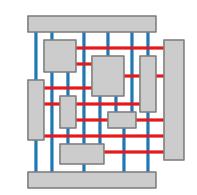


Visualization of Graphs

Lecture 11:

Beyond Planarity

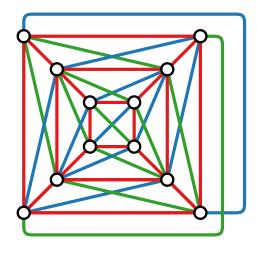
Drawing Graphs with Crossings





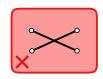
Part I: Graph Classes and Drawing Styles

Jonathan Klawitter



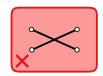
Planar graphs admit drawings in the plane without crossings.

Planar graphs admit drawings in the plane without crossings.



Planar graphs admit drawings in the plane without crossings.

Plane graph is a planar graph with a plane embedding = rotation system.



Planar graphs admit drawings in the plane without crossings.

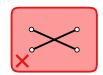
Plane graph is a planar graph with a plane embedding = rotation system.

Planarity is recognizable in linear time.

Planar graphs admit drawings in the plane without crossings.

Plane graph is a planar graph with a plane embedding = rotation system.

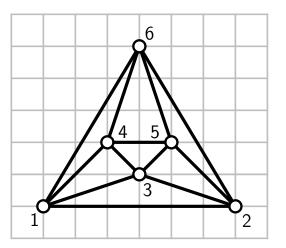
Planarity is recognizable in linear time.



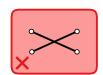
Planar graphs admit drawings in the plane without crossings.

Plane graph is a planar graph with a plane embedding = rotation system.

Planarity is recognizable in linear time.



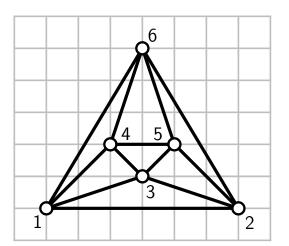
straight-line drawing

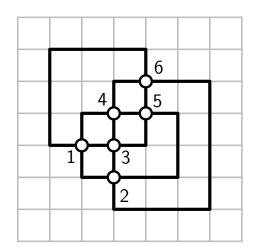


Planar graphs admit drawings in the plane without crossings.

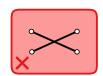
Plane graph is a planar graph with a plane embedding = rotation system.

Planarity is recognizable in linear time.





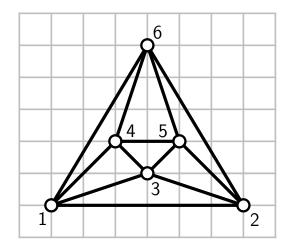
orthogonal drawing

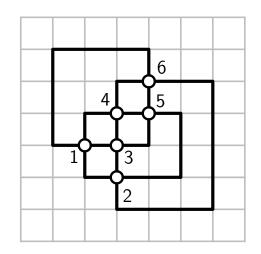


Planar graphs admit drawings in the plane without crossings.

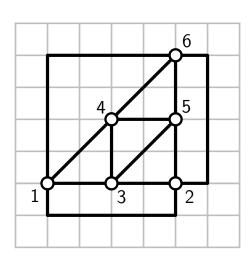
Plane graph is a planar graph with a plane embedding = rotation system.

Planarity is recognizable in linear time.





orthogonal drawing

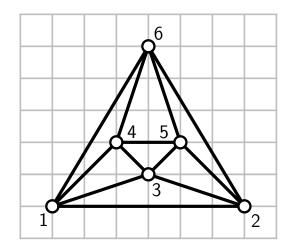


grid drawing with bends & 3 slopes

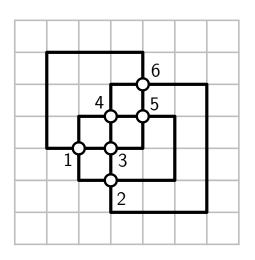
Planar graphs admit drawings in the plane without crossings.

Plane graph is a planar graph with a plane embedding = rotation system.

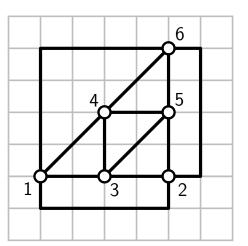
Planarity is recognizable in linear time.



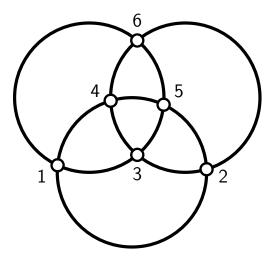
straight-line drawing



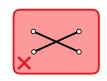
orthogonal drawing

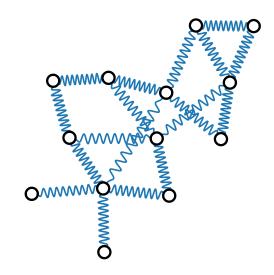


grid drawing with bends & 3 slopes

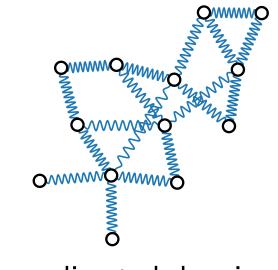


circular-arc drawing

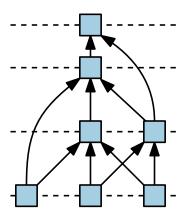




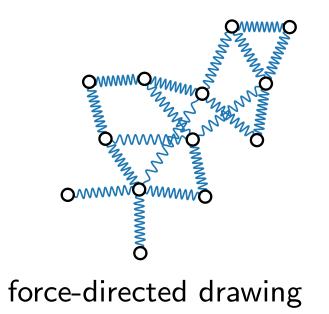
force-directed drawing

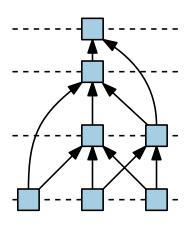


force-directed drawing

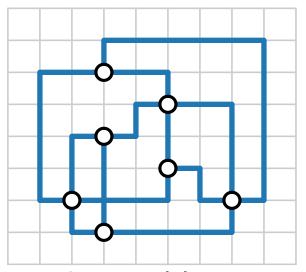


hierarchical drawing



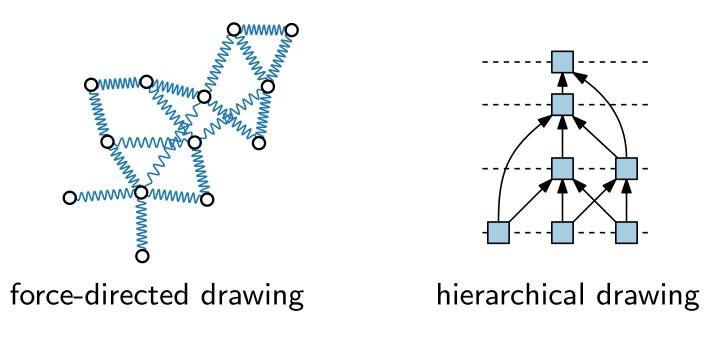


hierarchical drawing

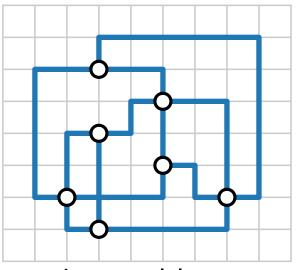


orthogonal layouts (via planarization)

We have seen a few drawing styles:

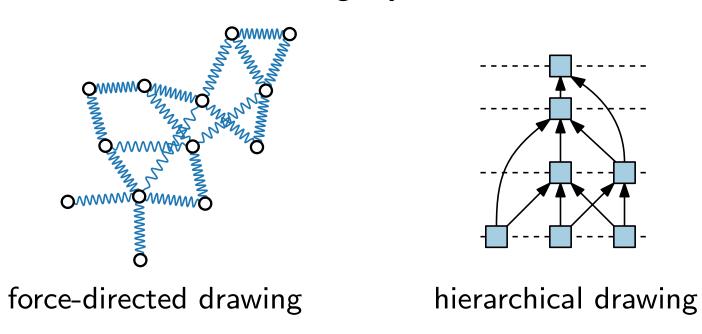


Maybe not all crossings are equally bad?



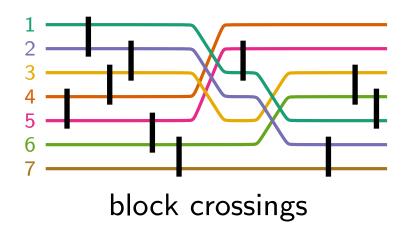
orthogonal layouts (via planarization)

We have seen a few drawing styles:

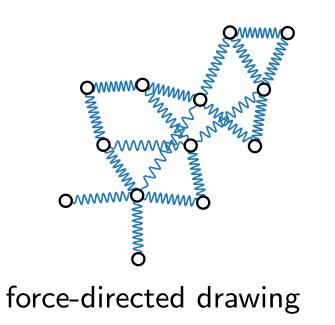


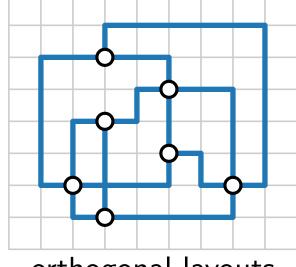
orthogonal layouts (via planarization)

Maybe not all crossings are equally bad?



We have seen a few drawing styles:

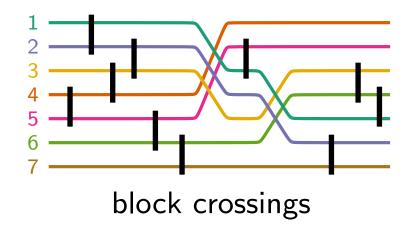


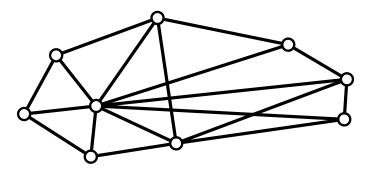


hierarchical drawing

orthogonal layouts (via planarization)

Maybe not all crossings are equally bad?

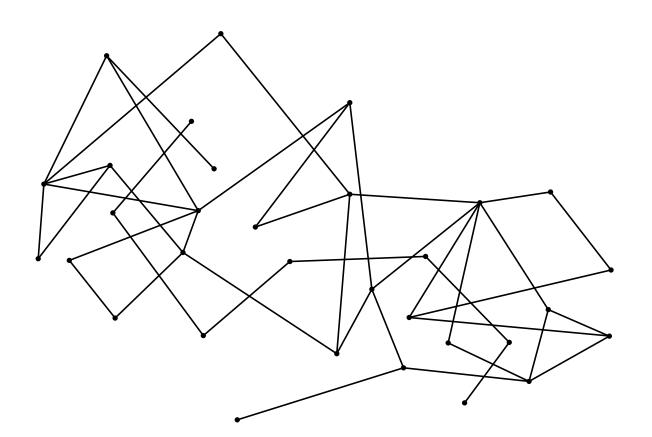




Which crossings feel worse?

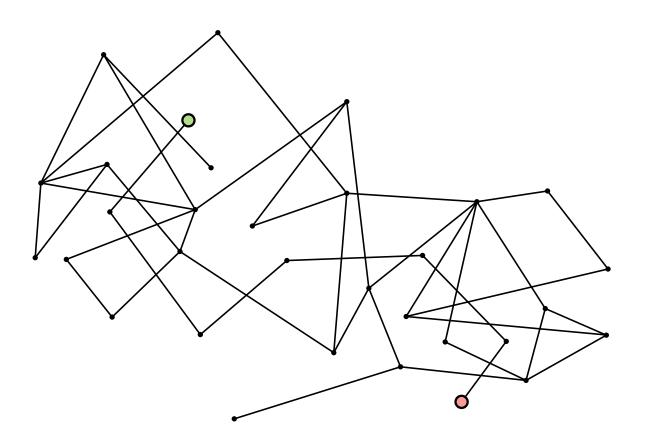
Eye-Tracking Experiment

Input: A graph drawing and designated path.



Eye-Tracking Experiment

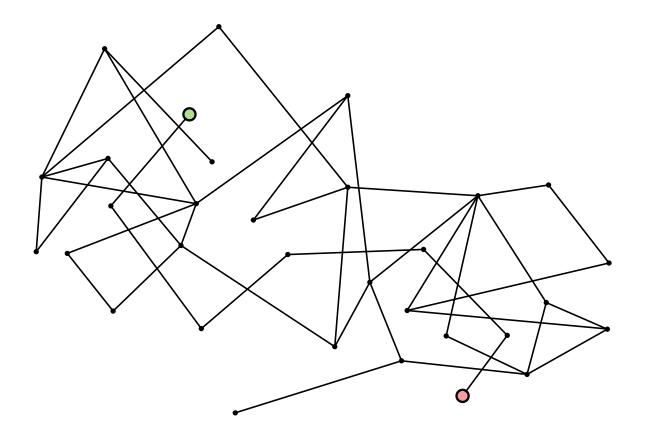
Input: A graph drawing and designated path.



Eye-Tracking Experiment

Input: A graph drawing and designated path.

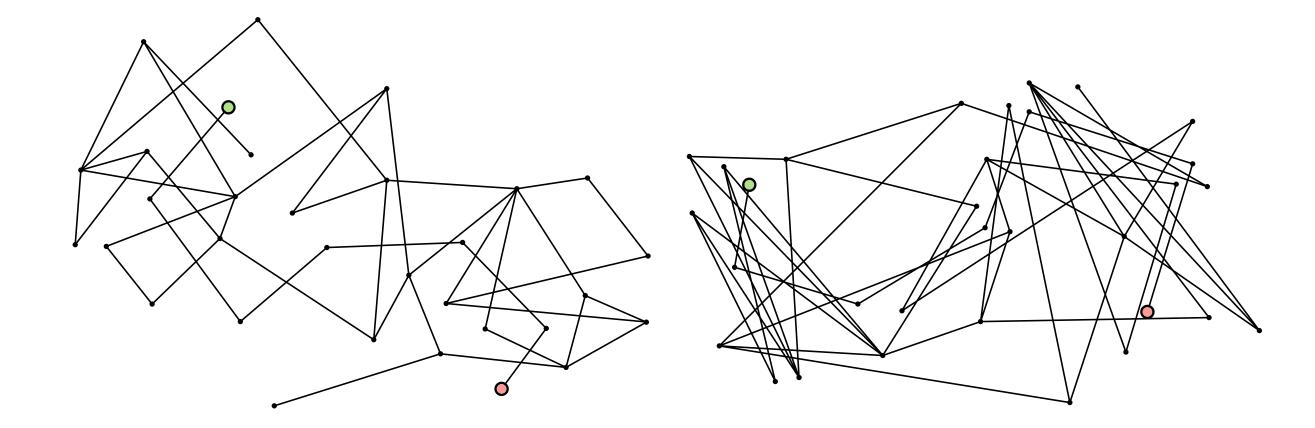
Task: Trace path and count number of edges.



Eye-Tracking Experiment

Input: A graph drawing and designated path.

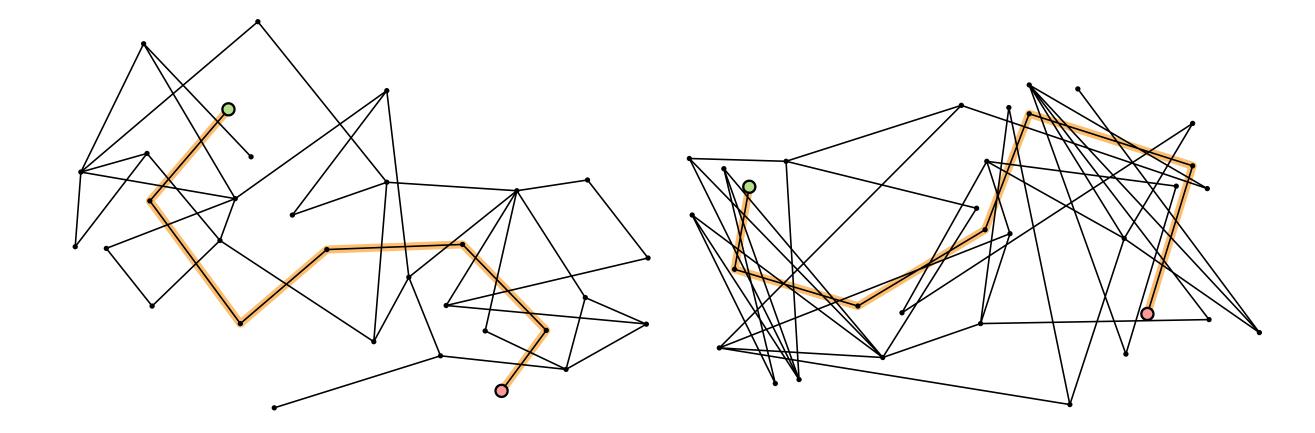
Task: Trace path and count number of edges.



Eye-Tracking Experiment

Input: A graph drawing and designated path.

Task: Trace path and count number of edges.

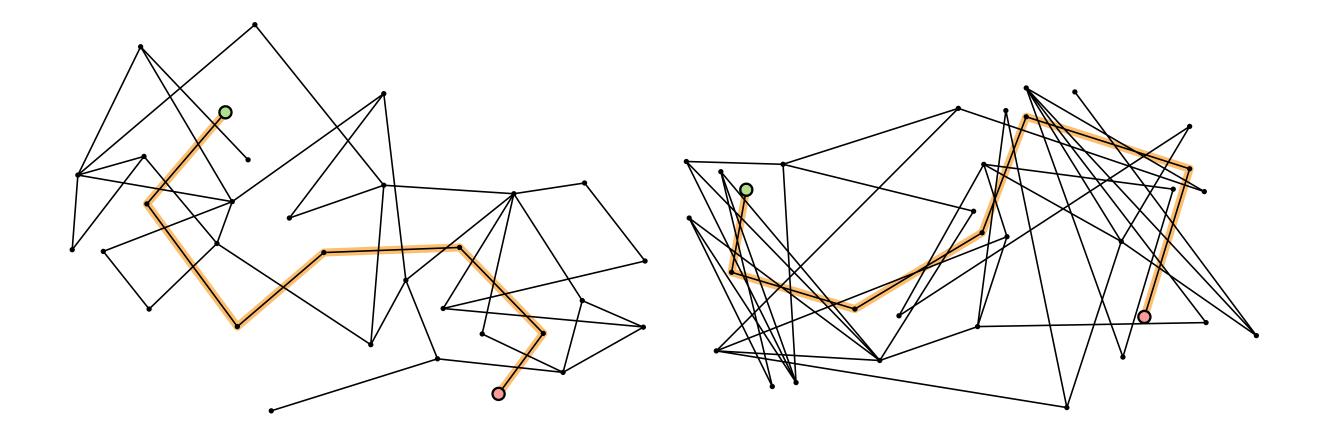


Eye-Tracking Experiment

Input: A graph drawing and designated path.

Task: Trace path and count number of edges.

Results:

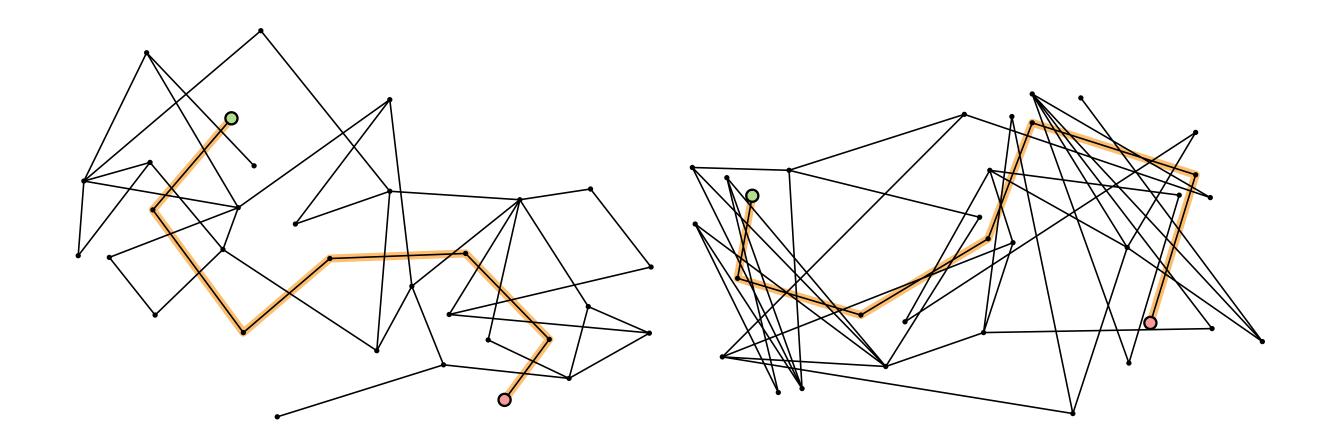


Eye-Tracking Experiment

Input: A graph drawing and designated path.

Task: Trace path and count number of edges.

Results: no crossings eye movements smooth and fast



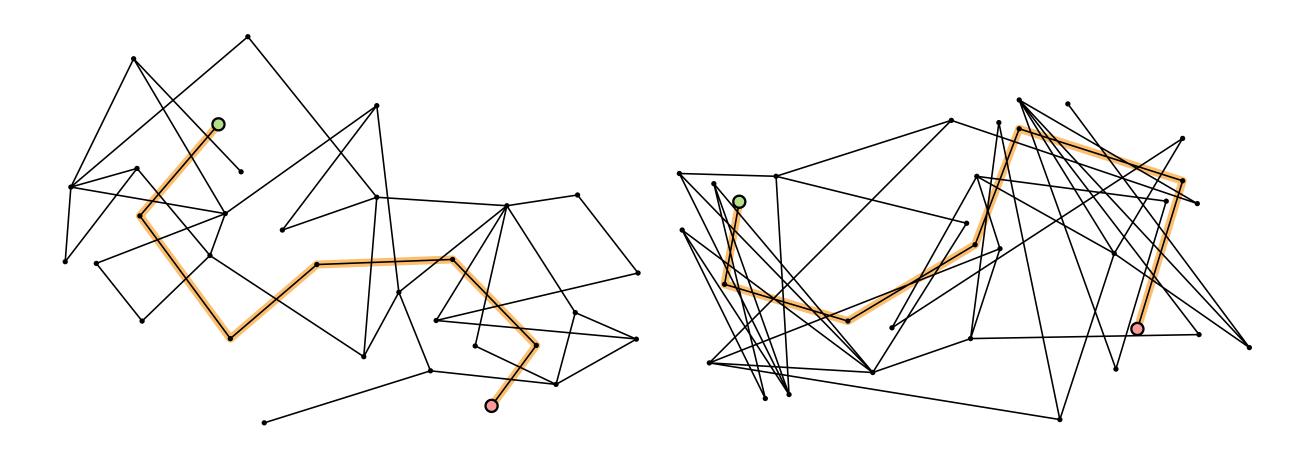
Eye-Tracking Experiment

Input: A graph drawing and designated path.

Task: Trace path and count number of edges.

Results: no crossings eye movements smooth and fast

large crossing angles eye movements smooth but slightly slower



Eye-Tracking Experiment

Input: A graph drawing and designated path.

Task: Trace path and count number of edges.

no crossings **Results:**

large crossing angles

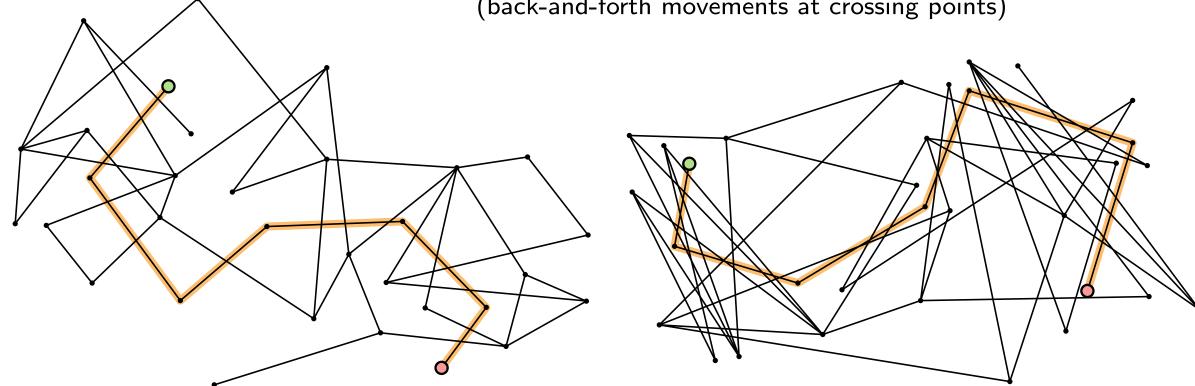
small crossing angles

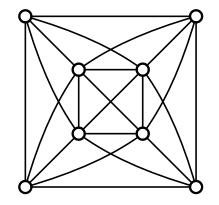
eye movements smooth and fast

eye movements smooth but slightly slower

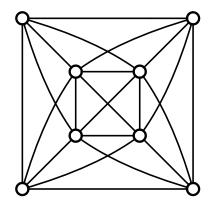
eye movements no longer smooth and very slow

(back-and-forth movements at crossing points)

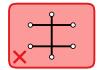


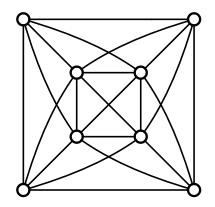


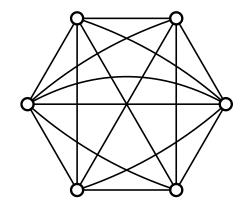
k-planar (k=1)



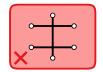
k-planar (k = 1)

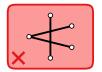


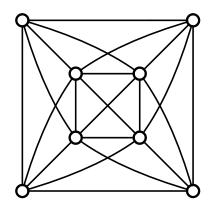




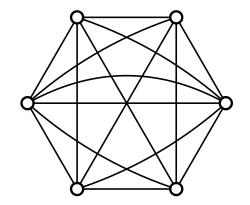
k-planar (k = 1) k-quasi-planar (k = 3)



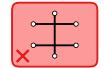


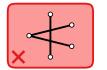


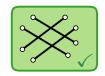
k-planar (k=1)

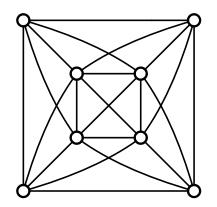


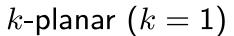
k-quasi-planar (k=3)

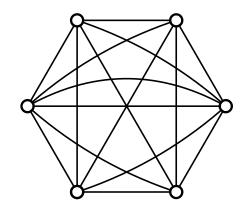




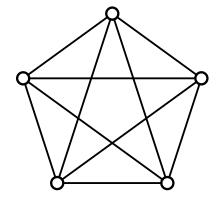


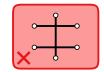


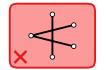


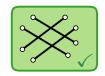


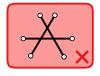
k-quasi-planar (k=3)

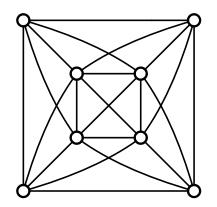


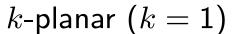


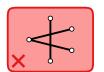


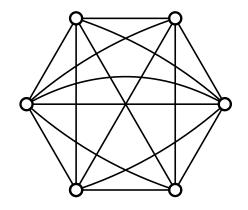




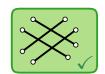


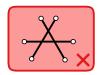


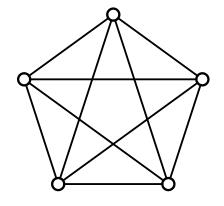




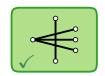
k-quasi-planar (k=3)

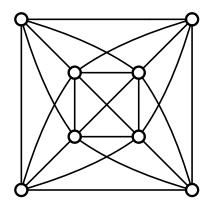


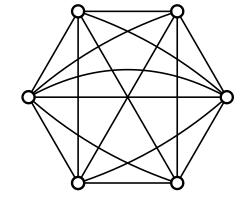




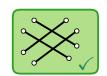
fan-planar

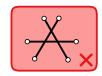


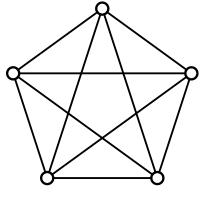




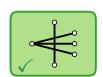
k-quasi-planar (k = 3)

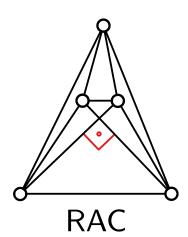


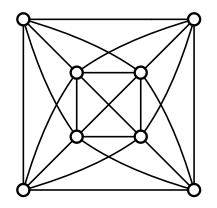




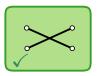
fan-planar

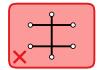


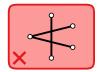


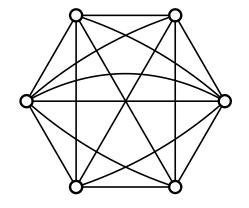


k-planar (k = 1)

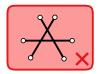


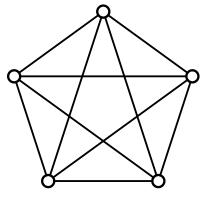




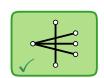


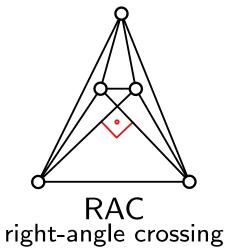
k-quasi-planar (k = 3)

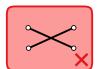


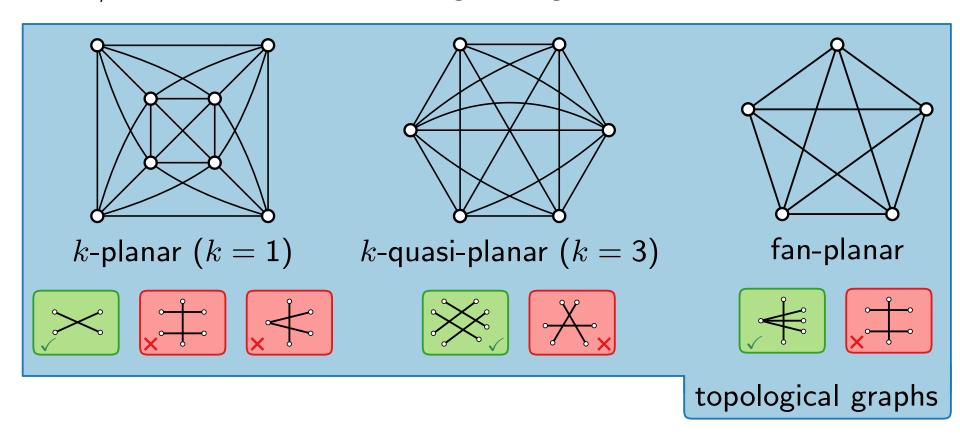


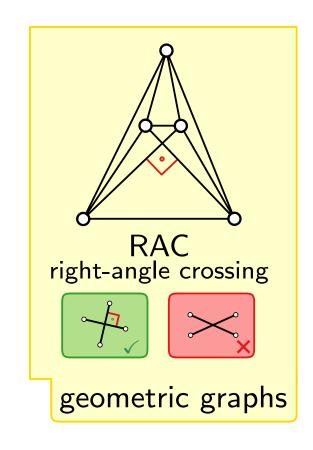
fan-planar



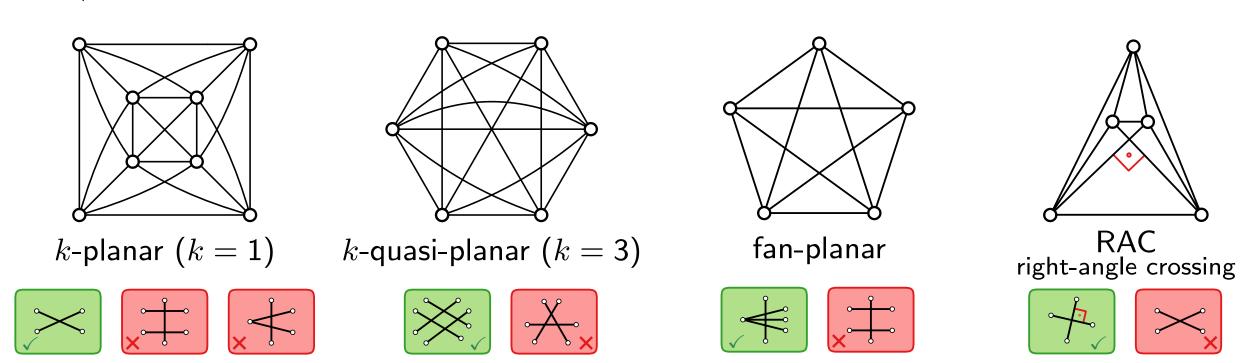






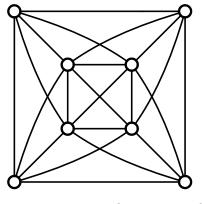


We define **aesthetics** for edge crossings and avoid/minimize "bad" crossing configurations.

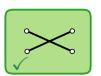


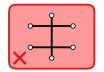
There are many more beyond planar graph classes...

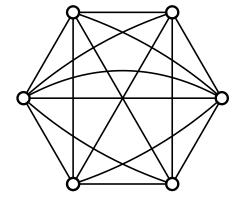
We define **aesthetics** for edge crossings and avoid/minimize "bad" crossing configurations.



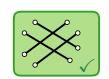
k-planar (k = 1)

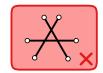


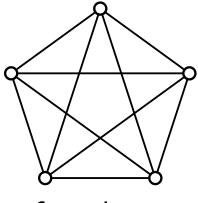




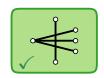
k-quasi-planar (k=3)

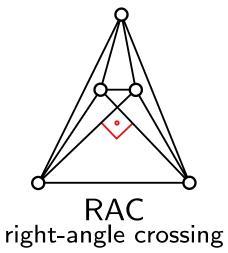


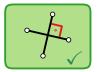




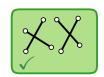
fan-planar

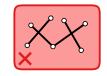






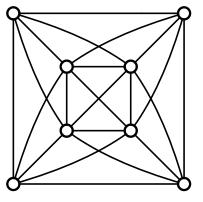
There are many more beyond planar graph classes...



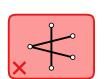


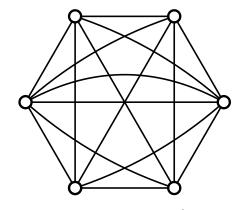
IC (independent crossing)

We define **aesthetics** for edge crossings and avoid/minimize "bad" crossing configurations.

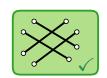


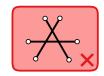
k-planar (k = 1)

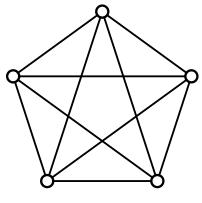




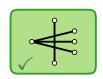
k-quasi-planar (k=3)

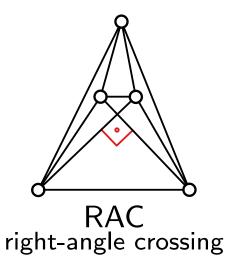




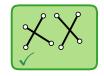


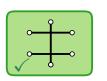
fan-planar





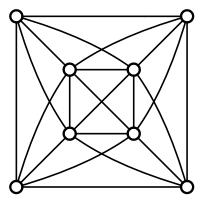
There are many more beyond planar graph classes...



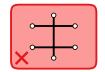


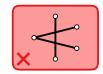
fan-crossing-free

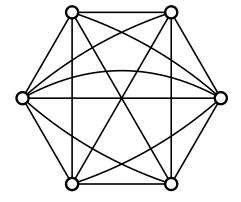
We define **aesthetics** for edge crossings and avoid/minimize "bad" crossing configurations.



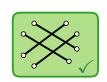
k-planar (k = 1)

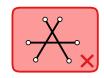


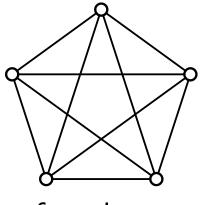




k-quasi-planar (k=3)

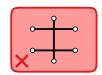


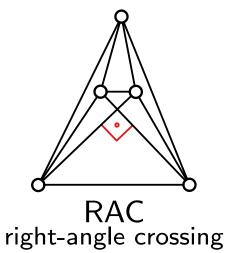


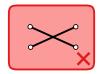


fan-planar

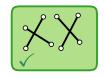


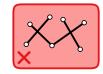




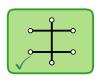


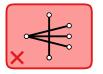
There are many more beyond planar graph classes...



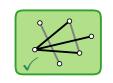


IC (independent crossing)



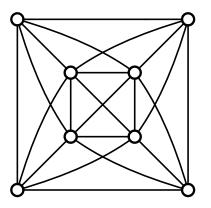


fan-crossing-free

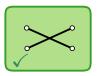


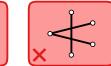
skewness-k (k = 2)

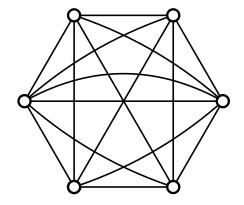
We define **aesthetics** for edge crossings and avoid/minimize "bad" crossing configurations.



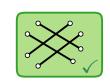
k-planar (k = 1)

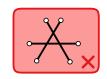


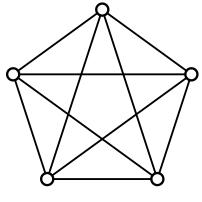




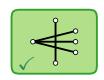
k-quasi-planar (k = 3)

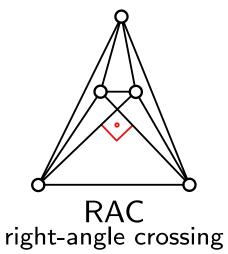


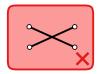




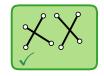
fan-planar

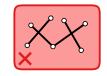




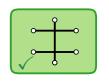


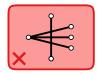
There are many more beyond planar graph classes...



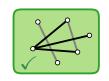


IC (independent crossing)



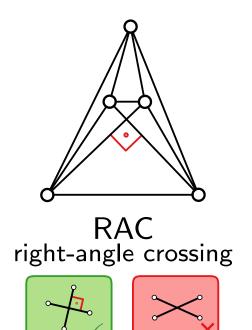


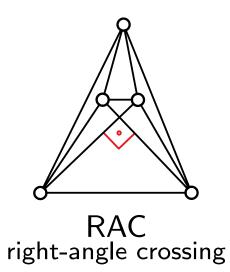
fan-crossing-free

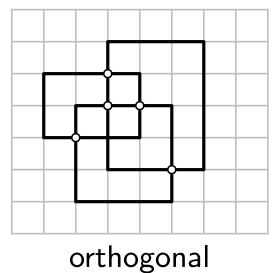


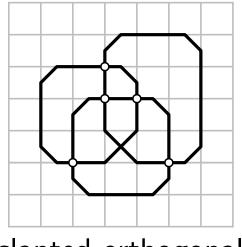
skewness-k (k = 2)

combinations, ...

