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Problem

Problem > Approach > Runtime
it
Given: 0

-Timespan [A:B] @ ‘ ! @
-Road network
-Intersections as nodes
BN Vv
-Streets as edges ° /
Cfa
mit;

Find the minimum maximum waiting time, given that Janet be ready between
[A:B]
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Problem > Approach > Runtime
> Input:
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D Output is always an int @
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Approach

Problem > Approach > Runtime

Find the minimum maximum waiting time, given that Janet be ready between
[A:B]

1. Compute the distance from Richard to all vertices and from all vertices to

Janet using two runs of Dijkstra
2. Binary search on the maximum waiting time boundaries
3. Check if given delay ¢ is possible

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher



Approach - Example

> Approach > Runtime

7—0
OSdelayS7—>6={T‘+0=3

[A:B] = [10:20]
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Approach

> Approach > Runtime

1. Mark vertices u as “good” if distFromHome(u) + distToJanet(u) <A+ 4§
and distToJanet(u) < §

If node u does not satisfy this condition, then there won't be a route through u that satisfies the delay delta, given that the
signal will come at time A or when arriving at u
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Approach - Example

> Approach > Runtime

1. Step:
0<delay<7-6§=3

Mark vertices u as “good” if:
distFromHome|u] + distToJanet[u] < A + 6 and distToJanet[u] < §

Uq: 0+7<104+3and7 <3
Uy: 11+2<10+3and2<3 . [A: B] = [10:20]
'ITSE%
Ug: 7+0<10+3and0<3 @< 1 e
BN "’%
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Approach

> Approach > Runtime

1. Mark vertices u as “good” if distFromHome(u) + distToJanet(u) <A+ 6§
and distToJanet(u) < §

If node u does not satisfy this condition, then there won't be a route through u that satisfies the delay delta, given that the
signal will come at time A or when arriving at u

l
2. Propagate: if u is good and u — v with | + distToJanet(v) < §, then mark v
and edge [ as good too

An edge is good, should Richard still be able to meet the delay, if Janet calls while Richard is currently riding that edge
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Approach - Example

> Approach > Runtime

1. Step:
0<delay<7-6§=3 e(start,end, cost)

l
Propagate: if u is good and u = v with [ 4+ distToJanet[v] < 6,
then mark v and edge [ as good too

uy, e(2,1,1): 1+7<3
Uy, e(2,3,2): 24+0<3 e [A:B] = [10:20]
Uy, e(2,3,5): 5+40<3 @: 1
us, €(3,2,4): 44+2<3
s V7
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Approach

> Approach >

Check if delay 6 is possible:

1.

Mark vertices u as “good” if distFromHome(u) + distToJanet(u) < A+ 6
and distToJanet(u) < §

If node u does not satisfy this condition, then there won't be a route through u that satisfies the delay delta, given that the
signal will come at time A or when arriving at u

l
Propagate: if u is good and u — v with [ 4+ distToJanet(v) < §, then mark v
and edge [ as good too

An edge is good, should Richard still be able to meet the delay, if Janet calls while Richard is currently riding that edge

If subgraph of good edges has cycle — delay ¢ is possible

We can stay in the cycle until Janet calls and arrive at her place at most delta after she has called
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Approach - Example

>

1. Step:
0<delay<7-6§=3

Approach > Runtime

If subgraph of good edges has cycle — delay § is possible

hasCycle() = false

[A: B] = [10:20]
i
o0

"4

ot
t
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Approach

> Approach >

Check if delay 6 is possible:

1.

Mark vertices u as “good” if distFromHome(u) + distToJanet(u) < A+ 6
and distToJanet(u) < §

If node u does not satisfy this condition, then there won't be a route through u that satisfies the delay delta, given that the
signal will come at time A or when arriving at u

l
Propagate: if u is good and u — v with [ 4+ distToJanet(v) < §, then mark v
and edge [ as good too

An edge is good, should Richard still be able to meet the delay, if Janet calls while Richard is currently riding that edge

If subgraph of good edges has cycle — delay ¢ is possible

We can stay in the cycle until Janet calls and arrive at her place at most delta after she has called

Otherwise, the subgraph of good nodes and edges is acyclic. Compute
longest time Richard can stay in the subgraph. If this is > B then delay § is
possible
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Approach —longestPath()

