Greedy
� Vertex-Greedy

Approximation Alg. for VertexCover

Ideas?

� Edge-Greedy
� Vertex-Greedy

Approximation Alg. for VertexCover

Ideas?

� Edge-Greedy
� Vertex-Greedy

Approximation Alg. for VertexCover

Ideas?

� Edge-Greedy
� Vertex-Greedy

Quality?

Approximation Alg. for VertexCover

Ideas?

� Edge-Greedy
� Vertex-Greedy

Quality?

Problem: How can we estimate objΠ(I, s)/OPT,
when it is hard to calculate OPT?

Approximation Alg. for VertexCover

Ideas?

� Edge-Greedy
� Vertex-Greedy

Quality?

Problem:

Idea:

How can we estimate objΠ(I, s)/OPT,
when it is hard to calculate OPT?

Find a “good” lower bound L ≤ OPT for OPT
and compare it to our approximate solution.

Approximation Alg. for VertexCover

Ideas?

� Edge-Greedy
� Vertex-Greedy

Quality?

Problem:

Idea:

objΠ(I, s)
OPT

≤
objΠ(I, s)

L

How can we estimate objΠ(I, s)/OPT,
when it is hard to calculate OPT?

Find a “good” lower bound L ≤ OPT for OPT
and compare it to our approximate solution.

Lower Bound by Matchings

Lower Bound by Matchings

An edge set M ⊆ E of a graph G = (V, E) is a matching if
no two edges of M are adjacent (i.e., share an end vertex).

Lower Bound by Matchings

An edge set M ⊆ E of a graph G = (V, E) is a matching if
no two edges of M are adjacent (i.e., share an end vertex).

Lower Bound by Matchings

An edge set M ⊆ E of a graph G = (V, E) is a matching if
no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M′ with M′) M.

Lower Bound by Matchings

OPT ≥

An edge set M ⊆ E of a graph G = (V, E) is a matching if
no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M′ with M′) M.

Lower Bound by Matchings

Vertex cover of M

OPT ≥

An edge set M ⊆ E of a graph G = (V, E) is a matching if
no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M′ with M′) M.

Lower Bound by Matchings

Vertex cover of M

OPT ≥

An edge set M ⊆ E of a graph G = (V, E) is a matching if
no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M′ with M′) M.

|M|

Lower Bound by Matchings

Vertex cover of M

An edge set M ⊆ E of a graph G = (V, E) is a matching if
no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M′ with M′) M.

OPT = |M| ?
OPT ≥|M|

Lower Bound by Matchings

Vertex cover of M

An edge set M ⊆ E of a graph G = (V, E) is a matching if
no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M′ with M′) M.

OPT = |M| ?
OPT ≥|M|

Lower Bound by Matchings

Vertex cover of M

An edge set M ⊆ E of a graph G = (V, E) is a matching if
no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M′ with M′) M.

OPT = |M| ?
OPT ≥|M|

Lower Bound by Matchings

Vertex cover of M

An edge set M ⊆ E of a graph G = (V, E) is a matching if
no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M′ with M′) M.

OPT = |M| ?
OPT ≥|M|

Lower Bound by Matchings

Vertex cover of M

An edge set M ⊆ E of a graph G = (V, E) is a matching if
no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M′ with M′) M.

OPT = |M| ?
OPT ≥|M|

Lower Bound by Matchings

Vertex cover of E
Vertex cover of M

An edge set M ⊆ E of a graph G = (V, E) is a matching if
no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M′ with M′) M.

OPT = |M| ?
OPT ≥|M|

Lower Bound by Matchings

Vertex cover of E
Vertex cover of M

An edge set M ⊆ E of a graph G = (V, E) is a matching if
no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M′ with M′) M.

OPT = |M| ?
OPT ≥|M|

Lower Bound by Matchings

Vertex cover of E
Vertex cover of M

An edge set M ⊆ E of a graph G = (V, E) is a matching if
no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M′ with M′) M.

OPT = |M| ?
OPT ≥|M|

Lower Bound by Matchings

Vertex cover of E
Vertex cover of M

An edge set M ⊆ E of a graph G = (V, E) is a matching if
no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M′ with M′) M.

