

Visualization of Graphs

Lecture 11:
 Beyond Planarity

Drawing Graphs with Crossings

Part I:

Graph Classes and Drawing Styles

Jonathan Klawitter

[^0]
Planar Graphs

Planar graphs admit drawings in the plane without crossings.

Planar Graphs

Planar graphs admit drawings in the plane without crossings.

Planar Graphs

Planar graphs admit drawings in the plane without crossings.

Plane graph is a planar graph with a plane embedding $=$ rotation system.

Planar Graphs

Planar graphs admit drawings in the plane without crossings.

Plane graph is a planar graph with a plane embedding = rotation system.
Planarity is recognizable in linear time.

Planar Graphs

Planar graphs admit drawings in the plane without crossings.

Plane graph is a planar graph with a plane embedding = rotation system.
Planarity is recognizable in linear time.
Different drawing styles...

Planar Graphs

Planar graphs admit drawings in the plane without crossings.

Plane graph is a planar graph with a plane embedding = rotation system.
Planarity is recognizable in linear time.
Different drawing styles...

straight-line drawing

Planar Graphs

Planar graphs admit drawings in the plane without crossings.
Plane graph is a planar graph with a plane embedding = rotation system.
Planarity is recognizable in linear time.
Different drawing styles...

straight-line drawing

orthogonal drawing

Planar Graphs

Planar graphs admit drawings in the plane without crossings.

Plane graph is a planar graph with a plane embedding $=$ rotation system.
Planarity is recognizable in linear time.
Different drawing styles...

straight-line drawing

orthogonal drawing

grid drawing with bends \& 3 slopes

Planar Graphs

Planar graphs admit drawings in the plane without crossings.

Plane graph is a planar graph with a plane embedding $=$ rotation system.
Planarity is recognizable in linear time.
Different drawing styles...

straight-line drawing

orthogonal drawing

grid drawing with bends \& 3 slopes

circular-arc drawing

And Non-Planar Graphs?

We have seen a few drawing styles:

And Non-Planar Graphs?

We have seen a few drawing styles:

force-directed drawing

And Non-Planar Graphs?

We have seen a few drawing styles:

force-directed drawing

hierarchical drawing

And Non-Planar Graphs?

We have seen a few drawing styles:

force-directed drawing

hierarchical drawing

orthogonal layouts (via planarization)

And Non-Planar Graphs?

We have seen a few drawing styles:

force-directed drawing

hierarchical drawing

orthogonal layouts (via planarization)

Maybe not all crossings are equally bad?

And Non-Planar Graphs?

We have seen a few drawing styles:

force-directed drawing

hierarchical drawing

orthogonal layouts (via planarization)

Maybe not all crossings are equally bad?

block crossings

And Non-Planar Graphs?

We have seen a few drawing styles:

force-directed drawing

hierarchical drawing

orthogonal layouts (via planarization)

Maybe not all crossings are equally bad?

block crossings

Which crossings feel worse?

Eye-Tracking Experiment

Input: A graph drawing and designated path.

Eye-Tracking Experiment

Input: A graph drawing and designated path.

Eye-Tracking Experiment

Input: A graph drawing and designated path.
Task: Trace path and count number of edges.

Eye-Tracking Experiment

Input: A graph drawing and designated path.
Task: Trace path and count number of edges.

Eye-Tracking Experiment

Input: A graph drawing and designated path.
Task: Trace path and count number of edges.

Eye-Tracking Experiment

Input: A graph drawing and designated path.
Task: Trace path and count number of edges.

Results:

Eye-Tracking Experiment

Input: A graph drawing and designated path.
Task: Trace path and count number of edges.
Results: no crossings
eye movements smooth and fast

Eye-Tracking Experiment

Input: A graph drawing and designated path.
Task: Trace path and count number of edges.

Results: no crossings
large crossing angles
eye movements smooth and fast
eye movements smooth but slightly slower

Eye-Tracking Experiment

Input: A graph drawing and designated path.
Task: Trace path and count number of edges.

Results: no crossings

large crossing angles
small crossing angles

eye movements smooth and fast
eye movements smooth but slightly slower
eye movements no longer smooth and very slow (back-and-forth movements at crossing points)

Some Beyond-Planar Graph Classes

We define aesthetics for edge crossings and avoid/minimize "bad" crossing configurations.

Some Beyond-Planar Graph Classes

We define aesthetics for edge crossings and avoid/minimize "bad" crossing configurations.

k-planar $(k=1)$

Some Beyond-Planar Graph Classes

We define aesthetics for edge crossings and avoid/minimize "bad" crossing configurations.

k-planar $(k=1)$

Some Beyond-Planar Graph Classes

We define aesthetics for edge crossings and avoid/minimize "bad" crossing configurations.

k-planar $(k=1)$

k-quasi-planar $(k=3)$

Some Beyond-Planar Graph Classes

We define aesthetics for edge crossings and avoid/minimize "bad" crossing configurations.

k-planar $(k=1)$
$\infty \times x \times$

k-quasi-planar $(k=3)$

Some Beyond-Planar Graph Classes

We define aesthetics for edge crossings and avoid/minimize "bad" crossing configurations.

k-planar $(k=1)$
x来 x

k-quasi-planar $(k=3)$

fan-planar

Some Beyond-Planar Graph Classes

We define aesthetics for edge crossings and avoid/minimize "bad" crossing configurations.

k-planar $(k=1)$
x

k-quasi-planar $(k=3)$

fan-planar

Some Beyond-Planar Graph Classes

We define aesthetics for edge crossings and avoid/minimize "bad" crossing configurations.

k-planar $(k=1)$
x \pm

k-quasi-planar $(k=3)$

fan-planar

Some Beyond-Planar Graph Classes

We define aesthetics for edge crossings and avoid/minimize "bad" crossing configurations.

k-planar $(k=1)$

k-quasi-planar $(k=3)$

fan-planar

right-angle crossing

Some Beyond-Planar Graph Classes

We define aesthetics for edge crossings and avoid/minimize "bad" crossing configurations.

/rosing configurations.

Some Beyond-Planar Graph Classes

We define aesthetics for edge crossings and avoid/minimize "bad" crossing configurations.

$$
k \text {-planar }(k=1)
$$

$$
k \text {-quasi-planar }(k=3)
$$

fan-planar

right-angle crossing

There are many more beyond planar graph classes...

Some Beyond-Planar Graph Classes

We define aesthetics for edge crossings and avoid/minimize "bad" crossing configurations.

k-planar $(k=1)$

$$
k \text {-quasi-planar }(k=3)
$$

fan-planar

right-angle crossing

There are many more beyond planar graph classes...

IC (independent crossing)

Some Beyond-Planar Graph Classes

We define aesthetics for edge crossings and avoid/minimize "bad" crossing configurations.

$$
k \text {-planar }(k=1)
$$

$$
k \text {-quasi-planar }(k=3)
$$

fan-planar

There are many more beyond planar graph classes...

RAC
right-angle crossing

IC (independent crossing)
-

fan-crossing-free

Some Beyond-Planar Graph Classes

We define aesthetics for edge crossings and avoid/minimize "bad" crossing configurations.

k-planar $(k=1)$

$$
k \text {-quasi-planar }(k=3)
$$

There are many more beyond planar graph classes...

IC (independent crossing)

fan-crossing-free

skewness- $k(k=2)$

Some Beyond-Planar Graph Classes

We define aesthetics for edge crossings and avoid/minimize "bad" crossing configurations.

k-planar $(k=1)$

$$
k \text {-quasi-planar }(k=3)
$$

There are many more beyond planar graph classes...

IC (independent crossing)

fan-crossing-free

skewness- $k(k=2)$ combinations, ...

RAC
right-angle crossing

Drawing Styles for Crossings

RAC
right-angle crossing

Drawing Styles for Crossings

right-angle crossing

slanted orthogonal

Drawing Styles for Crossings

RAC
right-angle crossing
\square $+$
x_{x}

slanted orthogonal

block/bundle crossings circular layout: 28 invididual vs. 12 bundle crossings

Drawing Styles for Crossings

block/bundle crossings circular layout: 28 invididual vs. 12 bundle crossings

Drawing Styles for Crossings

slanted orthogonal

Drawing Styles for Crossings

RAC
right-angle crossing
\square $+$

slanted orthogonal

Drawing Styles for Crossings

RAC
right-angle crossing
\square $+$

orthogonal

slanted orthogonal

block/bundle crossings circular layout: 28 invididual vs. 12 bundle crossings

sym. partial edge drawing

Drawing Styles for Crossings

RAC
right-angle crossing

orthogonal

slanted orthogonal

block/bundle crossings circular layout: 28 invididual vs. 12 bundle crossings

sym. partial edge drawing

1/4-SHPED

Geometric Representations

Geometric Representations

representation (B1VR)

Geometric Representations

representation (B 1 VR)

Geometric Representations

representation (B1VR)

Geometric Representations

representation (B 1 VR)

Geometric Representations

representation (B1VR)

- Every 1-planar graph admits a B1VR.
[Brandenburg 2014; Evans et al. 2014;
Angelini et al. 2018]

Geometric Representations

representation (B1VR)

thickness
two graph

■ Every 1-planar graph admits a B1VR. [Brandenburg 2014; Evans et al. 2014;
Angelini et al. 2018]

Geometric Representations

■ Every 1-planar graph admits a B1VR. [Brandenburg 2014; Evans et al. 2014;
Angelini et al. 2018]

Geometric Representations

- Every 1-planar graph admits a B1VR. [Brandenburg 2014; Evans et al. 2014;

Angelini et al. 2018]

Geometric Representations

■ Every 1-planar graph admits a B1VR. [Brandenburg 2014; Evans et al. 2014;
Angelini et al. 2018]

Geometric Representations

- Every 1-planar graph admits a B1VR.