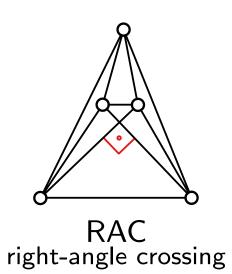


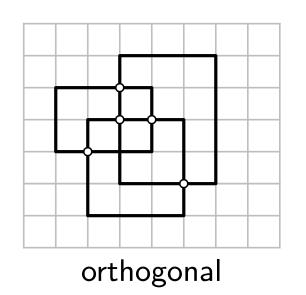


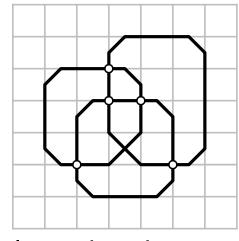


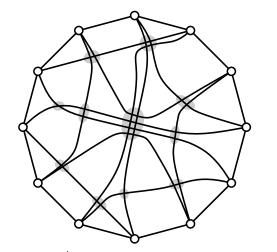


slanted orthogonal





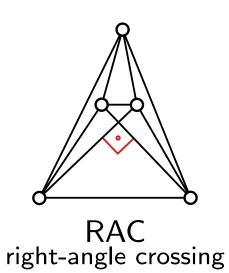


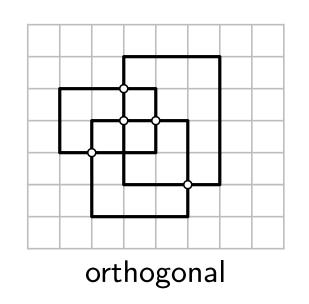


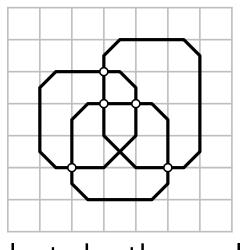
block/bundle crossings

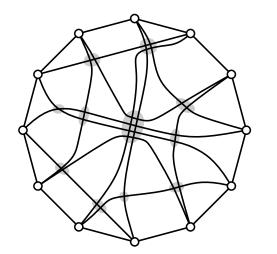
circular layout: 28 invididual vs. 12 bundle crossings

slanted orthogonal





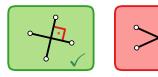


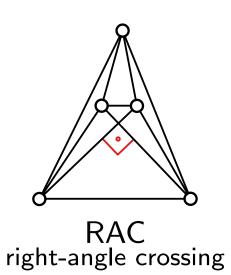


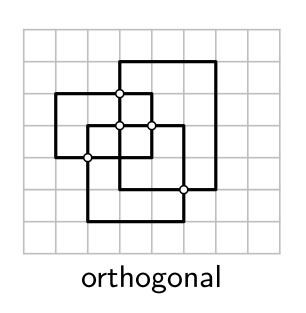
slanted orthogonal

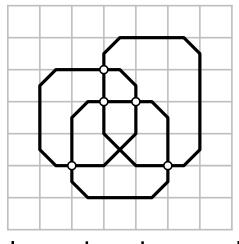
block/bundle crossings

circular layout: 28 invididual vs. 12 bundle crossings

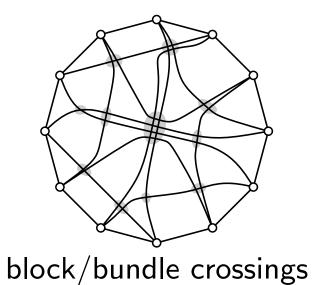




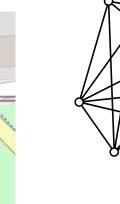


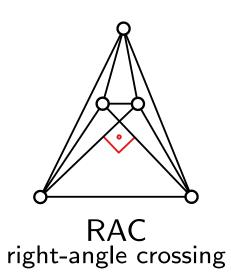


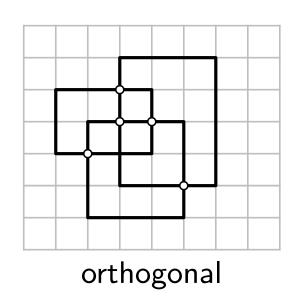
slanted orthogonal

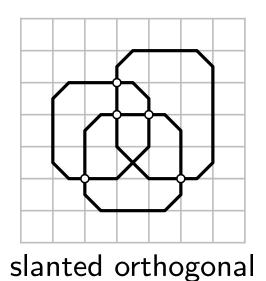


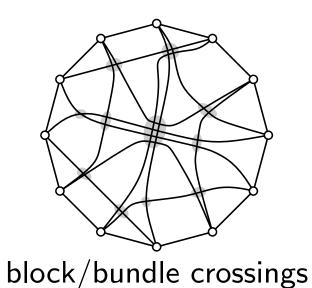
circular layout: 28 invididual vs. 12 bundle crossings



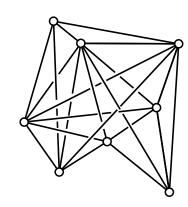




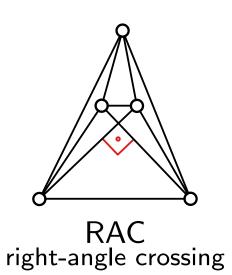


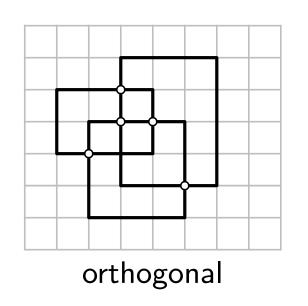


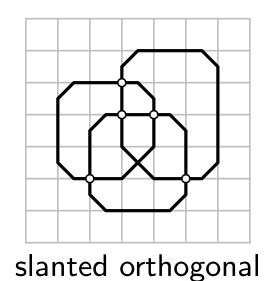
circular layout: 28 invididual vs. 12 bundle crossings

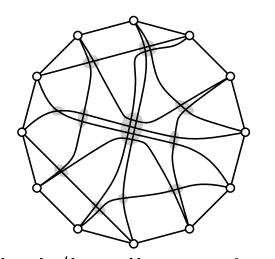


cased crossings

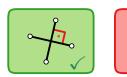


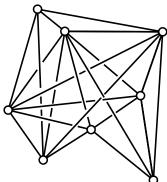




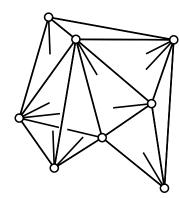


block/bundle crossings circular layout: 28 invididual vs. 12 bundle crossings

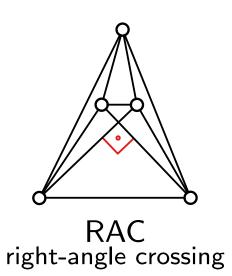


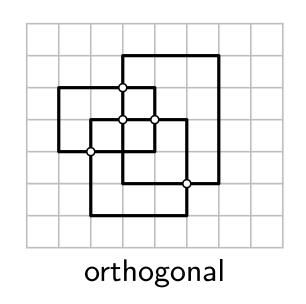


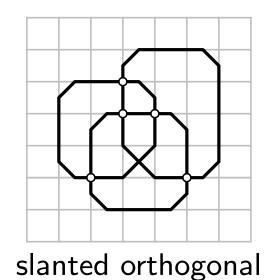
cased crossings

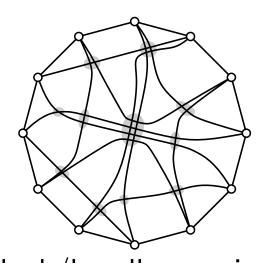


sym. partial edge drawing

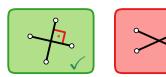


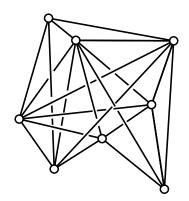


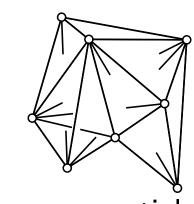


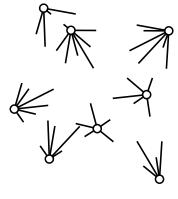


block/bundle crossings circular layout: 28 invididual vs. 12 bundle crossings





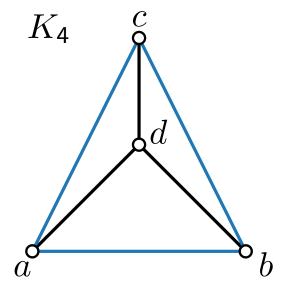


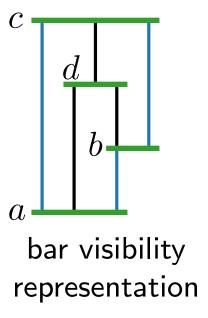


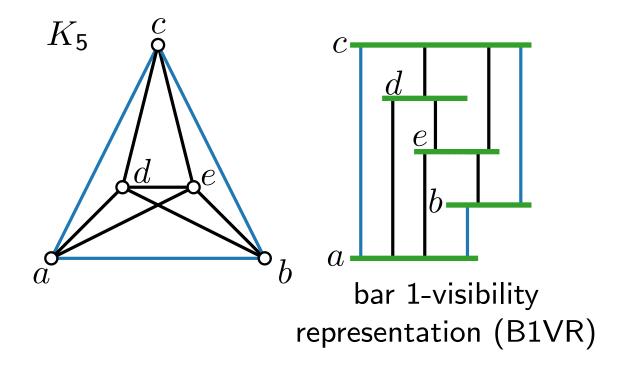
cased crossings

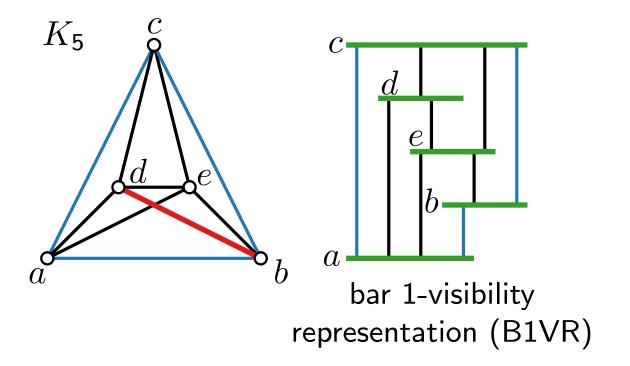
sym. partial edge drawing

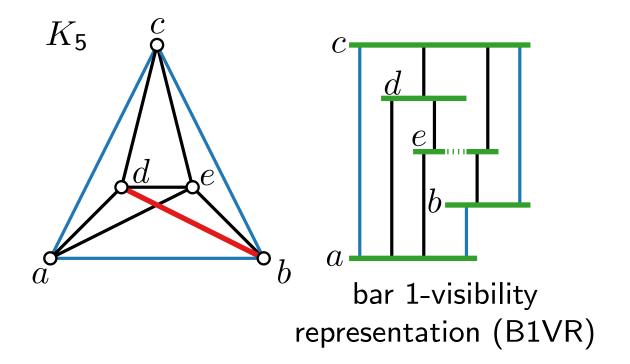
1/4-SHPED

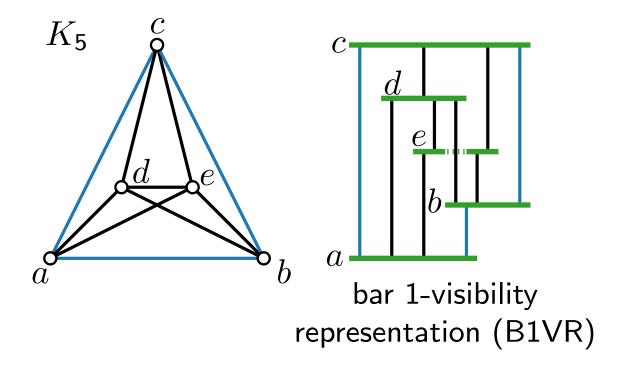


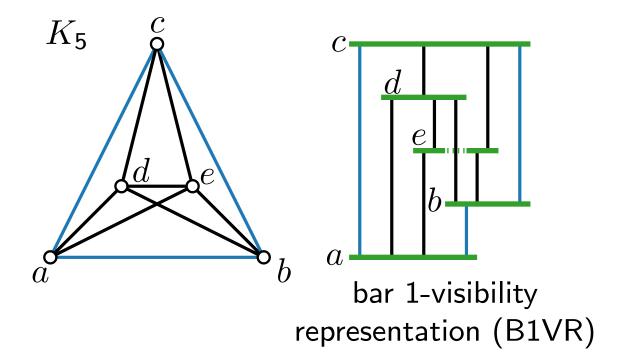




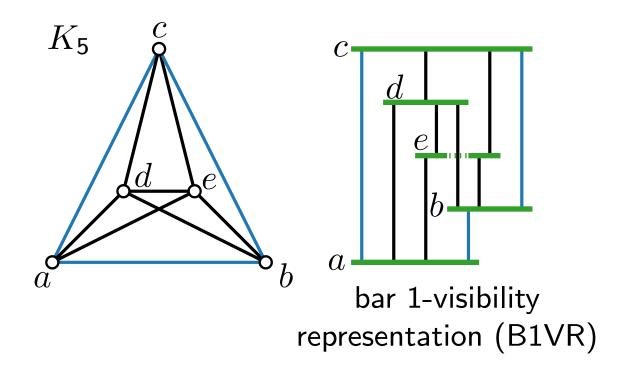


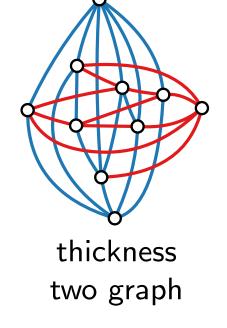




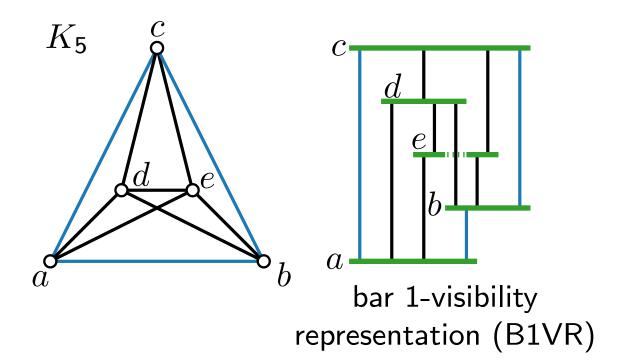


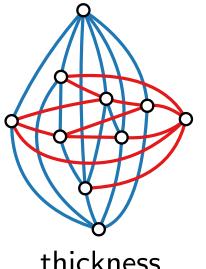
Every 1-planar graph admits a B1VR. [Brandenburg 2014; Evans et al. 2014; Angelini et al. 2018]

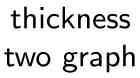


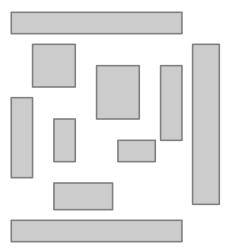


Every 1-planar graph admits a B1VR. [Brandenburg 2014; Evans et al. 2014; Angelini et al. 2018]

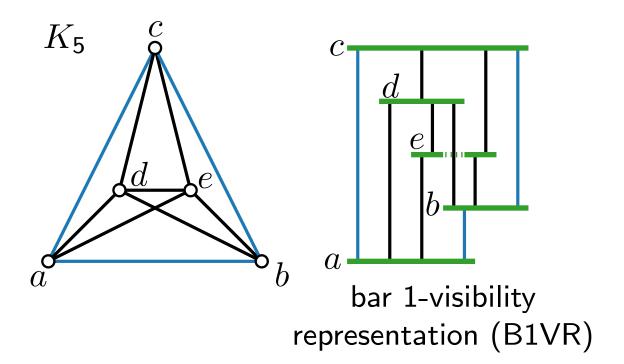


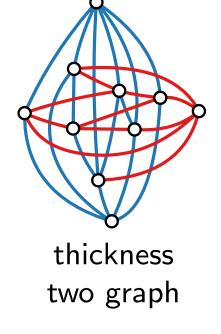


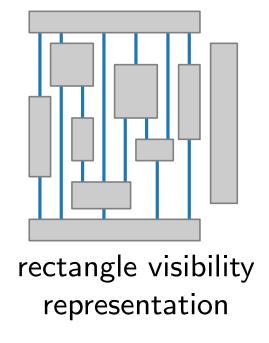




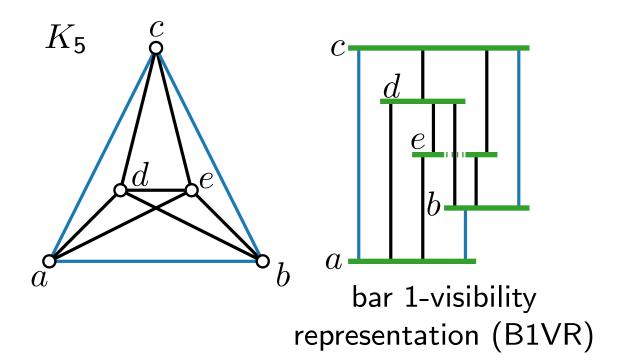
rectangle visibility representation

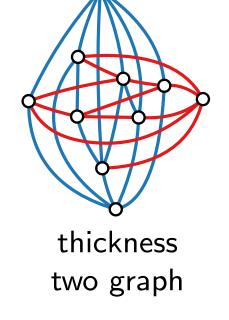


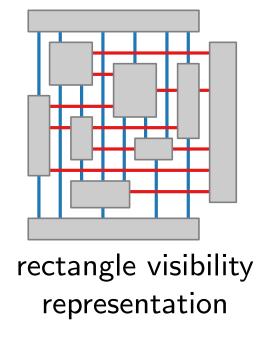




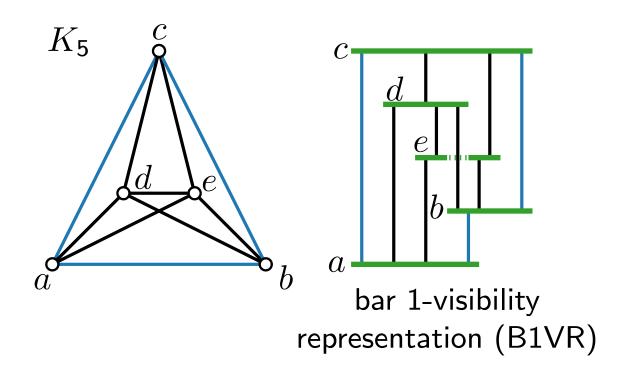
Every 1-planar graph admits a B1VR. [Brandenburg 2014; Evans et al. 2014; Angelini et al. 2018]

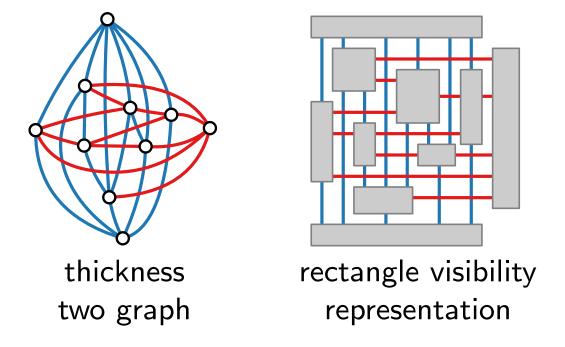




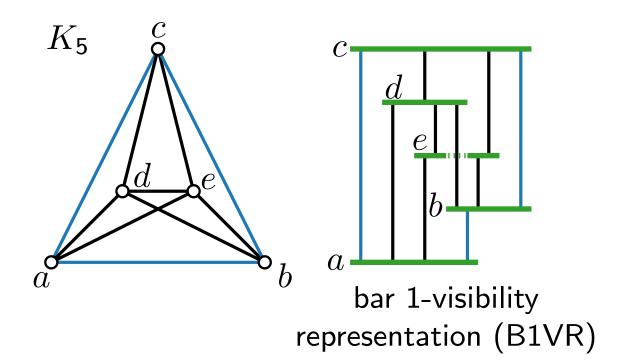


Every 1-planar graph admits a B1VR. [Brandenburg 2014; Evans et al. 2014; Angelini et al. 2018]

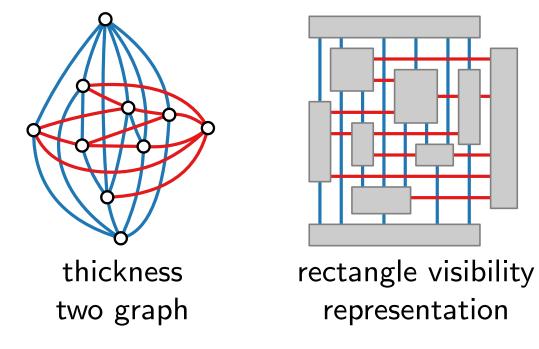




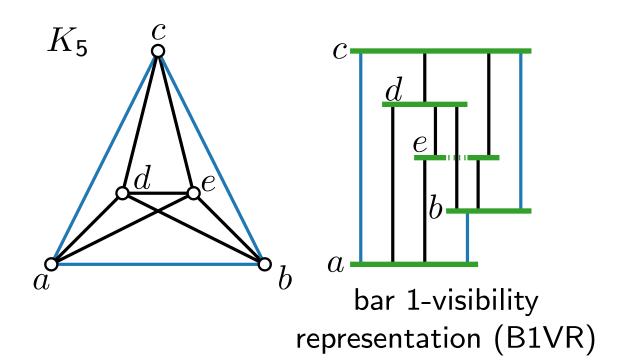
 \blacksquare G has at most 6n-20 edges [Bose et al. 1997]



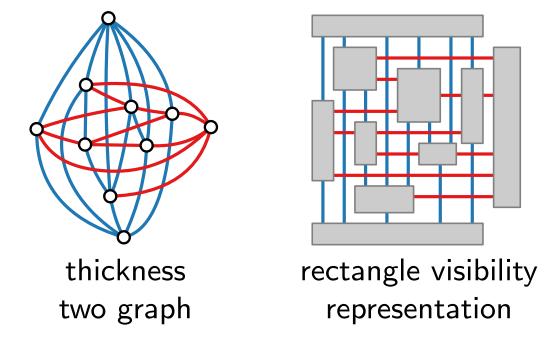
Every 1-planar graph admits a B1VR. [Brandenburg 2014; Evans et al. 2014; Angelini et al. 2018]



- lacksquare G has at most 6n-20 edges [Bose et al. 1997]
- Recognition is NP-complete [Shermer 1996]

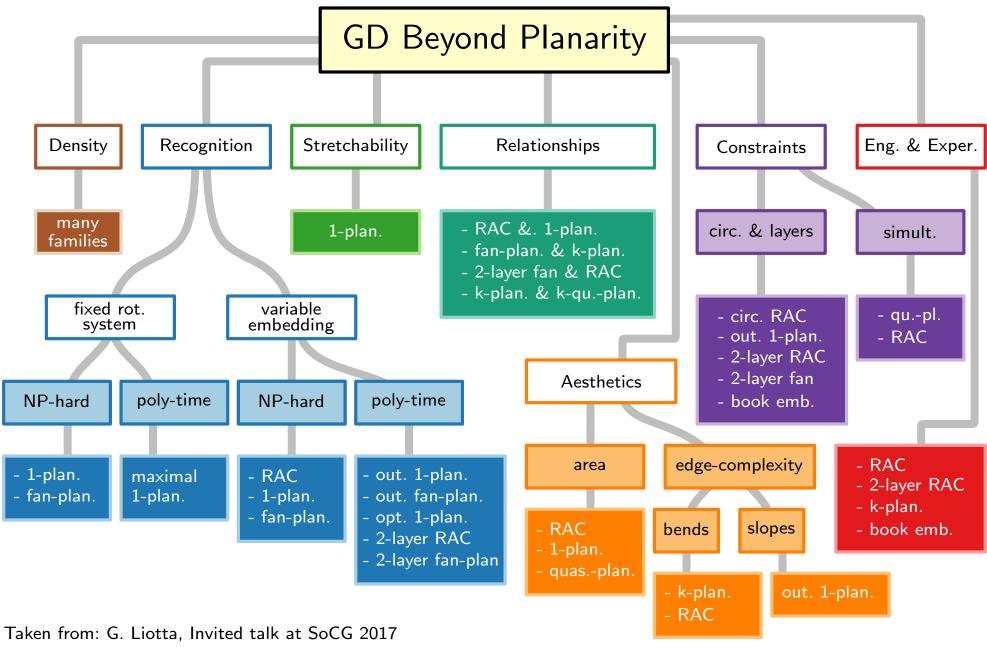


Every 1-planar graph admits a B1VR. [Brandenburg 2014; Evans et al. 2014; Angelini et al. 2018]



- lacksquare G has at most 6n-20 edges [Bose et al. 1997]
- Recognition is NP-complete [Shermer 1996]
- Recognition becomes polynomial if embedding is fixed [Biedl et al. 2018]

GD Beyond Planarity: a Taxonomy



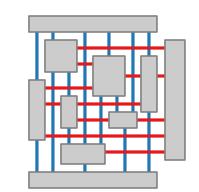
[&]quot;Graph Drawing Beyond Planarity: Some Results and Open Problems", Jul. 2017

Visualization of Graphs

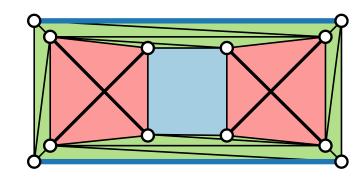
Lecture 11:

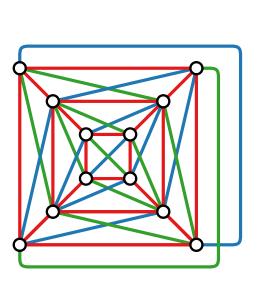
Beyond Planarity

Drawing Graphs with Crossings

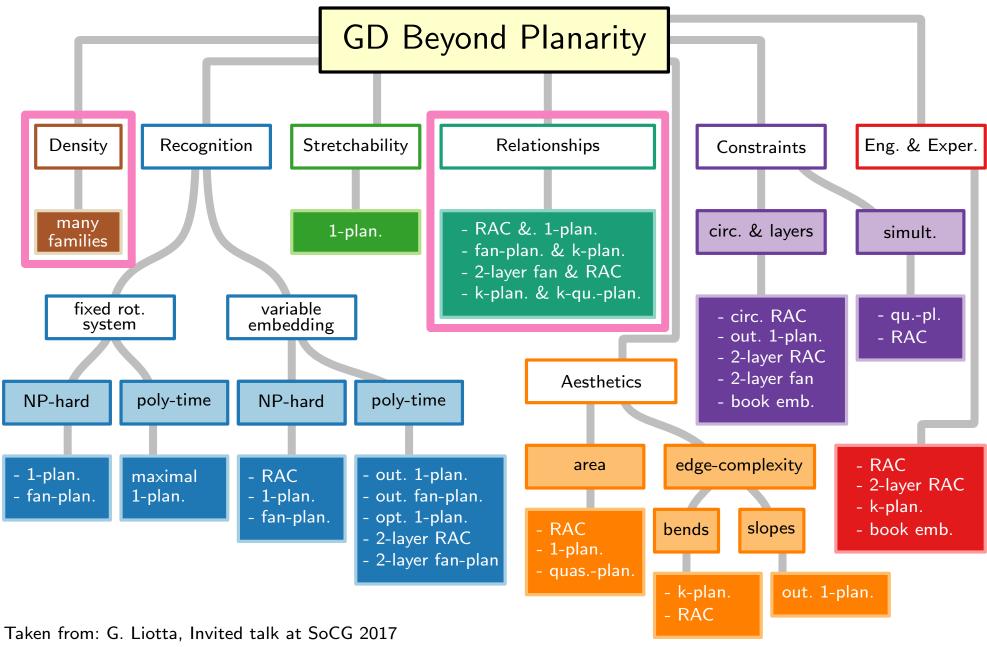


Jonathan Klawitter





GD Beyond Planarity: a Taxonomy



[&]quot;Graph Drawing Beyond Planarity: Some Results and Open Problems", Jul. 2017

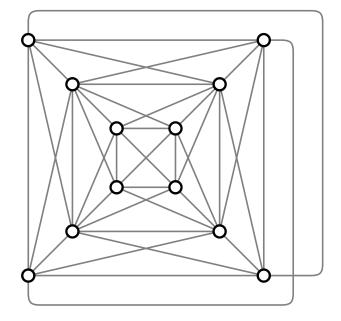
Theorem. [Ringel 1965, Pach & Tóth 1997]

A 1-planar graph with n vertices has at most 4n-8 edges, which is a tight bound.

Theorem.

[Ringel 1965, Pach & Tóth 1997]

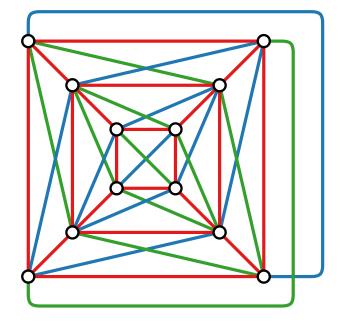
A 1-planar graph with n vertices has at most 4n-8 edges, which is a tight bound.



Theorem.

[Ringel 1965, Pach & Tóth 1997]

A 1-planar graph with n vertices has at most 4n-8 edges, which is a tight bound.



Theorem.

[Ringel 1965, Pach & Tóth 1997]

A 1-planar graph with n vertices has at most 4n-8 edges, which is a tight bound.

Proof sketch.

red edges do not cross

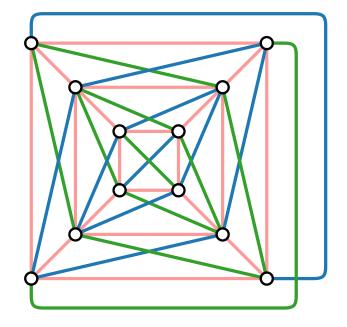


Theorem.

[Ringel 1965, Pach & Tóth 1997]

A 1-planar graph with n vertices has at most 4n-8 edges, which is a tight bound.

- red edges do not cross
- each blue edge crosses a green edge

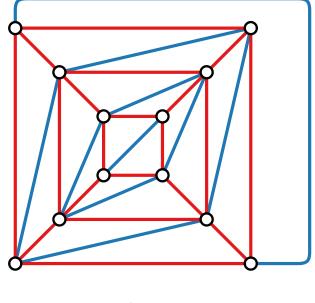


Theorem.

[Ringel 1965, Pach & Tóth 1997]

A 1-planar graph with n vertices has at most 4n-8 edges, which is a tight bound.

- red edges do not cross
- each blue edge crosses a green edge
- \blacksquare red-blue plane graph G_{rb}



 G_{rb}

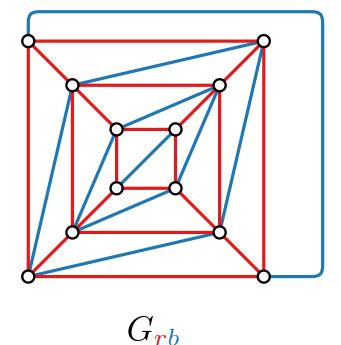
Theorem.

[Ringel 1965, Pach & Tóth 1997]

A 1-planar graph with n vertices has at most 4n-8 edges, which is a tight bound.

- red edges do not cross
- each blue edge crosses a green edge
- \blacksquare red-blue plane graph G_{rb}

$$m_{rb} \leq 3n - 6$$



Theorem.

[Ringel 1965, Pach & Tóth 1997]

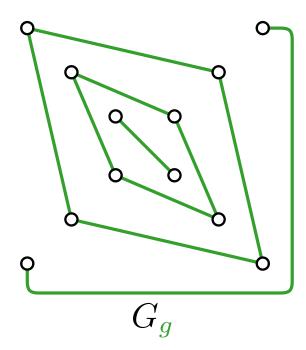
A 1-planar graph with n vertices has at most 4n-8 edges, which is a tight bound.

Proof sketch.

- red edges do not cross
- each blue edge crosses a green edge
- lacktriangle red-blue plane graph G_{rb}

$$m_{rb} \leq 3n - 6$$

lacksquare green plane graph G_g



Theorem.

[Ringel 1965, Pach & Tóth 1997]

A 1-planar graph with n vertices has at most 4n-8 edges, which is a tight bound.

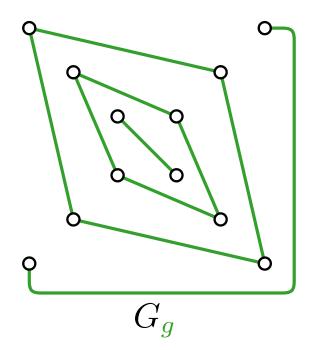
Proof sketch.

- red edges do not cross
- each blue edge crosses a green edge
- \blacksquare red-blue plane graph G_{rb}

$$m_{rb} \leq 3n - 6$$

lacktriangle green plane graph G_g

$$m_g \leq 3n - 6$$



Theorem.

[Ringel 1965, Pach & Tóth 1997]

A 1-planar graph with n vertices has at most 4n-8edges, which is a tight bound.

Proof sketch.

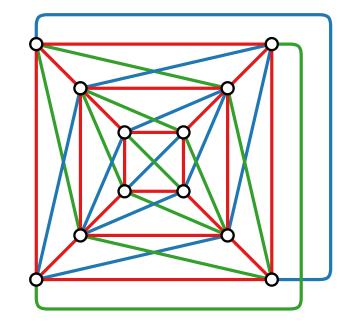
- red edges do not cross
- each blue edge crosses a green edge
- \blacksquare red-blue plane graph G_{rb}

$$m_{rb} \le 3n - 6$$

 \blacksquare green plane graph G_q

$$m_g \leq 3n - 6$$

$$m_g \leq 3n - 6$$
 $\Rightarrow m \leq m_{rb} + m_g \leq 6n - 12$



Theorem.

[Ringel 1965, Pach & Tóth 1997]

A 1-planar graph with n vertices has at most 4n-8edges, which is a tight bound.

Proof sketch.

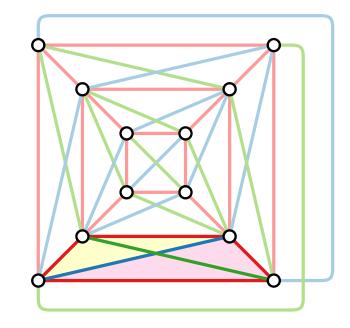
- red edges do not cross
- each blue edge crosses a green edge
- \blacksquare red-blue plane graph G_{rb}

$$m_{rb} \leq 3n - 6$$

 \blacksquare green plane graph G_q

$$m_g \leq 3n-6$$

$$m_q \leq 3n - 6$$
 $\Rightarrow m \leq m_{rb} + m_q \leq 6n - 12$



Theorem.

[Ringel 1965, Pach & Tóth 1997]

A 1-planar graph with n vertices has at most 4n-8edges, which is a tight bound.

Proof sketch.

- red edges do not cross
- each blue edge crosses a green edge
- \blacksquare red-blue plane graph G_{rb}

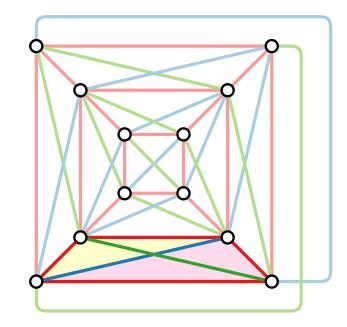
$$m_{rb} \leq 3n - 6$$

 \blacksquare green plane graph G_q

$$m_g \leq 3n - 6$$

$$m_q \leq 3n - 6$$
 $\Rightarrow m \leq m_{rb} + m_q \leq 6n - 12$

$$m_g \leq f_{rb}/2$$



Theorem.

[Ringel 1965, Pach & Tóth 1997]

A 1-planar graph with n vertices has at most 4n-8edges, which is a tight bound.

Proof sketch.

- red edges do not cross
- each blue edge crosses a green edge
- \blacksquare red-blue plane graph G_{rb}

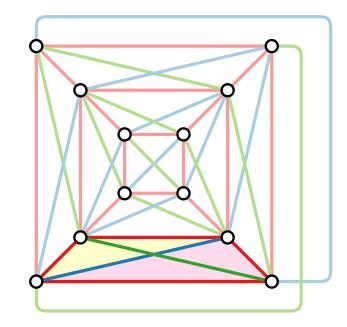
$$m_{rb} \le 3n - 6$$

 \blacksquare green plane graph G_q

$$m_g \leq 3n-6$$

$$m_q \leq 3n - 6$$
 $\Rightarrow m \leq m_{rb} + m_q \leq 6n - 12$

$$m_g \le f_{rb}/2 \le (2n-4)/2$$



Theorem.

[Ringel 1965, Pach & Tóth 1997]

A 1-planar graph with n vertices has at most 4n-8edges, which is a tight bound.

Proof sketch.

- red edges do not cross
- each blue edge crosses a green edge
- \blacksquare red-blue plane graph G_{rb}

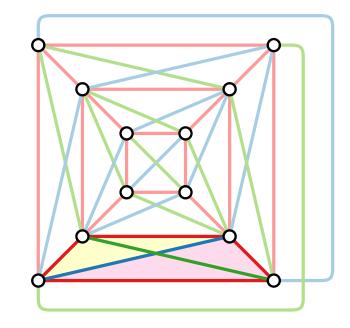
$$m_{rb} \le 3n - 6$$

 \blacksquare green plane graph G_q

$$m_g \leq 3n - 6$$

$$m_q \leq 3n - 6$$
 $\Rightarrow m \leq m_{rb} + m_q \leq 6n - 12$

$$m_g \le f_{rb}/2 \le (2n-4)/2 = n-2$$



Theorem.

[Ringel 1965, Pach & Tóth 1997]

A 1-planar graph with n vertices has at most 4n-8edges, which is a tight bound.

Proof sketch.

- red edges do not cross
- each blue edge crosses a green edge
- \blacksquare red-blue plane graph G_{rb}

$$m_{rb} \le 3n - 6$$

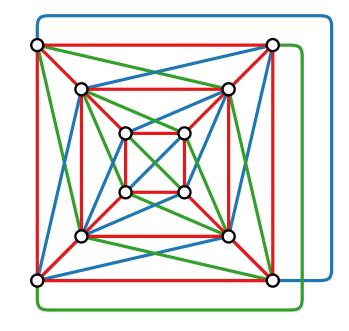
 \blacksquare green plane graph G_q

$$m_g \leq 3n - 6$$

$$m_q \leq 3n - 6$$
 $\Rightarrow m \leq m_{rb} + m_q \leq 6n - 12$

$$m_g \le f_{rb}/2 \le (2n-4)/2 = n-2$$

$$\Rightarrow m = m_{rb} + m_g$$



Theorem.

[Ringel 1965, Pach & Tóth 1997]

A 1-planar graph with n vertices has at most 4n-8edges, which is a tight bound.

Proof sketch.

- red edges do not cross
- each blue edge crosses a green edge
- \blacksquare red-blue plane graph G_{rb}

$$m_{rb} \le 3n - 6$$

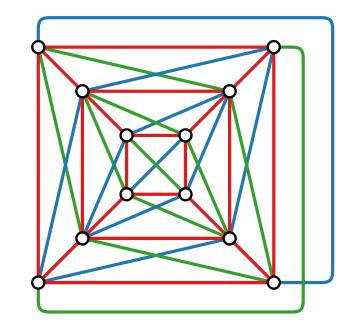
 \blacksquare green plane graph G_q

$$m_g \leq 3n - 6$$

$$m_q \leq 3n - 6$$
 $\Rightarrow m \leq m_{rb} + m_q \leq 6n - 12$

$$m_g \le f_{rb}/2 \le (2n-4)/2 = n-2$$

$$\Rightarrow m = m_{rb} + m_g \le 3n - 6 + n - 2 = 4n - 8$$



Theorem.

[Ringel 1965, Pach & Tóth 1997]

A 1-planar graph with n vertices has at most 4n-8edges, which is a tight bound.

Proof sketch.

- red edges do not cross
- each blue edge crosses a green edge
- \blacksquare red-blue plane graph G_{rb}

$$m_{rb} \leq 3n - 6$$

 \blacksquare green plane graph G_q

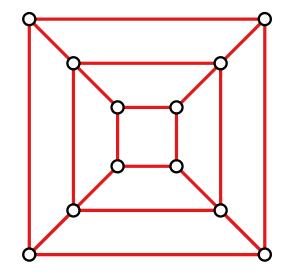
$$m_g \leq 3n-6$$

$$m_q \leq 3n - 6$$
 $\Rightarrow m \leq m_{rb} + m_q \leq 6n - 12$

Observe that each green edge joins two faces in G_{rb} .

$$m_g \le f_{rb}/2 \le (2n-4)/2 = n-2$$

 $\Rightarrow m = m_{rb} + m_g \le 3n - 6 + n - 2 = 4n - 8$



Planar structure:

$$2n-4$$
 edges $n-2$ faces

Theorem.

[Ringel 1965, Pach & Tóth 1997]

A 1-planar graph with n vertices has at most 4n-8edges, which is a tight bound.

Proof sketch.

- red edges do not cross
- each blue edge crosses a green edge
- \blacksquare red-blue plane graph G_{rb}

$$m_{rb} \leq 3n - 6$$

 \blacksquare green plane graph G_q

$$m_g \leq 3n - 6$$

$$m_a \leq 3n-6 \qquad \Rightarrow \quad m \leq m_{rb} + m_a \leq 6n-12$$

Planar structure:

$$2n-4$$
 edges

n-2 faces

Edges per face: 2 edges

$$m_g \le f_{rb}/2 \le (2n-4)/2 = n-2$$

$$\Rightarrow m = m_{rb} + m_g \le 3n - 6 + n - 2 = 4n - 8$$

Theorem.

[Ringel 1965, Pach & Toth 1997]

A 1-planar graph with n vertices has at most 4n-8edges, which is a tight bound.

Proof sketch.

- red edges do not cross
- each blue edge crosses a green edge
- \blacksquare red-blue plane graph G_{rb}

$$m_{rb} \leq 3n - 6$$

 \blacksquare green plane graph G_q

$$m_g \leq 3n - 6$$

$$m_q \leq 3n - 6$$
 $\Rightarrow m \leq m_{rb} + m_q \leq 6n - 12$

Observe that each green edge joins two faces in G_{rb} .

$$m_g \le f_{rb}/2 \le (2n-4)/2 = n-2$$

Planar structure:

$$2n-4$$
 edges

$$n-2$$
 faces

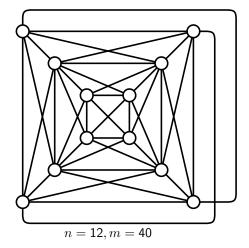
Total:
$$4n - 8$$
 edges

$$\Rightarrow m = m_{rb} + m_q \le 3n - 6 + n - 2 = 4n - 8$$

Theorem.

[Ringel 1965, Pach & Tóth 1997]

A 1-planar graph with n vertices has at most 4n-8 edges, which is a tight bound.



Theorem.

[Ringel 1965, Pach & Tóth 1997]

A 1-planar graph with n vertices has at most 4n-8 edges, which is a tight bound.

A 1-planar graph with n vertices is called **optimal** if it has exactly 4n-8 edges.

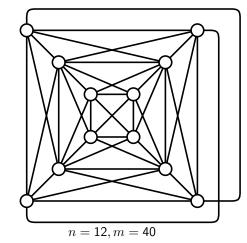


Theorem. [Ringel 1965, Pach & Tóth 1997]

A 1-planar graph with n vertices has at most 4n-8 edges, which is a tight bound.

A 1-planar graph with n vertices is called **optimal** if it has exactly 4n-8 edges.

A 1-planar graph is called **maximal** if adding any edge would result in a non-1-planar graph.



Theorem.

[Ringel 1965, Pach & Tóth 1997]

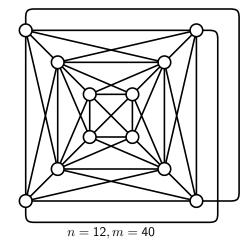
A 1-planar graph with n vertices has at most 4n-8 edges, which is a tight bound.

A 1-planar graph with n vertices is called **optimal** if it has exactly 4n-8 edges.

A 1-planar graph is called **maximal** if adding any edge would result in a non-1-planar graph.

Theorem.

[Brandenburg et al. 2013]



Theorem.

[Ringel 1965, Pach & Tóth 1997]

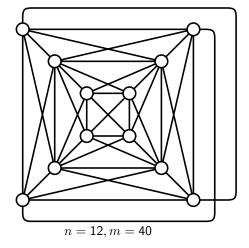
A 1-planar graph with n vertices has at most 4n-8 edges, which is a tight bound.

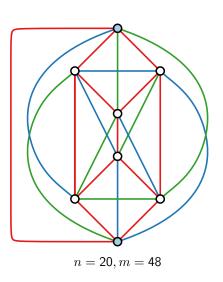
A 1-planar graph with n vertices is called **optimal** if it has exactly 4n-8 edges.

A 1-planar graph is called **maximal** if adding any edge would result in a non-1-planar graph.

Theorem.

Brandenburg et al. 2013





Theorem.

[Ringel 1965, Pach & Tóth 1997]

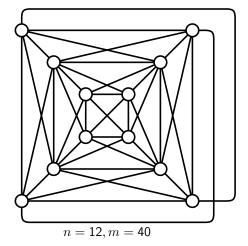
A 1-planar graph with n vertices has at most 4n-8 edges, which is a tight bound.

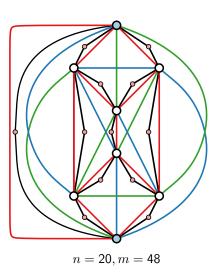
A 1-planar graph with n vertices is called **optimal** if it has exactly 4n-8 edges.

A 1-planar graph is called **maximal** if adding any edge would result in a non-1-planar graph.

Theorem.

[Brandenburg et al. 2013]





Theorem.

[Ringel 1965, Pach & Tóth 1997]

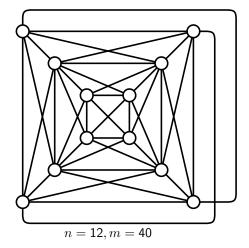
A 1-planar graph with n vertices has at most 4n-8 edges, which is a tight bound.

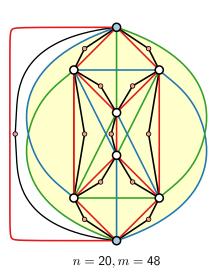
A 1-planar graph with n vertices is called **optimal** if it has exactly 4n-8 edges.

A 1-planar graph is called **maximal** if adding any edge would result in a non-1-planar graph.

Theorem.

[Brandenburg et al. 2013]





Theorem.

[Ringel 1965, Pach & Tóth 1997]

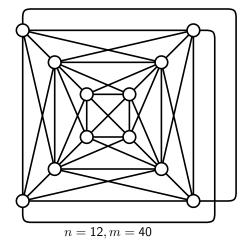
A 1-planar graph with n vertices has at most 4n-8 edges, which is a tight bound.

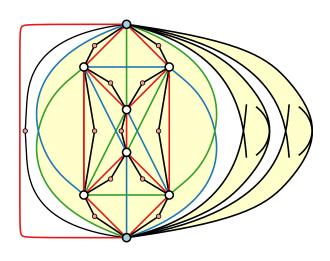
A 1-planar graph with n vertices is called **optimal** if it has exactly 4n-8 edges.

A 1-planar graph is called **maximal** if adding any edge would result in a non-1-planar graph.

Theorem.

[Brandenburg et al. 2013]





Theorem.

[Ringel 1965, Pach & Tóth 1997]

A 1-planar graph with n vertices has at most 4n-8 edges, which is a tight bound.

A 1-planar graph with n vertices is called **optimal** if it has exactly 4n-8 edges.

A 1-planar graph is called **maximal** if adding any edge would result in a non-1-planar graph.

Theorem.

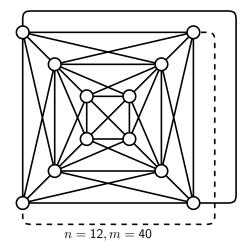
[Brandenburg et al. 2013]

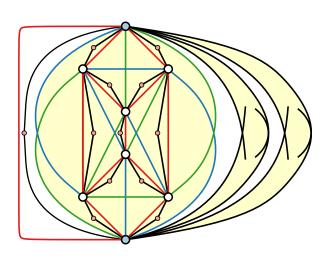
There are maximal 1-planar graphs with n vertices and 45/17n - O(1) edges.

Theorem.

[Didimo 2013]

A 1-planar graph with n vertices that admits a straight-line drawing has at most 4n-9 edges.





Theorem.

A k-planar graph with n vertices has at most:

k number of edges

Theorem.

A k-planar graph with n vertices has at most:

k number of edges

0 3(n-2)

Euler's formula

Theorem.

A k-planar graph with n vertices has at most:

k number of edges

0 3(n-2)

Euler's formula

4(n-2)

[Ringel 1965]

Theorem.

A k-planar graph with n vertices has at most:

k number of edges

3(n-2)

4(n-2)

2

Euler's formula

[Ringel 1965]

[Pach and Tóth 1997]

Theorem.

