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More technical lectures via inverted classroom

Solving assignments and presenting solutions

Bonus (+0.3 on final grade) for ≥ 50% points

Questions/Tasks during the lecture
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D. P. Williamson & D. B. Shmoys:
The Design of Approximation Algorithms
Cambridge-Verlag, 2011.
http://www.designofapproxalgs.com/



Approximation Algorithms

”All exact science is
dominated by the idea of
approximation.“ – Bertrand Russell

(1872 – 1970)
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� Many optimization problems are NP-hard (e.g. the

traveling salesperson problem)

�  an optimal solution cannot be efficiently computed
unless P=NP.

� However, good approximate solutions can often be
found efficiently!

� Techniques for the design and analysis of
approximation algorithms arise from studying specific
optimization problems.
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� Shortest Superstring via
reduction to SC

� Steiner Tree via MST
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Overview

� Introduction (Vertex Cover)

� Set Cover via Greedy

� Shortest Superstring via
reduction to SC

� Steiner Tree via MST

� Multiway Cut via Greedy

� k-Center via param. Pruning

� Min-Deg-Spanning-Tree
& local search

� Knapsack via DP & Scaling

� Euclidean TSP via Quadtrees

Combinatorial Algorithms LP-based Algorithms

� introduction to LP-Duality

� Set Cover via LP Rounding

� Set Cover via Primal-Dual
Schema

� Maximum Satisfiability

� Scheduling und Extreme
Point Solutions

� Steiner Forest via
Primal-Dual
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VertexCover (card.)
In: Graph G = (V, E)

Out: a minimum vertex cover: a minimum vertex set
V′ ⊆ V such that every edge is covered (i.e., for
every uv ∈ E, either u ∈ V′ or v ∈ V′).

“good” approximate solution (5/4-approximation)
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An NP-optimization problem Π is given by:

� A set DΠ of instances.
We denote the size of an instance I ∈ DΠ by |I|.

� For each instance I ∈ DΠ a set SΠ(I) 6= ∅ of feasible
solutions for I such that:
� for each solution s ∈ SΠ(I), its size |s| is

polynomially bounded in |I|, and
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algorithm to decide whether s ∈ SΠ(I).

� A polynomial time computable objective function objΠ
which assigns a positive objective value objΠ(I, s) ≥ 0
to any given pair (s, I) with s ∈ SΠ(I).

� Π is either a minimization or maximization problem.
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Optimum and optimal objective value

Let Π be a minimization problem and I ∈ DΠ be
an instance of Π.
A feasible solution s∗ ∈ SΠ(I) is optimal if
objΠ(I, s∗) is minimal among objective values
attained by the feasible solutions of I.

The optimal value objΠ(I, s∗) of the objective function is
also denoted by OPTΠ(I) or simply OPT in context.

maximization problem

maximal
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Approximation Alg. for VertexCover

Ideas?

� Edge-Greedy
� Vertex-Greedy

Quality?

Problem:

Idea:

objΠ(I, s)
OPT

≤
objΠ(I, s)

L

How can we estimate objΠ(I, s)/OPT,
when it is hard to calculate OPT?

Find a “good” lower bound L ≤ OPT for OPT
and compare it to our approximate solution.
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foreach e ∈ E(G) do

if e not adjacent to edge in M then
M← M ∪ {e}

return { u, v | uv ∈ M }

The best-known approximation factor for
VertexCover is 2−Θ(1/

√
log n)

VertexCover cannot be approximated within factor 1.3606
(unless P=NP)
VertexCover cannot be approximated within factor
2−Θ(1), if “Unique Games Conjecture” holds.
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