■ G has at most $6 n-20$ edges [Bose et al. 1997] [Brandenburg 2014; Evans et al. 2014;
Angelini et al. 2018]

Geometric Representations

■ Every 1-planar graph admits a B1VR. [Brandenburg 2014; Evans et al. 2014;
Angelini et al. 2018]
■ G has at most $6 n-20$ edges [Bose et al. 1997]
■ Recognition is NP-complete [Shermer 1996]

Geometric Representations

representation (B1VR)

thickness two graph

rectangle visibility representation

■ Every 1-planar graph admits a B1VR. [Brandenburg 2014; Evans et al. 2014;
Angelini et al. 2018]

■ G has at most $6 n-20$ edges [Bose et al. 1997]
■ Recognition is NP-complete [Shermer 1996]

- Recognition becomes polynomial if embedding is fixed [Biedl et al. 2018]

GD Beyond Planarity: a Taxonomy

"Graph Drawing Beyond Planarity: Some Results and Open Problems", Jul. 2017

Visualization of Graphs

Lecture 11:
 Beyond Planarity

Drawing Graphs with Crossings

Part II:
Density \& Relationships

Jonathan Klawitter

GD Beyond Planarity: a Taxonomy

"Graph Drawing Beyond Planarity: Some Results and Open Problems", Jul. 2017

Density of 1-Planar Graphs

Theorem. [Ringel 1965, Pach \& Tóth 1997]

A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.

Density of 1-Planar Graphs

Theorem. [Ringel 1965, Pach \& Tóth 1997] A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.

Proof sketch.

Density of 1-Planar Graphs

Theorem. [Ringel 1965, Pach \& Tóth 1997] A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.

Proof sketch.

Density of 1-Planar Graphs

Theorem. [Ringel 1965, Pach \& Tóth 1997]

 A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.Proof sketch.
■ red edges do not cross

Density of 1-Planar Graphs

Theorem. [Ringel 1965, Pach \& Tóth 1997]

 A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.Proof sketch.

- red edges do not cross
\square each blue edge crosses a green edge

Density of 1-Planar Graphs

Theorem. [Ringel 1965, Pach \& Tóth 1997]

 A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.Proof sketch.
■ red edges do not cross
■ each blue edge crosses a green edge
■ red-blue plane graph $G_{r b}$

$G_{r b}$

Density of 1-Planar Graphs

Theorem. [Ringel 1965, Pach \& Tóth 1997]

A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.

Proof sketch.

■ red edges do not cross
■ each blue edge crosses a green edge

- red-blue plane graph $G_{r b}$

$$
m_{r b} \leq 3 n-6
$$

$G_{r b}$

Density of 1-Planar Graphs

Theorem. [Ringel 1965, Pach \& Tóth 1997]

A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.

Proof sketch.

■ red edges do not cross
■ each blue edge crosses a green edge

- red-blue plane graph $G_{r b}$

$$
m_{r b} \leq 3 n-6
$$

■ green plane graph G_{g}

Density of 1-Planar Graphs

Theorem. [Ringel 1965, Pach \& Tóth 1997]

A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.

Proof sketch.

■ red edges do not cross
■ each blue edge crosses a green edge

- red-blue plane graph $G_{r b}$

$$
m_{r b} \leq 3 n-6
$$

■ green plane graph G_{g} $m_{g} \leq 3 n-6$

Density of 1-Planar Graphs

Theorem.

[Ringel 1965, Pach \& Tóth 1997]
A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.

Proof sketch.

- red edges do not cross

■ each blue edge crosses a green edge

- red-blue plane graph $G_{r b}$

$$
m_{r b} \leq 3 n-6
$$

■ green plane graph G_{g}

$$
m_{g} \leq 3 n-6 \quad \Rightarrow \quad m \leq m_{r b}+m_{g} \leq 6 n-12
$$

Density of 1-Planar Graphs

Theorem.

[Ringel 1965, Pach \& Tóth 1997]
A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.

Proof sketch.

- red edges do not cross

■ each blue edge crosses a green edge

- red-blue plane graph $G_{r b}$

$$
m_{r b} \leq 3 n-6
$$

■ green plane graph G_{g}

$$
m_{g} \leq 3 n-6 \quad \Rightarrow \quad m \leq m_{r b}+m_{g} \leq 6 n-12
$$

Observe that each green edge joins two faces in $G_{r b}$.

Density of 1-Planar Graphs

Theorem.

[Ringel 1965, Pach \& Tóth 1997]
A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.

Proof sketch.

- red edges do not cross

■ each blue edge crosses a green edge

- red-blue plane graph $G_{r b}$

$$
m_{r b} \leq 3 n-6
$$

■ green plane graph G_{g}

$$
m_{g} \leq 3 n-6 \quad \Rightarrow \quad m \leq m_{r b}+m_{g} \leq 6 n-12
$$

Observe that each green edge joins two faces in $G_{r b}$.

$$
m_{g} \leq f_{r b} / 2
$$

Density of 1-Planar Graphs

Theorem.

[Ringel 1965, Pach \& Tóth 1997]
A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.

Proof sketch.

- red edges do not cross
- each blue edge crosses a green edge
- red-blue plane graph $G_{r b}$

$$
m_{r b} \leq 3 n-6
$$

■ green plane graph G_{g}

$$
m_{g} \leq 3 n-6 \quad \Rightarrow \quad m \leq m_{r b}+m_{g} \leq 6 n-12
$$

Observe that each green edge joins two faces in $G_{r b}$.

$$
m_{g} \leq f_{r b} / 2 \leq(2 n-4) / 2
$$

Density of 1-Planar Graphs

Theorem.

[Ringel 1965, Pach \& Tóth 1997]
A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.

Proof sketch.

■ red edges do not cross
■ each blue edge crosses a green edge

- red-blue plane graph $G_{r b}$

$$
m_{r b} \leq 3 n-6
$$

■ green plane graph G_{g}

$$
m_{g} \leq 3 n-6 \quad \Rightarrow \quad m \leq m_{r b}+m_{g} \leq 6 n-12
$$

Observe that each green edge joins two faces in $G_{r b}$.

$$
m_{g} \leq f_{r b} / 2 \leq(2 n-4) / 2=n-2
$$

Density of 1-Planar Graphs

Theorem.

[Ringel 1965, Pach \& Tóth 1997]
A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.

Proof sketch.

■ red edges do not cross

- each blue edge crosses a green edge
- red-blue plane graph $G_{r b}$

$$
m_{r b} \leq 3 n-6
$$

■ green plane graph G_{g}

$$
m_{g} \leq 3 n-6 \quad \Rightarrow \quad m \leq m_{r b}+m_{g} \leq 6 n-12
$$

Observe that each green edge joins two faces in $G_{r b}$.

$$
\begin{aligned}
m_{g} \leq f_{r b} / 2 \leq(2 n-4) / 2 & =n-2 \\
\Rightarrow & m=m_{r b}+m_{g}
\end{aligned}
$$

Density of 1-Planar Graphs

Theorem.

[Ringel 1965, Pach \& Tóth 1997]
A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.

Proof sketch.

■ red edges do not cross

- each blue edge crosses a green edge
- red-blue plane graph $G_{r b}$

$$
m_{r b} \leq 3 n-6
$$

- green plane graph G_{g}

$$
m_{g} \leq 3 n-6 \quad \Rightarrow \quad m \leq m_{r b}+m_{g} \leq 6 n-12
$$

Observe that each green edge joins two faces in $G_{r b}$.

$$
\begin{aligned}
m_{g} \leq f_{r b} / 2 \leq(2 n-4) / 2 & =n-2 \\
\Rightarrow & m=m_{r b}+m_{g} \leq 3 n-6+n-2=4 n-8
\end{aligned}
$$

Density of 1-Planar Graphs

Theorem.

[Ringel 1965, Pach \& Tóth 1997]
A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.

Proof sketch.

- red edges do not cross
- each blue edge crosses a green edge
- red-blue plane graph $G_{r b}$

$$
m_{r b} \leq 3 n-6
$$

- green plane graph G_{g}

Planar structure:

$$
\begin{array}{r}
2 n-4 \text { edges } \\
n-2 \text { faces }
\end{array}
$$

$$
m_{g} \leq 3 n-6 \quad \Rightarrow \quad m \leq m_{r b}+m_{g} \leq 6 n-12
$$

Observe that each green edge joins two faces in $G_{r b}$.

$$
\begin{aligned}
m_{g} \leq f_{r b} / 2 \leq(2 n-4) / 2 & =n-2 \\
\Rightarrow & m=m_{r b}+m_{g} \leq 3 n-6+n-2=4 n-8
\end{aligned}
$$

Density of 1-Planar Graphs

Theorem.

[Ringel 1965, Pach \& Tóth 1997]
A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.

Proof sketch.

■ red edges do not cross

- each blue edge crosses a green edge
- red-blue plane graph $G_{r b}$

$$
m_{r b} \leq 3 n-6
$$

- green plane graph G_{g}

$$
m_{g} \leq 3 n-6 \quad \Rightarrow \quad m \leq m_{r b}+m_{g} \leq 6 n-12
$$

Planar structure:
$2 n-4$ edges
$n-2$ faces
Edges per face:
2 edges

Observe that each green edge joins two faces in $G_{r b}$.

$$
\begin{aligned}
m_{g} \leq f_{r b} / 2 \leq(2 n-4) / 2 & =n-2 \\
\Rightarrow & m=m_{r b}+m_{g} \leq 3 n-6+n-2=4 n-8
\end{aligned}
$$

Density of 1-Planar Graphs

Theorem.

[Ringel 1965, Pach \& Tóth 1997]
A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.

Proof sketch.

- red edges do not cross

■ each blue edge crosses a green edge

- red-blue plane graph $G_{r b}$

$$
m_{r b} \leq 3 n-6
$$

- green plane graph G_{g}

$$
m_{g} \leq 3 n-6 \quad \Rightarrow \quad m \leq m_{r b}+m_{g} \leq 6 n-12
$$

Observe that each green edge joins two faces in $G_{r b}$.