A k-planar graph with n vertices has at most:

k number of edges

0 3(n-2)

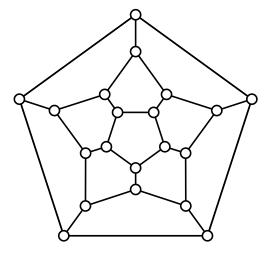
4(n-2)

2

Euler's formula

[Ringel 1965]

[Pach and Tóth 1997]



optimal 2-planar

Theorem.

A k-planar graph with n vertices has at most:

k number of edges

3(n-2)

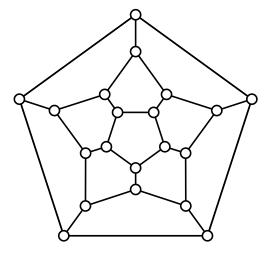
4(n-2)

2

Euler's formula

[Ringel 1965]

[Pach and Tóth 1997]



optimal 2-planar

Planar structure:

Theorem.

A k-planar graph with n vertices has at most:

k number of edges

3(n-2)

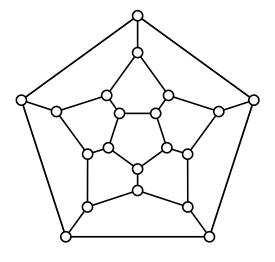
4(n-2)

2

Euler's formula

[Ringel 1965]

[Pach and Tóth 1997]



optimal 2-planar

Planar structure:

Edges per face:

Theorem.

A k-planar graph with n vertices has at most:

k number of edges

0 3(n-2)

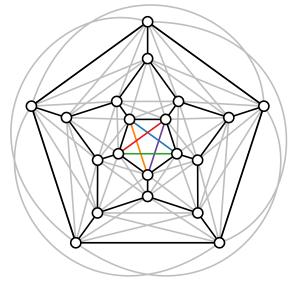
4(n-2)

2

Euler's formula

[Ringel 1965]

[Pach and Tóth 1997]



optimal 2-planar

Planar structure:

Edges per face:

Theorem.

A k-planar graph with n vertices has at most:

k number of edges

3(n-2)

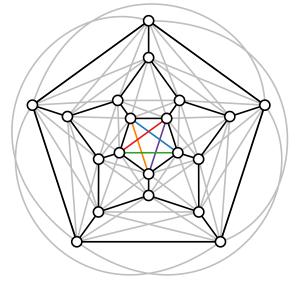
4(n-2)

2

Euler's formula

[Ringel 1965]

[Pach and Tóth 1997]



optimal 2-planar

Planar structure:

$$n - m + f = 2$$
$$m = c \cdot f ?$$

Edges per face:

Theorem.

A k-planar graph with n vertices has at most:

k number of edges

3(n-2)

4(n-2)

2

Euler's formula

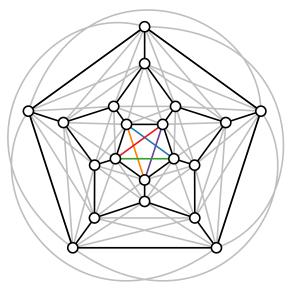
[Ringel 1965]

[Pach and Tóth 1997]

$$n - m + f = 2$$

$$m = c \cdot f ?$$

$$m = \frac{5}{2}f$$



optimal 2-planar

Planar structure:

$$\frac{5}{3}(n-2)$$
 edges $\frac{2}{3}(n-2)$ faces

Edges per face:

Theorem.

A k-planar graph with n vertices has at most:

k number of edges

0 3(n-2)

4(n-2)

2

Euler's formula

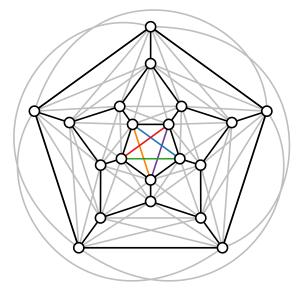
[Ringel 1965]

[Pach and Tóth 1997]

$$n - m + f = 2$$

$$m = c \cdot f ?$$

$$m = \frac{5}{2}f$$



optimal 2-planar

Planar structure:

$$\frac{5}{3}(n-2)$$
 edges $\frac{2}{3}(n-2)$ faces

Edges per face: 5 edges

Theorem.

A k-planar graph with n vertices has at most:

k number of edges

3(n-2)

4(n-2)

2

Euler's formula

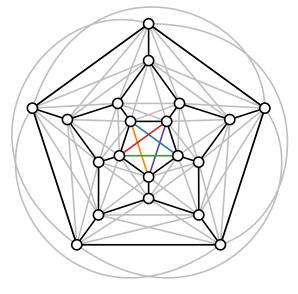
[Ringel 1965]

[Pach and Tóth 1997]

$$n - m + f = 2$$

$$m = c \cdot f ?$$

$$m = \frac{5}{2}f$$



optimal 2-planar

Planar structure:

$$\frac{5}{3}(n-2)$$
 edges $\frac{2}{3}(n-2)$ faces

Edges per face: 5 edges

Total: 5(n-2) edges

Theorem.

A k-planar graph with n vertices has at most:

k number of edges

3(n-2)

4(n-2)

5(n-2)

Euler's formula

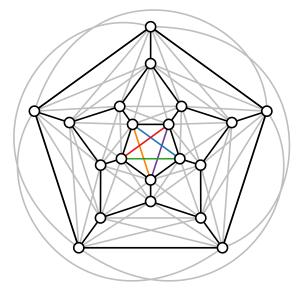
[Ringel 1965]

[Pach and Tóth 1997]

$$n - m + f = 2$$

$$m = c \cdot f ?$$

$$m = \frac{5}{2}f$$



optimal 2-planar

Planar structure:

$$\frac{5}{3}(n-2)$$
 edges $\frac{2}{3}(n-2)$ faces

Edges per face: 5 edges

Total: 5(n-2) edges

Theorem.

A k-planar graph with n vertices has at most:

k number of edges

3(n-2)

4(n-2)

5(n-2)

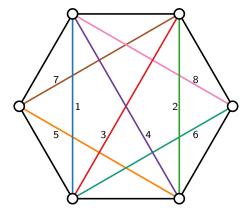
3

Euler's formula

[Ringel 1965]

[Pach and Tóth 1997]

[Pach et al. 2006]



optimal 3-planar

Theorem.

A k-planar graph with n vertices has at most:

k number of edges

0 3(n-2)

4(n-2)

5(n-2)

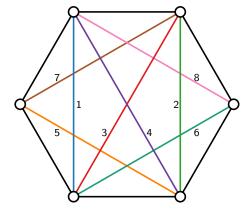
5.5(n-2)

Euler's formula

[Ringel 1965]

[Pach and Tóth 1997]

[Pach et al. 2006]



optimal 3-planar

Theorem.

A k-planar graph with n vertices has at most:

k number of edges

0 3(n-2)

4(n-2)

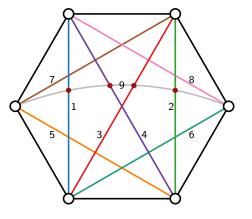
5(n-2)

5.5(n-2)

Euler's formula

[Ringel 1965]

[Pach and Tóth 1997]



optimal 3-planar

Theorem.

A k-planar graph with n vertices has at most:

k number of edges

0 3(n-2)

4(n-2)

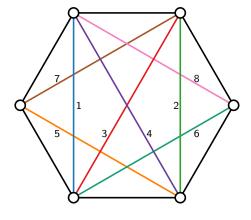
5(n-2)

5.5(n-2)

Euler's formula

[Ringel 1965]

[Pach and Tóth 1997]



optimal 3-planar

Theorem.

A k-planar graph with n vertices has at most:

k number of edges

0 3(n-2)

1 4(n-2)

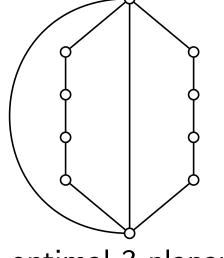
5(n-2)

3 5.5(n-2)

Euler's formula

[Ringel 1965]

[Pach and Tóth 1997]



optimal 3-planar

Theorem.

A k-planar graph with n vertices has at most:

k number of edges

0 3(n-2)

1 4(n-2)

5(n-2)

5.5(n-2)

Euler's formula

[Ringel 1965]

[Pach and Tóth 1997]



Theorem.

A k-planar graph with n vertices has at most:

k number of edges

0 3(n-2)

4(n-2)

5(n-2)

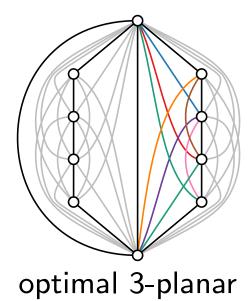
5.5(n-2)

Euler's formula

[Ringel 1965]

[Pach and Tóth 1997]

[Pach et al. 2006]



Planar structure:

$$\frac{3}{2}(n-2)$$
 edges $\frac{1}{2}(n-2)$ faces

Edges per face: 8 edges

Total: 5.5(n-2) edges

Theorem.

A k-planar graph with n vertices has at most:

k number of edges

0 3(n-2)

1 4(n-2)

5(n-2)

5.5(n-2)

6(n-2)

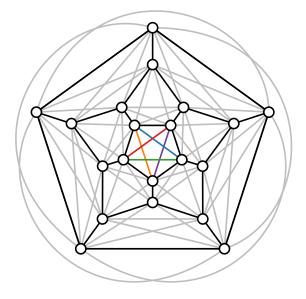
Euler's formula

[Ringel 1965]

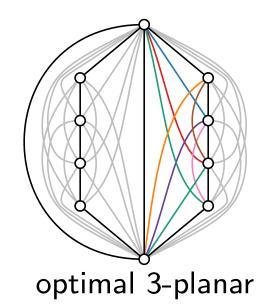
[Pach and Tóth 1997]

[Pach et al. 2006]

[Ackerman 2015]



optimal 2-planar



Theorem.

A k-planar graph with n vertices has at most:

k number of edges

3(n-2) Euler's formula

1 4(n-2) [Ringel 1965]

5(n-2)

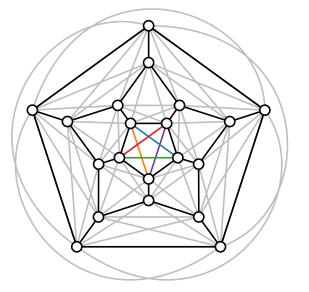
5.5(n-2) [Pach et al. 2006]

6(n-2)

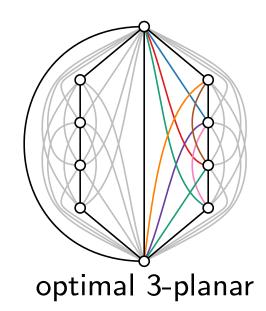
> 4 4.108 $\sqrt{k}n$ [Pach and Tóth 1997]

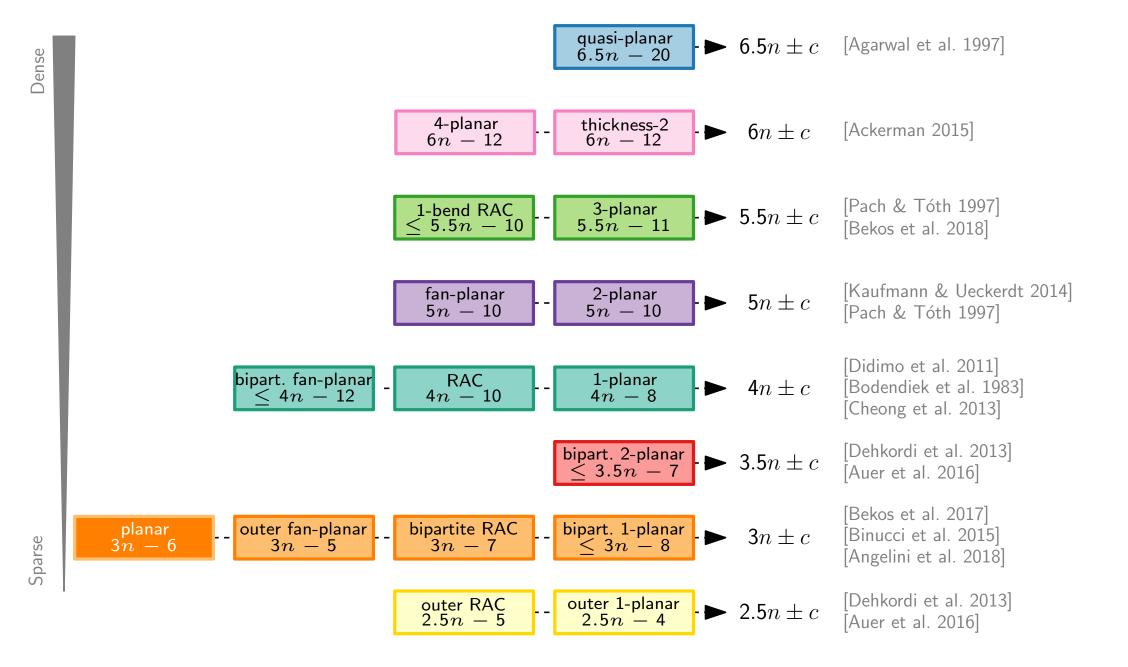
[Pach and Tóth 1997]

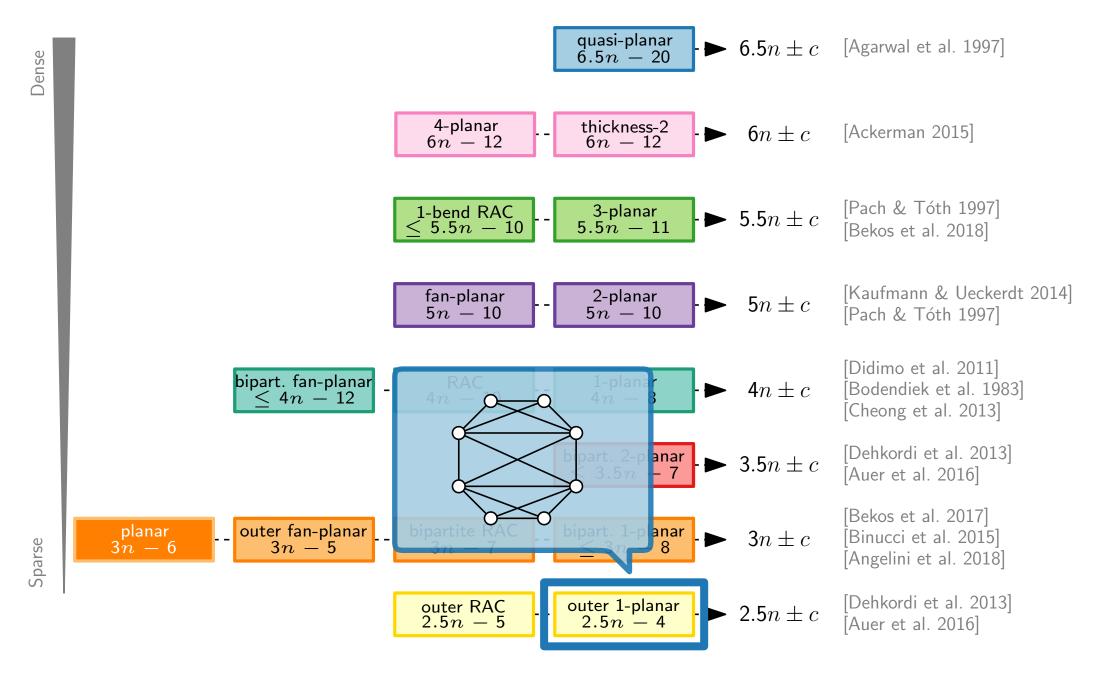
[Ackerman 2015]

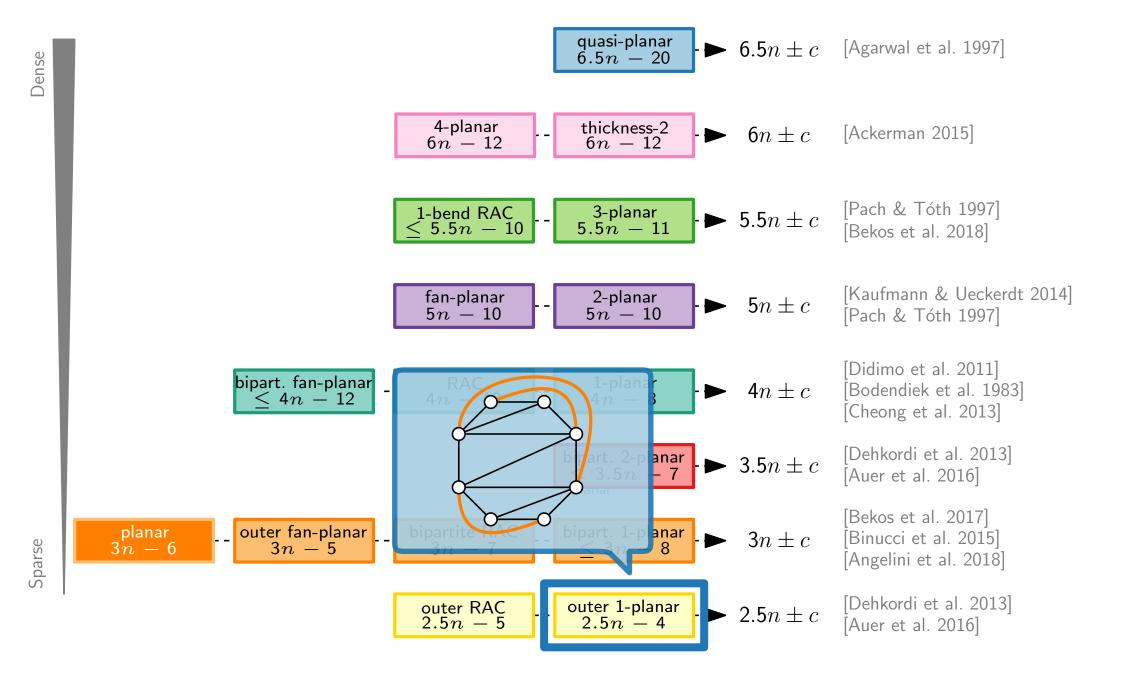


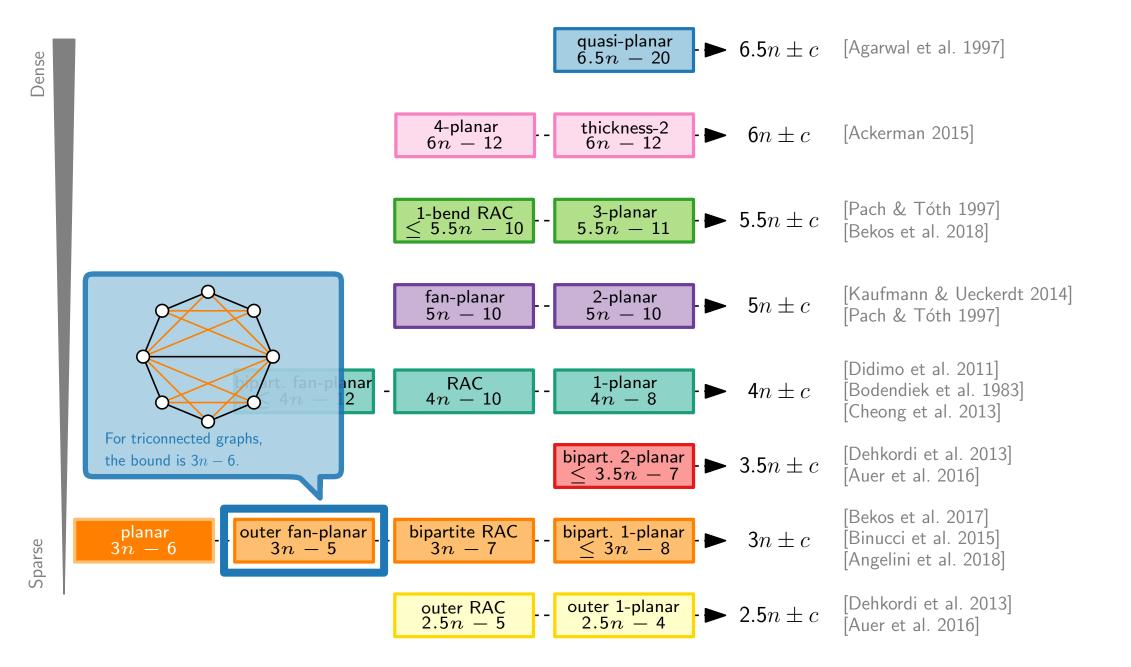
optimal 2-planar

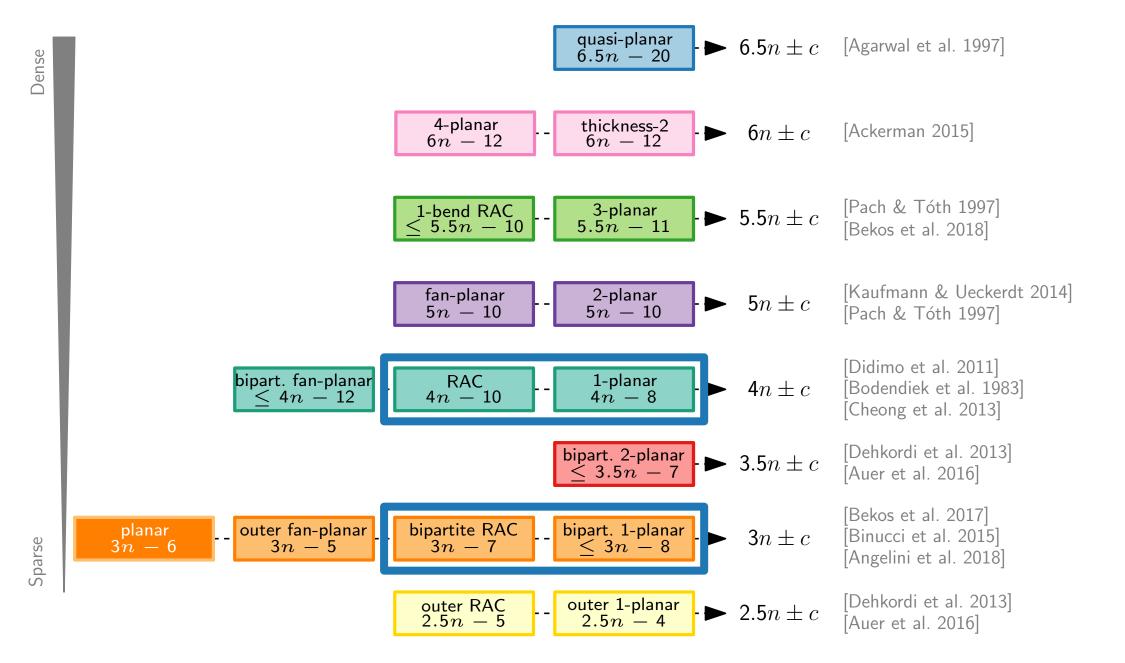


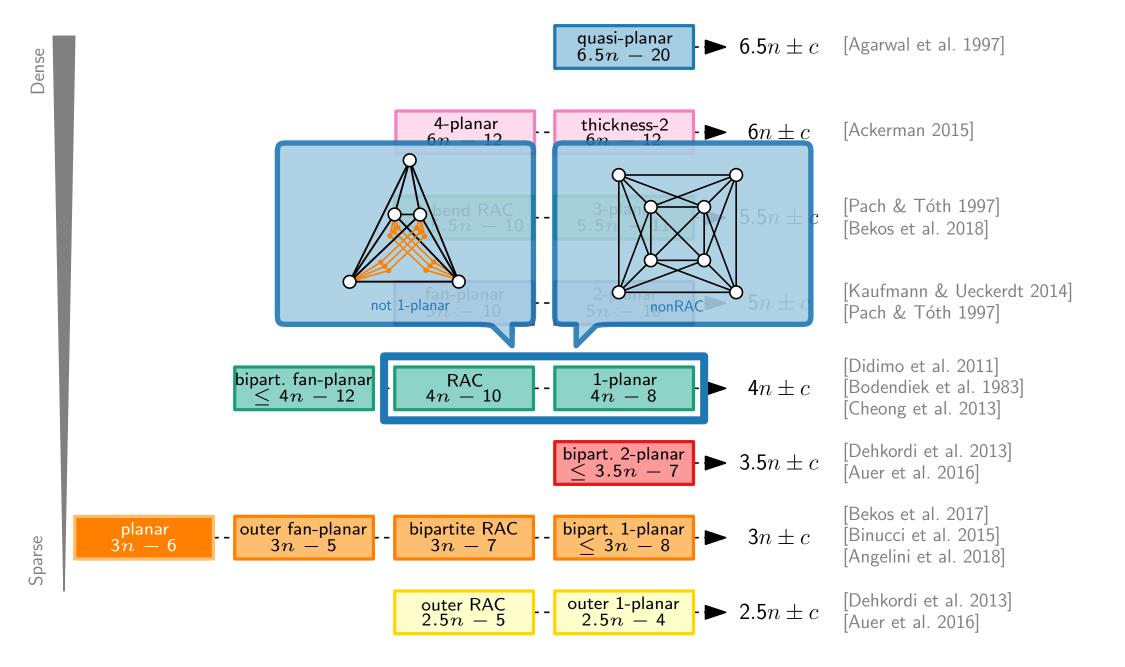


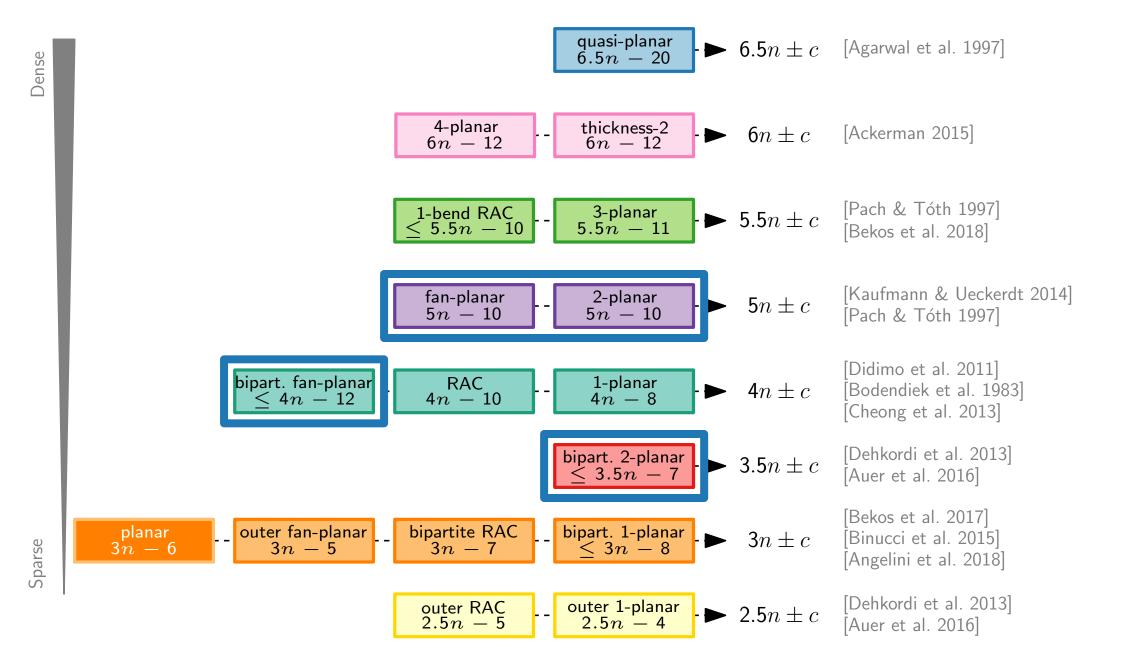


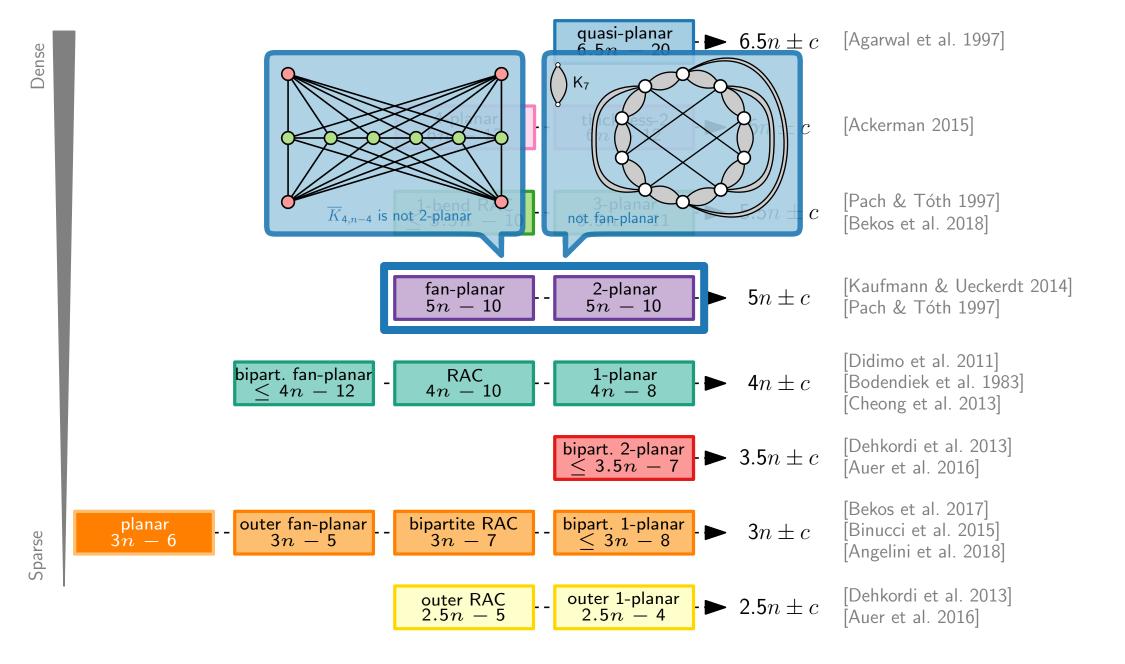


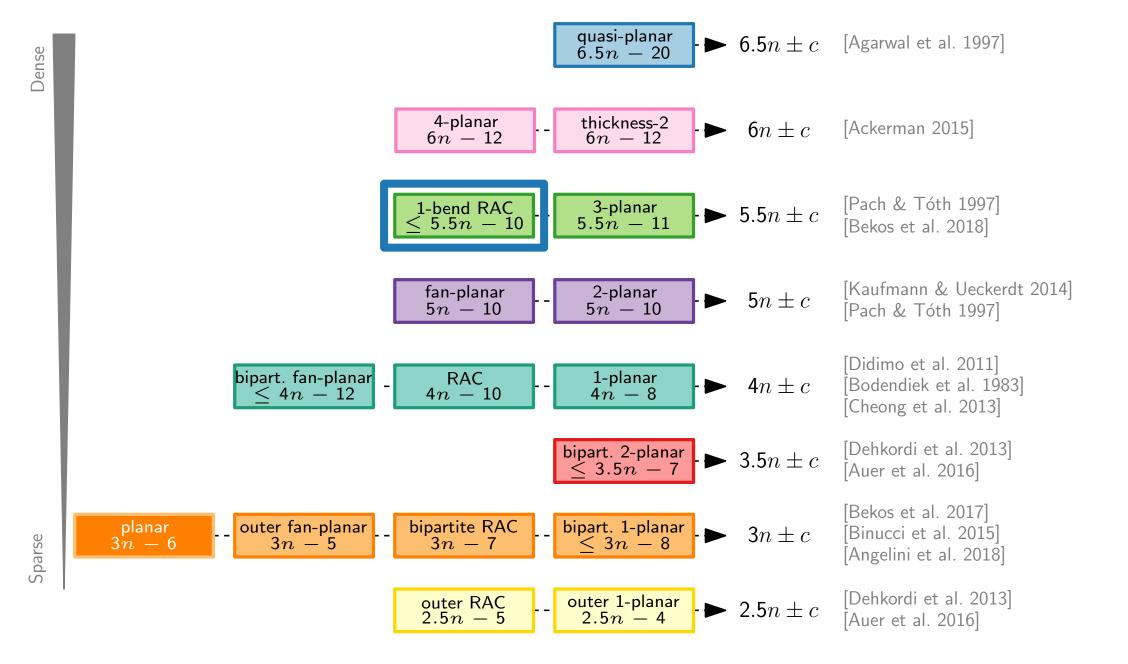


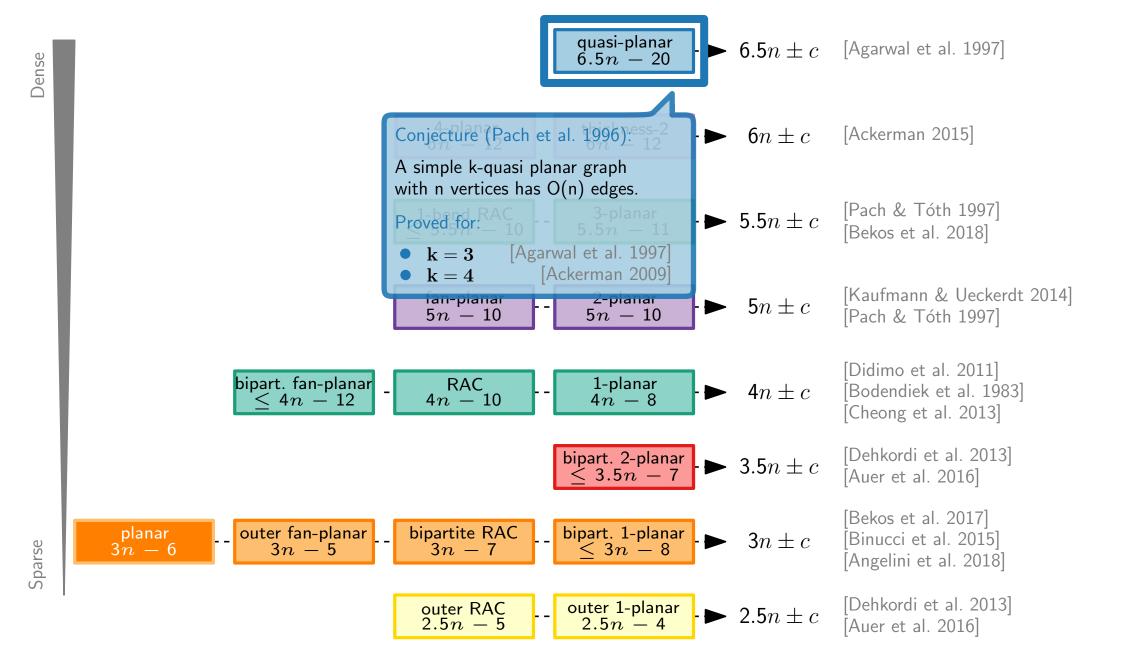












The k-planar crossing number $\operatorname{cr}_{k\text{-pl}}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

The k-planar crossing number $\operatorname{cr}_{k\text{-pl}}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

$$\operatorname{cr}_{1\text{-pl}}(G) \leq n-2$$

The k-planar crossing number $\operatorname{cr}_{k\text{-pl}}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1\text{-pl}}(G) \leq n-2$
- $\operatorname{cr}(G) = 1 \Rightarrow \operatorname{cr}_{1\text{-pl}}(G) = 1$

The k-planar crossing number $\operatorname{cr}_{k\text{-pl}}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1\text{-pl}}(G) \leq n-2$
- $\operatorname{cr}(G) = 1 \Rightarrow \operatorname{cr}_{1\text{-pl}}(G) = 1$

Theorem.

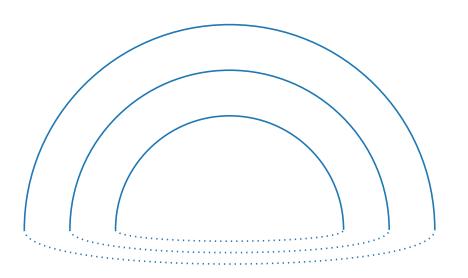
[Chimani, Kindermann, Montecchiani & Valtr 2019]

The k-planar crossing number $\operatorname{cr}_{k\text{-pl}}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1\text{-pl}}(G) \leq n-2$
- $\operatorname{cr}(G) = 1 \Rightarrow \operatorname{cr}_{1\text{-pl}}(G) = 1$

Theorem.

[Chimani, Kindermann, Montecchiani & Valtr 2019]

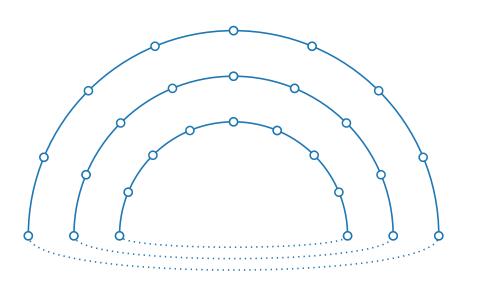


The k-planar crossing number $\operatorname{cr}_{k\text{-pl}}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1\text{-pl}}(G) \leq n-2$
- $\operatorname{cr}(G) = 1 \Rightarrow \operatorname{cr}_{1\text{-pl}}(G) = 1$

Theorem.

[Chimani, Kindermann, Montecchiani & Valtr 2019]

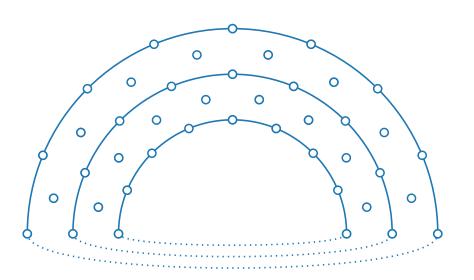


The k-planar crossing number $\operatorname{cr}_{k\text{-pl}}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1\text{-pl}}(G) \leq n-2$
- $\operatorname{cr}(G) = 1 \Rightarrow \operatorname{cr}_{1\text{-pl}}(G) = 1$

Theorem.

[Chimani, Kindermann, Montecchiani & Valtr 2019]

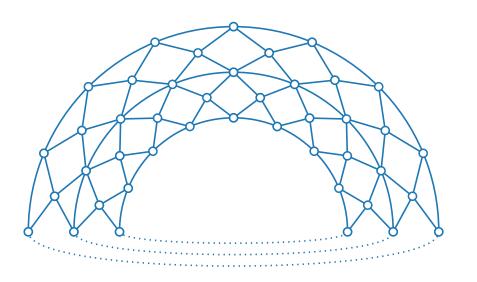


The k-planar crossing number $\operatorname{cr}_{k\text{-pl}}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1\text{-pl}}(G) \leq n-2$
- $\operatorname{cr}(G) = 1 \Rightarrow \operatorname{cr}_{1\text{-pl}}(G) = 1$

Theorem.

[Chimani, Kindermann, Montecchiani & Valtr 2019]

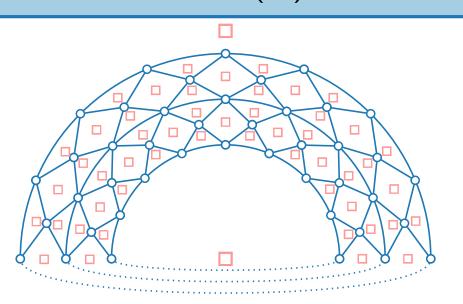


The k-planar crossing number $\operatorname{cr}_{k\text{-pl}}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1\text{-pl}}(G) \leq n-2$
- $\operatorname{cr}(G) = 1 \Rightarrow \operatorname{cr}_{1\text{-pl}}(G) = 1$

Theorem.

[Chimani, Kindermann, Montecchiani & Valtr 2019]

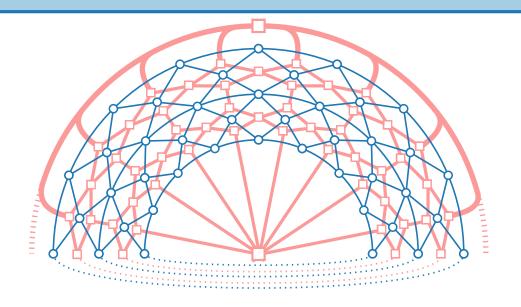


The k-planar crossing number $\operatorname{cr}_{k\text{-pl}}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1\text{-pl}}(G) \leq n-2$
- $\operatorname{cr}(G) = 1 \Rightarrow \operatorname{cr}_{1\text{-pl}}(G) = 1$

Theorem.

[Chimani, Kindermann, Montecchiani & Valtr 2019]

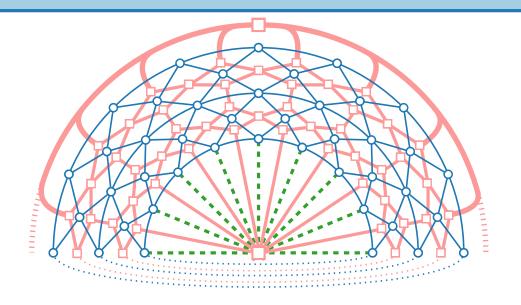


The k-planar crossing number $\operatorname{cr}_{k\text{-pl}}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1\text{-pl}}(G) \leq n-2$
- $\operatorname{cr}(G) = 1 \Rightarrow \operatorname{cr}_{1\text{-pl}}(G) = 1$

Theorem.

[Chimani, Kindermann, Montecchiani & Valtr 2019]



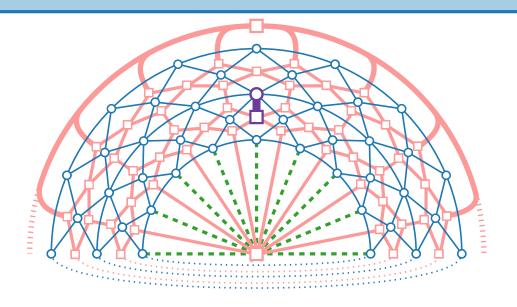
The k-planar crossing number $\operatorname{cr}_{k\text{-pl}}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1\text{-pl}}(G) \leq n-2$
- $\operatorname{cr}(G) = 1 \Rightarrow \operatorname{cr}_{1\text{-pl}}(G) = 1$

Theorem.

[Chimani, Kindermann, Montecchiani & Valtr 2019]

For every $\ell \geq 7$, there is a 1-planar graph G with $n=11\ell+2$ vertices such that cr(G)=2 and $cr_{1-pl}(G)=n-2$.



The k-planar crossing number $\operatorname{cr}_{k\text{-pl}}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1\text{-pl}}(G) \leq n-2$
- $\operatorname{cr}(G) = 1 \Rightarrow \operatorname{cr}_{1\text{-pl}}(G) = 1$

Theorem.

[Chimani, Kindermann, Montecchiani & Valtr 2019]



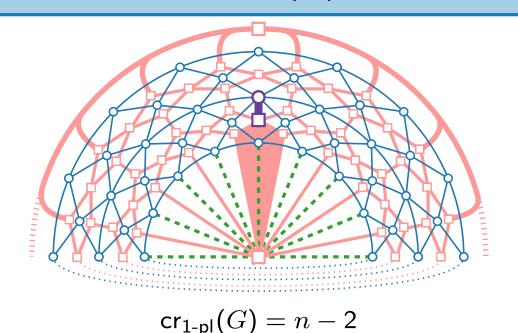
$$\operatorname{cr}_{1\text{-pl}}(G) = n-2$$

The k-planar crossing number $\operatorname{cr}_{k\text{-pl}}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- ightharpoonup $\operatorname{cr}_{1\text{-pl}}(G) \leq n-2$
- $\operatorname{cr}(G) = 1 \Rightarrow \operatorname{cr}_{1\text{-pl}}(G) = 1$

Theorem.