OPT = |M| ?
OPT ≥|M|

Lower Bound by Matchings

Vertex cover of E
Vertex cover of M

An edge set M ⊆ E of a graph G = (V, E) is a matching if
no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M′ with M′) M.

ALG = 2 · |M| ≤

OPT = |M| ?
OPT ≥|M|

Lower Bound by Matchings

Vertex cover of E
Vertex cover of M

An edge set M ⊆ E of a graph G = (V, E) is a matching if
no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M′ with M′) M.

ALG = 2 · |M| ≤ 2 · OPT

OPT = |M| ?
OPT ≥|M|

Approximation Alg. for VertexCover

Algorithm VertexCover(G)

M← ∅
foreach e ∈ E(G) do

if e not adjacent to edge in M then
M← M ∪ {e}

return { u, v | uv ∈ M }

Approximation Alg. for VertexCover

Algorithm VertexCover(G)

M← ∅
foreach e ∈ E(G) do

if e not adjacent to edge in M then
M← M ∪ {e}

return { u, v | uv ∈ M }

Approximation Alg. for VertexCover

Algorithm VertexCover(G)

M← ∅
foreach e ∈ E(G) do

if e not adjacent to edge in M then
M← M ∪ {e}

return { u, v | uv ∈ M }

Approximation Alg. for VertexCover

Algorithm VertexCover(G)

M← ∅
foreach e ∈ E(G) do

if e not adjacent to edge in M then
M← M ∪ {e}

return { u, v | uv ∈ M }

Approximation Alg. for VertexCover

Algorithm VertexCover(G)

M← ∅
foreach e ∈ E(G) do

if e not adjacent to edge in M then
M← M ∪ {e}

return { u, v | uv ∈ M }

Approximation Alg. for VertexCover

Algorithm VertexCover(G)

M← ∅
foreach e ∈ E(G) do

if e not adjacent to edge in M then
M← M ∪ {e}

return { u, v | uv ∈ M }
The above algorithm is a factor-2-approximation
algorithm for VertexCover.

Theorem.

Approximation Alg. for VertexCover

Algorithm VertexCover(G)

M← ∅
foreach e ∈ E(G) do

if e not adjacent to edge in M then
M← M ∪ {e}

return { u, v | uv ∈ M }

The best-known approximation factor for
VertexCover is

The above algorithm is a factor-2-approximation
algorithm for VertexCover.

Theorem.

Approximation Alg. for VertexCover

Algorithm VertexCover(G)

M← ∅
foreach e ∈ E(G) do

if e not adjacent to edge in M then
M← M ∪ {e}

return { u, v | uv ∈ M }

The best-known approximation factor for
VertexCover is 2−Θ(1/

√
log n)

The above algorithm is a factor-2-approximation
algorithm for VertexCover.

Theorem.

Approximation Alg. for VertexCover

Algorithm VertexCover(G)

M← ∅
foreach e ∈ E(G) do

if e not adjacent to edge in M then
M← M ∪ {e}

return { u, v | uv ∈ M }

The best-known approximation factor for
VertexCover is 2−Θ(1/

√
log n)

VertexCover cannot be approximated within factor 1.3606
(unless P=NP)

The above algorithm is a factor-2-approximation
algorithm for VertexCover.

Theorem.

Approximation Alg. for VertexCover

Algorithm VertexCover(G)

M← ∅
foreach e ∈ E(G) do

if e not adjacent to edge in M then
M← M ∪ {e}

return { u, v | uv ∈ M }

The best-known approximation factor for
VertexCover is 2−Θ(1/

√
log n)

VertexCover cannot be approximated within factor 1.3606
(unless P=NP)
VertexCover cannot be approximated within factor
2−Θ(1), if “Unique Games Conjecture” holds.

The above algorithm is a factor-2-approximation
algorithm for VertexCover.

Theorem.

	Organizational
	Textbooks
	Approximation Algorithms
	Overview

	Vertex Cover (card.)
	NP-Optimization Problem
	VertexCover: NP-Optimization Problem
	Optimum and optimal objective value
	Approximation Algorithms

	Approximation Algorithm for VertexCover
	Lower Bound by Matchings
	Approximation Algorithm for VertexCover