Planar structure:

$$
2 n-4 \text { edges }
$$

$n-2$ faces
Edges per face: 2 edges
Total:
$4 n-8$ edges

$$
\begin{aligned}
m_{g} \leq f_{r b} / 2 \leq(2 n-4) / 2 & =n-2 \\
\Rightarrow & m=m_{r b}+m_{g} \leq 3 n-6+n-2=4 n-8
\end{aligned}
$$

Density of 1-Planar Graphs

Theorem

[Ringel 1965, Pach \& Tóth 1997]
A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.

Density of 1-Planar Graphs

Theorem.

[Ringel 1965, Pach \& Tóth 1997]
A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.

A 1-planar graph with n vertices is called optimal if it has exactly $4 n-8$ edges.

Density of 1-Planar Graphs

Theorem.
 [Ringel 1965, Pach \& Tóth 1997]

A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.

A 1-planar graph with n vertices is called optimal if it has exactly $4 n-8$ edges.

A 1-planar graph is called maximal if adding any edge would result in a non-1-planar graph.

Density of 1-Planar Graphs

Theorem. [Ringel 1965, Pach \& Tóth 1997]

A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.

A 1-planar graph with n vertices is called optimal if it has exactly $4 n-8$ edges.

A 1-planar graph is called maximal if adding any edge would result in a non-1-planar graph.

Theorem.
 [Brandenburg et al. 2013]
 There are maximal 1-planar graphs with n vertices and $45 / 17 n-O(1)$ edges.

Density of 1-Planar Graphs

Theorem.

[Ringel 1965, Pach \& Tóth 1997]
A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.

A 1-planar graph with n vertices is called optimal if it has exactly $4 n-8$ edges.

A 1-planar graph is called maximal if adding any edge would result in a non-1-planar graph.

Theorem.
[Brandenburg et al. 2013]
There are maximal 1-planar graphs with n vertices and $45 / 17 n-O(1)$ edges.

Density of 1-Planar Graphs

Theorem.

[Ringel 1965, Pach \& Tóth 1997]
A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.

A 1-planar graph with n vertices is called optimal if it has exactly $4 n-8$ edges.

A 1-planar graph is called maximal if adding any edge would result in a non-1-planar graph.

Theorem.

[Brandenburg et al. 2013]
There are maximal 1-planar graphs with n vertices and $45 / 17 n-O(1)$ edges.

Density of 1-Planar Graphs

Theorem.

[Ringel 1965, Pach \& Tóth 1997]
A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.

A 1-planar graph with n vertices is called optimal if it has exactly $4 n-8$ edges.

A 1-planar graph is called maximal if adding any edge would result in a non-1-planar graph.

Theorem.

[Brandenburg et al. 2013]
There are maximal 1-planar graphs with n vertices and $45 / 17 n-O(1)$ edges.

Density of 1-Planar Graphs

Theorem.

[Ringel 1965, Pach \& Tóth 1997]
A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.

A 1-planar graph with n vertices is called optimal if it has exactly $4 n-8$ edges.

A 1-planar graph is called maximal if adding any edge would result in a non-1-planar graph.

Theorem.

[Brandenburg et al. 2013]
There are maximal 1-planar graphs with n vertices and $45 / 17 n-O(1)$ edges.

Density of 1-Planar Graphs

Theorem.

[Ringel 1965, Pach \& Tóth 1997]
A 1-planar graph with n vertices has at most $4 n-8$ edges, which is a tight bound.

A 1-planar graph with n vertices is called optimal if it has exactly $4 n-8$ edges.

A 1-planar graph is called maximal if adding any edge would result in a non-1-planar graph.

Theorem.

[Brandenburg et al. 2013]
There are maximal 1-planar graphs with n vertices and $45 / 17 n-O(1)$ edges.

Theorem.

[Didimo 2013]
A 1-planar graph with n vertices that admits a straight-line drawing has at most $4 n-9$ edges.

Density of k-Planar Graphs

Theorem.
A k-planar graph with n vertices has at most:
k number of edges

Density of k-Planar Graphs

Theorem.
A k-planar graph with n vertices has at most:
k number of edges
0
$3(n-2)$
Euler's formula

Density of k-Planar Graphs

Theorem.
A k-planar graph with n vertices has at most:
k number of edges
0
$3(n-2)$
$4(n-2)$
Euler's formula
[Ringel 1965]

Density of k-Planar Graphs

```
Theorem.
A k-planar graph with n vertices has at most:
    k number of edges
    0 3(n-2)
    4 4(n-2)
    2
```

Euler's formula
[Ringel 1965]
[Pach and Tóth 1997]

Density of k-Planar Graphs

Theorem.

A k-planar graph with n vertices has at most:
k number of edges
$0 \quad 3(n-2)$
$1 \quad 4(n-2)$
2
Euler's formula
[Ringel 1965]
[Pach and Tóth 1997]

optimal 2-planar

Density of k-Planar Graphs

Theorem.

A k-planar graph with n vertices has at most:
$k \quad$ number of edges
$0 \quad 3(n-2)$
$1 \quad 4(n-2)$
2

Euler's formula
[Ringel 1965]
[Pach and Tóth 1997]

optimal 2-planar
Planar structure:

Density of k-Planar Graphs

Theorem.

A k-planar graph with n vertices has at most:
k number of edges
$0 \quad 3(n-2)$
$1 \quad 4(n-2)$
2

Euler's formula
[Ringel 1965]
[Pach and Tóth 1997]

optimal 2-planar
Planar structure:

Edges per face:
Total:

Density of k-Planar Graphs

Theorem.		
A k-planar graph with n vertices has at most:		
k	number of edges	
0	$3(n-2)$	Euler's formula
1	$4(n-2)$	[Ringel 1965]
2		[Pach and Tóth 1997]

Planar structure:

Edges per face: Total:

Density of k-Planar Graphs

Theorem.

A k-planar graph with n vertices has at most:
k number of edges
$0 \quad 3(n-2)$
$1 \quad 4(n-2)$
2

Euler's formula
[Ringel 1965]
[Pach and Tóth 1997]

$$
\begin{aligned}
& n-m+f=2 \\
& m=c \cdot f ?
\end{aligned}
$$

Planar structure:

Edges per face:
Total:

Density of k-Planar Graphs

Theorem.

A k-planar graph with n vertices has at most:
$k \quad$ number of edges
$0 \quad 3(n-2)$
$1 \quad 4(n-2)$
2

Euler's formula
[Ringel 1965]
[Pach and Tóth 1997]

optimal 2-planar
Planar structure:

$$
\begin{aligned}
& \frac{5}{3}(n-2) \text { edges } \\
& \frac{2}{3}(n-2) \text { faces }
\end{aligned}
$$

Edges per face:
Total:

$$
\begin{aligned}
& n-m+f=2 \\
& m=c \cdot f ? \\
& m=\frac{5}{2} f
\end{aligned}
$$

Density of k-Planar Graphs

Theorem.

A k-planar graph with n vertices has at most:
$k \quad$ number of edges
$0 \quad 3(n-2)$
$1 \quad 4(n-2)$
2

Euler's formula

[Ringel 1965]
[Pach and Tóth 1997]

optimal 2-planar
Planar structure:

$$
\begin{aligned}
& \frac{5}{3}(n-2) \text { edges } \\
& \frac{2}{3}(n-2) \text { faces }
\end{aligned}
$$

Edges per face: 5 edges

$$
\begin{aligned}
& n-m+f=2 \\
& m=c \cdot f ? \\
& m=\frac{5}{2} f
\end{aligned}
$$

Density of k-Planar Graphs

Theorem.

A k-planar graph with n vertices has at most:
$k \quad$ number of edges
$0 \quad 3(n-2)$
$1 \quad 4(n-2)$
2

Euler's formula

[Ringel 1965]
[Pach and Tóth 1997]

optimal 2-planar
Planar structure:

$$
\begin{aligned}
& \frac{5}{3}(n-2) \text { edges } \\
& \frac{2}{3}(n-2) \text { faces }
\end{aligned}
$$

Edges per face: 5 edges
Total:
$5(n-2)$ edges

$$
\begin{aligned}
& n-m+f=2 \\
& m=c \cdot f ? \\
& m=\frac{5}{2} f
\end{aligned}
$$

Density of k-Planar Graphs

Theorem.

A k-planar graph with n vertices has at most:
$k \quad$ number of edges
$0 \quad 3(n-2)$
1
2
$4(n-2)$
$5(n-2)$

Euler's formula
[Ringel 1965]
[Pach and Tóth 1997]

optimal 2-planar
Planar structure:

$$
\begin{aligned}
& \frac{5}{3}(n-2) \text { edges } \\
& \frac{2}{3}(n-2) \text { faces }
\end{aligned}
$$

Edges per face: 5 edges
Total:
$5(n-2)$ edges

$$
\begin{aligned}
& n-m+f=2 \\
& m=c \cdot f ? \\
& m=\frac{5}{2} f
\end{aligned}
$$

Density of k-Planar Graphs

Theorem.

A k-planar graph with n vertices has at most:
k number of edges
$0 \quad 3(n-2)$
$1 \quad 4(n-2)$
$2 \quad 5(n-2)$
3
Euler's formula
[Ringel 1965]
[Pach and Tóth 1997]
[Pach et al. 2006]

Density of k-Planar Graphs

```
Theorem.
A }k\mathrm{ -planar graph with n vertices has at most:
    kumber of edges
    0 3(n-2)
    1
    2
        5(n-2)
    5.5(n-2)
```

Euler's formula
[Ringel 1965]
[Pach and Tóth 1997]
[Pach et al. 2006]

optimal 3-planar

Density of k-Planar Graphs

```
Theorem.
A }k\mathrm{ -planar graph with n vertices has at most:
    kumber of edges
    0 3(n-2)
    1
    2
        5(n-2)
    5.5(n-2)
```

Euler's formula
[Ringel 1965]
[Pach and Tóth 1997]
[Pach et al. 2006]

optimal 3-planar

Density of k-Planar Graphs

```
Theorem.
A }k\mathrm{ -planar graph with n vertices has at most:
    kumber of edges
    0 3(n-2)
    1
    2
        5(n-2)
    5.5(n-2)
```

Euler's formula
[Ringel 1965]
[Pach and Tóth 1997]
[Pach et al. 2006]

optimal 3-planar

Density of k-Planar Graphs

Theorem.