[Chimani, Kindermann, Montecchiani & Valtr 2019]

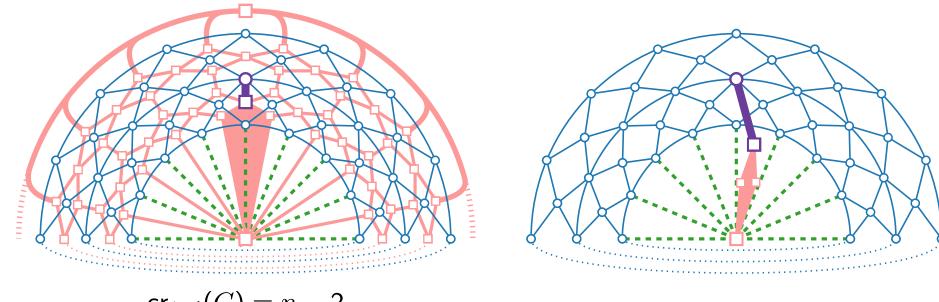


The k-planar crossing number $\operatorname{cr}_{k\text{-pl}}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1\text{-pl}}(G) \leq n-2$
- $\operatorname{cr}(G) = 1 \Rightarrow \operatorname{cr}_{1\text{-pl}}(G) = 1$

Theorem.

[Chimani, Kindermann, Montecchiani & Valtr 2019]



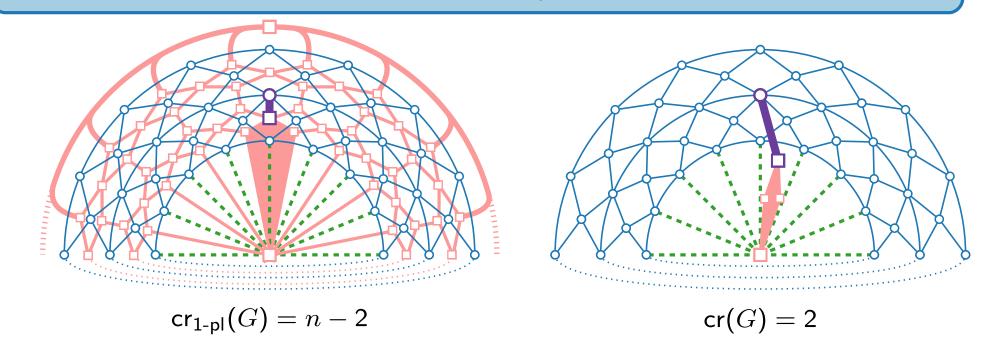
$$\operatorname{cr}_{1\text{-pl}}(G) = n-2$$

The k-planar crossing number $\operatorname{cr}_{k\text{-pl}}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1\text{-pl}}(G) \leq n-2$
- $\operatorname{cr}(G) = 1 \Rightarrow \operatorname{cr}_{1\text{-pl}}(G) = 1$

Theorem.

[Chimani, Kindermann, Montecchiani & Valtr 2019]



The k-planar crossing number $\operatorname{cr}_{k-pl}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- ightharpoonup $\operatorname{cr}_{1\text{-pl}}(G) \leq n-2$
- $ightharpoonup \operatorname{cr}(G) = 1 \Rightarrow \operatorname{cr}_{1\text{-pl}}(G) = 1$

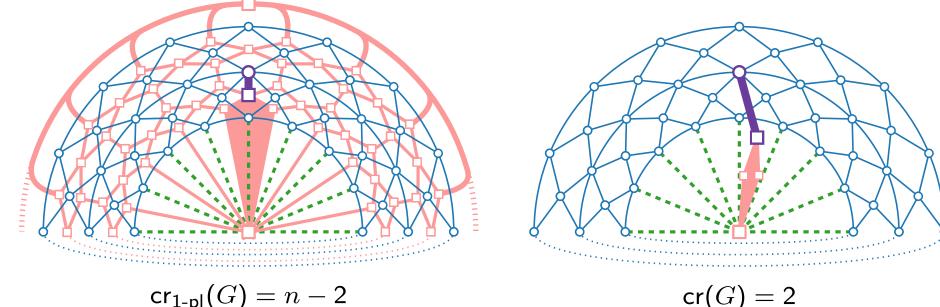
Theorem.

[Chimani, Kindermann, Montecchiani & Valtr 2019]

For every $\ell \geq 7$, there is a 1-planar graph G with $n = 11\ell + 2$ vertices such that cr(G) = 2 and $cr_{1-pl}(G) = n - 2$.

Crossing ratio

$$\rho_{1\text{-pl}}(n) = (n-2)/2$$



$$\operatorname{cr}_{1\text{-pl}}(G) = n-2$$

$$\operatorname{cr}(G) = 2$$

Table from "Crossing Numbers of Beyond-Planar Graphs Revisited" [van Beusekom, Parada & Speckmann 2021]

Crossing Ratios

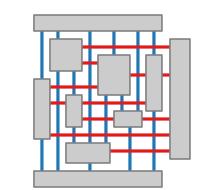
Family	Forbidden Configurations			Lower	Upper
k-planar	An edge crossed more than k times	$\sum_{k=2}^{\infty} k = 2$		$\Omega(m{n}/m{k})$	$O(k\sqrt{k}n)$
k-quasi-planar	k pairwise crossing edges		k = 3	$\Omega(n/k^3)$	$f(k)n^2\log^2 n$
Fan-planar	Two independent edges crossing a third or two adjacent edges crossing another edge from different "side"	₩ ₩		$\Omega(n)$	$O(n^2)$
(k,l)-grid-free	Set of k edges such that each edge crosses each edge from a set of l edges.		k, l = 2	$\Omega\left(\frac{n}{kl(k+l)}\right)$	$g(k,l)n^2$
k-gap-planar	More than k crossings mapped to an edge in an optimal mapping	k = 1		$\Omega(n/k^3)$	$O(k\sqrt{k}n)$
Skewness- k	Set of crossings not covered by at most k edges		k = 1	$\Omega(m{n}/m{k})$	$O(kn+k^2)$
k-apex	Set of crossings not covered by at most k vertices	0 k = 1		$\Omega(n/k)$	$O(k^2n^2 + k^4)$
Planarly connected	Two crossing edges that do not have two of their endpoint connected by a crossing-free edge		X	$\Omega(n^2)$	$O(n^2)$
k-fan-crossing-free	An edge that crosses k adjacent edges	k = 2		$\Omega(n^2/k^3)$	$O(k^2n^2)$
Straight-line RAC	Two edges crossing at an angle $<\frac{\pi}{2}$		X	$\Omega(n^2)$	$O(n^2)$

Visualization of Graphs

Lecture 11:

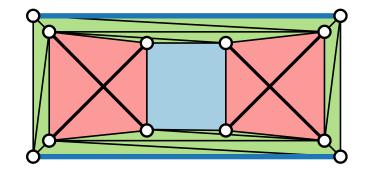
Beyond Planarity

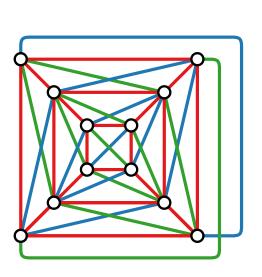
Drawing Graphs with Crossings



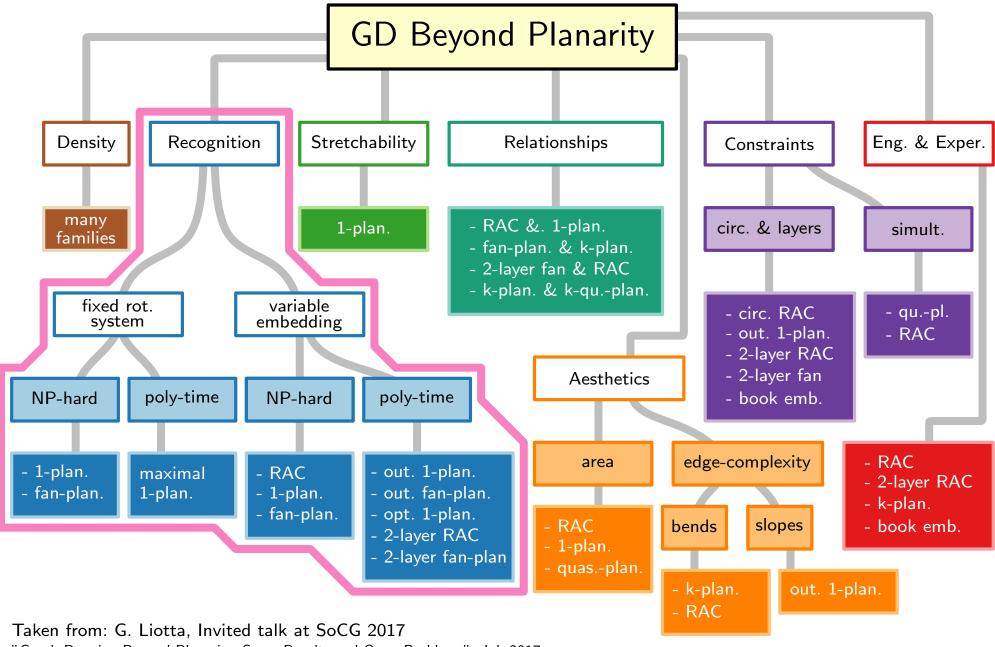
Part III: Recognition

Jonathan Klawitter





GD Beyond Planarity: a Taxonomy



[&]quot;Graph Drawing Beyond Planarity: Some Results and Open Problems", Jul. 2017

Theorem.

[Kuratowski 1930]

G planar \Leftrightarrow neither K_5 nor $K_{3,3}$ minor of G

Theorem.

[Kuratowski 1930]

G planar \Leftrightarrow neither K_5 nor $K_{3,3}$ minor of G

Theorem.

[Chen & Kouno 2005]

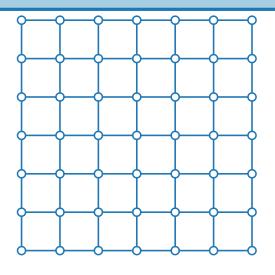
Theorem.

[Kuratowski 1930]

G planar \Leftrightarrow neither K_5 nor $K_{3,3}$ minor of G

Theorem.

[Chen & Kouno 2005]



 $n \times n$ grid

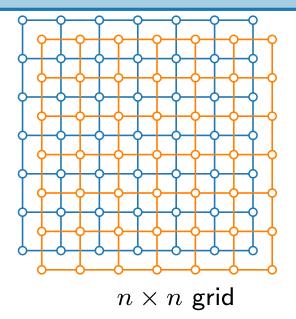
Theorem.

[Kuratowski 1930]

G planar \Leftrightarrow neither K_5 nor $K_{3,3}$ minor of G

Theorem.

[Chen & Kouno 2005]



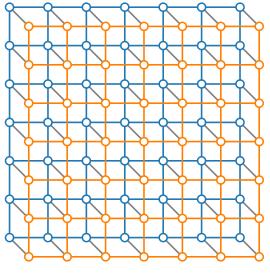
Theorem.

[Kuratowski 1930]

G planar \Leftrightarrow neither K_5 nor $K_{3,3}$ minor of G

Theorem.

[Chen & Kouno 2005]



 $n \times n \times 2$ grid

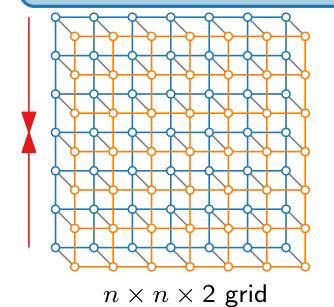
Theorem.

[Kuratowski 1930]

G planar \Leftrightarrow neither K_5 nor $K_{3,3}$ minor of G

Theorem.

[Chen & Kouno 2005]



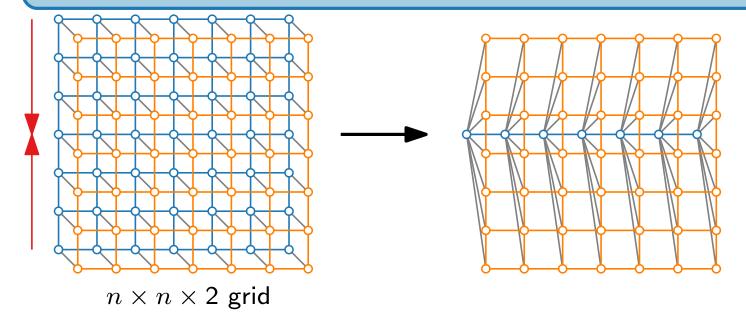
Theorem.

[Kuratowski 1930]

G planar \Leftrightarrow neither K_5 nor $K_{3,3}$ minor of G

Theorem.

[Chen & Kouno 2005]



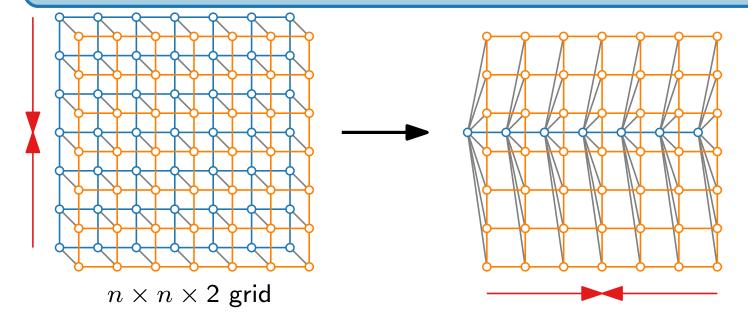
Theorem.

[Kuratowski 1930]

G planar \Leftrightarrow neither K_5 nor $K_{3,3}$ minor of G

Theorem.

[Chen & Kouno 2005]



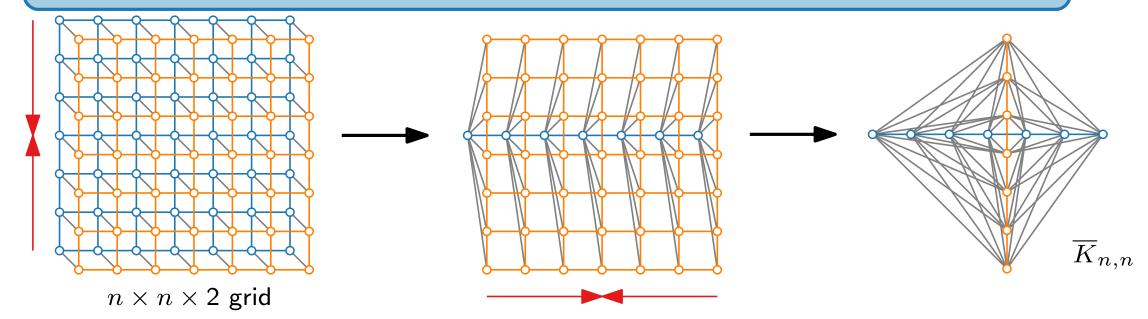
Theorem.

[Kuratowski 1930]

G planar \Leftrightarrow neither K_5 nor $K_{3,3}$ minor of G

Theorem.

[Chen & Kouno 2005]



Theorem.

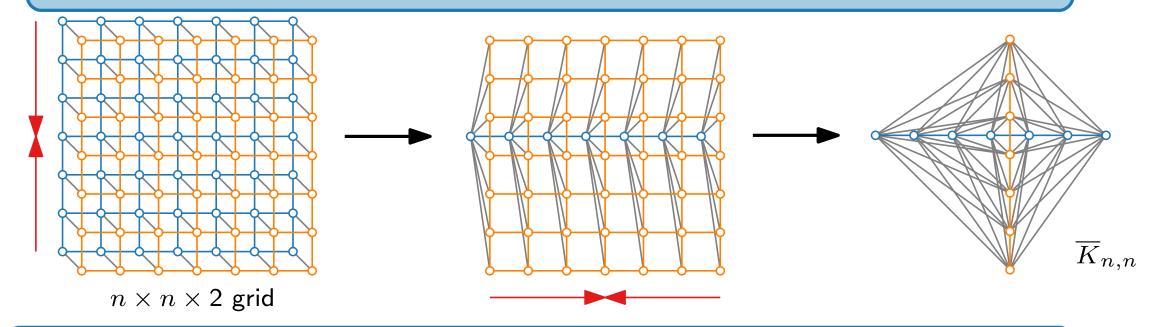
[Kuratowski 1930]

G planar \Leftrightarrow neither K_5 nor $K_{3,3}$ minor of G

Theorem.

[Chen & Kouno 2005]

The class of 1-planar graphs is not closed under edge contraction.



Theorem.

[Korzhik & Mohar 2013]

Theorem.

G planar \Leftrightarrow neither K_5 nor $K_{3,3}$ minor of G

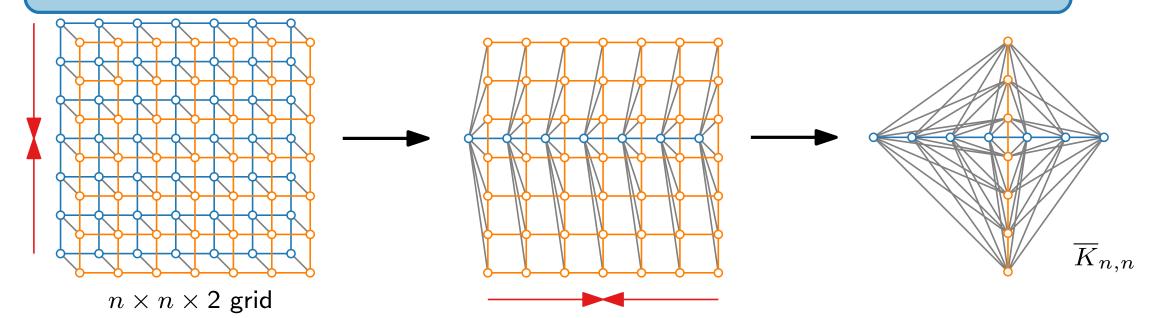
[Kuratowski 1930]

For every graph there is a 1-planar subdivision.

Theorem.

[Chen & Kouno 2005]

The class of 1-planar graphs is not closed under edge contraction.



Theorem.

[Korzhik & Mohar 2013]

Theorem.

G planar \Leftrightarrow neither K_5 nor $K_{3,3}$ minor of G

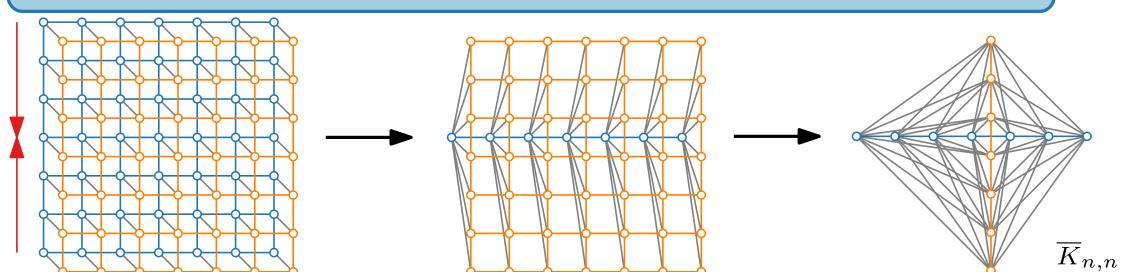
[Kuratowski 1930]

For every graph there is a 1-planar subdivision.

Theorem.

[Chen & Kouno 2005]

The class of 1-planar graphs is not closed under edge contraction.



Theorem.

 $n \times n \times 2$ grid

[Korzhik & Mohar 2013]

Theorem.

G planar \Leftrightarrow neither K_5 nor $K_{3,3}$ minor of G

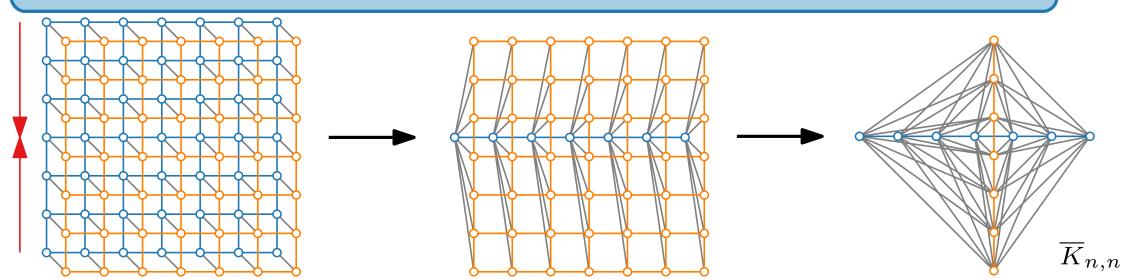
[Kuratowski 1930]

For every graph there is a 1-planar subdivision.

Theorem.

[Chen & Kouno 2005]

The class of 1-planar graphs is not closed under edge contraction.



Theorem.

 $n \times n \times 2$ grid

[Korzhik & Mohar 2013]

Theorem.

[Grigoriev & Bodlaender 2007, Korzhik & Mohar 2013]

Testing 1-planarity is NP-complete.

Theorem.

[Grigoriev & Bodlaender 2007, Korzhik & Mohar 2013]

Testing 1-planarity is NP-complete.

Proof.

Reduction from 3-Partition.

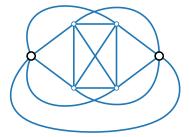
Theorem.

[Grigoriev & Bodlaender 2007, Korzhik & Mohar 2013]

Testing 1-planarity is NP-complete.

Proof.

Reduction from 3-Partition.



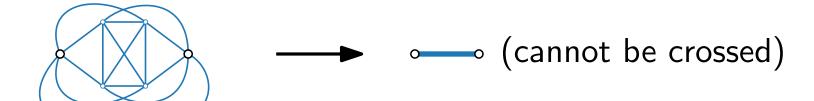
Theorem.

[Grigoriev & Bodlaender 2007, Korzhik & Mohar 2013]

Testing 1-planarity is NP-complete.

Proof.

Reduction from 3-Partition.



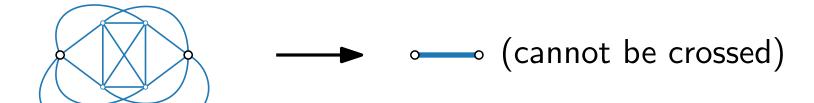
Theorem.

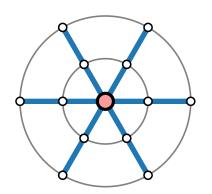
[Grigoriev & Bodlaender 2007, Korzhik & Mohar 2013]

Testing 1-planarity is NP-complete.

Proof.

Reduction from 3-Partition.





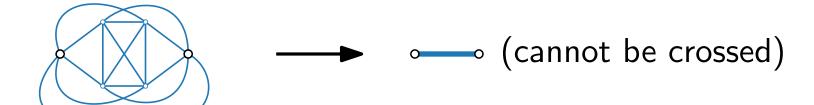
Theorem.

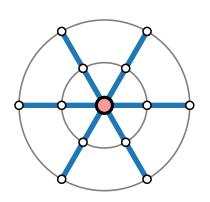
[Grigoriev & Bodlaender 2007, Korzhik & Mohar 2013]

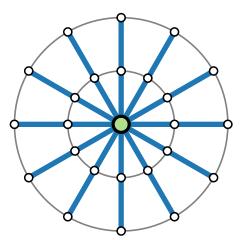
Testing 1-planarity is NP-complete.

Proof.

Reduction from 3-Partition.







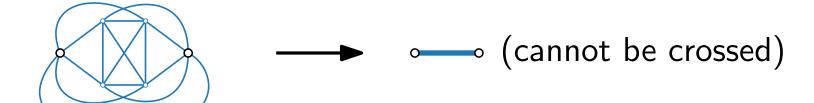
Theorem.

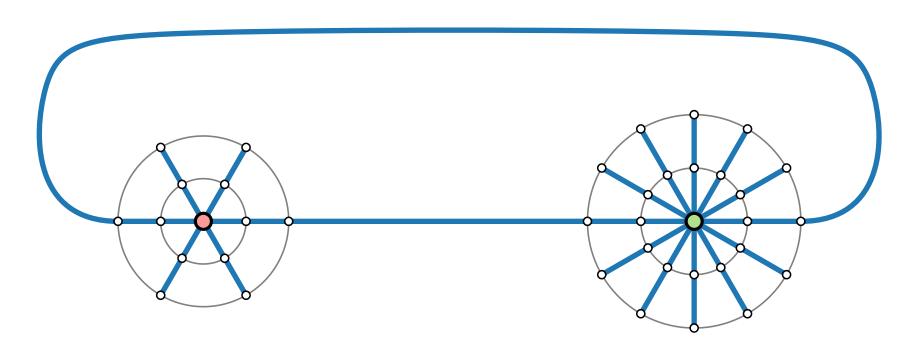
[Grigoriev & Bodlaender 2007, Korzhik & Mohar 2013]

Testing 1-planarity is NP-complete.

Proof.

Reduction from 3-Partition.





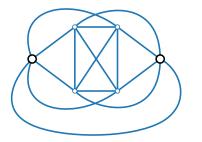
Theorem.

[Grigoriev & Bodlaender 2007, Korzhik & Mohar 2013]

Testing 1-planarity is NP-complete.

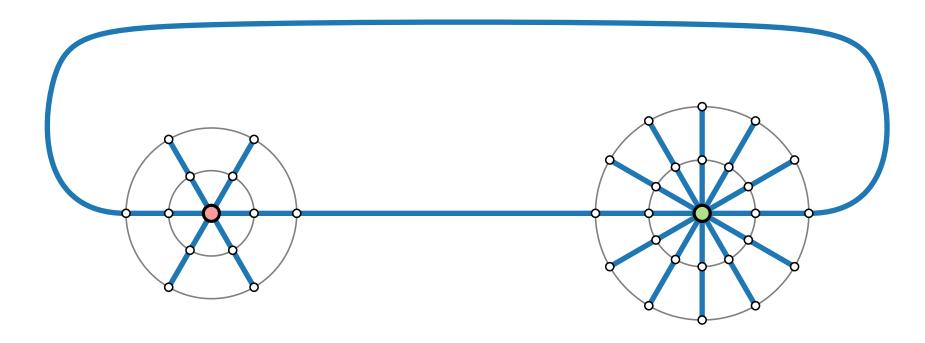
Proof.

Reduction from 3-Partition.



∘ (cannot be crossed)

$$A = \{1, 3, 2, 4, 1, 1\}$$



Theorem.

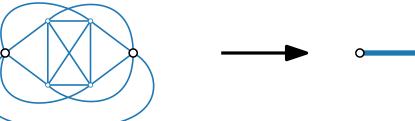
[Grigoriev & Bodlaender 2007, Korzhik & Mohar 2013]

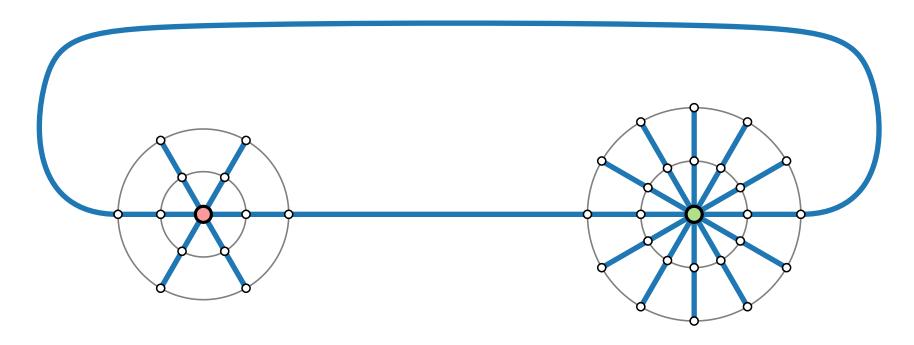
Testing 1-planarity is NP-complete.

Proof.

Reduction from 3-Partition.

$$A = \{\overbrace{1, 3, 2, 4, 1, 1}^{6}\}$$





Theorem.

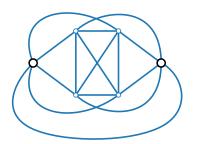
[Grigoriev & Bodlaender 2007, Korzhik & Mohar 2013]

Testing 1-planarity is NP-complete.

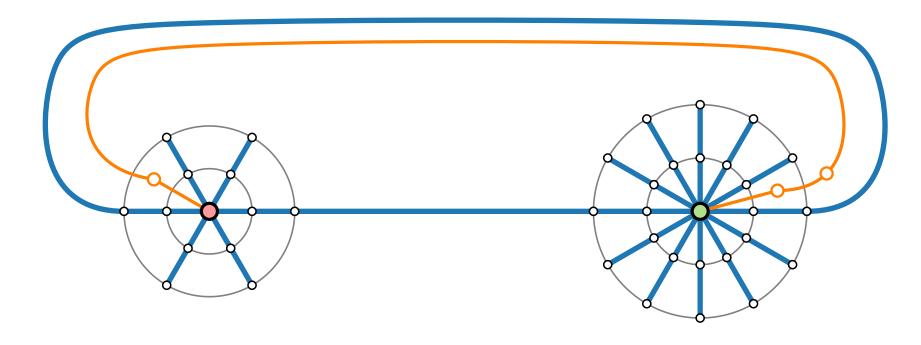
Proof.

Reduction from 3-Partition.

$$A = \{1, 3, 2, 4, 1, 1\}$$







Theorem.

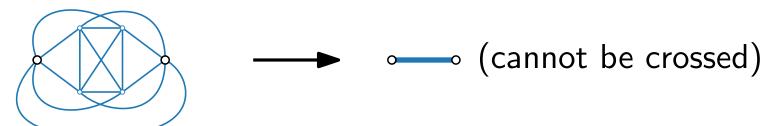
[Grigoriev & Bodlaender 2007, Korzhik & Mohar 2013]

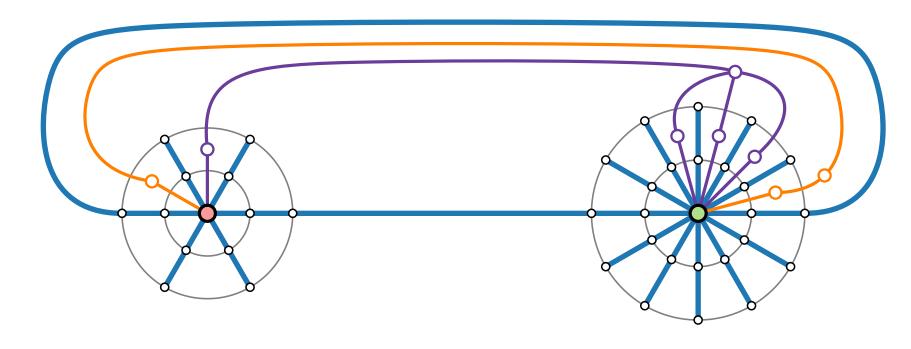
Testing 1-planarity is NP-complete.

Proof.

Reduction from 3-Partition.

$$A = \{1, 3, 2, 4, 1, 1\}$$





Theorem.

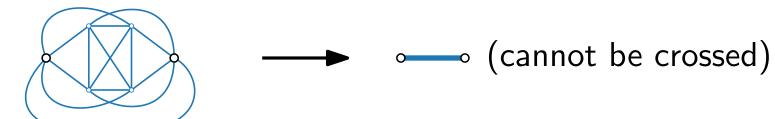
[Grigoriev & Bodlaender 2007, Korzhik & Mohar 2013]

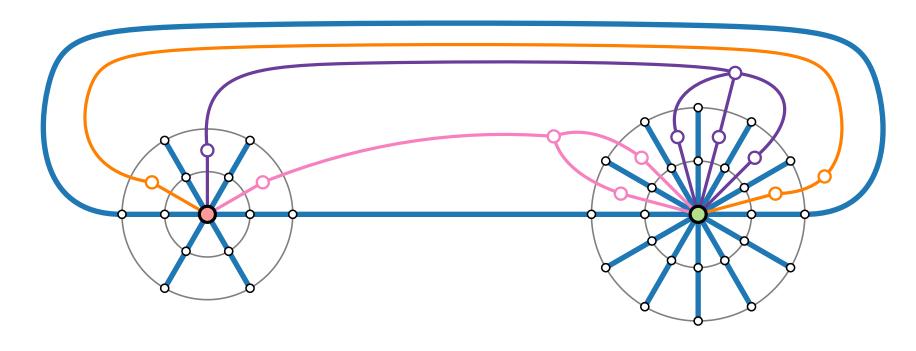
Testing 1-planarity is NP-complete.

Proof.

Reduction from 3-Partition.

$$A = \{1, 3, 2, 4, 1, 1\}$$





Theorem.

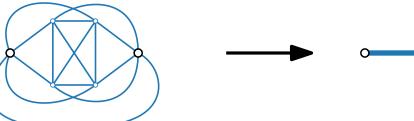
[Grigoriev & Bodlaender 2007, Korzhik & Mohar 2013]

Testing 1-planarity is NP-complete.

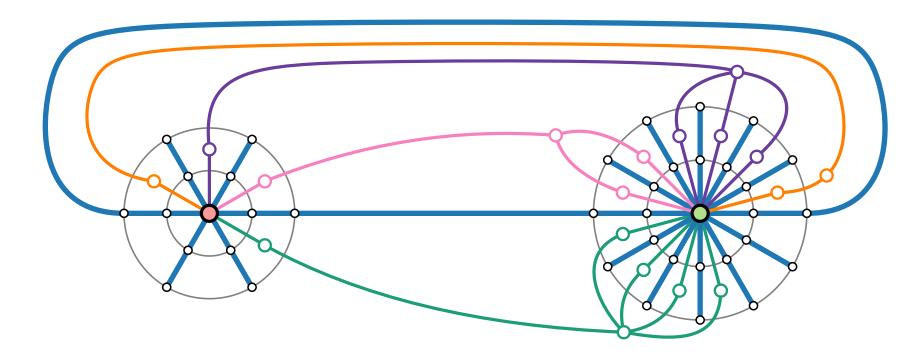
Proof.

Reduction from 3-Partition.

$$A = \{1, 3, 2, 4, 1, 1\}$$



→ (cannot be crossed)



Theorem.

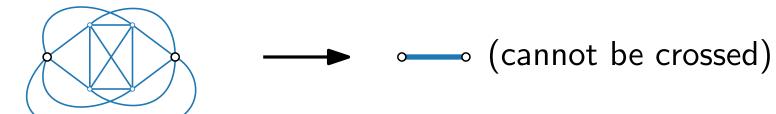
[Grigoriev & Bodlaender 2007, Korzhik & Mohar 2013]

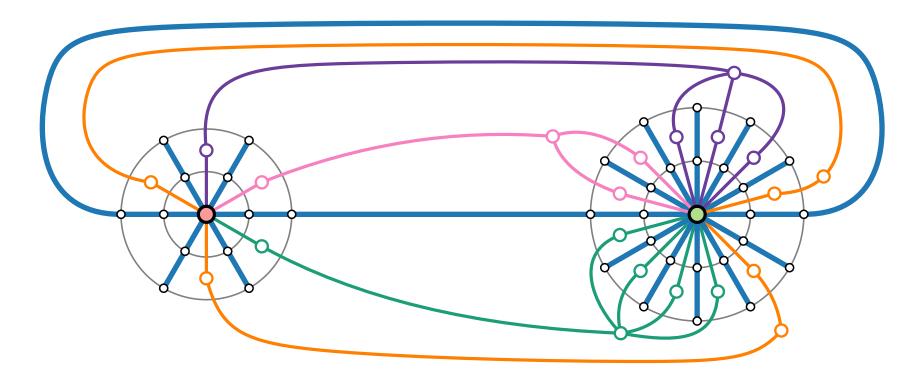
Testing 1-planarity is NP-complete.

Proof.

Reduction from 3-Partition.

$$A = \{\underbrace{1, 3, 2, 4, 1, 1}_{6}\}$$





Theorem.

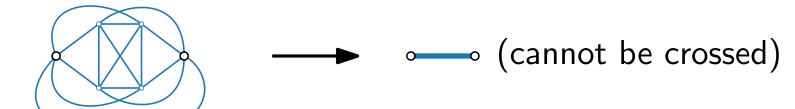
[Grigoriev & Bodlaender 2007, Korzhik & Mohar 2013]

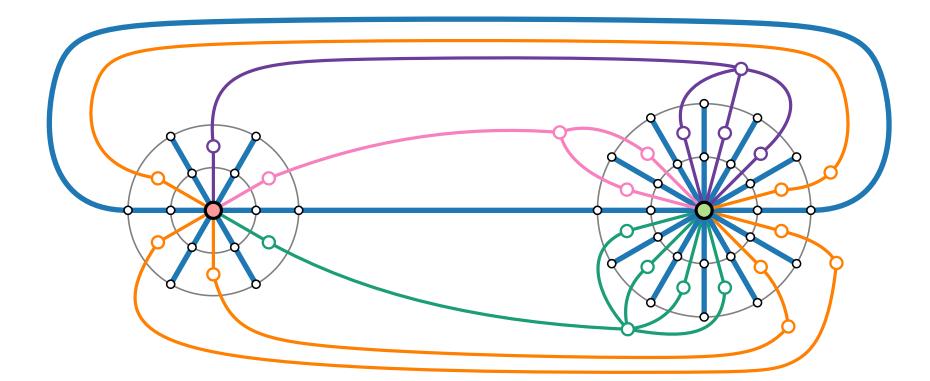
Testing 1-planarity is NP-complete.

Proof.

Reduction from 3-Partition.

$$A = \{\overbrace{1, 3, 2}^{6}, \overbrace{4, 1, 1}^{6}\}$$





Theorem.

[Grogoriev & Bodlaender 2007, Korzhik & Mohar 2013]

Testing 1-planarity is NP-complete.

Theorem.

[Grogoriev & Bodlaender 2007, Korzhik & Mohar 2013]

Testing 1-planarity is NP-complete.

Theorem.

[Cabello & Mohar 2013]

Testing 1-planarity is NP-complete, even for almost planar graphs, i.e., planar graphs plus one edge.

Theorem.

[Grogoriev & Bodlaender 2007, Korzhik & Mohar 2013]

Testing 1-planarity is NP-complete.

Theorem.

[Cabello & Mohar 2013]

Testing 1-planarity is NP-complete, even for almost planar graphs, i.e., planar graphs plus one edge.

Theorem.

[Bannister, Cabello & Eppstein 2018]

Testing 1-planarity is NP-complete, even for graphs of bounded bandwidth (pathwidth, treewidth).

Theorem.

[Grogoriev & Bodlaender 2007, Korzhik & Mohar 2013]

Testing 1-planarity is NP-complete.

Theorem.

[Cabello & Mohar 2013]

Testing 1-planarity is NP-complete, even for almost planar graphs, i.e., planar graphs plus one edge.

Theorem.

[Bannister, Cabello & Eppstein 2018]

Testing 1-planarity is NP-complete, even for graphs of bounded bandwidth (pathwidth, treewidth).

Theorem.

[Auer, Brandenburg, Gleißner & Reislhuber 2015]

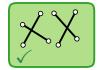
Testing 1-planarity is NP-complete, even for 3-connected graphs with a fixed rotation system.

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

Testing IC-planarity is NP-complete.

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

Testing IC-planarity is NP-complete.

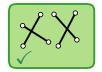


Proof.

Reduction from 1-planarity testing.

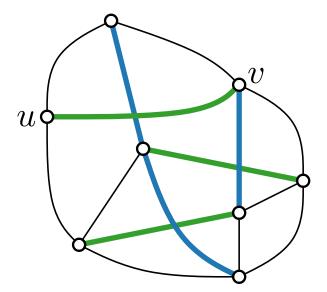
Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

Testing IC-planarity is NP-complete.



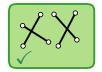
Proof.

Reduction from 1-planarity testing.

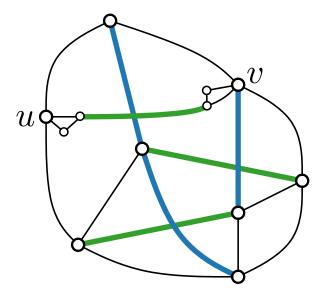


Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

Testing IC-planarity is NP-complete.

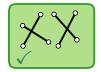


Proof.

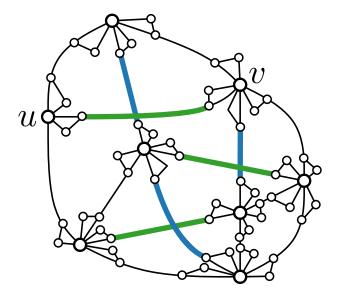


Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

Testing IC-planarity is NP-complete.

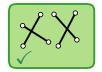


Proof.

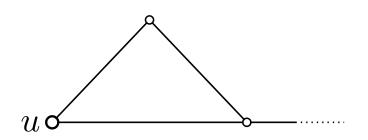


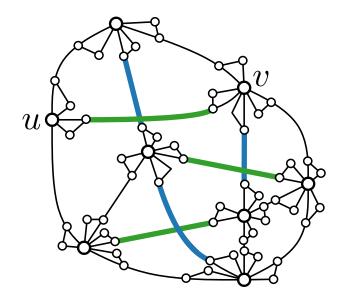
Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

Testing IC-planarity is NP-complete.



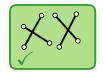
Proof.



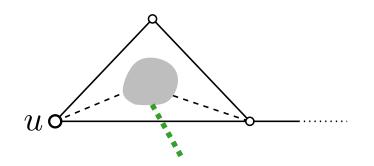


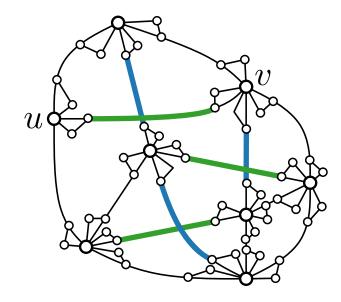
Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

Testing IC-planarity is NP-complete.



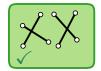
Proof.



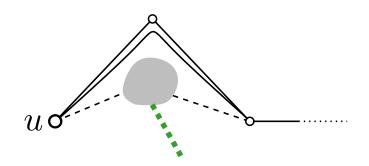


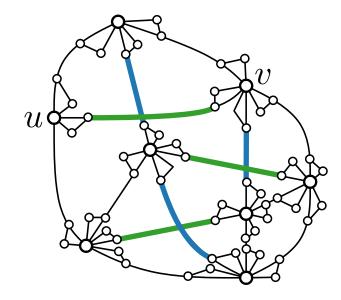
Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

Testing IC-planarity is NP-complete.



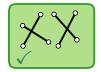
Proof.





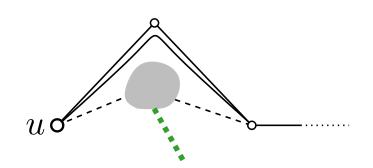
Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

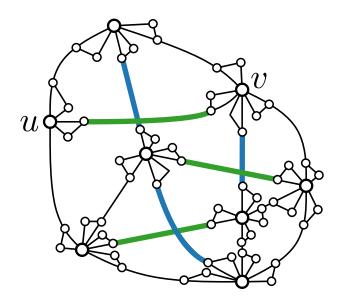
Testing IC-planarity is NP-complete.



Proof.

Reduction from 1-planarity testing.

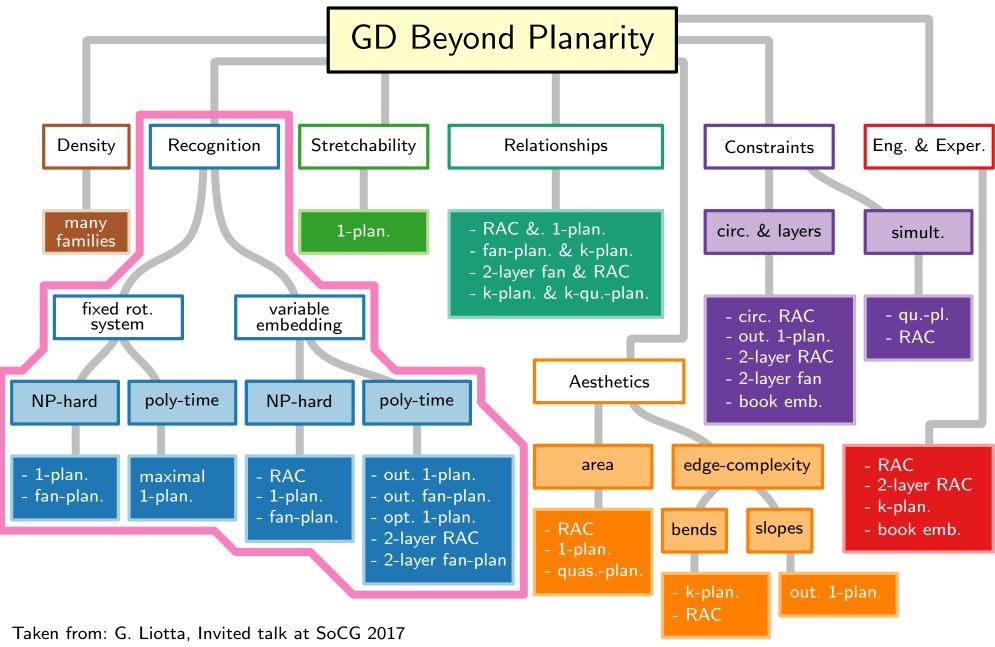




Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

Testing IC-planarity is NP-complete, even if the rotation system is given.

GD Beyond Planarity: a Taxonomy



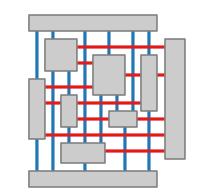
[&]quot;Graph Drawing Beyond Planarity: Some Results and Open Problems", Jul. 2017

Visualization of Graphs

Lecture 11:

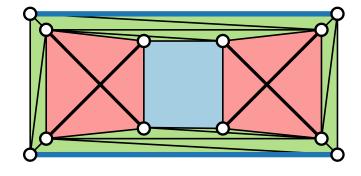
Beyond Planarity

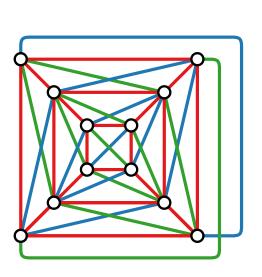
Drawing Graphs with Crossings



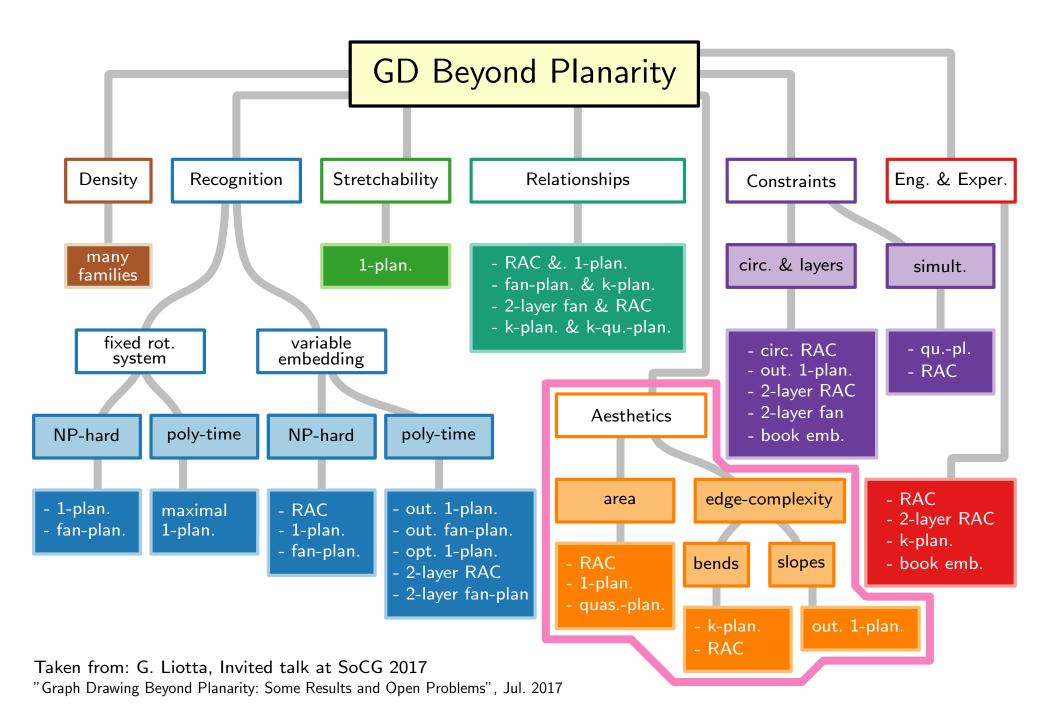
Part IV: RAC Drawings

Jonathan Klawitter

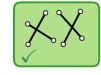




GD Beyond Planarity: a Taxonomy

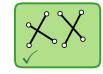


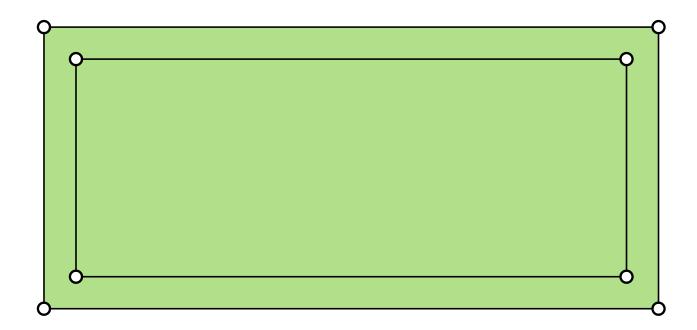
Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]



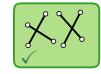
Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

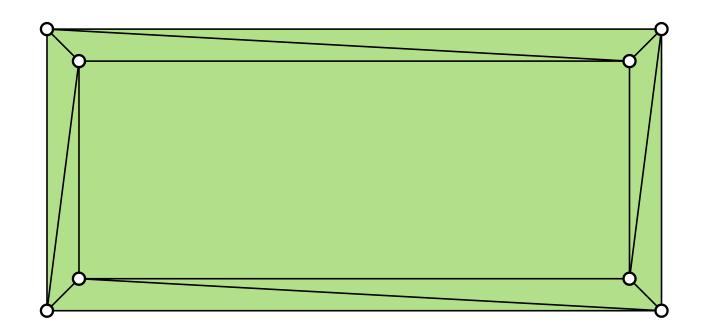
Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]



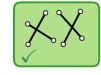


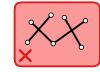
Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

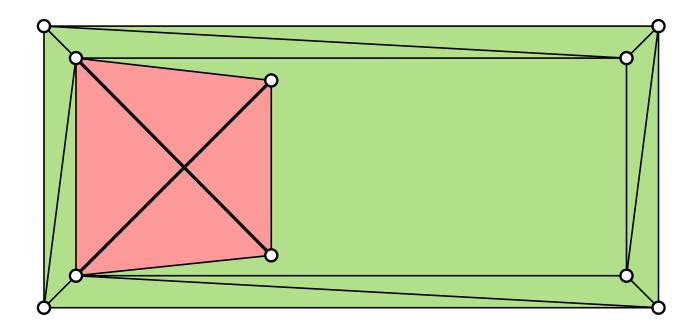




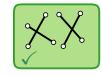
Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

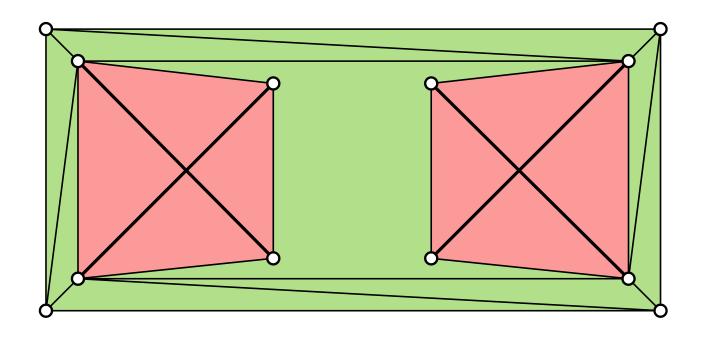




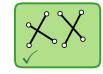


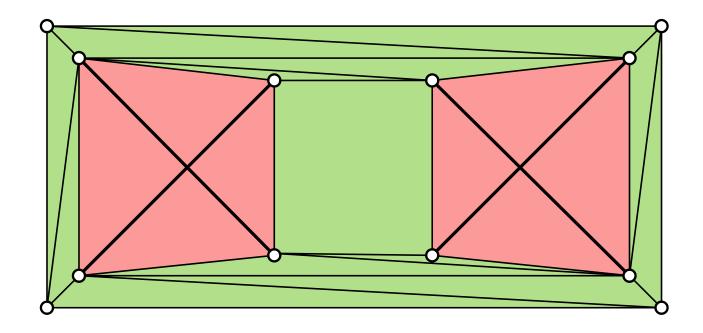
Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]



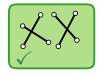


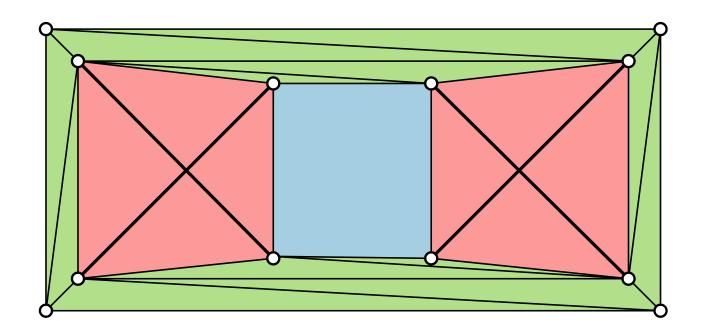
Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]



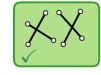


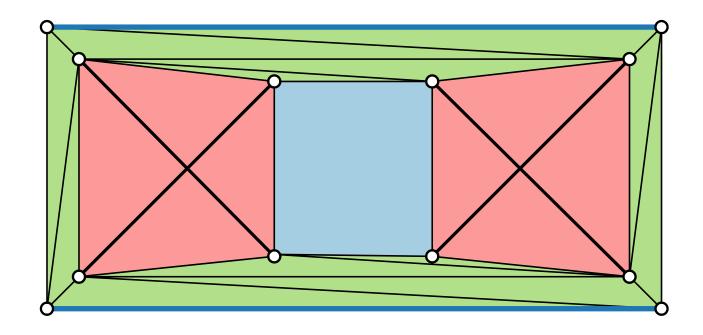
Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]



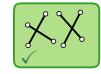


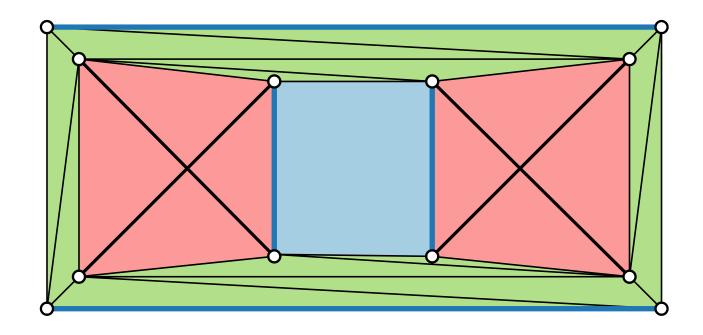
Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]



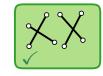


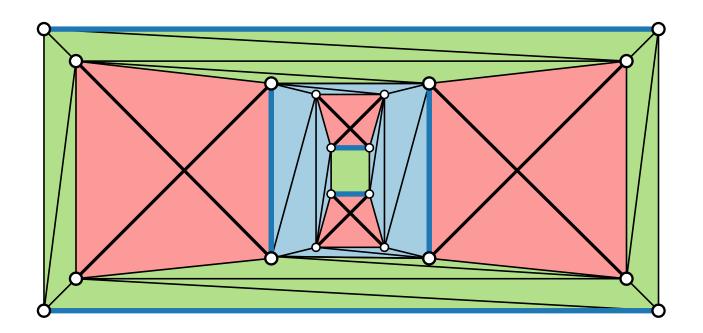
Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]



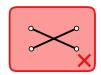


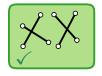
Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

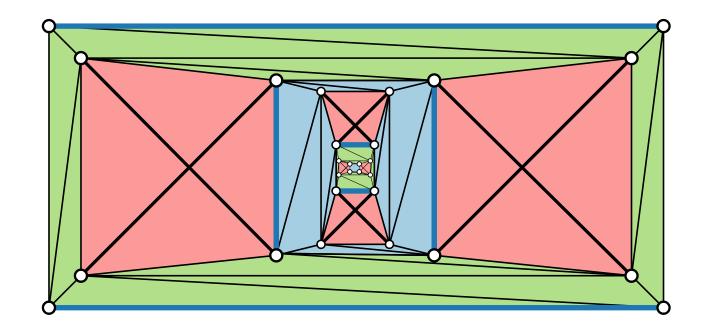




Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

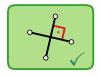


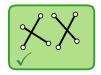




Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

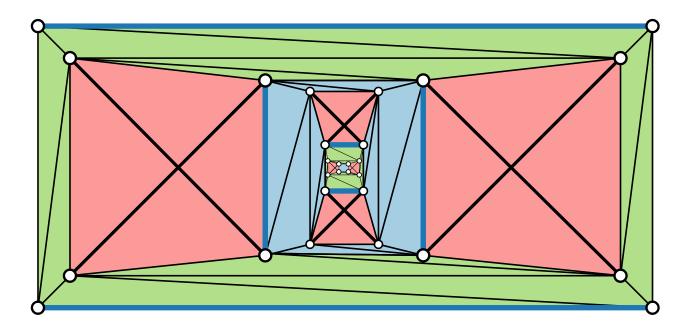
IC-planar straight-line RAC drawings may require exponential area.





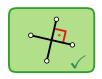
Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

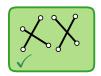
All IC-planar graphs have an IC-planar straight-line RAC drawing, and it can be found in polynomial time.



Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

IC-planar straight-line RAC drawings may require exponential area.

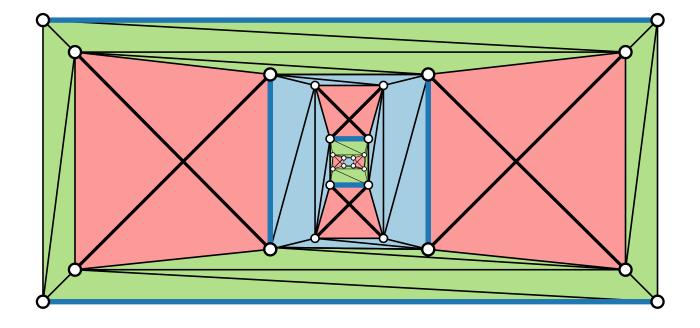


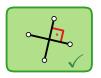


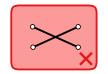
Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

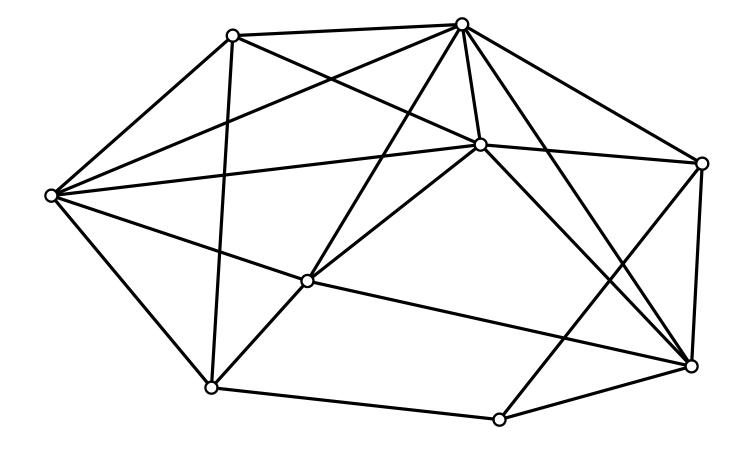
All IC-planar graphs have an IC-planar straight-line RAC drawing, and it can be found in polynomial time.

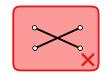


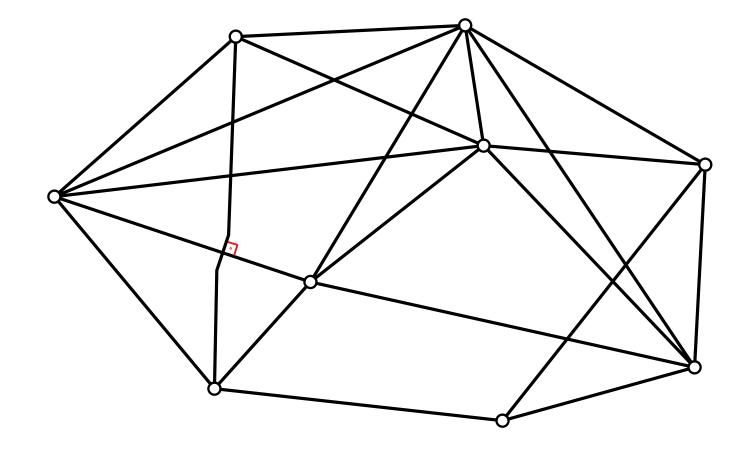


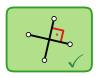


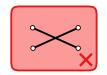


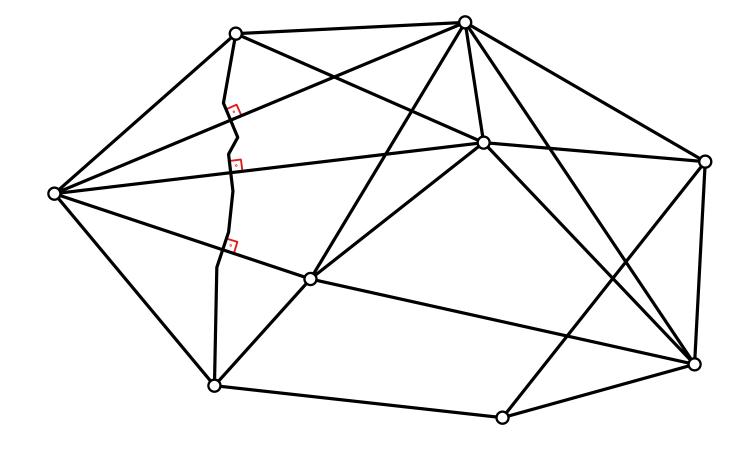


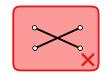


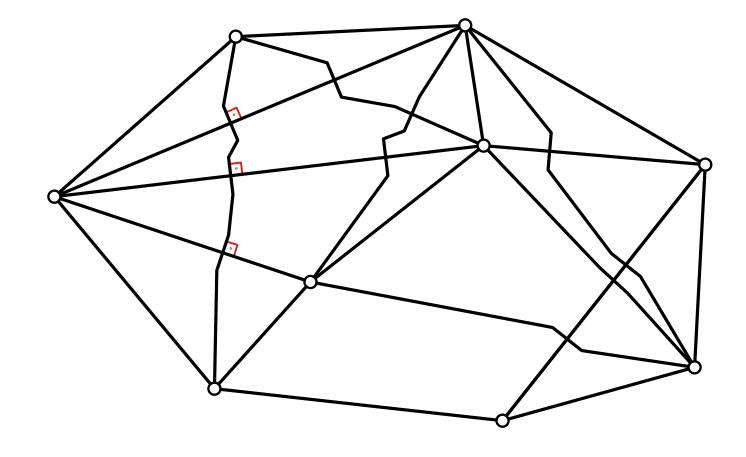


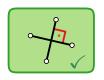


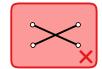


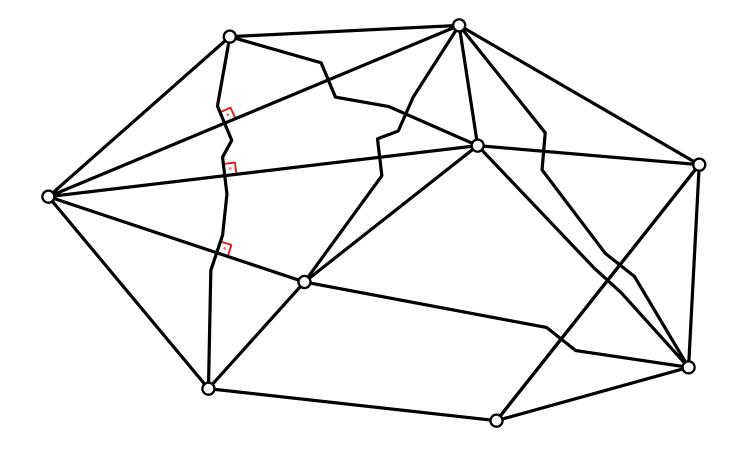






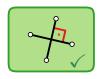


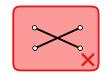


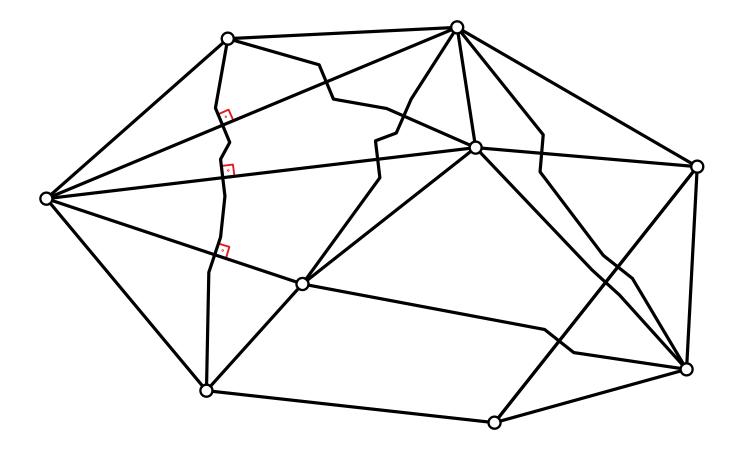


Every graph admits a RAC drawing ...

RAC Drawings With Enough Bends

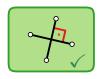


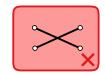


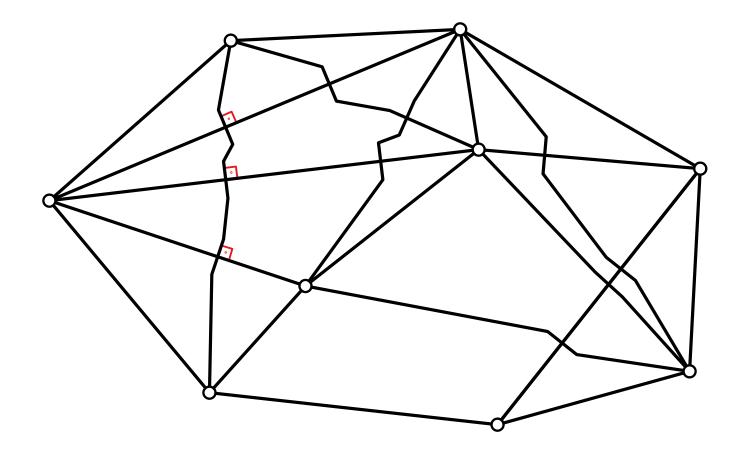


Every graph admits a RAC drawing ... if we use enough bends.

RAC Drawings With Enough Bends







Every graph admits a RAC drawing ... if we use enough bends.

How many do we need at most in total or per edge?

Theorem.

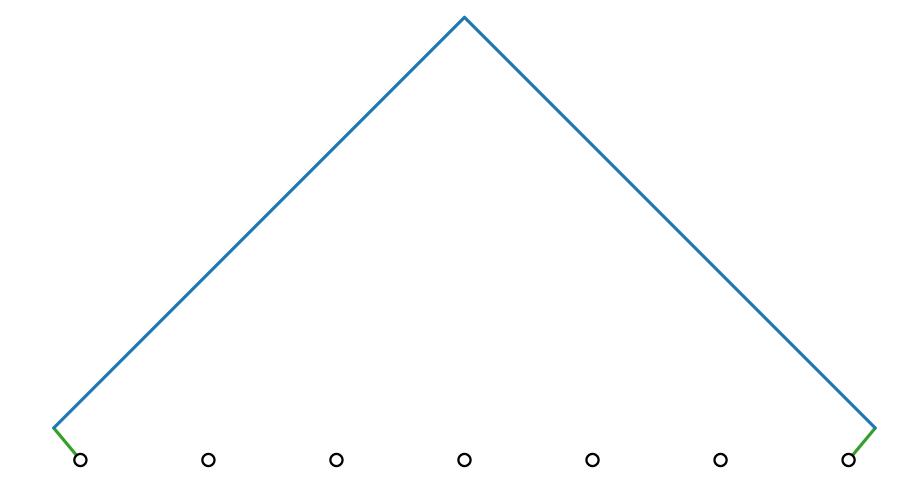
[Didimo, Eades & Liotta 2017]

Theorem.

[Didimo, Eades & Liotta 2017]

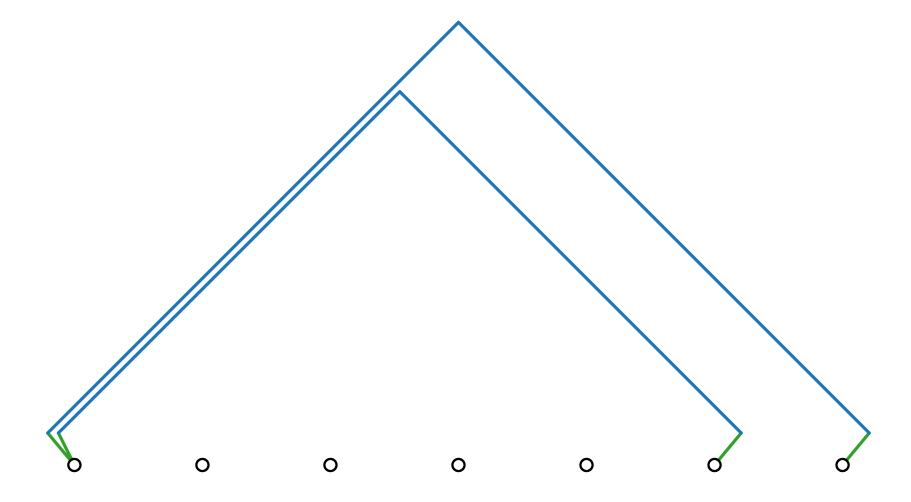
Theorem.

[Didimo, Eades & Liotta 2017]



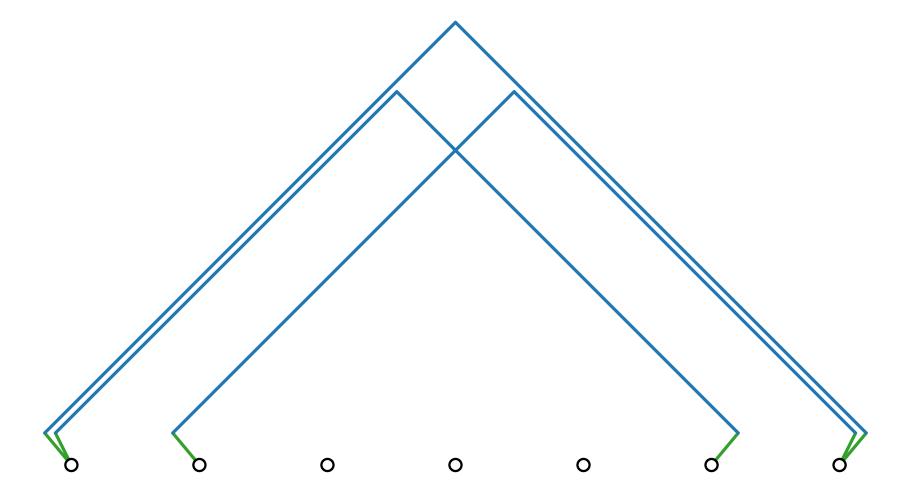
Theorem.

[Didimo, Eades & Liotta 2017]



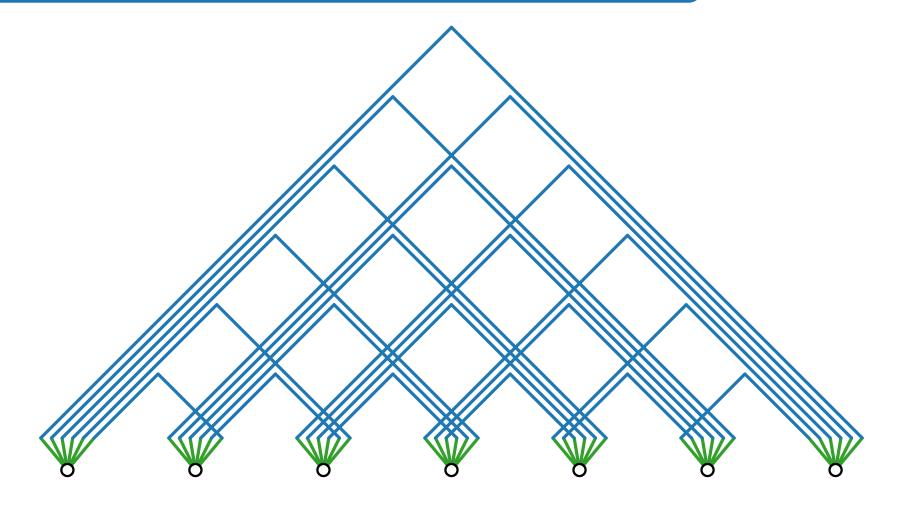
Theorem.

[Didimo, Eades & Liotta 2017]

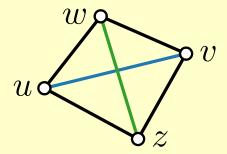


Theorem.

[Didimo, Eades & Liotta 2017]



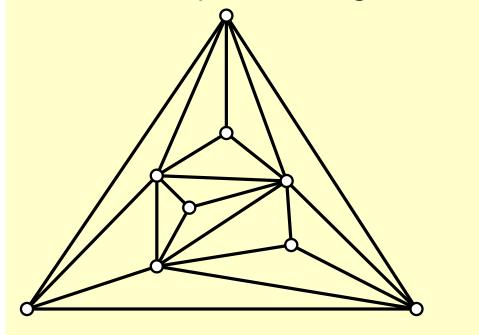
This is a **kite**:

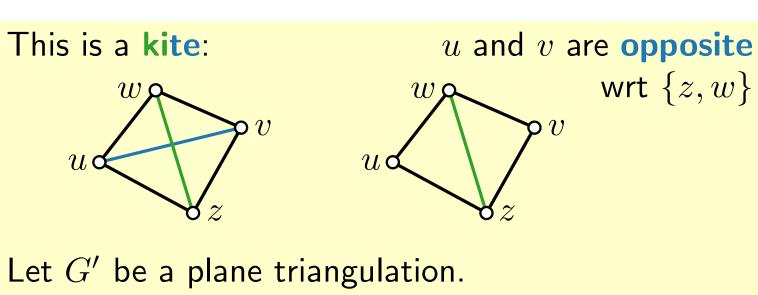


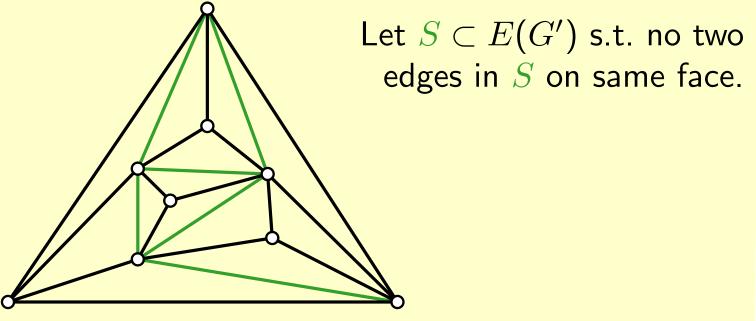
This is a **kite**: u and v are **opposite** wrt $\{z,w\}$

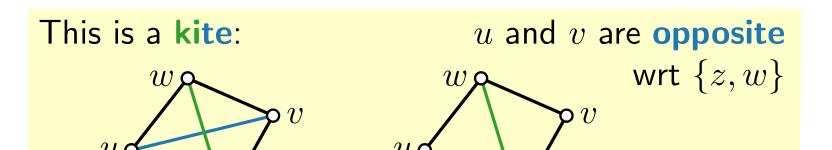
This is a **kite**: u and v are **opposite** wrt $\{z,w\}$

Let G' be a plane triangulation.

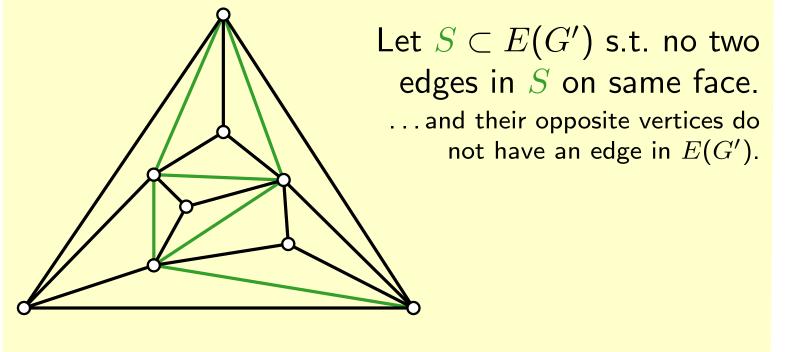




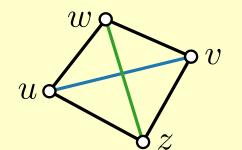




Let G' be a plane triangulation.



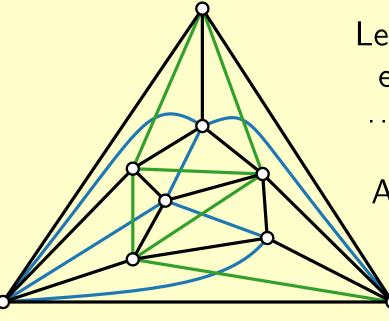
This is a **kite**:



u and v are opposite

 $\mathsf{wrt}\ \{z,w\}$

Let G' be a plane triangulation.

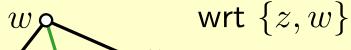


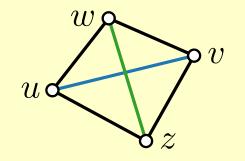
Let $S \subset E(G')$ s.t. no two edges in S on same face. ... and their opposite vertices do not have an edge in E(G').

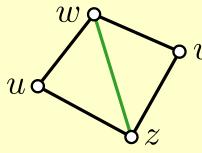
Add edges T for opposite vertices wrt to S.

This is a kite:

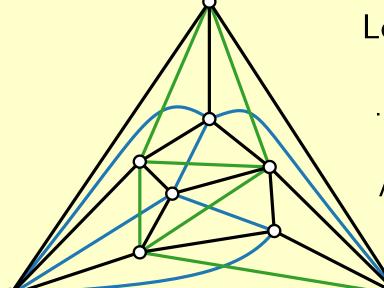
u and v are opposite







Let G' be a plane triangulation.



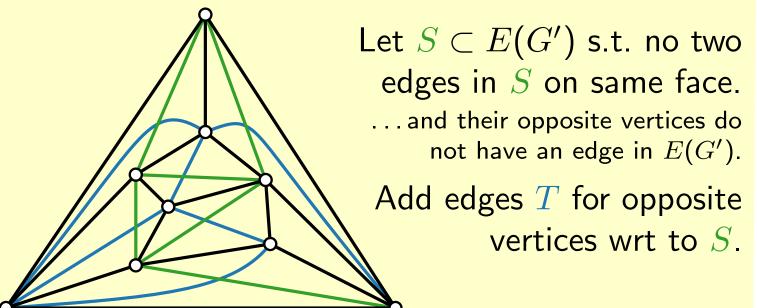
Let $S \subset E(G')$ s.t. no two edges in S on same face. ... and their opposite vertices do not have an edge in E(G').

Add edges T for opposite vertices wrt to S.

The resulting graph G is a **kite-triangulation**.

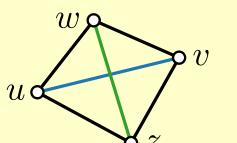
This is a **kite**: u and v are **opposite** wrt $\{z,w\}$

Let G' be a plane triangulation.



The resulting graph G is a **kite-triangulation**. optimal 1-planar \subset kite-triangulation

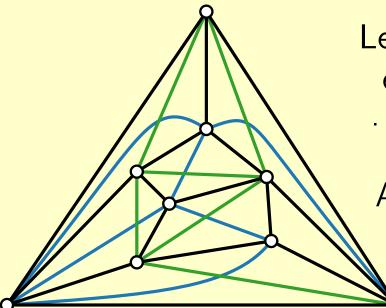
This is a **kite**:



u and v are opposite

wrt $\{z,w\}$

Let G' be a plane triangulation.



Let $S \subset E(G')$ s.t. no two edges in S on same face. ... and their opposite vertices do not have an edge in E(G').

Add edges T for opposite vertices wrt to S.

The resulting graph G is a **kite-triangulation**.

optimal 1-planar ⊂ kite-triangulation

Theorem.

[Angelini et al. '11]

Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ

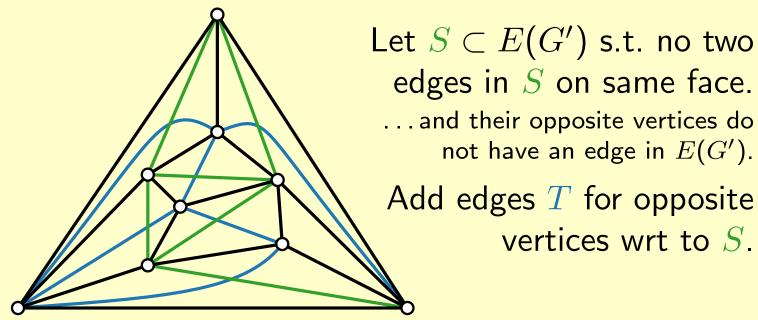
This is a kite:

u and v are opposite



wrt $\{z, w\}$

Let G' be a plane triangulation.



The resulting graph G is a **kite-triangulation**.

optimal 1-planar ⊂ kite-triangulation

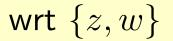
Theorem.

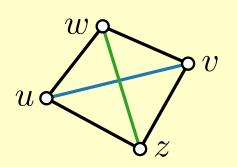
[Angelini et al. '11]

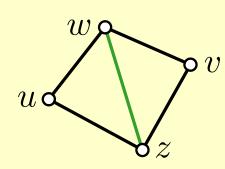
Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

This is a kite:

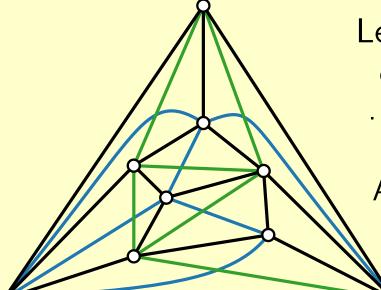
u and v are opposite







Let G' be a plane triangulation.



Let $S \subset E(G')$ s.t. no two edges in S on same face. ... and their opposite vertices do not have an edge in E(G').

Add edges T for opposite vertices wrt to S.

The resulting graph G is a **kite-triangulation**.

optimal 1-planar \subset kite-triangulation

Theorem.

[Angelini et al. '11]

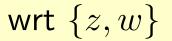
Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

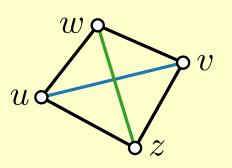
Proof.

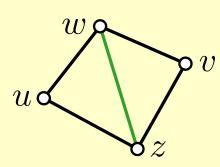
This is a **kite**:

u and v are opposite

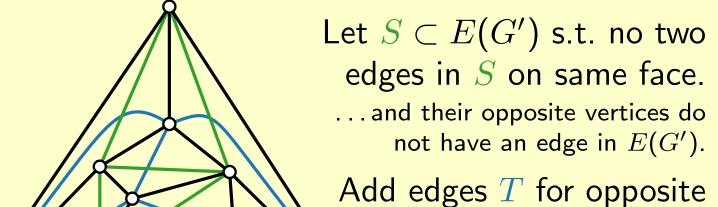
vertices wrt to S.







Let G' be a plane triangulation.



The resulting graph G is a **kite-triangulation**.

optimal 1-planar ⊂ kite-triangulation

Theorem.

[Angelini et al. '11]

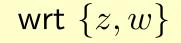
Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

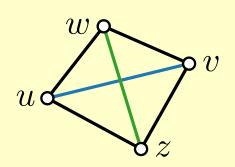
Proof.

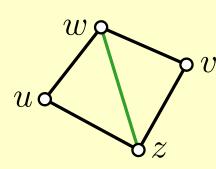
Let G' be the underlying plane triang. of G.

This is a kite:

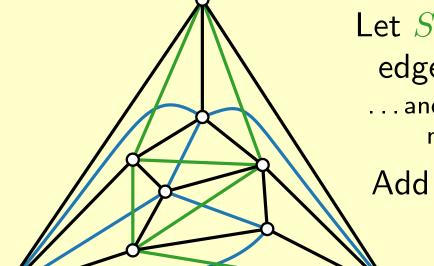
u and v are opposite







Let G' be a plane triangulation.



Let $S \subset E(G')$ s.t. no two edges in S on same face. ... and their opposite vertices do not have an edge in E(G').

Add edges T for opposite vertices wrt to S.

The resulting graph G is a **kite-triangulation**.

optimal 1-planar ⊂ kite-triangulation

Theorem.

[Angelini et al. '11]

Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

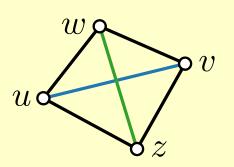
Proof.

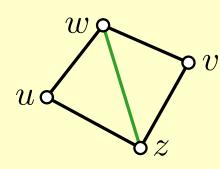
Let G' be the underlying plane triang. of G. Let G'' be G' without S.

This is a kite:

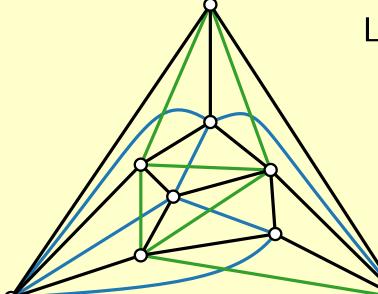
u and v are opposite

wrt $\{z,w\}$





Let G' be a plane triangulation.



Let $S \subset E(G')$ s.t. no two edges in S on same face. ... and their opposite vertices do not have an edge in E(G').

Add edges T for opposite vertices wrt to S.

The resulting graph G is a **kite-triangulation**.

optimal 1-planar ⊂ kite-triangulation

Theorem.

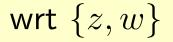
[Angelini et al. '11]

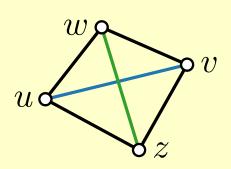
Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

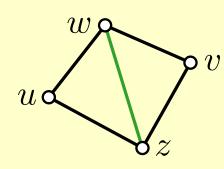
Proof.

This is a kite:

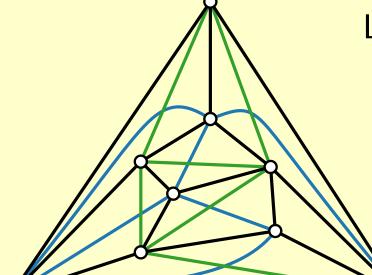
u and v are opposite







Let G' be a plane triangulation.



Let $S \subset E(G')$ s.t. no two edges in S on same face. ... and their opposite vertices do not have an edge in E(G').

Add edges T for opposite vertices wrt to S.

The resulting graph G is a **kite-triangulation**.

optimal 1-planar \subset kite-triangulation

Theorem.

[Angelini et al. '11]

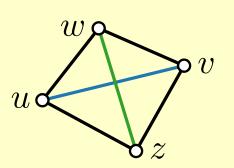
Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

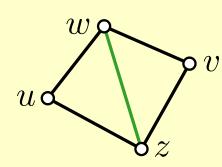
Proof.

This is a **kite**:

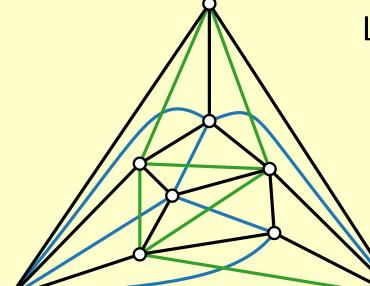
u and v are opposite

wrt $\{z, w\}$





Let G' be a plane triangulation.