A k-planar graph with n vertices has at most:
k number of edges

0	$3(n-2)$
1	$4(n-2)$
2	$5(n-2)$
3	$5.5(n-2)$

Euler's formula
[Ringel 1965]
[Pach and Tóth 1997]
[Pach et al. 2006]

Density of k-Planar Graphs

Theorem.		
A k-planar graph with n vertices has at most:		
k	number of edges	
0	$3(n-2)$	Euler's formula
1	$4(n-2)$	[Ringel 1965]
2	$5(n-2)$	[Pach and Tóth 1997]
3	$5.5(n-2)$	[Pach et al. 2006]

Density of k-Planar Graphs

Theorem.

A k-planar graph with n vertices has at most:
k number of edges

0	$3(n-2)$	Euler's formula
1	$4(n-2)$	[Ringel 1965]
2	$5(n-2)$	[Pach and Tóth 1997]
3	$5.5(n-2)$	[Pach

3
$5.5(n-2)$

Planar structure:

$$
\begin{aligned}
& \frac{3}{2}(n-2) \text { edges } \\
& \frac{1}{2}(n-2) \text { faces }
\end{aligned}
$$

Edges per face: 8 edges
Total:
$5.5(n-2)$ edges

Density of k-Planar Graphs

Theorem.		
A k-planar graph with n vertices has at most:		
k	number of edges	
0	$3(n-2)$	Euler's formula
1	$4(n-2)$	[Ringel 1965]
2	$5(n-2)$	[Pach and Tóth 1997]
3	$5.5(n-2)$	[Pach et al. 2006]
4	$6(n-2)$	[Ackerman 2015]

optimal 2-planar

Density of k-Planar Graphs

Theorem. A k -planar graph with n vertices has at most:		
k	number of edges	
0	$3(n-2)$	Euler's formula
1	$4(n-2)$	[Ringel 1965]
2	$5(n-2)$	[Pach and Tóth 1997]
3	$5.5(n-2)$	[Pach et al. 2006]
4	$6(n-2)$	[Ackerman 2015]
>4	$4.108 \sqrt{k} n$	[Pach and Tóth 1997]

optimal 2-planar

GD Beyond Planarity: a Hierarchy

Crossing Numbers

The k-planar crossing number $\mathrm{cr}_{k \text {-pl }}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

Crossing Numbers

The k-planar crossing number $\mathrm{cr}_{k \text {-pl }}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1 \text {-pl }}(G) \leq n-2$

Crossing Numbers

The k-planar crossing number $\mathrm{cr}_{k \text {-pl }}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1-\mathrm{pl}}(G) \leq n-2$
$\square \operatorname{cr}(G)=1 \Rightarrow \operatorname{cr}_{1-\mathrm{pl}}(G)=1$

Crossing Numbers

The k-planar crossing number $\mathrm{cr}_{k \text {-pl }}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1-\mathrm{pl}}(G) \leq n-2$

■ $\operatorname{cr}(G)=1 \Rightarrow \operatorname{cr}_{1-\mathrm{pl}}(G)=1$

Theorem. [Chimani, Kindermann, Montecchiani \& Valtr 2019]

For every $\ell \geq 7$, there is a 1-planar graph G with $n=11 \ell+2$ vertices such that $\operatorname{cr}(G)=2$ and $\operatorname{cr}_{1 \text {-pl }}(G)=n-2$.

Crossing Numbers

The k-planar crossing number $\mathrm{cr}_{k \text {-pl }}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1 \text {-pl }}(G) \leq n-2$

■ $\operatorname{cr}(G)=1 \Rightarrow \operatorname{cr}_{1-\mathrm{pl}}(G)=1$

Theorem. [Chimani, Kindermann, Montecchiani \& Valtr 2019]

For every $\ell \geq 7$, there is a 1-planar graph G with $n=11 \ell+2$ vertices such that $\operatorname{cr}(G)=2$ and $\operatorname{cr}_{1 \text {-pl }}(G)=n-2$.

Crossing Numbers

The k-planar crossing number $\mathrm{cr}_{k \text {-pl }}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1 \text {-pl }}(G) \leq n-2$

■ $\operatorname{cr}(G)=1 \Rightarrow \operatorname{cr}_{1-\mathrm{pl}}(G)=1$

Theorem. [Chimani, Kindermann, Montecchiani \& Valtr 2019]

For every $\ell \geq 7$, there is a 1-planar graph G with $n=11 \ell+2$ vertices such that $\operatorname{cr}(G)=2$ and $\operatorname{cr}_{1 \text {-pl }}(G)=n-2$.

Crossing Numbers

The k-planar crossing number $\mathrm{cr}_{k \text {-pl }}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1 \text {-pl }}(G) \leq n-2$

■ $\operatorname{cr}(G)=1 \Rightarrow \operatorname{cr}_{1-\mathrm{pl}}(G)=1$

Theorem.
 [Chimani, Kindermann, Montecchiani \& Valtr 2019]

For every $\ell \geq 7$, there is a 1-planar graph G with $n=11 \ell+2$ vertices such that $\operatorname{cr}(G)=2$ and $\operatorname{cr}_{1 \text {-pl }}(G)=n-2$.

Crossing Numbers

The k-planar crossing number $\mathrm{cr}_{k \text {-pl }}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1 \text {-pl }}(G) \leq n-2$

■ $\operatorname{cr}(G)=1 \Rightarrow \mathrm{cr}_{1-\mathrm{pl}}(G)=1$

Theorem. [Chimani, Kindermann, Montecchiani \& Valtr 2019]

For every $\ell \geq 7$, there is a 1-planar graph G with $n=11 \ell+2$ vertices such that $\operatorname{cr}(G)=2$ and $\operatorname{cr}_{1 \text {-pl }}(G)=n-2$.

Crossing Numbers

The k-planar crossing number $\mathrm{cr}_{k \text {-pl }}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1 \text {-pl }}(G) \leq n-2$

■ $\operatorname{cr}(G)=1 \Rightarrow \mathrm{cr}_{1-\mathrm{pl}}(G)=1$

Theorem. [Chimani, Kindermann, Montecchiani \& Valtr 2019]

For every $\ell \geq 7$, there is a 1-planar graph G with $n=11 \ell+2$ vertices such that $\operatorname{cr}(G)=2$ and $\operatorname{cr}_{1 \text {-pl }}(G)=n-2$.

Crossing Numbers

The k-planar crossing number $\mathrm{cr}_{k \text {-pl }}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1-\mathrm{pl}}(G) \leq n-2$

■ $\operatorname{cr}(G)=1 \Rightarrow \mathrm{cr}_{1-\mathrm{pl}}(G)=1$

Theorem. [Chimani, Kindermann, Montecchiani \& Valtr 2019]

For every $\ell \geq 7$, there is a 1-planar graph G with $n=11 \ell+2$ vertices such that $\operatorname{cr}(G)=2$ and $\operatorname{cr}_{1 \text {-pl }}(G)=n-2$.

Crossing Numbers

The k-planar crossing number $\mathrm{cr}_{k \text {-pl }}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1-\mathrm{pl}}(G) \leq n-2$

■ $\operatorname{cr}(G)=1 \Rightarrow \mathrm{cr}_{1-\mathrm{pl}}(G)=1$

Theorem. [Chimani, Kindermann, Montecchiani \& Valtr 2019]

For every $\ell \geq 7$, there is a 1-planar graph G with $n=11 \ell+2$ vertices such that $\operatorname{cr}(G)=2$ and $\operatorname{cr}_{1 \text {-pl }}(G)=n-2$.

Crossing Numbers

The k-planar crossing number $\mathrm{cr}_{k \text {-pl }}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1-\mathrm{pl}}(G) \leq n-2$

■ $\operatorname{cr}(G)=1 \Rightarrow \mathrm{cr}_{1-\mathrm{pl}}(G)=1$

Theorem. [Chimani, Kindermann, Montecchiani \& Valtr 2019]

For every $\ell \geq 7$, there is a 1-planar graph G with $n=11 \ell+2$ vertices such that $\operatorname{cr}(G)=2$ and $\operatorname{cr}_{1 \text {-pl }}(G)=n-2$.

Crossing Numbers

The k-planar crossing number $\mathrm{cr}_{k \text {-pl }}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1-\mathrm{pl}}(G) \leq n-2$

■ $\operatorname{cr}(G)=1 \Rightarrow \mathrm{cr}_{1-\mathrm{pl}}(G)=1$

Theorem. [Chimani, Kindermann, Montecchiani \& Valtr 2019]

For every $\ell \geq 7$, there is a 1-planar graph G with $n=11 \ell+2$ vertices such that $\operatorname{cr}(G)=2$ and $\operatorname{cr}_{1 \text {-pl }}(G)=n-2$.

$$
\operatorname{cr}_{1-\mathrm{pl}}(G)=n-2
$$

Crossing Numbers

The k-planar crossing number $\mathrm{cr}_{k \text {-pl }}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1-\mathrm{pl}}(G) \leq n-2$

■ $\operatorname{cr}(G)=1 \Rightarrow \mathrm{cr}_{1-\mathrm{pl}}(G)=1$

Theorem. [Chimani, Kindermann, Montecchiani \& Valtr 2019]

For every $\ell \geq 7$, there is a 1-planar graph G with $n=11 \ell+2$ vertices such that $\operatorname{cr}(G)=2$ and $\operatorname{cr}_{1 \text {-pl }}(G)=n-2$.

$$
\operatorname{cr}_{1-\mathrm{pl}}(G)=n-2
$$

Crossing Numbers

The k-planar crossing number $\mathrm{cr}_{k \text {-pl }}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\mathrm{cr}_{1-\mathrm{pl}}(G) \leq n-2$

■ $\operatorname{cr}(G)=1 \Rightarrow \mathrm{cr}_{1-\mathrm{pl}}(G)=1$

Theorem. [Chimani, Kindermann, Montecchiani \& Valtr 2019]