Let $S \subset E(G')$ s.t. no two edges in S on same face. ... and their opposite vertices do not have an edge in E(G').

Add edges T for opposite vertices wrt to S.

The resulting graph G is a **kite-triangulation**.

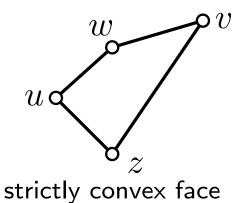
optimal 1-planar \subset kite-triangulation

Theorem.

[Angelini et al. '11]

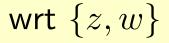
Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

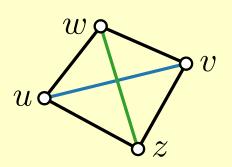
Proof.

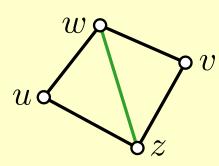


This is a kite:

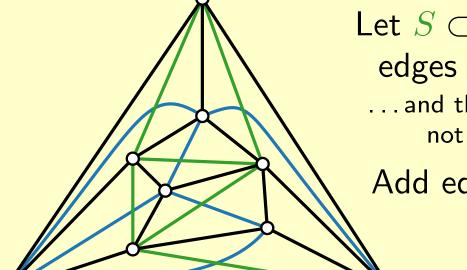
u and v are opposite







Let G' be a plane triangulation.



Let $S \subset E(G')$ s.t. no two edges in S on same face. ... and their opposite vertices do not have an edge in E(G').

Add edges T for opposite vertices wrt to S.

The resulting graph G is a **kite-triangulation**.

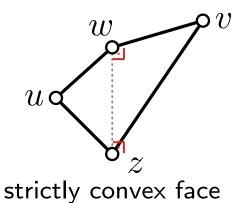
optimal 1-planar \subset kite-triangulation

Theorem.

[Angelini et al. '11]

Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

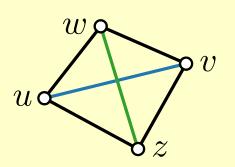
Proof.

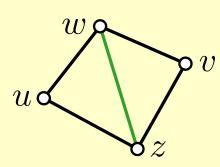


This is a kite:

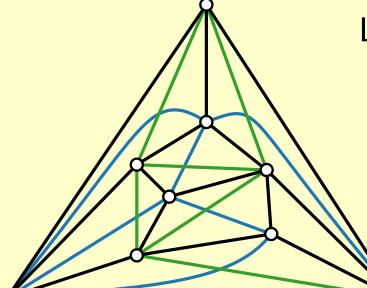
u and v are opposite

wrt $\{z, w\}$





Let G' be a plane triangulation.



Let $S \subset E(G')$ s.t. no two edges in S on same face. ... and their opposite vertices do not have an edge in E(G').

Add edges *T* for opposite vertices wrt to *S*.

The resulting graph G is a **kite-triangulation**.

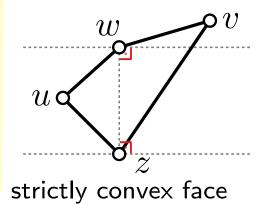
optimal 1-planar \subset kite-triangulation

Theorem.

[Angelini et al. '11]

Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

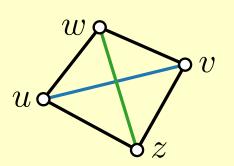
Proof.

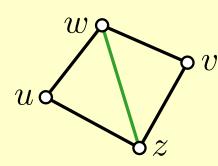


This is a **kite**:

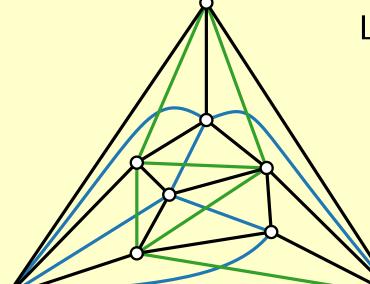
u and v are opposite

wrt $\{z, w\}$





Let G' be a plane triangulation.



Let $S \subset E(G')$ s.t. no two edges in S on same face. ... and their opposite vertices do not have an edge in E(G').

Add edges *T* for opposite vertices wrt to *S*.

The resulting graph G is a **kite-triangulation**.

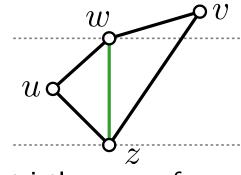
optimal 1-planar ⊂ kite-triangulation

Theorem.

[Angelini et al. '11]

Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

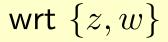
Proof.

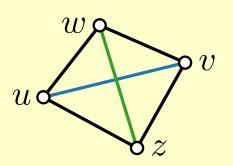


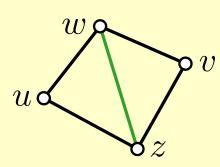
strictly convex face

This is a **kite**:

u and v are opposite







Let G' be a plane triangulation.



Let $S \subset E(G')$ s.t. no two edges in S on same face. ... and their opposite vertices do not have an edge in E(G').

Add edges *T* for opposite vertices wrt to *S*.

The resulting graph G is a **kite-triangulation**.

optimal 1-planar ⊂ kite-triangulation

Theorem.

[Angelini et al. '11]

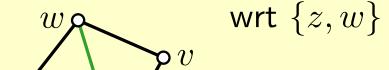
Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

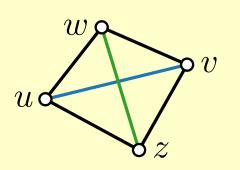
Proof.

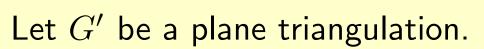


This is a **kite**:

u and v are opposite







Let $S \subset E(G')$ s.t. no two edges in S on same face. ... and their opposite vertices do not have an edge in E(G').

Add edges *T* for opposite vertices wrt to *S*.

The resulting graph G is a **kite-triangulation**.

optimal 1-planar \subset kite-triangulation

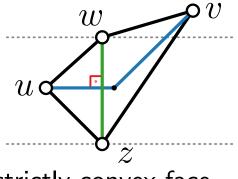
Theorem.

[Angelini et al. '11]

Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

Proof.

Let G' be the underlying plane triang. of G. Let G'' be G' without S. Construct straight-line drawing of G''. Fill faces as follows:

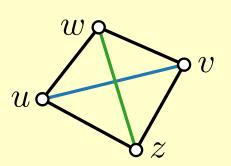


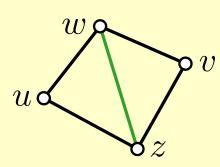
strictly convex face

This is a **kite**:

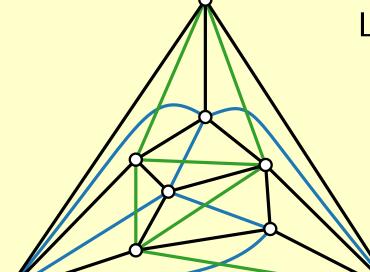
u and v are opposite

wrt $\{z, w\}$





Let G' be a plane triangulation.



Let $S \subset E(G')$ s.t. no two edges in S on same face. ... and their opposite vertices do not have an edge in E(G').

Add edges *T* for opposite vertices wrt to *S*.

The resulting graph G is a **kite-triangulation**.

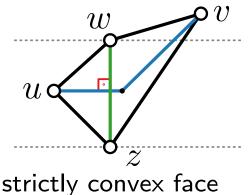
optimal 1-planar \subset kite-triangulation

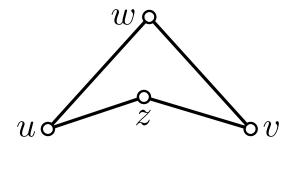
Theorem.

[Angelini et al. '11]

Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

Proof.



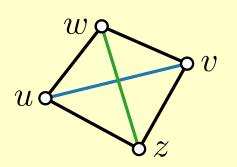


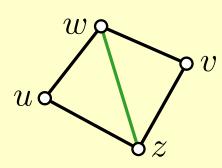
c face otherwise

This is a **kite**:

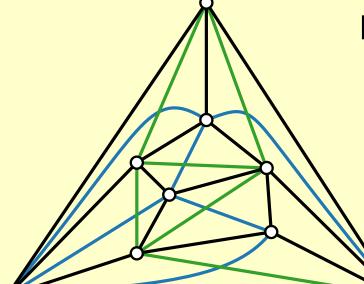
u and v are opposite

wrt $\{z, w\}$





Let G' be a plane triangulation.



Let $S \subset E(G')$ s.t. no two edges in S on same face. ... and their opposite vertices do not have an edge in E(G').

Add edges *T* for opposite vertices wrt to *S*.

The resulting graph G is a **kite-triangulation**.

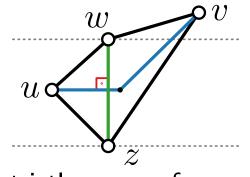
optimal 1-planar \subset kite-triangulation

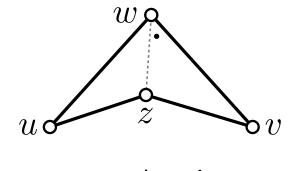
Theorem.

[Angelini et al. '11]

Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

Proof.





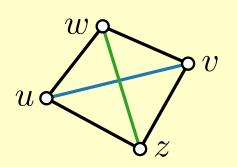
strictly convex face

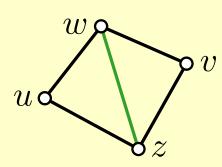
otherwise

This is a **kite**:

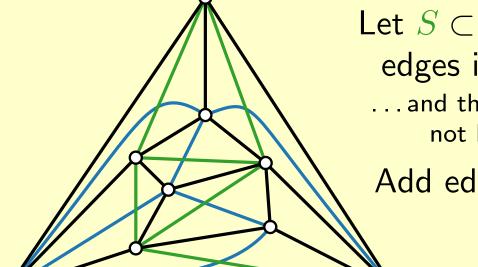
u and v are opposite

wrt $\{z, w\}$





Let G' be a plane triangulation.



Let $S \subset E(G')$ s.t. no two edges in S on same face. ... and their opposite vertices do not have an edge in E(G').

Add edges *T* for opposite vertices wrt to *S*.

The resulting graph G is a **kite-triangulation**.

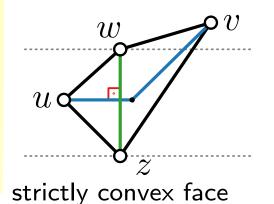
optimal 1-planar \subset kite-triangulation

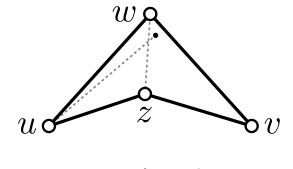
Theorem.

[Angelini et al. '11]

Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

Proof.

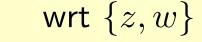


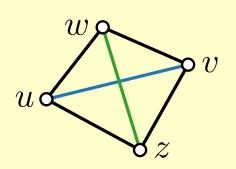


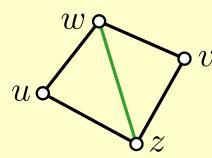
otherwise

This is a **kite**:

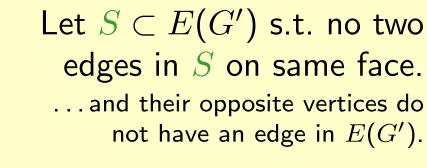
u and v are opposite







Let G' be a plane triangulation.



Add edges *T* for opposite vertices wrt to *S*.

The resulting graph G is a **kite-triangulation**.

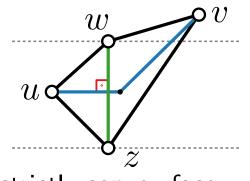
optimal 1-planar \subset kite-triangulation

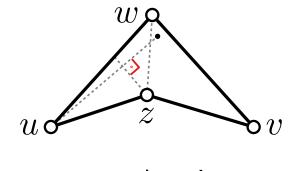
Theorem.

[Angelini et al. '11]

Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

Proof.





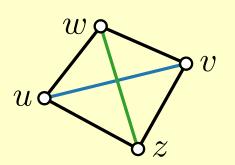
strictly convex face

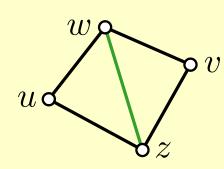
otherwise

This is a **kite**:

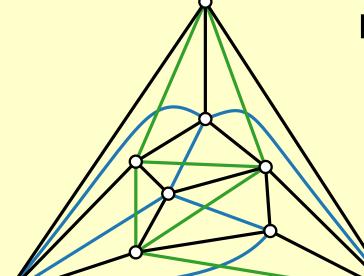
u and v are opposite

wrt $\{z,w\}$





Let G' be a plane triangulation.



Let $S \subset E(G')$ s.t. no two edges in S on same face. ... and their opposite vertices do not have an edge in E(G').

Add edges *T* for opposite vertices wrt to *S*.

The resulting graph G is a **kite-triangulation**.

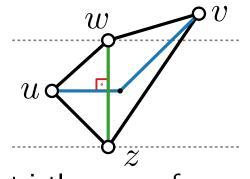
optimal 1-planar \subset kite-triangulation

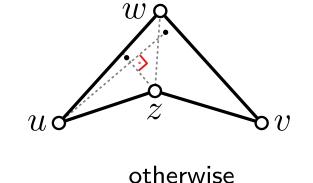
Theorem.

[Angelini et al. '11]

Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

Proof.



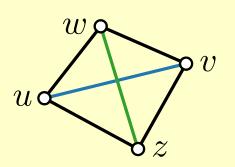


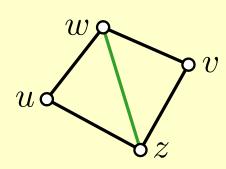
strictly convex face

This is a **kite**:

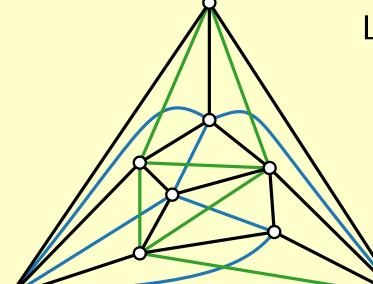
u and v are opposite

wrt $\{z,w\}$





Let G' be a plane triangulation.



Let $S \subset E(G')$ s.t. no two edges in S on same face. ... and their opposite vertices do not have an edge in E(G').

Add edges *T* for opposite vertices wrt to *S*.

The resulting graph G is a **kite-triangulation**.

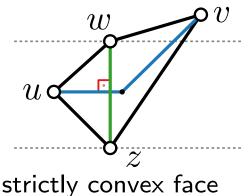
optimal 1-planar \subset kite-triangulation

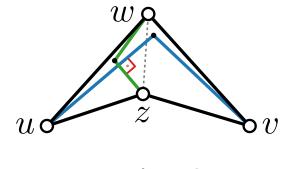
Theorem.

[Angelini et al. '11]

Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

Proof.





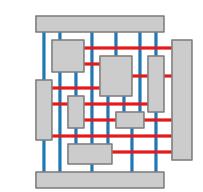
otherwise

Visualization of Graphs

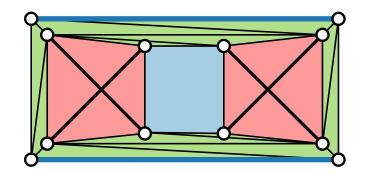
Lecture 11:

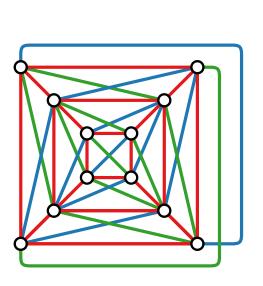
Beyond Planarity

Drawing Graphs with Crossings



Jonathan Klawitter





Theorem. [Bekos, Didimo, Liotta, Mehrabi & Montecchiani 2017]

Every 1-planar graph G on n vertices admits a 1-planar 1-bend RAC drawing Γ .

Theorem. [Bekos, Didimo, Liotta, Mehrabi & Montecchiani 2017]

Every 1-planar graph G on n vertices admits a 1-planar 1-bend RAC drawing Γ .

Also, if a 1-planar embedding of G is given as part of the input, Γ can be computed in $\mathcal{O}(n)$ time.

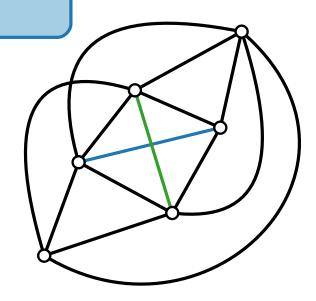
Theorem. [Bekos, Didimo, Liotta, Mehrabi & Montecchiani 2017]

Every 1-planar graph G on n vertices admits a 1-planar 1-bend RAC drawing Γ .

Also, if a 1-planar embedding of G is given as part of the input, Γ can be computed in $\mathcal{O}(n)$ time.

Observation.

In a triangulated 1-plane graph (not necessarily simple), each pair of crossing edges of G forms an (empty) kite,



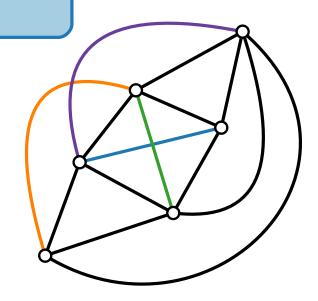
Theorem. [Bekos, Didimo, Liotta, Mehrabi & Montecchiani 2017]

Every 1-planar graph G on n vertices admits a 1-planar 1-bend RAC drawing Γ .

Also, if a 1-planar embedding of G is given as part of the input, Γ can be computed in $\mathcal{O}(n)$ time.

Observation.

In a triangulated 1-plane graph (not necessarily simple), each pair of crossing edges of G forms an (empty) kite, except for at most one pair if their crossing point is on the outer face of G.



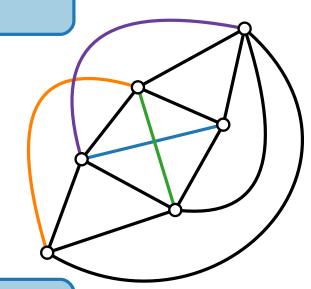
Theorem. [Bekos, Didimo, Liotta, Mehrabi & Montecchiani 2017]

Every 1-planar graph G on n vertices admits a 1-planar 1-bend RAC drawing Γ .

Also, if a 1-planar embedding of G is given as part of the input, Γ can be computed in $\mathcal{O}(n)$ time.

Observation.

In a triangulated 1-plane graph (not necessarily simple), each pair of crossing edges of G forms an (empty) kite, except for at most one pair if their crossing point is on the outer face of G.

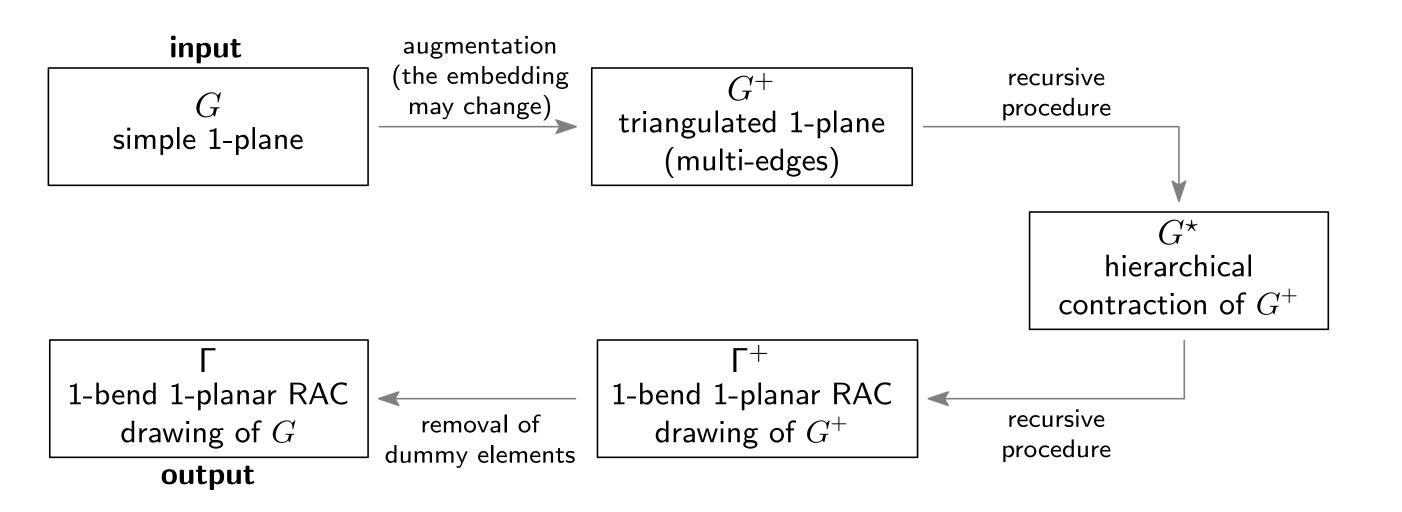


Theorem.

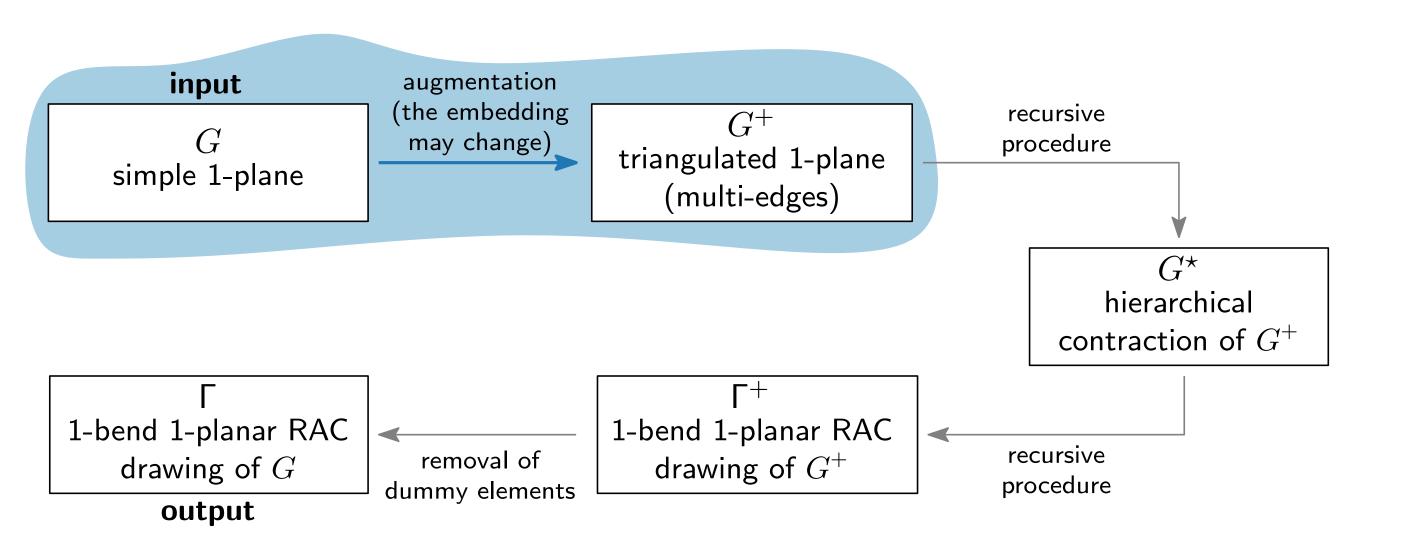
[Chiba, Yamanouchi & Nishizeki 1984]

For every planar graph G and convex polygon P, a strictly convex planar straight-line drawing of G where the outer face coincides with P can be computed in O(n) time.

Algorithm Outline

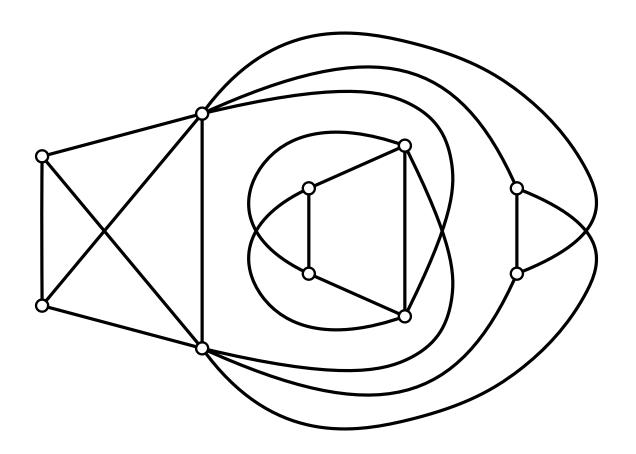


Algorithm Outline



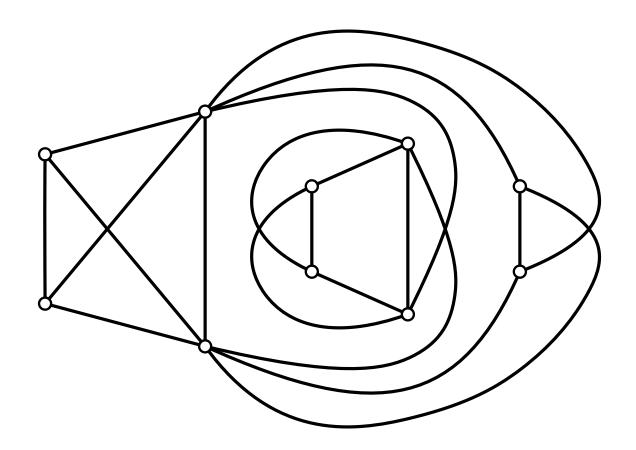
Algorithm Step 1: Augmentation

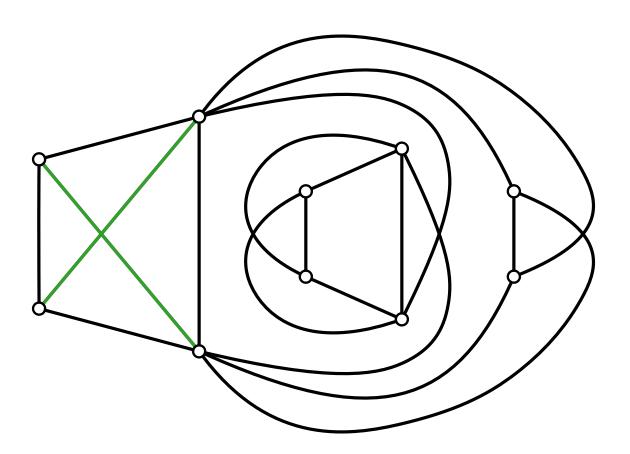
 $G \\ {\rm simple } \ 1{\rm -plane}$

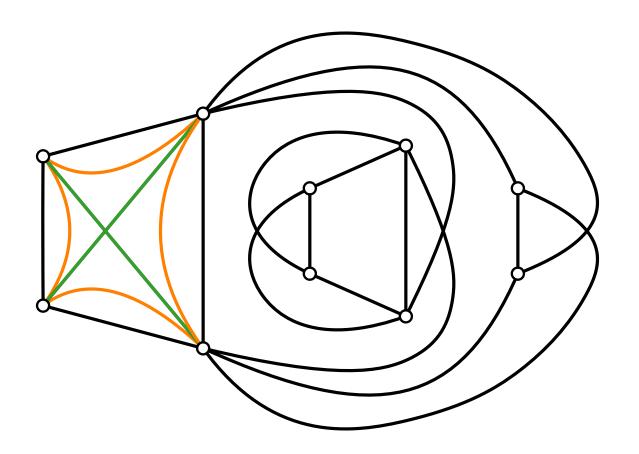


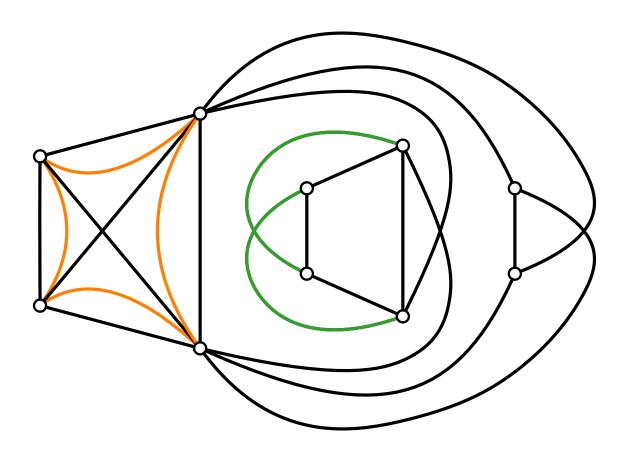
1. For each pair of crossing edges add an enclosing 4-cycle.

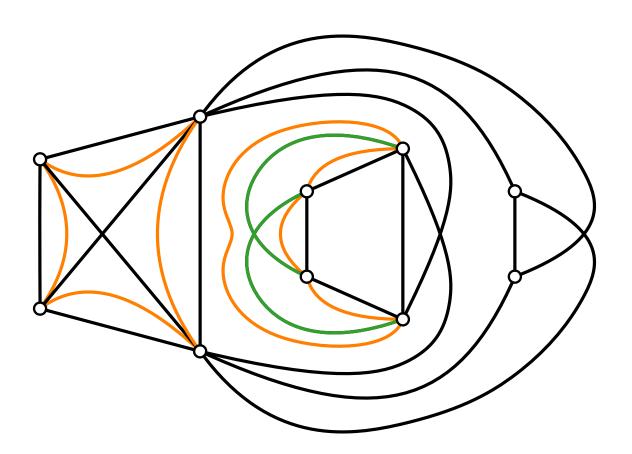
G simple 1-plane

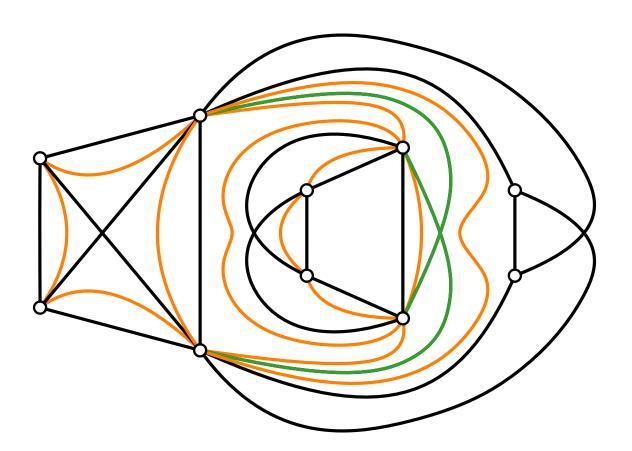


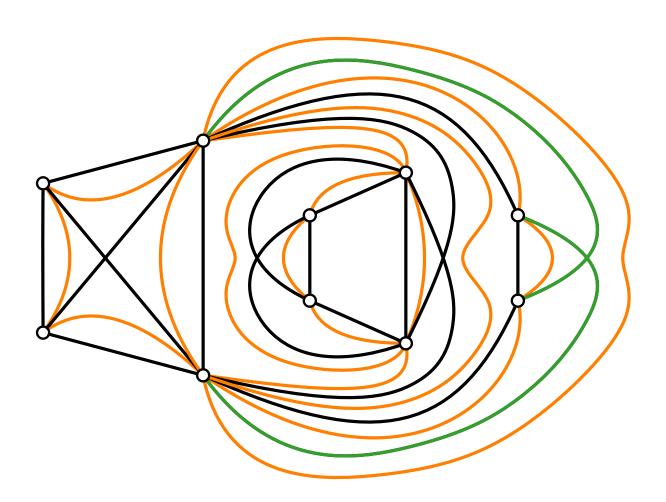




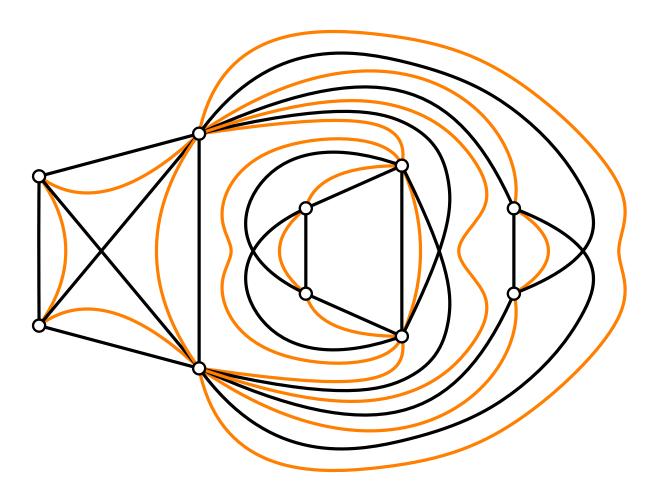




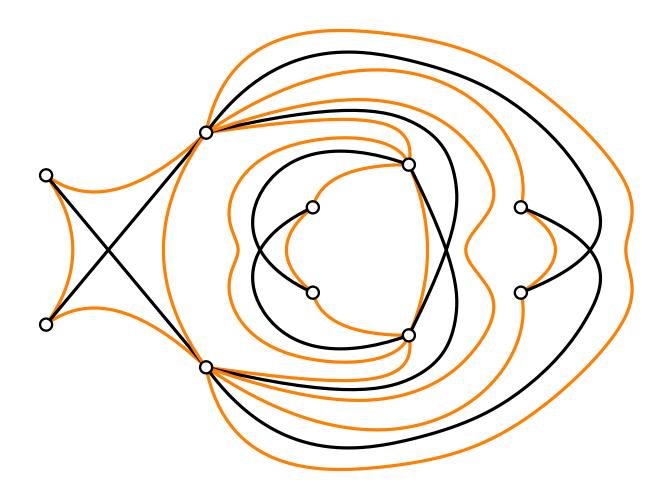




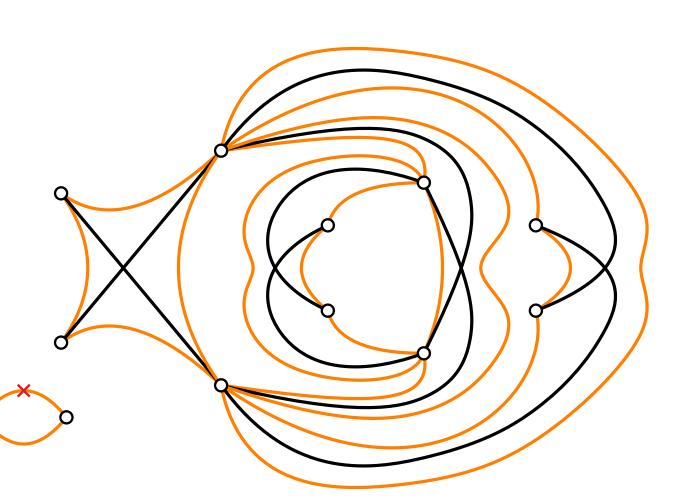
- 1. For each pair of crossing edges add an enclosing 4-cycle.
- 2. Remove those multiple edges that belong to G.



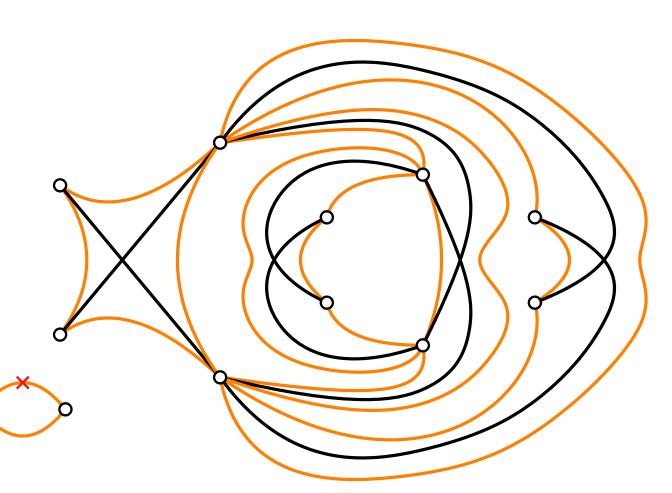
- 1. For each pair of crossing edges add an enclosing 4-cycle.
- 2. Remove those multiple edges that belong to G.



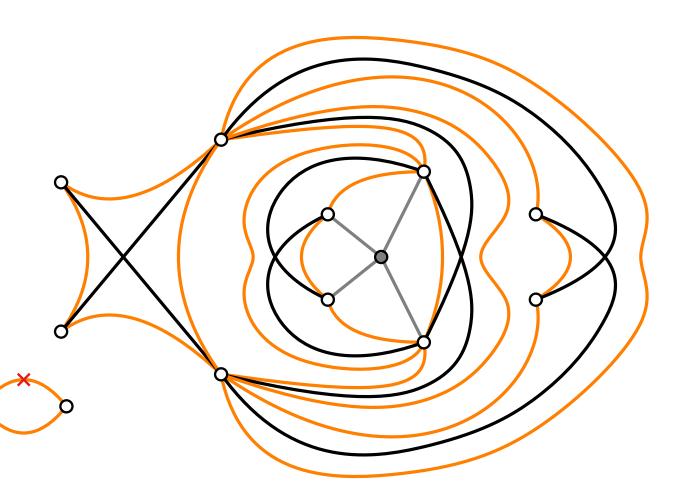
- 1. For each pair of crossing edges add an enclosing 4-cycle.
- 2. Remove those multiple edges that belong to G.
- 3. Remove one (multiple) edge from each face of degree two (if any).



- 1. For each pair of crossing edges add an enclosing 4-cycle.
- 2. Remove those multiple edges that belong to G.
- 3. Remove one (multiple) edge from each face of degree two (if any).
- 4. Triangulate faces of degree > 3 by inserting a star inside them.



- 1. For each pair of crossing edges add an enclosing 4-cycle.
- 2. Remove those multiple edges that belong to G.
- 3. Remove one (multiple) edge from each face of degree two (if any).
- 4. Triangulate faces of degree > 3 by inserting a star inside them.

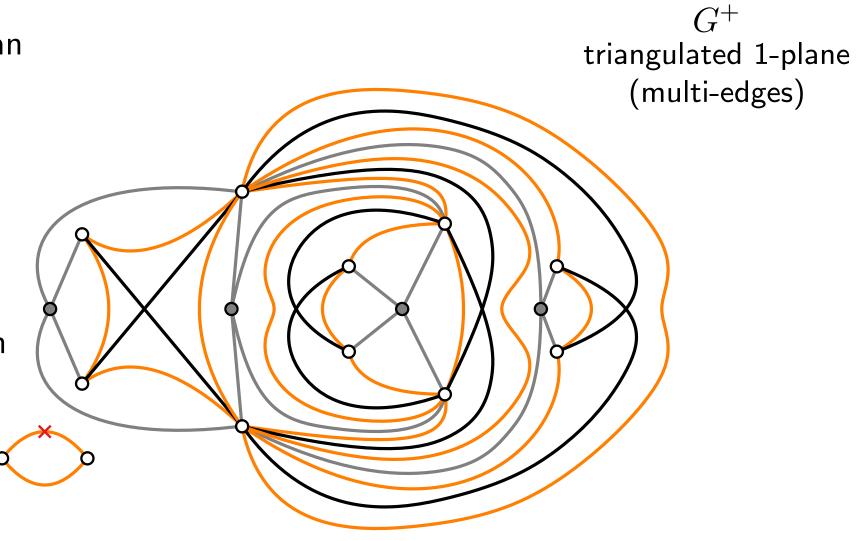


1. For each pair of crossing edges add an enclosing 4-cycle.

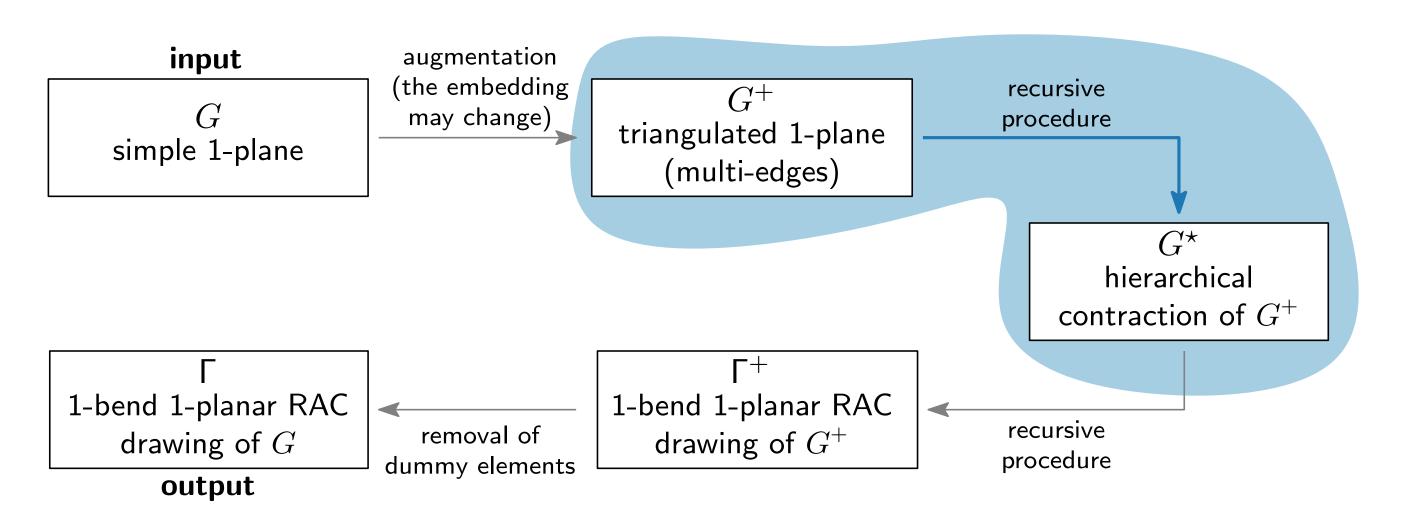
2. Remove those multiple edges that belong to G.

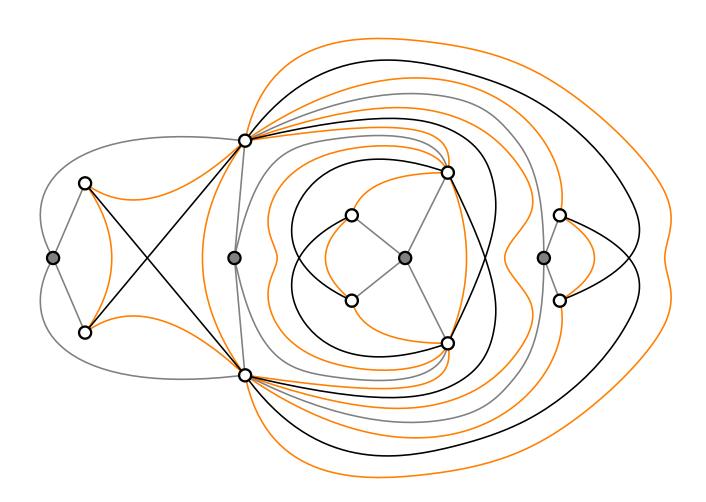
3. Remove one (multiple) edge from each face of degree two (if any).