For every $\ell \geq 7$, there is a 1-planar graph G with $n=11 \ell+2$ vertices such that $\operatorname{cr}(G)=2$ and $\operatorname{cr}_{1 \text {-pl }}(G)=n-2$.

$$
\operatorname{cr}_{1-\mathrm{pl}}(G)=n-2
$$

Crossing Numbers

The k-planar crossing number $\mathrm{cr}_{k \text {-pl }}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1-\mathrm{pl}}(G) \leq n-2$

■ $\operatorname{cr}(G)=1 \Rightarrow \mathrm{cr}_{1-\mathrm{pl}}(G)=1$

Theorem. [Chimani, Kindermann, Montecchiani \& Valtr 2019]

For every $\ell \geq 7$, there is a 1-planar graph G with $n=11 \ell+2$ vertices such that $\operatorname{cr}(G)=2$ and $\operatorname{cr}_{1 \text {-pl }}(G)=n-2$.

$$
\mathrm{cr}_{1-\mathrm{pl}}(G)=n-2
$$

$$
\operatorname{cr}(G)=2
$$

Crossing Numbers

The k-planar crossing number $\mathrm{cr}_{k \text {-pl }}(G)$ of a graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1-\mathrm{pl}}(G) \leq n-2$

■ $\operatorname{cr}(G)=1 \Rightarrow \operatorname{cr}_{1 \text {-pl }}(G)=1$

Theorem. [Chimani, Kindermann, Montecchiani \& Valtr 2019]

For every $\ell \geq 7$, there is a 1-planar graph G with $n=11 \ell+2$ vertices such that $\operatorname{cr}(G)=2$ and $\operatorname{cr}_{1 \text {-pl }}(G)=n-2$.

Crossing ratio $\rho_{1 \text {-pl }}(n)=(n-2) / 2$

$$
\mathrm{cr}_{1-\mathrm{pl}}(G)=n-2
$$

$$
\operatorname{cr}(G)=2
$$

Crossing Ratios

Table from "Crossing Numbers of Beyond-Planar Graphs Revisited" [van Beusekom, Parada \& Speckmann 2021]

Family	Forbidden Configurations		Lower	Upper
k-planar	An edge crossed more than k times	$\forall_{0}^{k=2}$	$\Omega(\boldsymbol{n} / \boldsymbol{k})$	$O(k \sqrt{k} n)$
k-quasi-planar	k pairwise crossing edges	$\overbrace{0}^{k=3}$	$\Omega\left(n / k^{3}\right)$	$f(k) n^{2} \log ^{2} n$
Fan-planar	Two independent edges crossing a third or two adjacent edges crossing another edge from different "side"	offo \%	$\Omega(n)$	$O\left(n^{2}\right)$
(k, l)-grid-free	Set of k edges such that each edge crosses each edge from a set of l edges.	$\cdots \prod_{0}^{k_{0}^{k, l=2}}$	$\Omega\left(\frac{n}{k l(k+l)}\right)$	$g(k, l) n^{2}$
k-gap-planar	More than k crossings mapped to an edge in an optimal mapping	± 0	$\Omega\left(n / k^{3}\right)$	$O(k \sqrt{k} n)$
Skewness-k	Set of crossings not covered by at most k edges	$<_{0}^{k=1}$	$\Omega(\boldsymbol{n} / \boldsymbol{k})$	$\boldsymbol{O}\left(\boldsymbol{k} \boldsymbol{n}+\boldsymbol{k}^{2}\right)$
k-apex	Set of crossings not covered by at most k vertices	$\square_{0}^{0} 0_{0}^{k=1}$	$\Omega(n / k)$	$O\left(k^{2} n^{2}+k^{4}\right)$
Planarly connected	Two crossing edges that do not have two of their endpoint connected by a crossing-free edge	$\operatorname{sog} \underset{\sim}{2}$	$\Omega\left(n^{2}\right)$	$O\left(n^{2}\right)$
k-fan-crossing-free	An edge that crosses k adjacent edges	${\underset{o}{ }}_{k=2}$	$\Omega\left(\boldsymbol{n}^{2} / \boldsymbol{k}^{3}\right)$	$\boldsymbol{O}\left(\boldsymbol{k}^{2} \boldsymbol{n}^{2}\right)$
Straight-line RAC	Two edges crossing at an angle $<\frac{\pi}{2}$	\mathcal{X}	$\Omega\left(n^{2}\right)$	$O\left(n^{2}\right)$

Visualization of Graphs

Lecture 11: Beyond Planarity

Drawing Graphs with Crossings
Part III:
Recognition

Jonathan Klawitter

GD Beyond Planarity: a Taxonomy

"Graph Drawing Beyond Planarity: Some Results and Open Problems", Jul. 2017

Minors of 1-Planar Graphs

Theorem.
[Kuratowski 1930]
G planar \Leftrightarrow neither K_{5} nor $K_{3,3}$ minor of G

Minors of 1-Planar Graphs

Theorem. [Kuratowski 1930]
G planar \Leftrightarrow neither K_{5} nor $K_{3,3}$ minor of G
Theorem. [Chen \& Kouno 2005]
The class of 1-planar graphs is not closed under edge contraction.

Minors of 1-Planar Graphs

Theorem.
G planar \Leftrightarrow neither K_{5} nor $K_{3,3}$ minor of G
Theorem. [Chen \& Kouno 2005]
The class of 1-planar graphs is not closed under edge contraction.

$n \times n$ grid

Minors of 1-Planar Graphs

Theorem.
G planar \Leftrightarrow neither K_{5} nor $K_{3,3}$ minor of G
Theorem. [Chen \& Kouno 2005]
The class of 1-planar graphs is not closed under edge contraction.

Minors of 1-Planar Graphs

Theorem.
G planar \Leftrightarrow neither K_{5} nor $K_{3,3}$ minor of G
Theorem. [Chen \& Kouno 2005]
The class of 1-planar graphs is not closed under edge contraction.

$n \times n \times 2$ grid

Minors of 1-Planar Graphs

Theorem.
G planar \Leftrightarrow neither K_{5} nor $K_{3,3}$ minor of G
Theorem. [Chen \& Kouno 2005]
The class of 1-planar graphs is not closed under edge contraction.

$n \times n \times 2$ grid

Minors of 1-Planar Graphs

Theorem.
G planar \Leftrightarrow neither K_{5} nor $K_{3,3}$ minor of G
Theorem. [Chen \& Kouno 2005]
The class of 1-planar graphs is not closed under edge contraction.

$n \times n \times 2$ grid

Minors of 1-Planar Graphs

Theorem.
[Kuratowski 1930]
G planar \Leftrightarrow neither K_{5} nor $K_{3,3}$ minor of G

Theorem.

 [Chen \& Kouno 2005]The class of 1-planar graphs is not closed under edge contraction.

Minors of 1-Planar Graphs

Theorem.
G planar \Leftrightarrow neither K_{5} nor $K_{3,3}$ minor of G

Theorem.

[Chen \& Kouno 2005]
The class of 1-planar graphs is not closed under edge contraction.

Minors of 1-Planar Graphs

Theorem.
G planar \Leftrightarrow neither K_{5} nor $K_{3,3}$ minor of G

Theorem.

The class of 1-planar graphs is not closed under edge contraction.

$n \times n \times 2$ grid

Theorem.

[Korzhik \& Mohar 2013]
For any n, there exist $\Omega\left(2^{n}\right)$ distinct graphs that are not 1-planar but all their proper subgraphs are 1-planar.

Minors of 1-Planar Graphs

Theorem.
[Kuratowski 1930]
G planar \Leftrightarrow neither K_{5} nor $K_{3,3}$ minor of G

For every graph there is a 1-planar subdivision.

Theorem.

The class of 1-planar graphs is not closed under edge contraction.

$n \times n \times 2$ grid

Theorem.

For any n, there exist $\Omega\left(2^{n}\right)$ distinct graphs that are not 1-planar but all their proper subgraphs are 1-planar.

Minors of 1-Planar Graphs

Theorem.
[Kuratowski 1930]
G planar \Leftrightarrow neither K_{5} nor $K_{3,3}$ minor of G

For every graph there is a 1-planar subdivision.

Theorem.
[Chen \& Kouno 2005]
The class of 1-planar graphs is not closed under edge contraction.

For every graph there is a 1-planar subdivision.

Theorem.
The class of 1-planar graphs is not closed under edge contraction.

[Chen \& Kouno 2005]

Minors of 1-Planar Graphs

Theorem.
[Kuratowski 1930]
G planar \Leftrightarrow neither K_{5} nor $K_{3,3}$ minor of G

G planar \Leftrightarrow neither K_{5} nor $K_{3,3}$ minor of G

Recognition of 1-Planar Graphs

Theorem. [Grigoriev \& Bodlaender 2007, Korzhik \& Mohar 2013]
Testing 1-planarity is NP-complete.

Recognition of 1-Planar Graphs

Theorem. [Grigoriev \& Bodlaender 2007, Korzhik \& Mohar 2013]
Testing 1-planarity is NP-complete.
Proof.
Reduction from 3-Partition.

Recognition of 1-Planar Graphs

Theorem. [Grigoriev \& Bodlaender 2007, Korzhik \& Mohar 2013]
Testing 1-planarity is NP-complete.
Proof.
Reduction from 3-Partition.

Only 1-planar embedding of K_{6}

Recognition of 1-Planar Graphs

Theorem. [Grigoriev \& Bodlaender 2007, Korzhik \& Mohar 2013]
Testing 1-planarity is NP-complete.
Proof.
Reduction from 3-Partition.

$\longrightarrow \quad \square$ (cannot be crossed)

Only 1-planar embedding of K_{6}

Recognition of 1-Planar Graphs

Theorem. [Grigoriev \& Bodlaender 2007, Korzhik \& Mohar 2013]
Testing 1-planarity is NP-complete.

Proof.

Reduction from 3-Partition.

$\longrightarrow \quad 0$ (cannot be crossed)

Only 1-planar embedding of K_{6}

Recognition of 1-Planar Graphs

Theorem. [Grigoriev \& Bodlaender 2007, Korzhik \& Mohar 2013]
Testing 1-planarity is NP-complete.

Proof.

Reduction from 3-Partition.

$\longrightarrow \quad \backsim$ (cannot be crossed)

Only 1-planar embedding of K_{6}

Recognition of 1-Planar Graphs

Theorem. [Grigoriev \& Bodlaender 2007, Korzhik \& Mohar 2013]
Testing 1-planarity is NP-complete.

Proof.

Reduction from 3-Partition.

$\longrightarrow \quad$ — (cannot be crossed)

Only 1-planar embedding of K_{6}

Recognition of 1-Planar Graphs

Theorem. [Grigoriev \& Bodlaender 2007, Korzhik \& Mohar 2013]
Testing 1-planarity is NP-complete.

Proof.

Reduction from 3-Partition.

$$
A=\{1,3,2,4,1,1\}
$$

Only 1-planar embedding of K_{6}

Recognition of 1-Planar Graphs

Theorem.
 [Grigoriev \& Bodlaender 2007, Korzhik \& Mohar 2013]

Testing 1-planarity is NP-complete.

Proof.

Reduction from 3-Partition.

$\longrightarrow \quad \square$ (cannot be crossed)

Recognition of 1-Planar Graphs

Theorem. [Grigoriev \& Bodlaender 2007, Korzhik \& Mohar 2013]

Testing 1-planarity is NP-complete.

Proof.

Reduction from 3-Partition.

$\longrightarrow \quad \circ$ (cannot be crossed)

Recognition of 1-Planar Graphs

Theorem. [Grigoriev \& Bodlaender 2007, Korzhik \& Mohar 2013]

Testing 1-planarity is NP-complete.

Proof.

Reduction from 3-Partition.

$\longrightarrow \quad \backsim$ (cannot be crossed)

Only 1-planar embedding of K_{6}

Recognition of 1-Planar Graphs

Theorem. [Grigoriev \& Bodlaender 2007, Korzhik \& Mohar 2013]

Testing 1-planarity is NP-complete.

Proof.

Reduction from 3-Partition.

$\longrightarrow \quad \backsim$ (cannot be crossed)

Only 1-planar embedding of K_{6}

Recognition of 1-Planar Graphs

Theorem. [Grigoriev \& Bodlaender 2007, Korzhik \& Mohar 2013]

Testing 1-planarity is NP-complete.

Proof.

Reduction from 3-Partition.

$\longrightarrow \quad \backsim$ (cannot be crossed)

Only 1-planar embedding of K_{6}

Recognition of 1-Planar Graphs

Theorem. [Grigoriev \& Bodlaender 2007, Korzhik \& Mohar 2013]

Testing 1-planarity is NP-complete.

Proof.

Reduction from 3-Partition.

$\longrightarrow \quad$ — (cannot be crossed)

Recognition of 1-Planar Graphs

Theorem. [Grigoriev \& Bodlaender 2007, Korzhik \& Mohar 2013]

Testing 1-planarity is NP-complete.

Proof.

Reduction from 3-Partition.

$\longrightarrow \quad$ — (cannot be crossed)

Recognition of 1-Planar Graphs

Theorem. [Grogoriev \& Bodlaender 2007, Korzhik \& Mohar 2013]
Testing 1-planarity is NP-complete.

Recognition of 1-Planar Graphs

\square
Theorem. [Grogoriev \& Bodlaender 2007, Korzhik \& Mohar 2013] Testing 1-planarity is NP-complete.

Theorem. [Cabello \& Mohar 2013]
Testing 1-planarity is NP-complete, even for almost planar graphs, i.e., planar graphs plus one edge.

Recognition of 1-Planar Graphs

Theorem. [Grogoriev \& Bodlaender 2007, Korzhik \& Mohar 2013] Testing 1-planarity is NP-complete.

Theorem. [Cabello \& Mohar 2013]
Testing 1-planarity is NP-complete, even for almost planar graphs, i.e., planar graphs plus one edge.

Testing 1-planarity is NP-complete, even for graphs of bounded bandwidth (pathwidth, treewidth).

Recognition of 1-Planar Graphs

Theorem. [Grogoriev \& Bodlaender 2007, Korzhik \& Mohar 2013] Testing 1-planarity is NP-complete.

Theorem.

[Cabello \& Mohar 2013]
Testing 1-planarity is NP-complete, even for almost planar graphs, i.e., planar graphs plus one edge.

Testing 1-planarity is NP-complete, even for graphs of bounded bandwidth (pathwidth, treewidth).

Theorem. [Auer, Brandenburg, Gleißner \& Reislhuber 2015] Testing 1-planarity is NP-complete, even for 3-connected graphs with a fixed rotation system.

Recognition of IC-Planar Graphs

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015]
Testing IC-planarity is NP-complete.

Recognition of IC-Planar Graphs

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015] Testing IC-planarity is NP-complete.

Proof.
Reduction from 1-planarity testing.

Recognition of IC-Planar Graphs

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015] Testing IC-planarity is NP-complete.

Proof.
Reduction from 1-planarity testing.

Recognition of IC-Planar Graphs

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015] Testing IC-planarity is NP-complete.

Proof.
Reduction from 1-planarity testing.

Recognition of IC-Planar Graphs

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015] Testing IC-planarity is NP-complete.

Proof.
Reduction from 1-planarity testing.

Recognition of IC-Planar Graphs

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015] Testing IC-planarity is NP-complete.

Proof.
Reduction from 1-planarity testing.

Recognition of IC-Planar Graphs

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015] Testing IC-planarity is NP-complete.

Proof.
Reduction from 1-planarity testing.

Recognition of IC-Planar Graphs

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015] Testing IC-planarity is NP-complete.

Proof.
Reduction from 1-planarity testing.

Recognition of IC-Planar Graphs

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015] Testing IC-planarity is NP-complete.

Proof.
Reduction from 1-planarity testing.

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015] Testing IC-planarity is NP-complete, even if the rotation system is given.

GD Beyond Planarity: a Taxonomy

"Graph Drawing Beyond Planarity: Some Results and Open Problems", Jul. 2017

Visualization of Graphs

Lecture 11: Beyond Planarity

Drawing Graphs with Crossings

Part IV:
RAC Drawings

Jonathan Klawitter

GD Beyond Planarity: a Taxonomy

Area of Straight-Line RAC Drawings

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015]
IC-planar straight-line RAC drawings may require exponential area.

Area of Straight-Line RAC Drawings

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015]
IC-planar straight-line RAC drawings may require exponential area.

Area of Straight-Line RAC Drawings

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015]

IC-planar straight-line RAC drawings may require exponential area.

Area of Straight-Line RAC Drawings

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015]

IC-planar straight-line RAC drawings may require exponential area.

Area of Straight-Line RAC Drawings

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015]

IC-planar straight-line RAC drawings may require exponential area.

Area of Straight-Line RAC Drawings

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015]

IC-planar straight-line RAC drawings may require exponential area.
$\underset{x|x|}{x+x}$

Area of Straight-Line RAC Drawings

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015]

IC-planar straight-line RAC drawings may require exponential area.
$\underset{x|x|}{x+x}$

Area of Straight-Line RAC Drawings

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015]

IC-planar straight-line RAC drawings may require exponential area.
$\underset{x|x|}{x+x}$

Area of Straight-Line RAC Drawings

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015]

IC-planar straight-line RAC drawings may require exponential area.
$\underset{x \times x}{x \times x}$

Area of Straight-Line RAC Drawings

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015]

IC-planar straight-line RAC drawings may require exponential area.
$\underset{x|x|}{x+x}$

Area of Straight-Line RAC Drawings

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015]

IC-planar straight-line RAC drawings may require exponential area.
$x x_{x}$
$x x \times x$

Area of Straight-Line RAC Drawings

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015]

IC-planar straight-line RAC drawings may require exponential area.
$x x_{x}$
$x x \times x$

Area of Straight-Line RAC Drawings

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015]
IC-planar straight-line RAC drawings may require exponential area.

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015] All IC-planar graphs have an IC-planar straight-line RAC drawing, and it can be found in polynomial time.

Area of Straight-Line RAC Drawings

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015]
IC-planar straight-line RAC drawings may require exponential area.

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta \& Montecchiani 2015] All IC-planar graphs have an IC-planar straight-line RAC drawing, and it can be found in polynomial time.

RAC Drawings

* x

RAC Drawings

* x

RAC Drawings

* x

RAC Drawings

* x

RAC Drawings

Every graph admits a RAC drawing ...

RAC Drawings With Enough Bends

Every graph admits a RAC drawing ...
... if we use enough bends.

RAC Drawings With Enough Bends

Every graph admits a RAC drawing ...
. . . if we use enough bends.

How many do we need at most in total or per edge?

3-Bend RAC Drawings

Theorem. [Didimo, Eades \& Liotta 2017]
 Every graph admits a 3-bend RAC drawing, that is, a RAC drawing where every edge has at most 3 bends.

3-Bend RAC Drawings

Theorem. [Didimo, Eades \& Liotta 2017]
 Every graph admits a 3 -bend RAC drawing, that is, a RAC drawing where every edge has at most 3 bends.

3-Bend RAC Drawings

Theorem. [Didimo, Eades \& Liotta 2017]
 Every graph admits a 3-bend RAC drawing, that is, a RAC drawing where every edge has at most 3 bends.

3-Bend RAC Drawings

Theorem.
 [Didimo, Eades \& Liotta 2017]

Every graph admits a 3-bend RAC drawing, that is, a RAC drawing where every edge has at most 3 bends.

3-Bend RAC Drawings

Theorem. [Didimo, Eades \& Liotta 2017]

Every graph admits a 3-bend RAC drawing, that is, a RAC drawing where every edge has at most 3 bends.

3-Bend RAC Drawings

Theorem.
 [Didimo, Eades \& Liotta 2017]

Every graph admits a 3-bend RAC drawing, that is, a RAC drawing where every edge has at most 3 bends.

Kite Triangulations

This is a kite:

Kite Triangulations

This is a kite:

Kite Triangulations

This is a kite:

u and v are opposite

$$
\text { wrt }\{z, w\}
$$

Let G^{\prime} be a plane triangulation.