4. Triangulate faces of degree > 3 by inserting a star inside them.



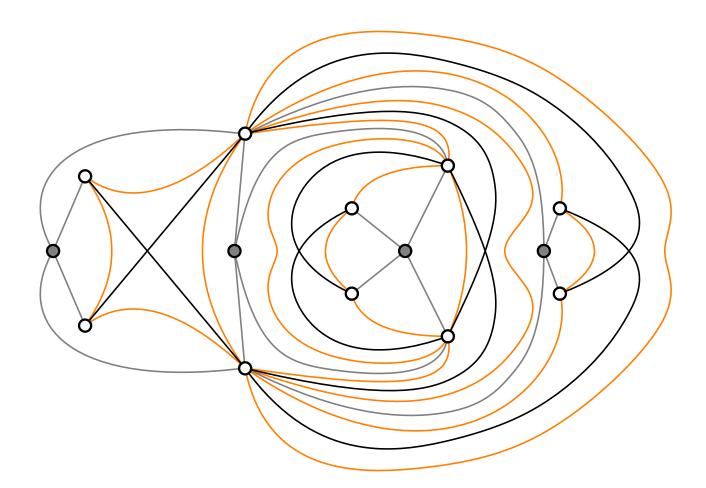
Algorithm Outline



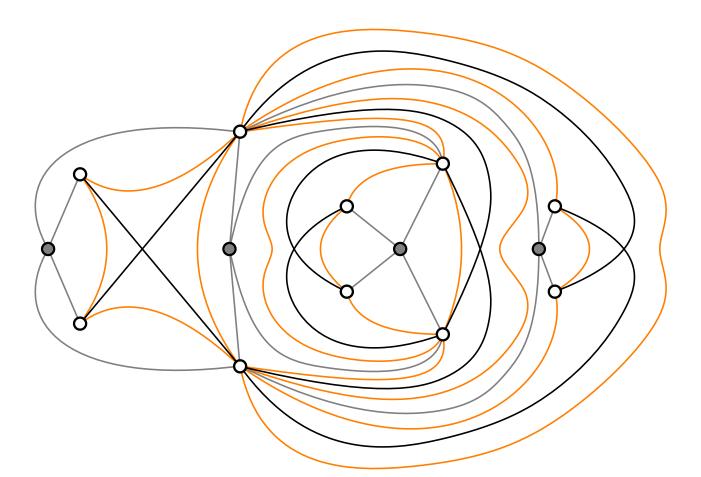


 G^+ triangulated 1-plane (multi-edges)

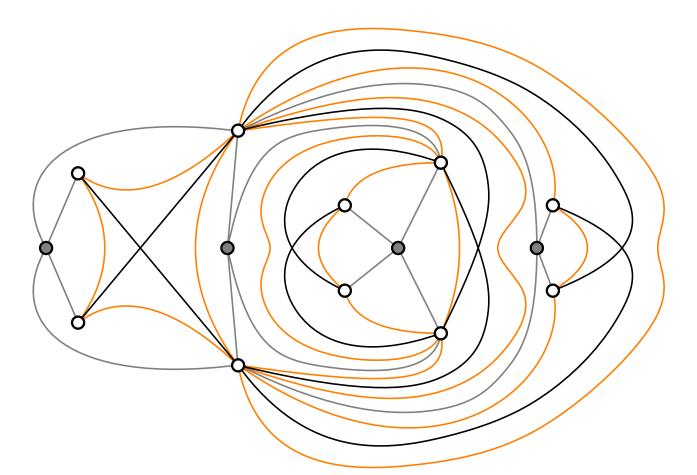
triangular faces



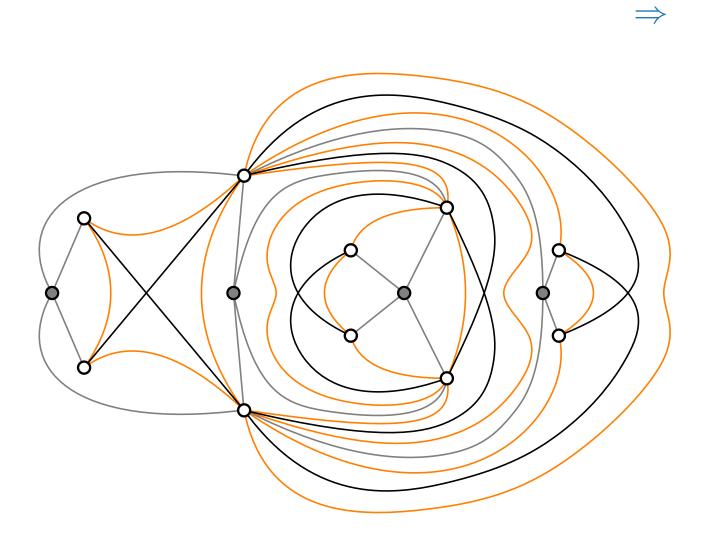
- triangular faces
- multiple edges never crossed

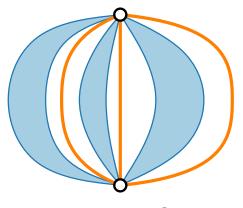


- triangular faces
- multiple edges never crossed
- only empty kites



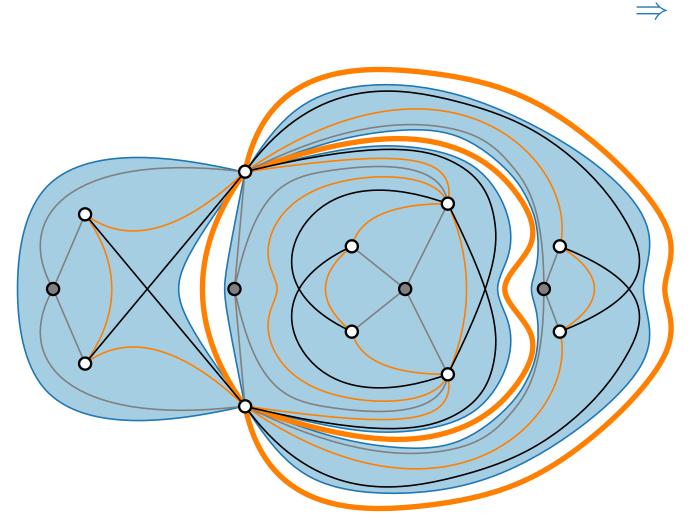
- triangular faces
- multiple edges never crossed
- only empty kites

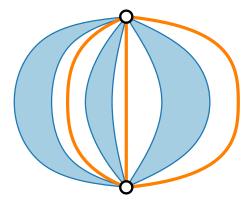




structure of each separation pair

- triangular faces
- multiple edges never crossed
- only empty kites

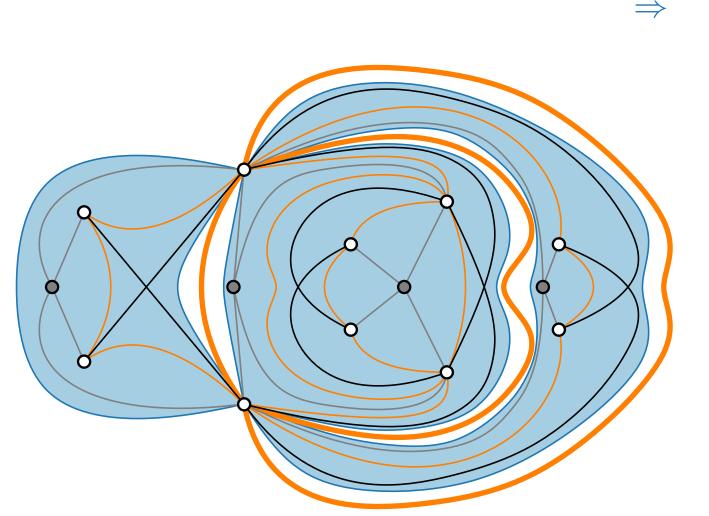


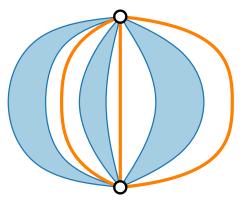


structure of each separation pair

 G^+ triangulated 1-plane (multi-edges)

- triangular faces
- multiple edges never crossed
- only empty kites

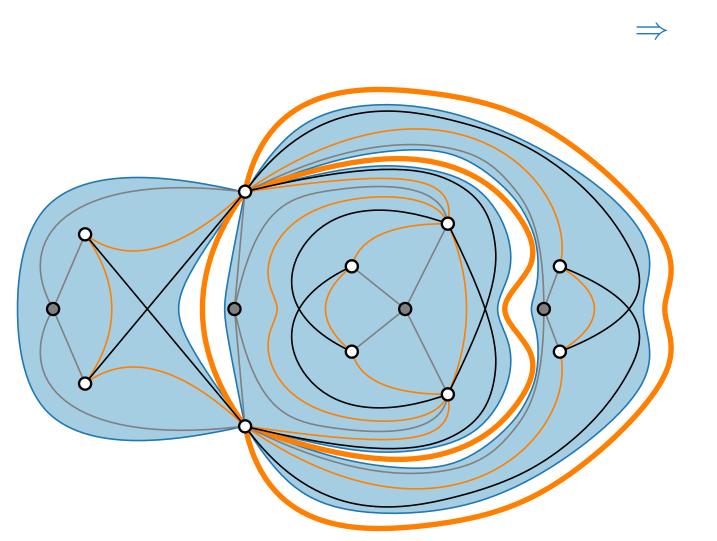


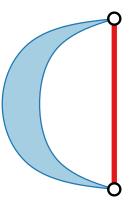


structure of each separation pair

 G^+ triangulated 1-plane (multi-edges)

- triangular faces
- multiple edges never crossed
- only empty kites

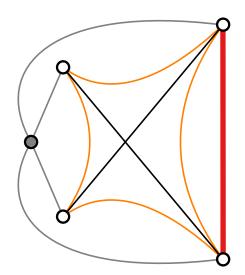


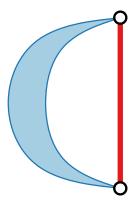


structure of each separation pair

 G^+ triangulated 1-plane (multi-edges)

- triangular faces
- multiple edges never crossed
- only empty kites

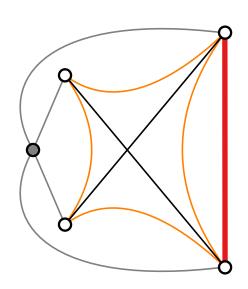


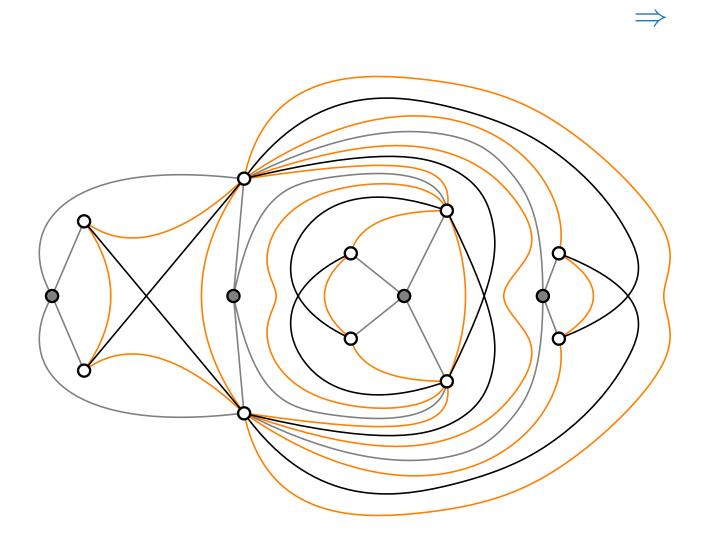


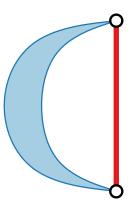
structure of each separation pair

 G^+ triangulated 1-plane (multi-edges)

- triangular faces
- multiple edges never crossed
- only empty kites



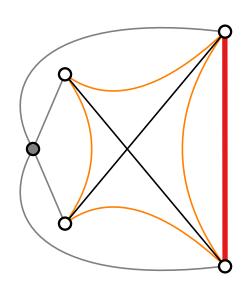


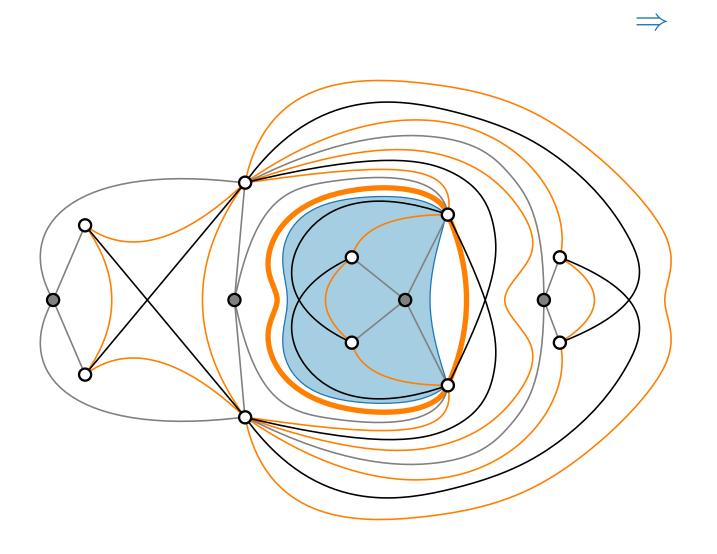


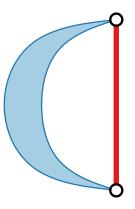
structure of each separation pair

 G^+ triangulated 1-plane (multi-edges)

- triangular faces
- multiple edges never crossed
- only empty kites



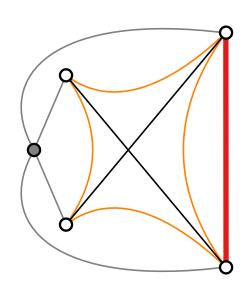


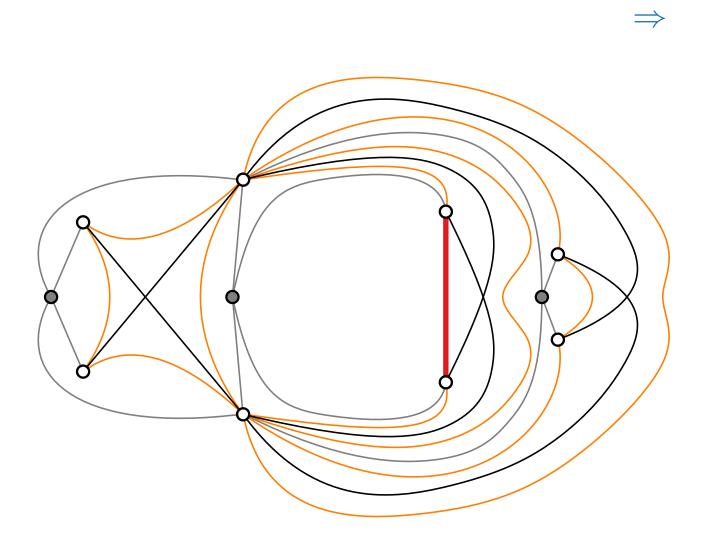


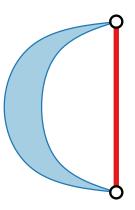
structure of each separation pair

 G^+ triangulated 1-plane (multi-edges)

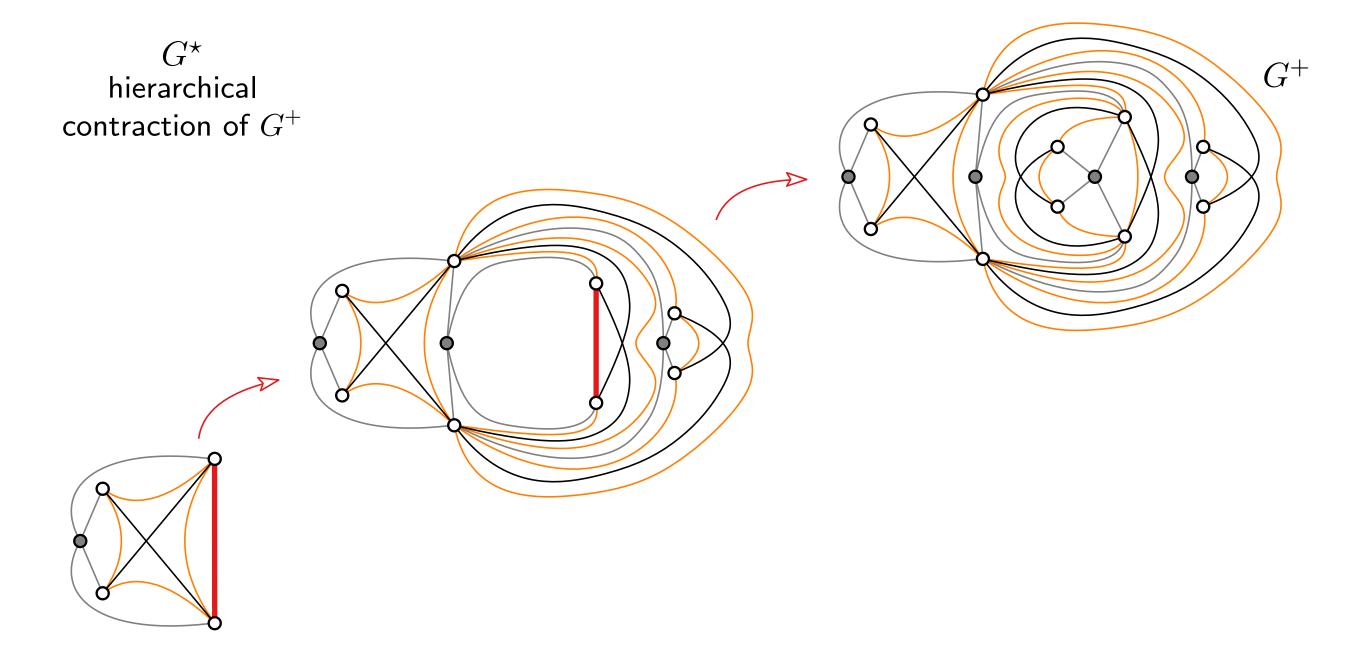
- triangular faces
- multiple edges never crossed
- only empty kites