Kite Triangulations

This is a kite:

Let G^{\prime} be a plane triangulation.

Kite Triangulations

This is a kite:

$$
u \text { and } v \text { are opposite }
$$

$$
\text { wrt }\{z, w\}
$$

Let G^{\prime} be a plane triangulation.

Let $S \subset E\left(G^{\prime}\right)$ s.t. no two edges in S on same face. ... and their opposite vertices do not have an edge in $E\left(G^{\prime}\right)$.

Kite Triangulations

This is a kite:

$$
u \text { and } v \text { are opposite }
$$

$$
\text { wrt }\{z, w\}
$$

Let G^{\prime} be a plane triangulation.

Kite Triangulations

This is a kite:

$$
u \text { and } v \text { are opposite }
$$

$$
\text { wrt }\{z, w\}
$$

Let G^{\prime} be a plane triangulation.

The resulting graph G is a kite-triangulation.

Kite Triangulations

This is a kite:

$$
u \text { and } v \text { are opposite }
$$

$$
\text { wrt }\{z, w\}
$$

Let G^{\prime} be a plane triangulation.

The resulting graph G is a kite-triangulation. optimal 1-planar \subset kite-triangulation

Kite Triangulations

This is a kite:

u and v are opposite

Theorem. [Angelini et al. '11]
Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ

Let G^{\prime} be a plane triangulation.

The resulting graph G is a kite-triangulation. optimal 1-planar \subset kite-triangulation

Kite Triangulations

This is a kite:

u and v are opposite

Theorem. [Angelini et al. '11]

Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

Let G^{\prime} be a plane triangulation.

The resulting graph G is a kite-triangulation. optimal 1-planar \subset kite-triangulation

Kite Triangulations

This is a kite:

Let G^{\prime} be a plane triangulation.

Theorem. [Angelini et al. '11]
Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.
Proof.

The resulting graph G is a kite-triangulation. optimal 1-planar \subset kite-triangulation

Kite Triangulations

This is a kite:

u and v are opposite
 wrt $\{z, w\}$

Let G^{\prime} be a plane triangulation.

Let $S \subset E\left(G^{\prime}\right)$ s.t. no two edges in S on same face. \ldots. and their opposite vertices do not have an edge in $E\left(G^{\prime}\right)$.
Add edges T for opposite vertices wrt to S.

Theorem. [Angelini et al. '11]

Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

Proof.

Let G^{\prime} be the underlying plane triang. of G.

The resulting graph G is a kite-triangulation. optimal 1-planar \subset kite-triangulation

Kite Triangulations

This is a kite:

u and v are opposite
 wrt $\{z, w\}$

Let G^{\prime} be a plane triangulation.

Let $S \subset E\left(G^{\prime}\right)$ s.t. no two edges in S on same face. \ldots. and their opposite vertices do not have an edge in $E\left(G^{\prime}\right)$.
Add edges T for opposite vertices wrt to S.

Theorem. [Angelini et al. '11]

Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

Proof.

Let G^{\prime} be the underlying plane triang. of G. Let $G^{\prime \prime}$ be G^{\prime} without S.

The resulting graph G is a kite-triangulation. optimal 1-planar \subset kite-triangulation

Kite Triangulations

This is a kite:

u and v are opposite
 wrt $\{z, w\}$

Let G^{\prime} be a plane triangulation.

Let $S \subset E\left(G^{\prime}\right)$ s.t. no two edges in S on same face. \ldots. and their opposite vertices do not have an edge in $E\left(G^{\prime}\right)$.
Add edges T for opposite vertices wrt to S.

Theorem. [Angelini et al. '11]

Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

Proof.

Let G^{\prime} be the underlying plane triang. of G. Let $G^{\prime \prime}$ be G^{\prime} without S. Construct straight-line drawing of $G^{\prime \prime}$.

The resulting graph G is a kite-triangulation. optimal 1-planar \subset kite-triangulation

Kite Triangulations

This is a kite:

Let G^{\prime} be a plane triangulation.

The resulting graph G is a kite-triangulation. optimal 1-planar \subset kite-triangulation

Theorem. [Angelini et al. '11]

Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

Proof.

Let G^{\prime} be the underlying plane triang. of G. Let $G^{\prime \prime}$ be G^{\prime} without S. Construct straight-line drawing of $G^{\prime \prime}$. Fill faces as follows:

Kite Triangulations

This is a kite:

u and v are opposite

Let G^{\prime} be a plane triangulation.

The resulting graph G is a kite-triangulation. optimal 1-planar \subset kite-triangulation

Theorem. [Angelini et al. '11]

Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

Proof.

Let G^{\prime} be the underlying plane triang. of G. Let $G^{\prime \prime}$ be G^{\prime} without S. Construct straight-line drawing of $G^{\prime \prime}$. Fill faces as follows:

strictly convex face

Kite Triangulations

This is a kite:

u and v are opposite

Let G^{\prime} be a plane triangulation.

The resulting graph G is a kite-triangulation. optimal 1-planar \subset kite-triangulation

Theorem. [Angelini et al. '11]

Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

Proof.

Let G^{\prime} be the underlying plane triang. of G. Let $G^{\prime \prime}$ be G^{\prime} without S. Construct straight-line drawing of $G^{\prime \prime}$. Fill faces as follows:

strictly convex face

Kite Triangulations

This is a kite:

Let G^{\prime} be a plane triangulation.

The resulting graph G is a kite-triangulation. optimal 1-planar \subset kite-triangulation

Theorem. [Angelini et al. '11]

Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

Proof.

Let G^{\prime} be the underlying plane triang. of G. Let $G^{\prime \prime}$ be G^{\prime} without S. Construct straight-line drawing of $G^{\prime \prime}$. Fill faces as follows:

strictly convex face

Kite Triangulations

This is a kite:

Let G^{\prime} be a plane triangulation.

The resulting graph G is a kite-triangulation. optimal 1-planar \subset kite-triangulation

Theorem. [Angelini et al. '11]

Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

Proof.

Let G^{\prime} be the underlying plane triang. of G. Let $G^{\prime \prime}$ be G^{\prime} without S. Construct straight-line drawing of $G^{\prime \prime}$. Fill faces as follows:

strictly convex face

Kite Triangulations

This is a kite:

u and v are opposite

Let G^{\prime} be a plane triangulation.

The resulting graph G is a kite-triangulation. optimal 1-planar \subset kite-triangulation

Theorem. [Angelini et al. '11]

Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

Proof.

Let G^{\prime} be the underlying plane triang. of G. Let $G^{\prime \prime}$ be G^{\prime} without S. Construct straight-line drawing of $G^{\prime \prime}$. Fill faces as follows:

strictly convex face

Kite Triangulations

This is a kite:

Let G^{\prime} be a plane triangulation.

The resulting graph G is a kite-triangulation. optimal 1-planar \subset kite-triangulation

Theorem. [Angelini et al. '11]

Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

Proof.

Let G^{\prime} be the underlying plane triang. of G. Let $G^{\prime \prime}$ be G^{\prime} without S. Construct straight-line drawing of $G^{\prime \prime}$. Fill faces as follows:

strictly convex face

Kite Triangulations

This is a kite:

Let G^{\prime} be a plane triangulation.

The resulting graph G is a kite-triangulation. optimal 1-planar \subset kite-triangulation

Theorem.

 [Angelini et al. '11]Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

Proof.

Let G^{\prime} be the underlying plane triang. of G. Let $G^{\prime \prime}$ be G^{\prime} without S. Construct straight-line drawing of $G^{\prime \prime}$. Fill faces as follows:

strictly convex face

otherwise

Kite Triangulations

This is a kite:

Let G^{\prime} be a plane triangulation.

The resulting graph G is a kite-triangulation. optimal 1-planar \subset kite-triangulation

Theorem.

 [Angelini et al. '11]Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

Proof.

Let G^{\prime} be the underlying plane triang. of G. Let $G^{\prime \prime}$ be G^{\prime} without S. Construct straight-line drawing of $G^{\prime \prime}$. Fill faces as follows:

strictly convex face

otherwise

Kite Triangulations

This is a kite:

Let G^{\prime} be a plane triangulation.

The resulting graph G is a kite-triangulation. optimal 1-planar \subset kite-triangulation

Theorem.

 [Angelini et al. '11]Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

Proof.

Let G^{\prime} be the underlying plane triang. of G. Let $G^{\prime \prime}$ be G^{\prime} without S. Construct straight-line drawing of $G^{\prime \prime}$. Fill faces as follows:

strictly convex face

otherwise

Kite Triangulations

This is a kite:

Let G^{\prime} be a plane triangulation.

The resulting graph G is a kite-triangulation. optimal 1-planar \subset kite-triangulation

Theorem.

 [Angelini et al. '11]Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

Proof.

Let G^{\prime} be the underlying plane triang. of G. Let $G^{\prime \prime}$ be G^{\prime} without S. Construct straight-line drawing of $G^{\prime \prime}$. Fill faces as follows:

strictly convex face

otherwise

Kite Triangulations

This is a kite:

Let G^{\prime} be a plane triangulation.

The resulting graph G is a kite-triangulation. optimal 1-planar \subset kite-triangulation

Theorem.

 [Angelini et al. '11]Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

Proof.

Let G^{\prime} be the underlying plane triang. of G. Let $G^{\prime \prime}$ be G^{\prime} without S. Construct straight-line drawing of $G^{\prime \prime}$. Fill faces as follows:

strictly convex face

otherwise

Kite Triangulations

This is a kite:

u and v are opposite

Let G^{\prime} be a plane triangulation.

The resulting graph G is a kite-triangulation. optimal 1-planar \subset kite-triangulation

Theorem.

[Angelini et al. '11]
Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing Γ and Γ can be constructed in $\mathcal{O}(n)$ time.

Proof.

Let G^{\prime} be the underlying plane triang. of G. Let $G^{\prime \prime}$ be G^{\prime} without S. Construct straight-line drawing of $G^{\prime \prime}$. Fill faces as follows:

strictly convex face

otherwise

Visualization of Graphs

Lecture 11:
 Beyond Planarity

Drawing Graphs with Crossings

Part V:

1-Planar 1-Bend RAC Drawings

Jonathan Klawitter

1-Planar 1-Bend RAC Drawings

```
Theorem. [Bekos, Didimo, Liotta, Mehrabi & Montecchiani 2017]
Every 1-planar graph G on n vertices admits a 1-planar 1-bend
RAC drawing }\Gamma\mathrm{ .
```


1-Planar 1-Bend RAC Drawings

Theorem. [Bekos, Didimo, Liotta, Mehrabi \& Montecchiani 2017]
 Every 1-planar graph G on n vertices admits a 1-planar 1-bend RAC drawing Γ.
 Also, if a 1-planar embedding of G is given as part of the input, Γ can be computed in $\mathcal{O}(n)$ time.

1-Planar 1-Bend RAC Drawings

Theorem. [Bekos, Didimo, Liotta, Mehrabi \& Montecchiani 2017]
 Every 1-planar graph G on n vertices admits a 1-planar 1-bend RAC drawing Γ.
 Also, if a 1-planar embedding of G is given as part of the input, Γ can be computed in $\mathcal{O}(n)$ time.

Observation.
In a triangulated 1-plane graph (not necessarily simple), each pair of crossing edges of G forms an (empty) kite,

1-Planar 1-Bend RAC Drawings

Theorem. [Bekos, Didimo, Liotta, Mehrabi \& Montecchiani 2017]
 Every 1-planar graph G on n vertices admits a 1-planar 1-bend RAC drawing Γ.
 Also, if a 1-planar embedding of G is given as part of the input, Γ can be computed in $\mathcal{O}(n)$ time.

Observation.

In a triangulated 1-plane graph (not necessarily simple), each pair of crossing edges of G forms an (empty) kite, except for at most one pair if their crossing point is on the outer face of G.

1-Planar 1-Bend RAC Drawings

Theorem. [Bekos, Didimo, Liotta, Mehrabi \& Montecchiani 2017]

Every 1-planar graph G on n vertices admits a 1-planar 1-bend RAC drawing Γ.
Also, if a 1-planar embedding of G is given as part of the input, Γ can be computed in $\mathcal{O}(n)$ time.

Observation.

In a triangulated 1-plane graph (not necessarily simple), each pair of crossing edges of G forms an (empty) kite, except for at most one pair if their crossing point is on the outer face of G.

Theorem. [Chiba, Yamanouchi \& Nishizeki 1984]
For every planar graph G and convex polygon P, a strictly convex planar straight-line drawing of G where the outer face coincides with P can be computed in $O(n)$ time.

Algorithm Outline

Algorithm Outline

Algorithm Step 1: Augmentation

Algorithm Step 1: Augmentation

1. For each pair of crossing edges add an enclosing 4-cycle.

Algorithm Step 1: Augmentation

1. For each pair of crossing edges add an enclosing 4-cycle.

Algorithm Step 1: Augmentation

1. For each pair of crossing edges add an enclosing 4-cycle.

Algorithm Step 1: Augmentation

1. For each pair of crossing edges add an enclosing 4-cycle.

Algorithm Step 1: Augmentation

1. For each pair of crossing edges add an enclosing 4-cycle.

Algorithm Step 1: Augmentation

1. For each pair of crossing edges add an enclosing 4-cycle.

Algorithm Step 1: Augmentation

1. For each pair of crossing edges add an enclosing 4-cycle.

Algorithm Step 1: Augmentation

1. For each pair of crossing edges add an enclosing 4-cycle.
2. Remove those multiple edges that belong to G.

Algorithm Step 1: Augmentation

1. For each pair of crossing edges add an enclosing 4-cycle.
2. Remove those multiple edges that belong to G.

Algorithm Step 1: Augmentation

1. For each pair of crossing edges add an enclosing 4-cycle.
2. Remove those multiple edges that belong to G.
3. Remove one (multiple) edge from each face of degree two (if any).

Algorithm Step 1: Augmentation

1. For each pair of crossing edges add an enclosing 4-cycle.
2. Remove those multiple edges that belong to G.
3. Remove one (multiple) edge from each face of degree two (if any).
4. Triangulate faces
of degree >3 by

inserting a star
inside them.

Algorithm Step 1: Augmentation

1. For each pair of crossing edges add an enclosing 4-cycle.
2. Remove those multiple edges that belong to G.
3. Remove one (multiple) edge from each face of degree two (if any).
4. Triangulate faces
of degree >3 by

inserting a star
inside them.

Algorithm Step 1: Augmentation

1. For each pair of crossing edges add an enclosing 4-cycle.
2. Remove those multiple edges that belong to G.
3. Remove one (multiple) edge from each face of degree two (if any).
4. Triangulate faces
of degree >3 by
triangulated 1-plane
(multi-edges)

Algorithm Outline

Algoritm Step 2: Hierarchical Contractions

Algoritm Step 2: Hierarchical Contractions

Algoritm Step 2: Hierarchical Contractions

G^{+}
triangulated 1-plane (multi-edges)

- triangular faces
- multiple edges never crossed

Algoritm Step 2: Hierarchical Contractions

G^{+}
triangulated 1-plane (multi-edges)

- triangular faces

■ multiple edges never crossed

■ only empty kites

Algoritm Step 2: Hierarchical Contractions

Algoritm Step 2: Hierarchical Contractions

G^{+}
triangulated 1-plane (multi-edges)

- triangular faces
- multiple edges never crossed

■ only empty kites

structure of each separation pair

Algoritm Step 2: Hierarchical Contractions

G^{+}
triangulated 1-plane (multi-edges)

- triangular faces
- multiple edges never crossed

■ only empty kites

structure of each separation pair

Contract all inner components of each separation pair into a thick edge.

Algoritm Step 2: Hierarchical Contractions

G^{+}
triangulated 1-plane (multi-edges)

- triangular faces
- multiple edges never crossed

■ only empty kites

structure of each separation pair

Contract all inner components of each separation pair into a thick edge.

Algoritm Step 2: Hierarchical Contractions

G^{+}
triangulated 1-plane (multi-edges)

- triangular faces

■ multiple edges never crossed

■ only empty kites

structure of each separation pair

Contract all inner components of each separation pair into a thick edge.

Algoritm Step 2: Hierarchical Contractions

(multi-edges)

- triangular faces

■ multiple edges never crossed

■ only empty kites

Algoritm Step 2: Hierarchical Contractions

(multi-edges)

- triangular faces
- multiple edges never crossed

■ only empty kites

Algoritm Step 2: Hierarchical Contractions

(multi-edges)

- triangular faces

■ multiple edges never crossed

- only empty kites

Algoritm Step 2: Hierarchical Contractions

Algoritm Step 2: Hierarchical Contractions

G^{\star}
hierarchical contraction of G^{+}

Algorithm Outline

Algorithm Step 3: Drawing Procedure

Algorithm Step 3: Drawing Procedure

apply Chiba et al.
convex faces \&

$$
\begin{aligned}
& \text { 3-connected } \\
& \text { plane graph }
\end{aligned}
$$

prescribed outer

crossing edges

Algorithm Step 3: Drawing Procedure

apply Chiba et al.
convex faces \&

$$
\begin{aligned}
& \text { 3-connected } \\
& \text { plane graph }
\end{aligned}
$$

prescribed outer

crossing edges

Algorithm Step 3: Drawing Procedure

apply Chiba et al.
convex faces \&

$$
\begin{aligned}
& \text { 3-connected } \\
& \text { plane graph }
\end{aligned}
$$

prescribed outer

reinsert
crossing edges

Algorithm Step 3: Drawing Procedure

3 -connected
plane graph
convex faces \& prescribed outer
apply Chiba et al.

reinsert
crossing edges

Algorithm Step 3: Drawing Procedure

Algorithm Step 3: Drawing Procedure

Algorithm Step 3: Drawing Procedure

Algorithm Step 3: Drawing Procedure

Algorithm Step 3: Drawing Procedure

Algorithm Step 3: Drawing Procedure

apply Chiba et al.

Algorithm Step 3: Drawing Procedure

Algorithm Step 3: Drawing Procedure

Algorithm Step 3: Drawing Procedure

Algorithm Step 3: Drawing Procedure

remove crossing edges

Algorithm Step 3: Drawing Procedure

remove
crossing edges

Algorithm Step 3: Drawing Procedure

apply Chiba et al.

Algorithm Step 3: Drawing Procedure

Algorithm Step 3: Drawing Procedure

Γ^{+}
1-bend 1-planar RAC drawing of G^{+}

Algorithm Outline

Algorithm Step 4: Removal of Dummy Vertices

Algorithm Step 4: Removal of Dummy Vertices

Algorithm Step 4: Removal of Dummy Vertices

GD Beyond Planarity: a Taxonomy

"Graph Drawing Beyond Planarity: Some Results and Open Problems", Jul. 2017

GD Beyond Planarity: a Taxonomy

Literature

Books and surveys:

- [Didimo, Liotta \& Montecchiani 2019] A Survey on Graph Drawing Beyond Planarity
- [Kobourov, Liotta \& Montecchiani '17] An Annotated Bibliography on 1-Planarity
- [Eds. Hong and Tokuyama '20] Beyond Planar Graphs Some references for proofs:
- [Eades, Huang, Hong '08] Effects of Crossing Angles
- [Brandenburg et al. '13] On the density of maximal 1-planar graphs
- [Chimani, Kindermann, Montecchani, Valter '19] Crossing Numbers of Beyond-Planar Graphs
- [Grigoriev and Bodlaender '07] Algorithms for graphs embeddable with few crossings per edge
- [Angilini et al. '11] On the Perspectives Opened by Right Angle Crossing Drawings
- [Didimo, Eades, Liotta '17] Drawing graphs with right angle crossings
- [Bekos et al. '17] On RAC drawings of 1-planar graphs

[^0]: Partially based on slides by Fabrizio Montecchini, Michalis Bekos, and Walter Didimo.