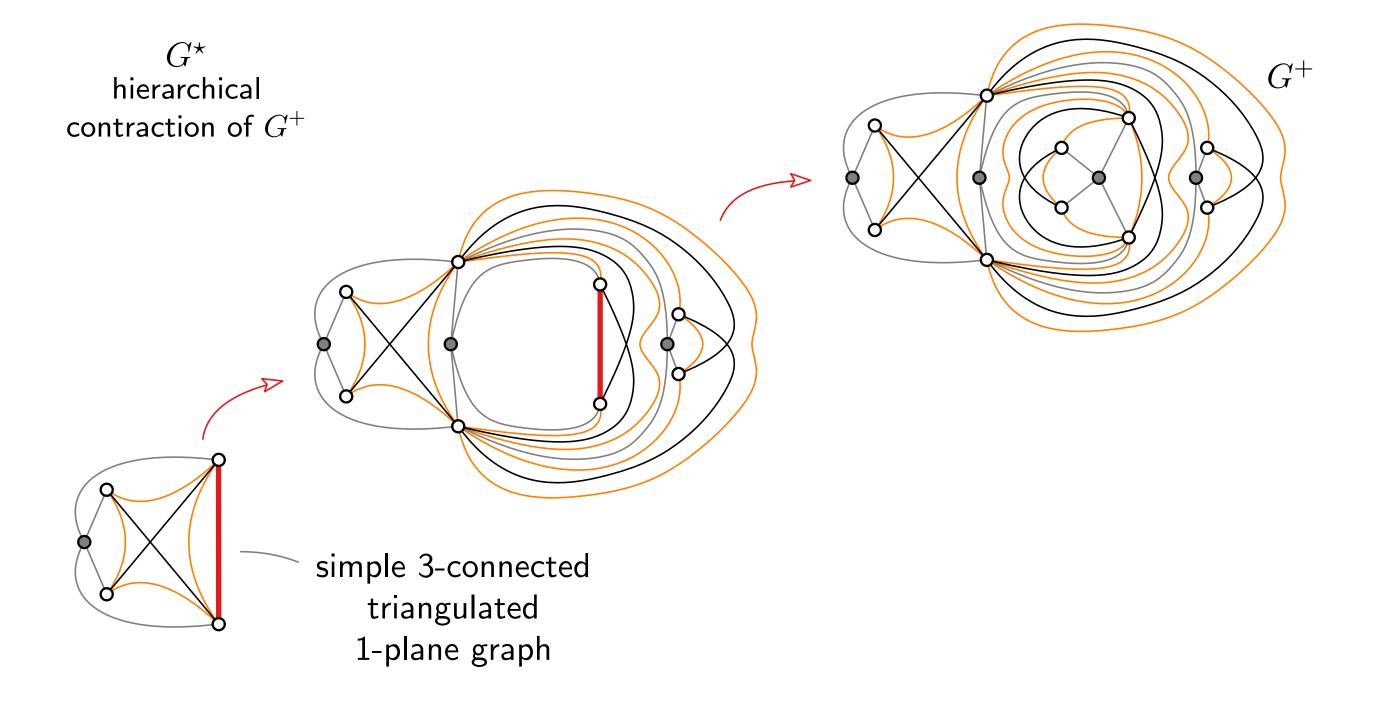




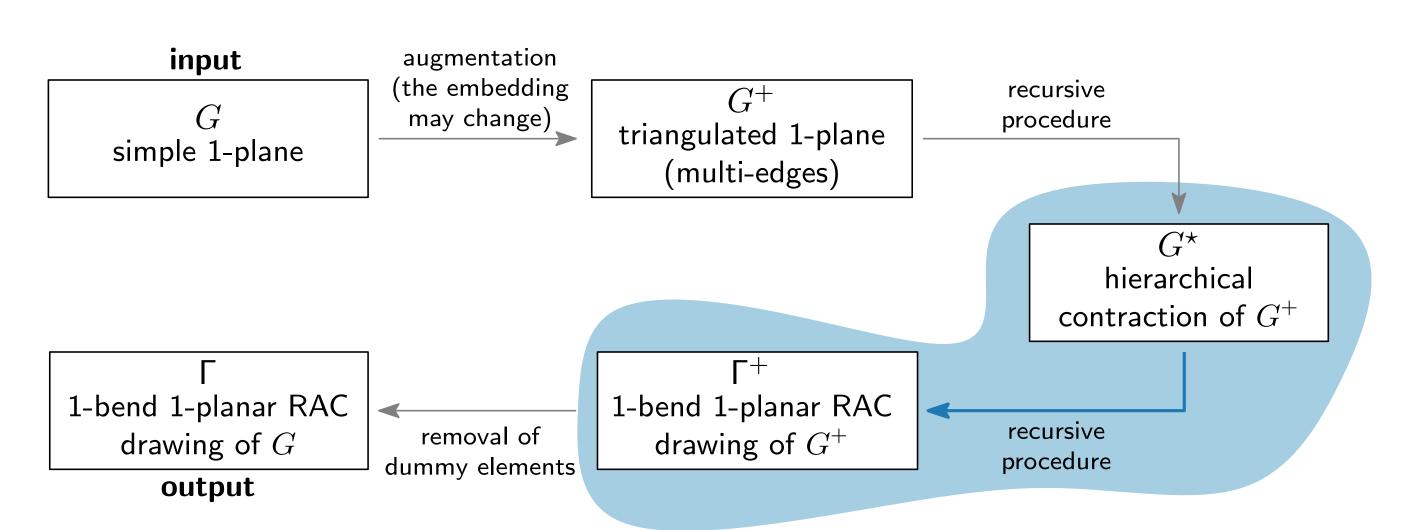


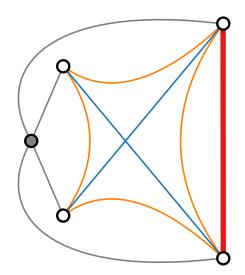
structure of each separation pair

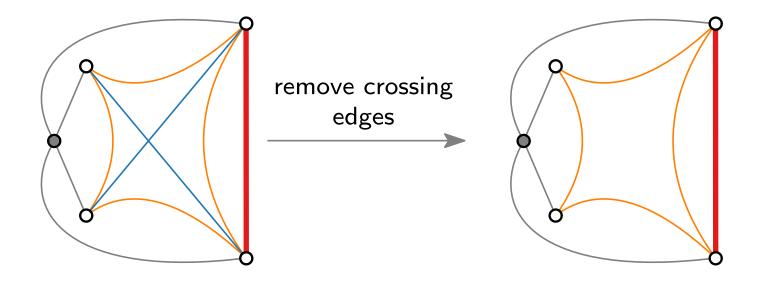


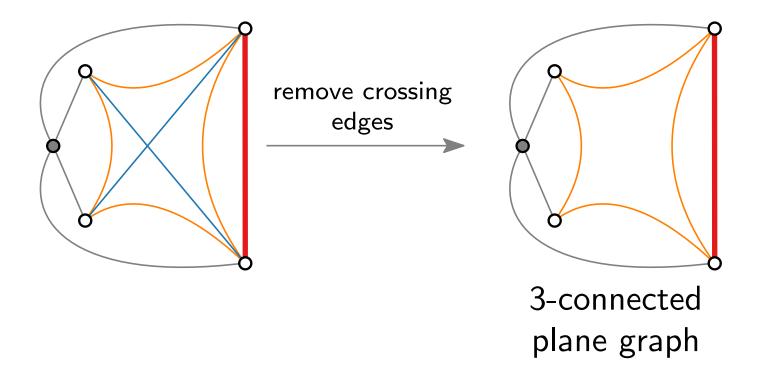


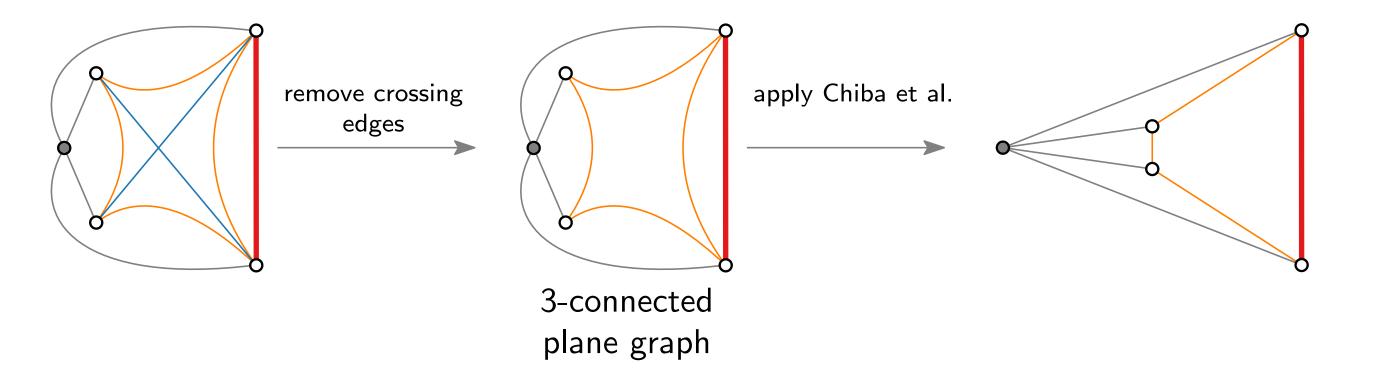
Algorithm Outline

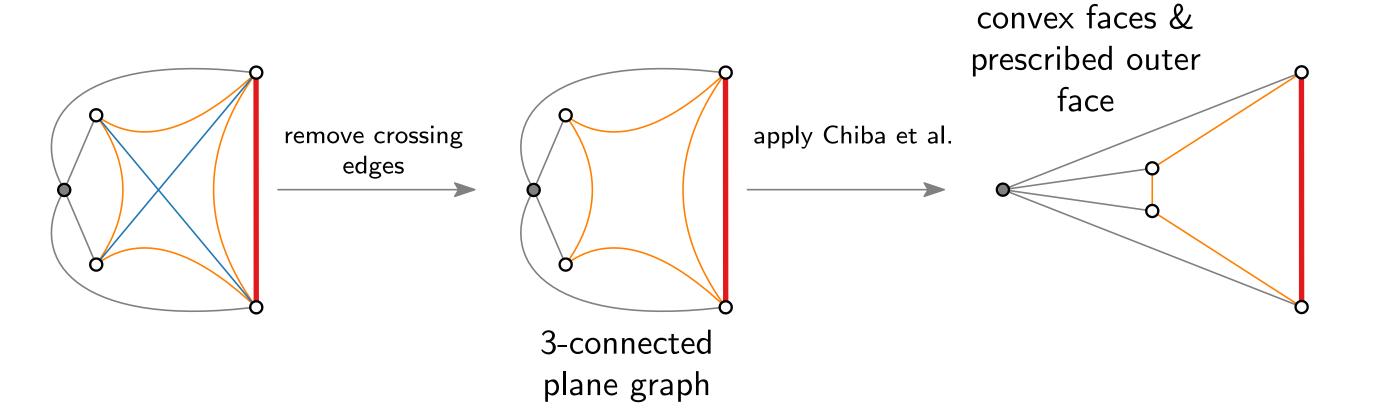


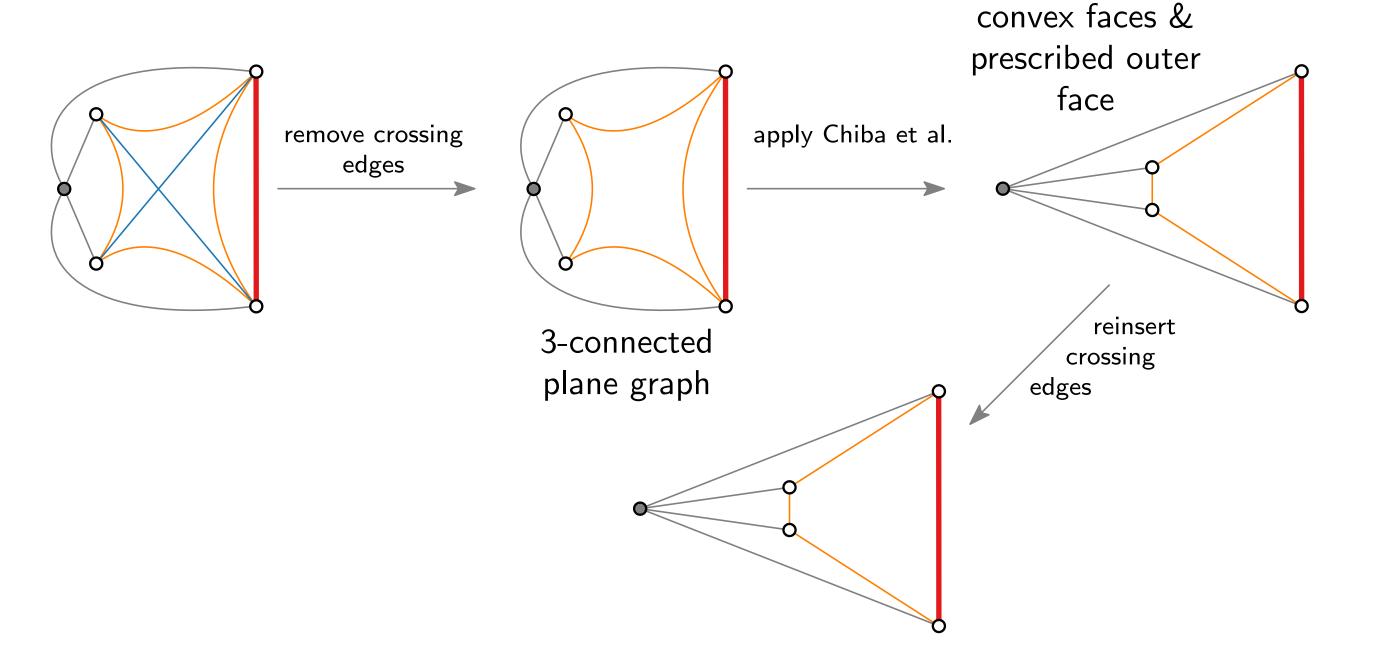


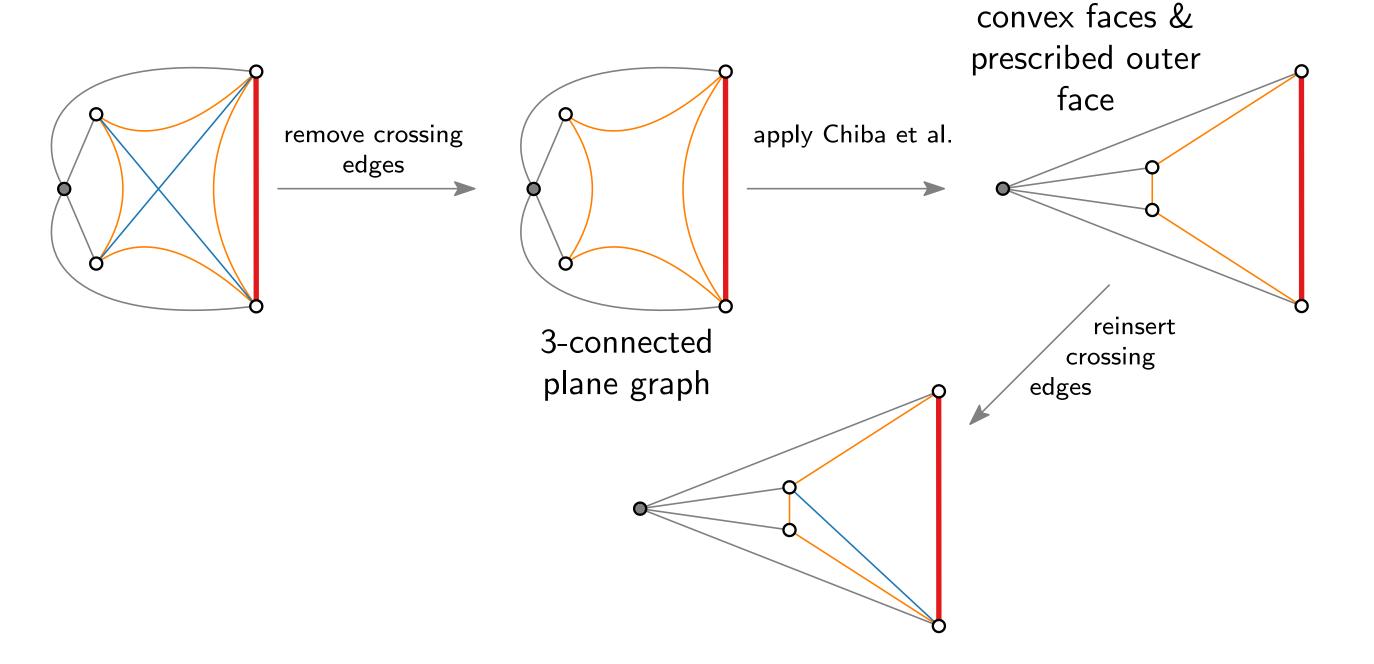


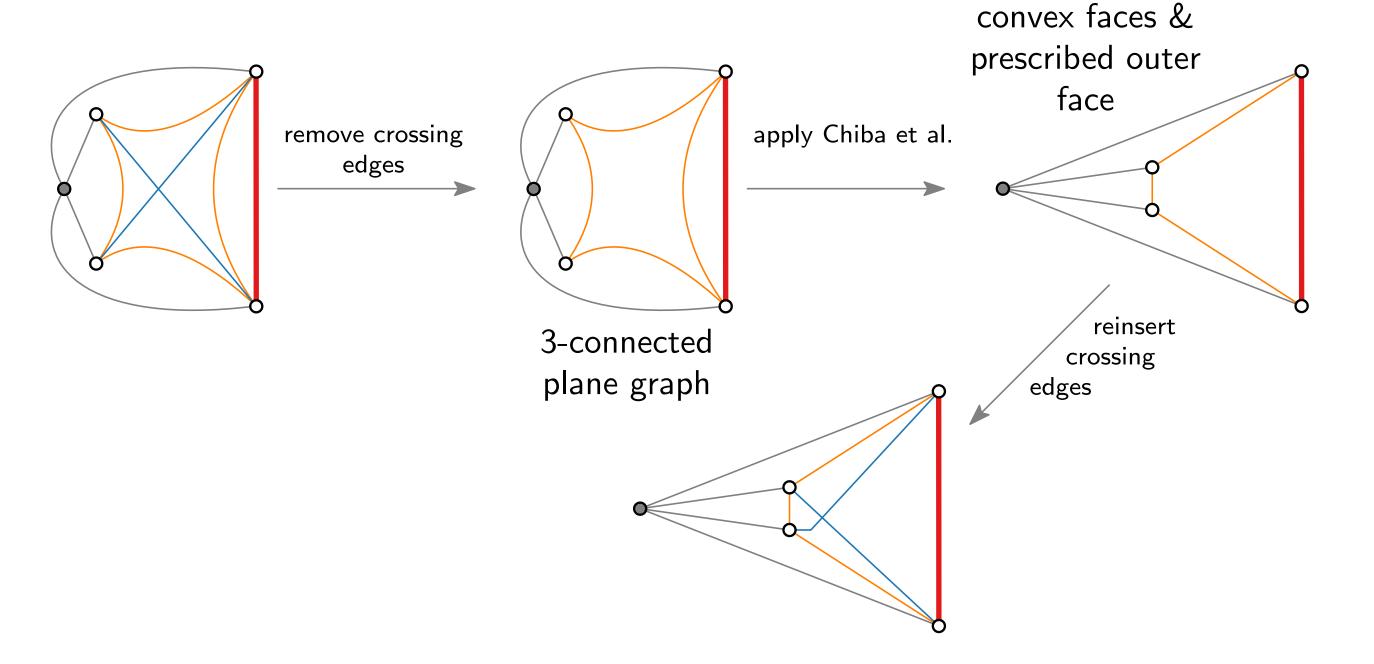


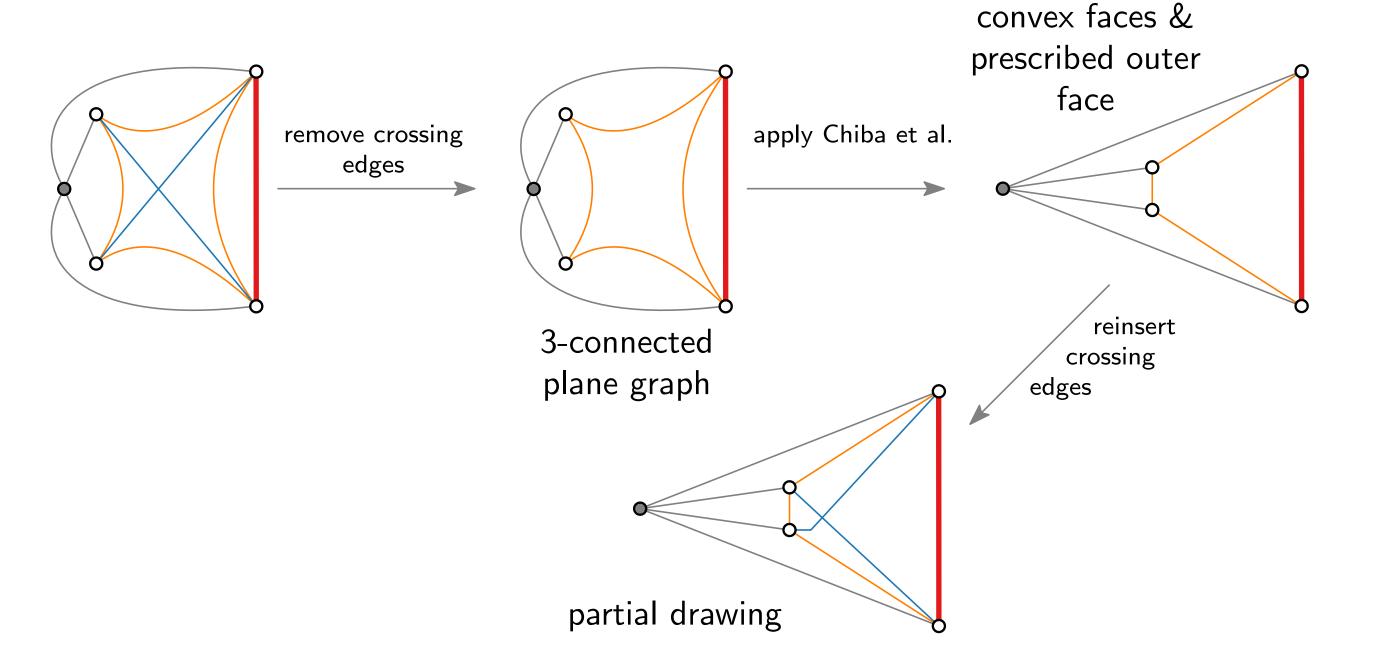


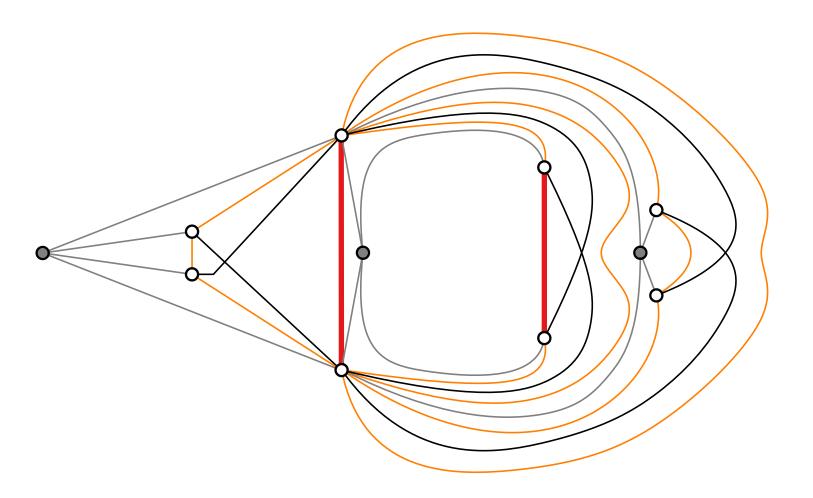


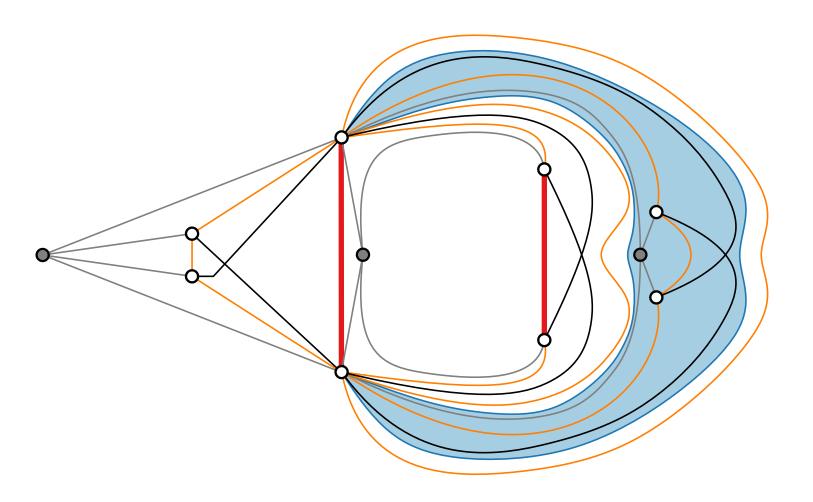


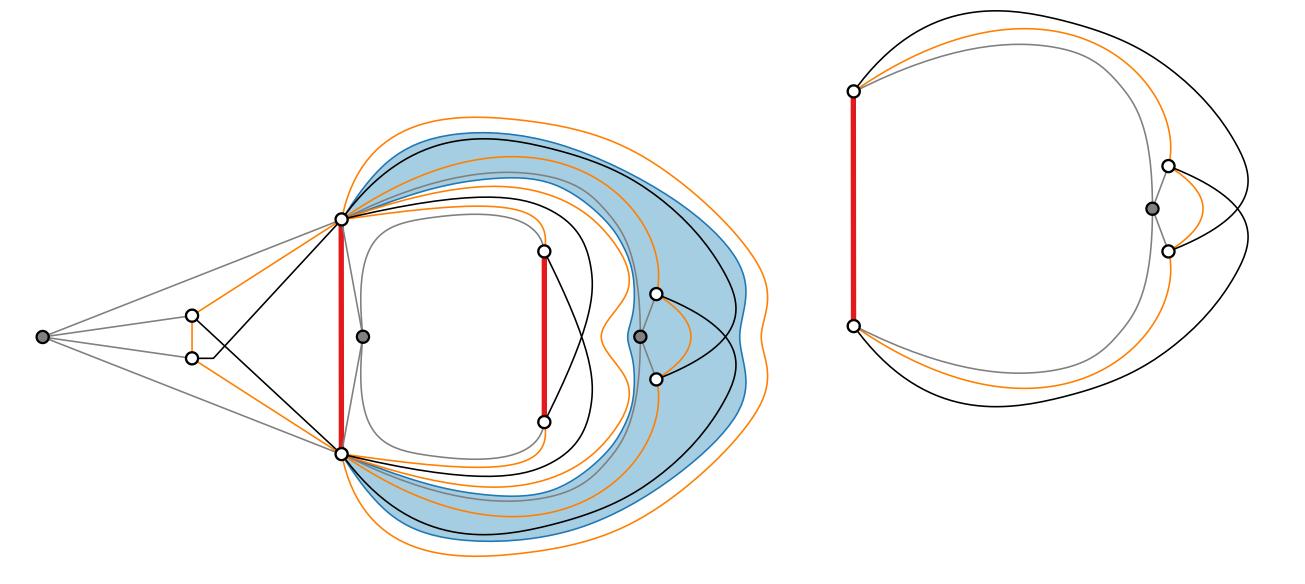


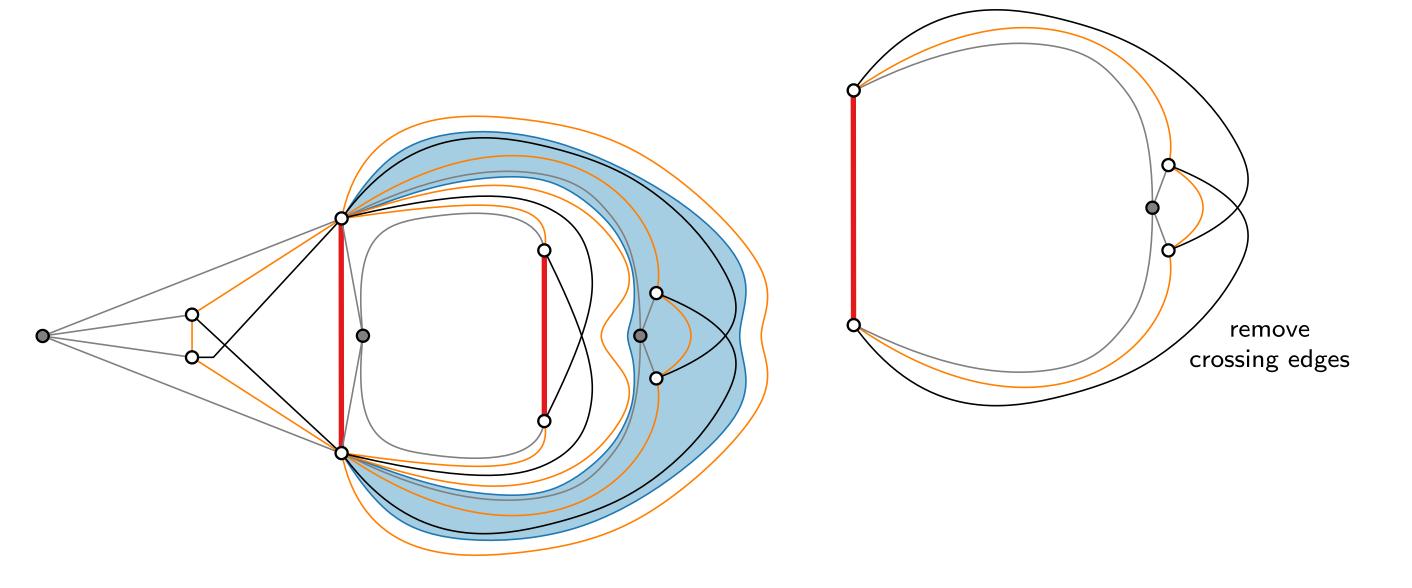


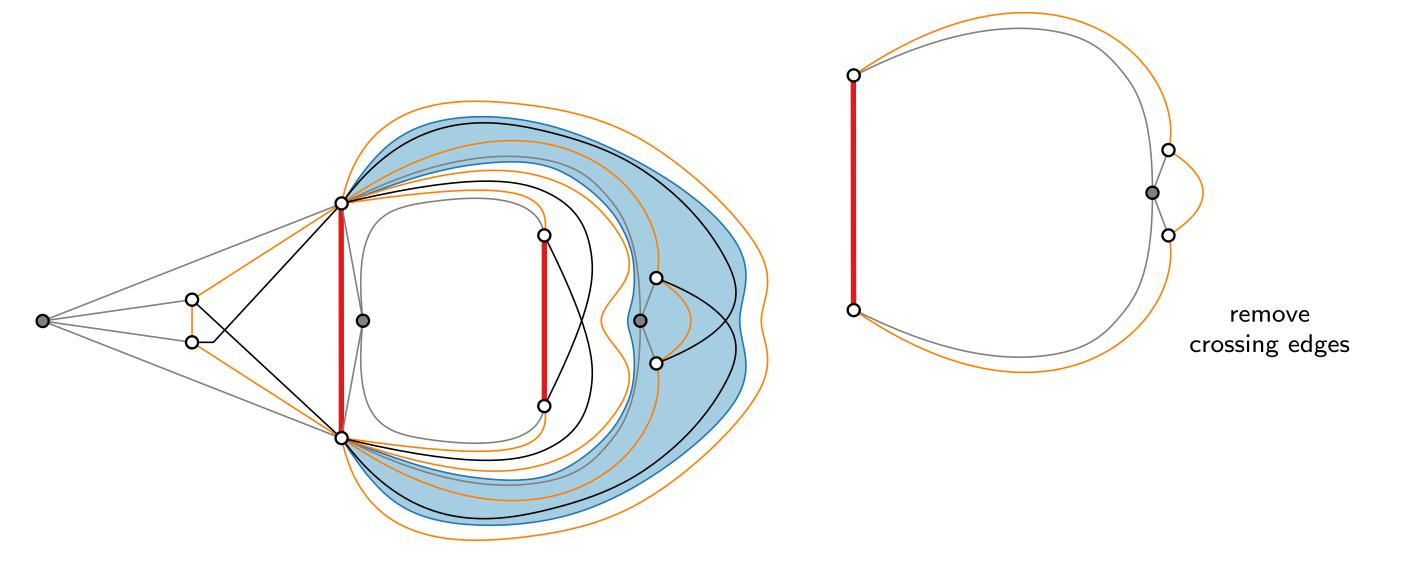


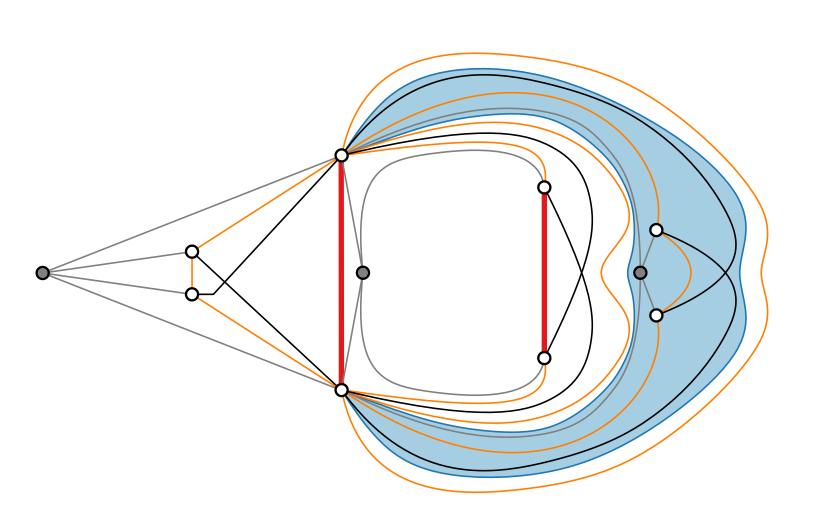


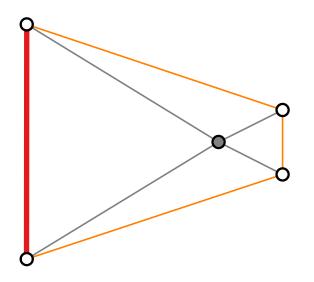




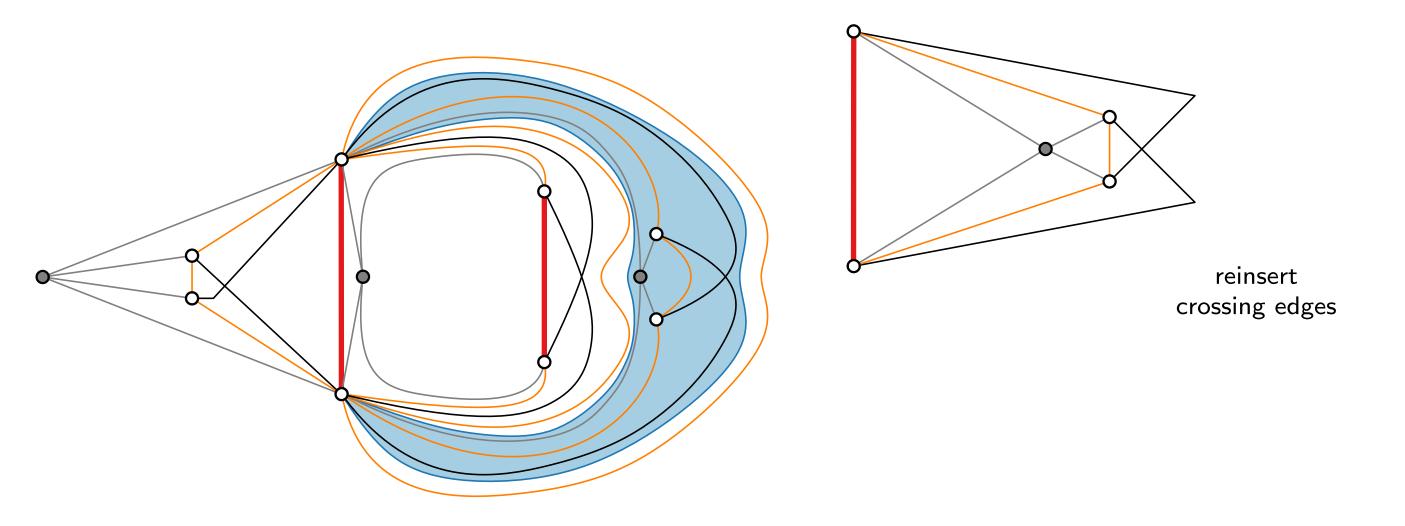


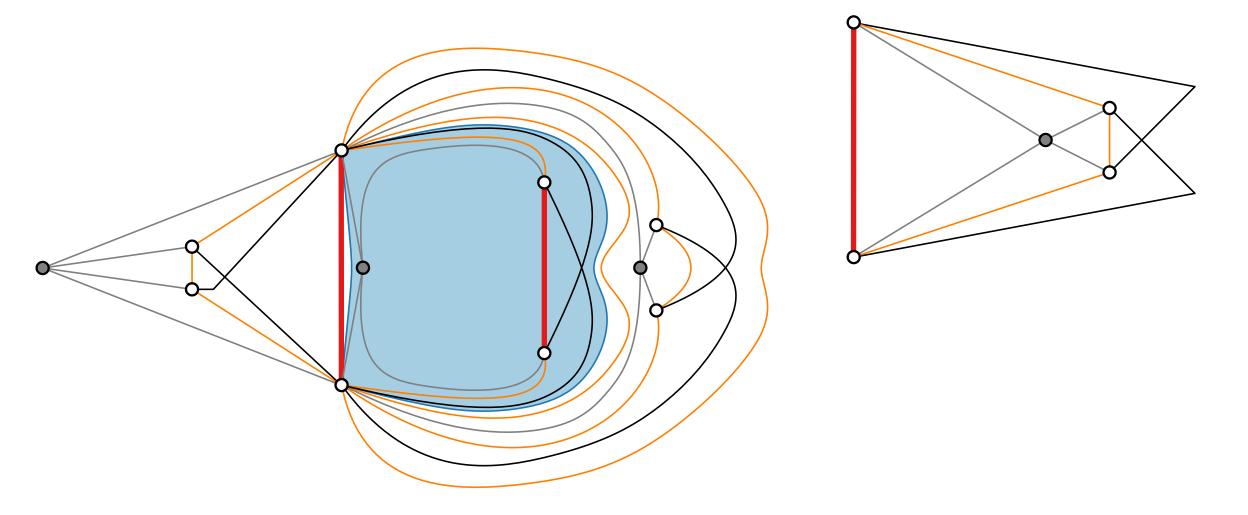


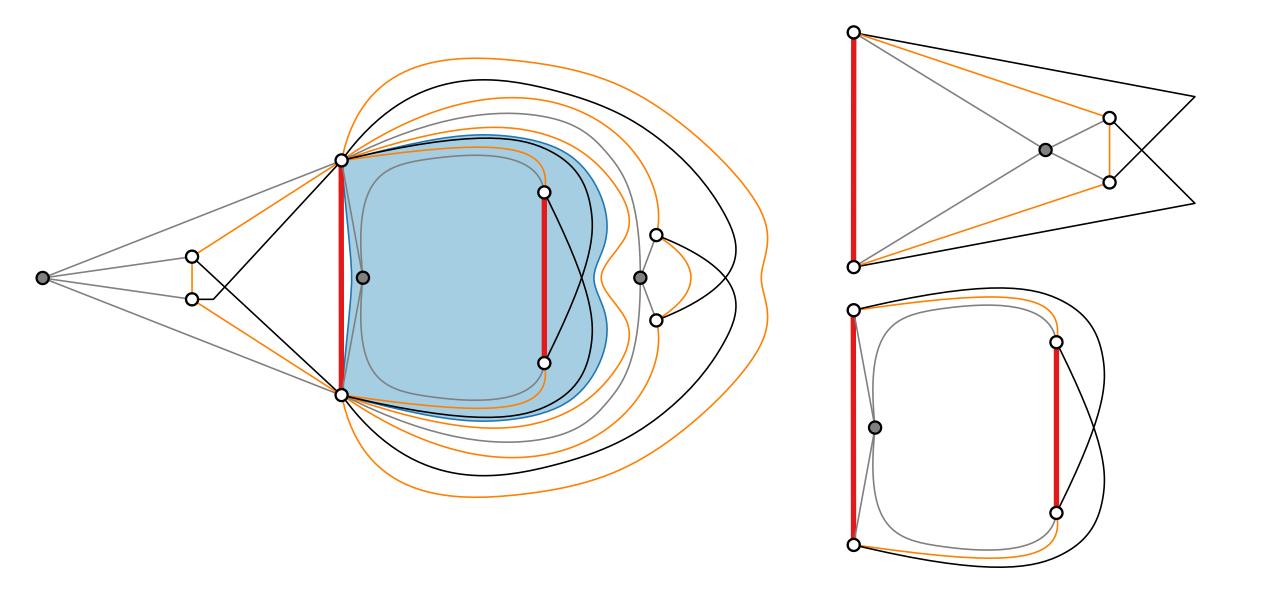


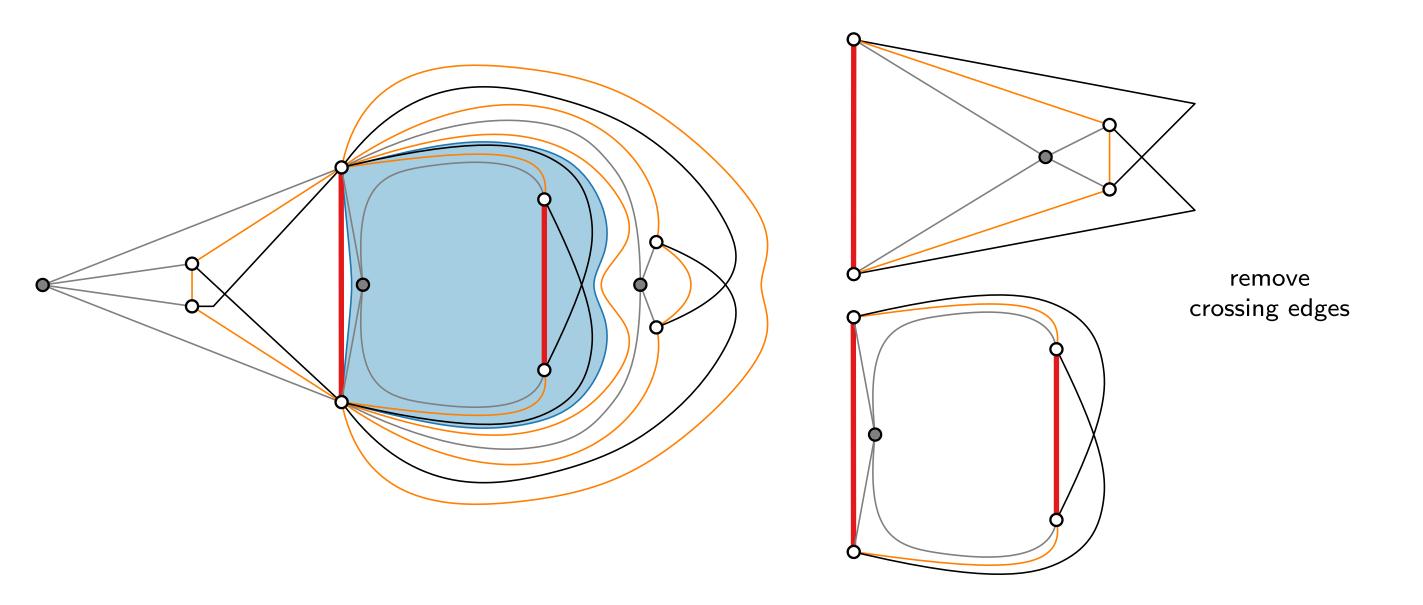


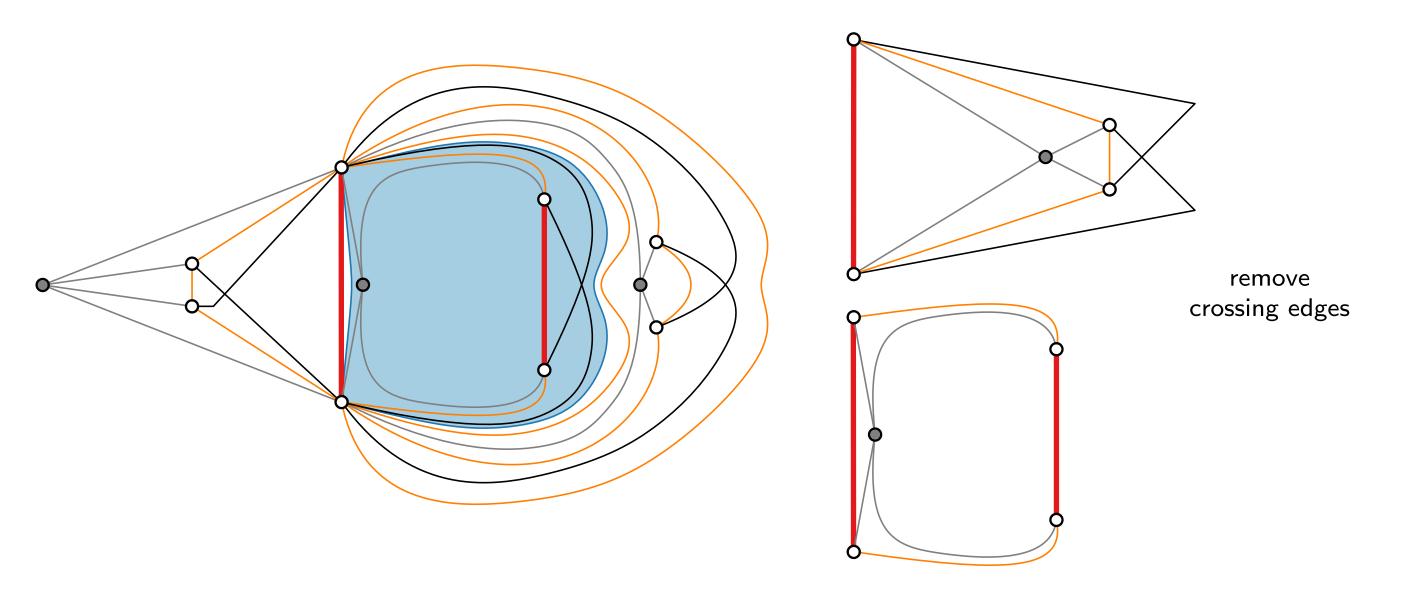
apply Chiba et al.

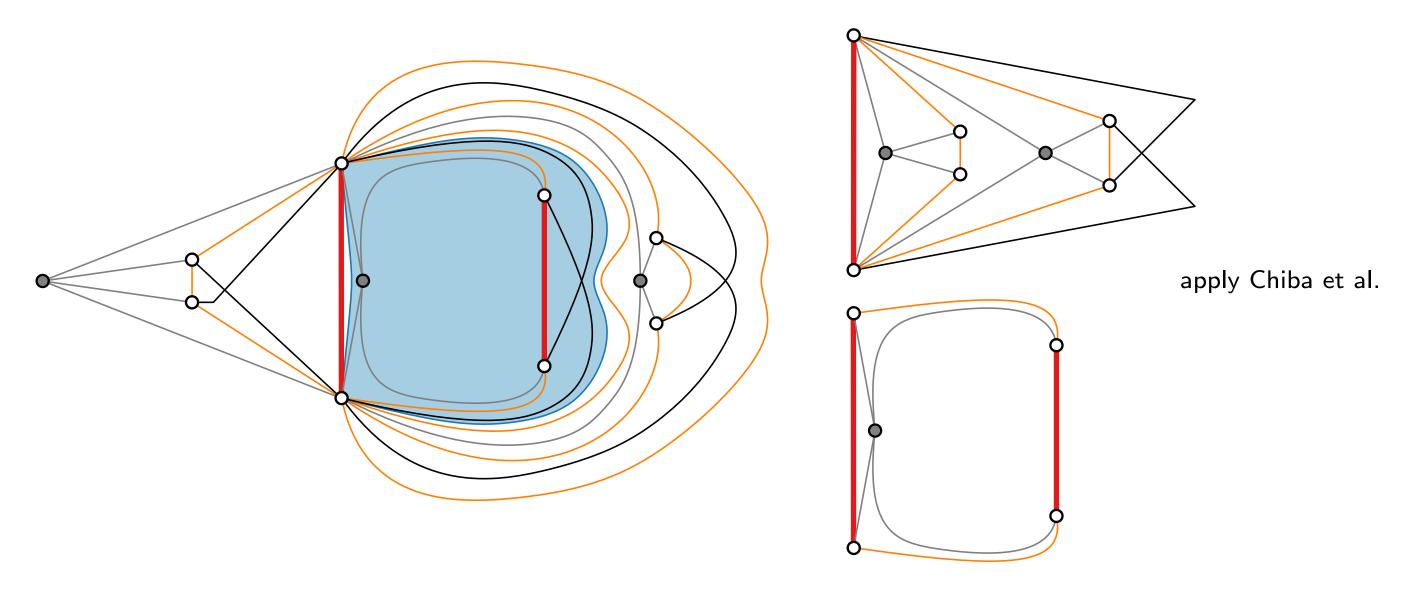


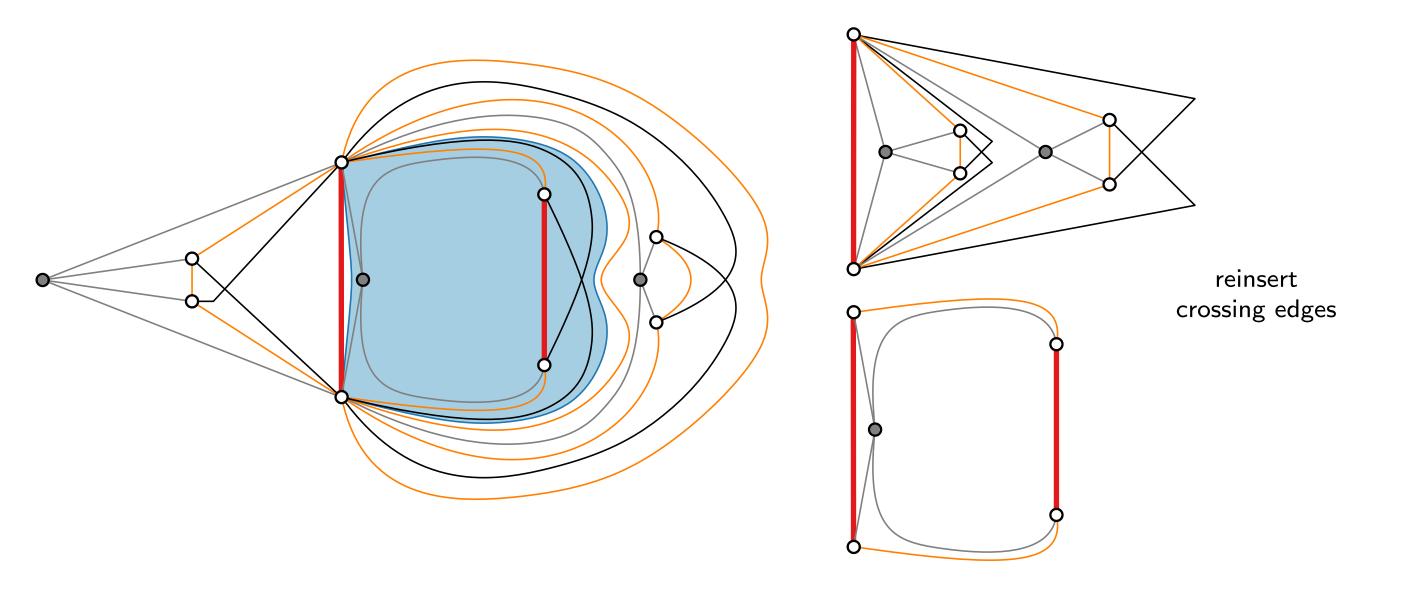


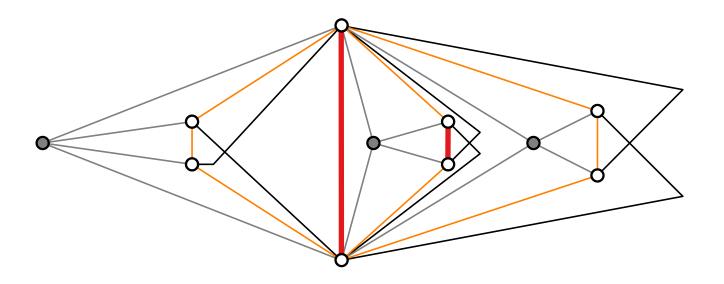


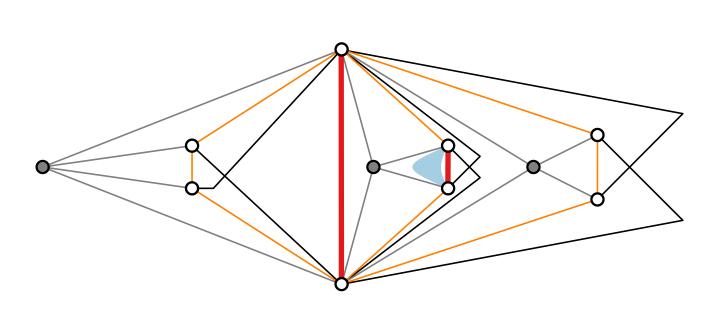


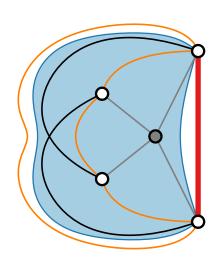


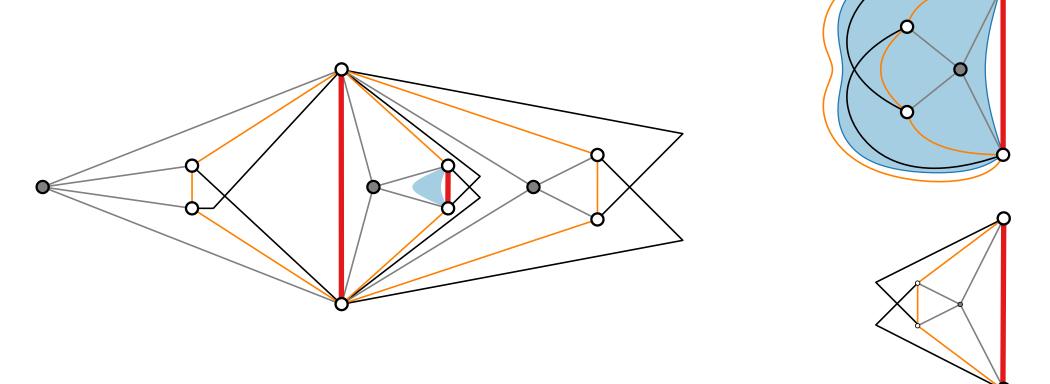






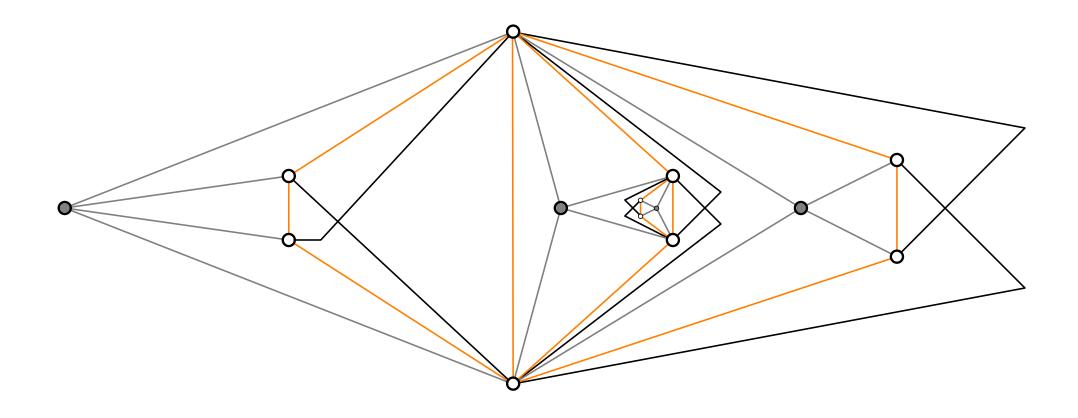




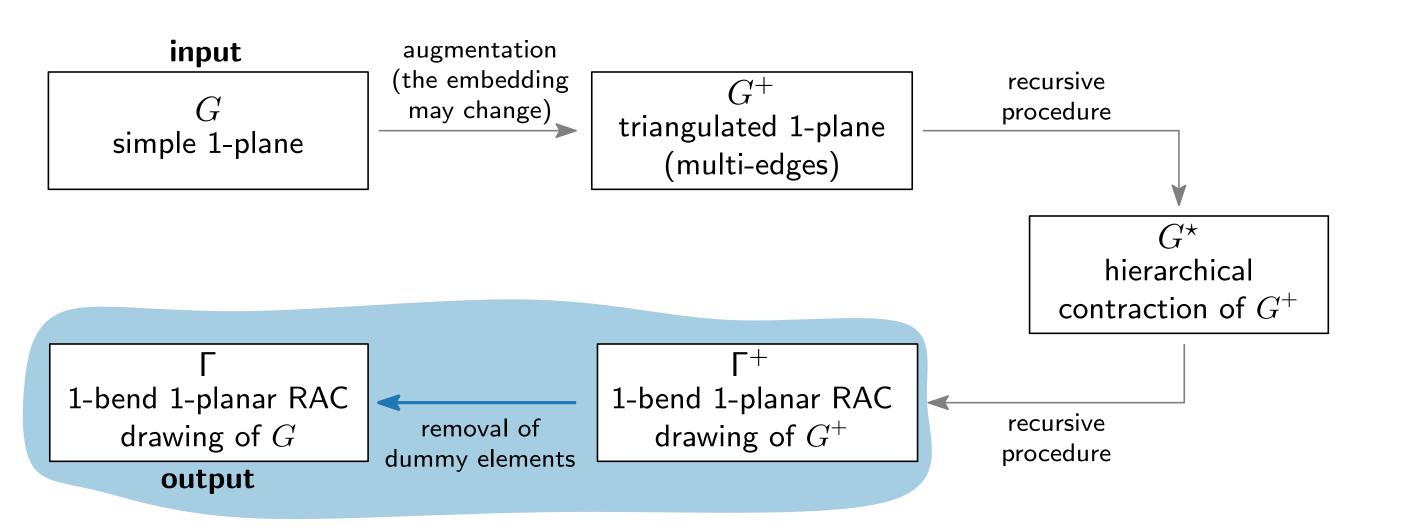




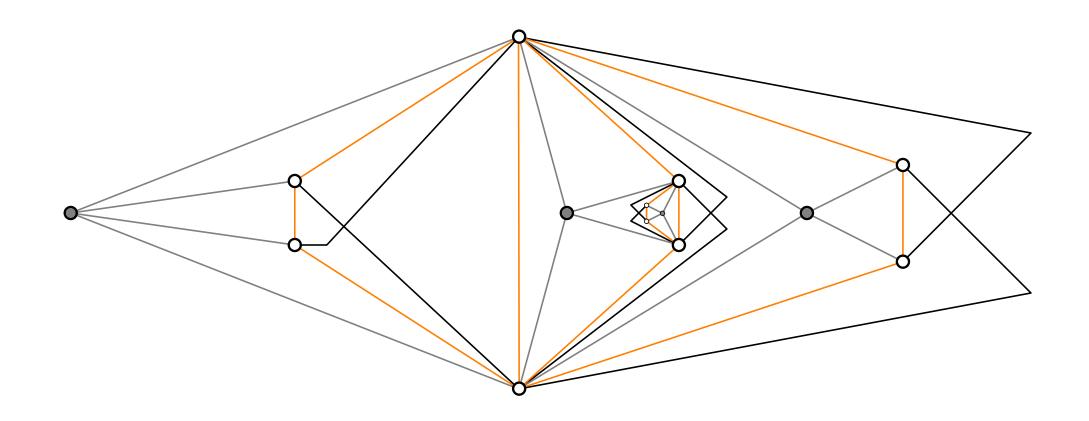
 Γ^+ 1-bend 1-planar RAC drawing of G^+



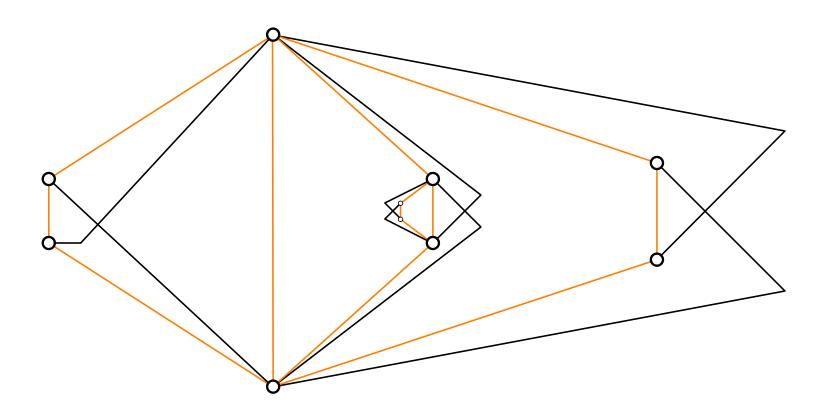
Algorithm Outline



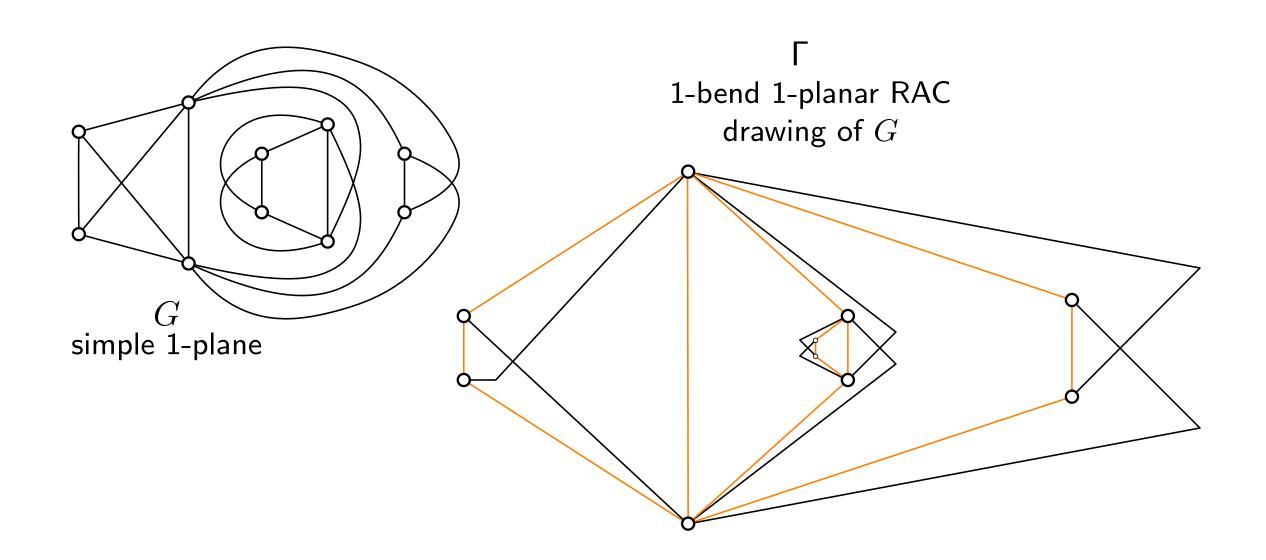
Algorithm Step 4: Removal of Dummy Vertices



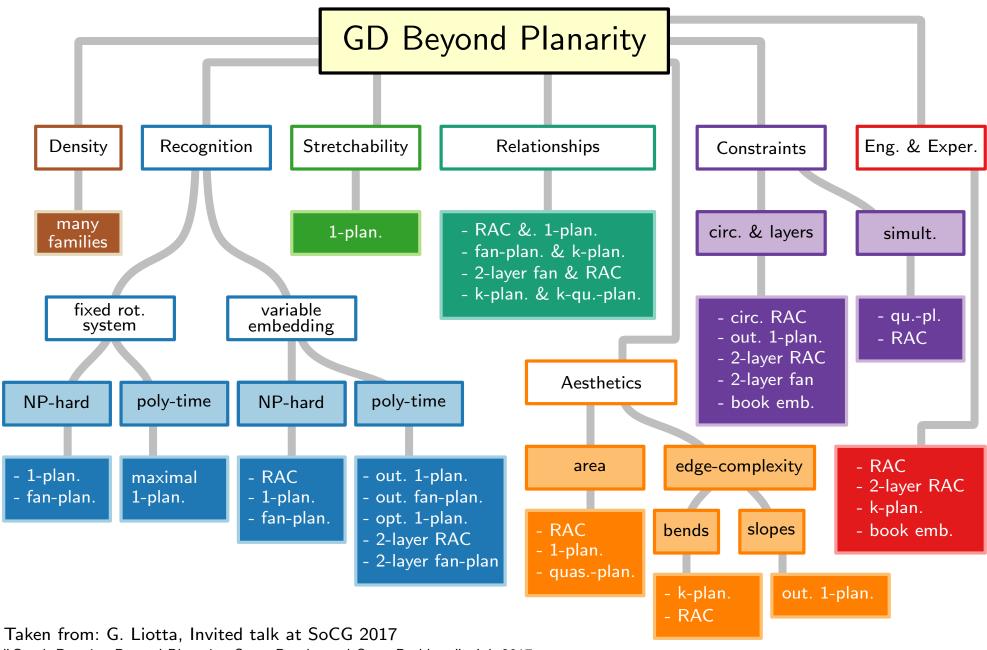
Algorithm Step 4: Removal of Dummy Vertices



Algorithm Step 4: Removal of Dummy Vertices

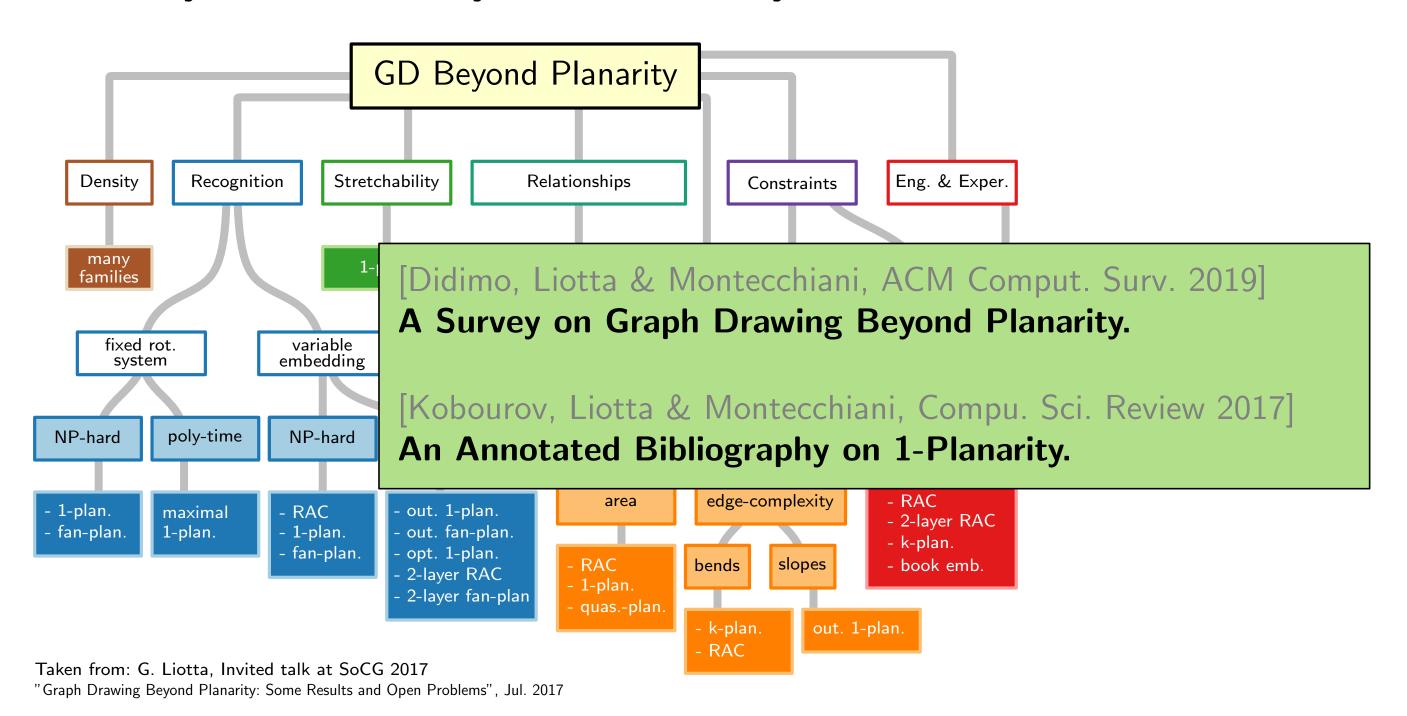


GD Beyond Planarity: a Taxonomy



[&]quot;Graph Drawing Beyond Planarity: Some Results and Open Problems", Jul. 2017

GD Beyond Planarity: a Taxonomy



Literature

Books and surveys:

- [Didimo, Liotta & Montecchiani 2019] A Survey on Graph Drawing Beyond Planarity
- [Kobourov, Liotta & Montecchiani '17] An Annotated Bibliography on 1-Planarity
- [Eds. Hong and Tokuyama '20] Beyond Planar Graphs

Some references for proofs:

- [Eades, Huang, Hong '08] Effects of Crossing Angles
- [Brandenburg et al. '13] On the density of maximal 1-planar graphs
- [Chimani, Kindermann, Montecchani, Valter '19] Crossing Numbers of Beyond-Planar Graphs
- [Grigoriev and Bodlaender '07] Algorithms for graphs embeddable with few crossings per edge
- [Angilini et al. '11] On the Perspectives Opened by Right Angle Crossing Drawings
- [Didimo, Eades, Liotta '17] Drawing graphs with right angle crossings
- [Bekos et al. '17] On RAC drawings of 1-planar graphs