> Approach > Runtime

indeg[u]: = indegree of good nodes in subgraph
corresponds to the number of good incoming edges

goodNodes = u.isGood and indeg|u] = 0

goodNodes contains at the beginning all good nodes with indegree 0, so that one can calculate the longest Path correctly
afterwards

latest|u] = A + delay — distToJanet[u]

for each good node u, the latest time of arrival at the node, so that the delay can still be met
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Approach - Example

> Approach > Runtime

1. Step:
0<delay<7-6§=3

Compute longest time Richard can stay in the subgraph
If this is = B then delay ¢ is possible
latest|u] = A + delay — distToJanet[u]

latest[2] =10+3 -2 =11 [A:B] = [10:20]
latest[3] = 10 +3 — 0 = 13 i

B
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t
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Approach —longestPath()

> Approach >

Pseudocode:

longestPath(8)
while(! goodNodes.isEmpty)
u = goodNodes.remove(0)
if latest[u] + distToJanet[u] = B
return true
for Edge e in goodEdges[u]
indeg|e.dest] —=1
if indegle.dest] == 0
goodNodes.add(e.dest)
| latest[e.dest] = max(latest[e.dest], latest[u] + e.weight)

return false

Hendrik Meininger, Johannes Schleicher
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Approach - Example

> Approach

1. Step:
0<delay<7-6§=3

Compute longest time Richard can stay in the subgraph
If this is = B then delay ¢ is possible
latest|u] = A + delay — distToJanet[u]

latest[2] = 11

latest[3] = 13 fﬁ%

[A: B] = [10:20]

(1)

Start with good nodes with indeg[u] 0

Check if: latest[u] + distToJanet|[u] = B

latest|[2] + distToJanet[2] = 11+ 2 = 20
latest[3] = max(latest[B], latest[2] + e(2,3,2)) =13
latest[3] + distToJanet[3] = 13+ 0 = 20
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Approach - Example

> Approach > Runtime

2. Step:
4 <delay<7->6=5

Mark vertices u as “good” if:
distFromHome|u] + distToJanet[u] < A + 6 and distToJanet|u] < §

Uq: 0+7<104+5and7 <5
Usy: 11+2<10+5and7<5 ) [A: B] = [10:20]
: i
Ug: 7+0<10+5and7 <5 @< 1
BN "’%
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Approach - Example

> Approach > Runtime

2. Step:
4 <delay<7->6=5

l
Propagate: if u is good and u = v with [ 4+ distToJanet[v] < 6,
then mark v and edge [ as good too

uz, e(2,1,1): 1+7<5
u,, €(2,3,2): 24+40<5 w%& [A: B] = [10:20]
Uy, e(2,3,5): 5+40<5 @: 1
us, €(3,2,4): 44+2<5
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t
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Approach - Example

>

2. Step:
4 <delay<7->6=5

Approach > Runtime

If subgraph of good edges has cycle — delay § is possible

hasCycle() = false

[A: B] = [10:20]
i
o0

ot
t

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher

19



Approach - Example

> Approach >

2. Step:
4 <delay<7->6=5

Compute longest time Richard can stay in the subgraph
If this is = B then delay ¢ is possible
latest|u] = A + delay — distToJanet[u]

latest|2] =10+5—-2 =13 [A: B] = [10:20]
latest[3] =10 +5—0 = 15 w%

Yo @

Start with good nodes with indeg[u] 0

Check if: latest[u] + distToJanet|[u] = B

q/
PN
A

latest[2] + distToJanet[2] = 11+ 2 = 20 >

latest[3] = max(latest[3], latest[2] + e(2,3,2)) = 15 “

latest[3] = max(latest[3], latest[2] + e(2,3,5)) = 18 e §

latest[3] + distToJanet[3] = 18 + 0 = 20
UNJ Problem L: Well Spoken 20
WU
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Approach - Example

> Approach > Runtime

3. Step:
6 <delay<7->56§=6

Mark vertices u as “good” if:
distFromHome|u] + distToJanet[u] < A + 6 and distToJanet|u] < §

Uq: 0+7<10+6and7 <6
Uy 11+2<10+6and7 <6 ‘ [4:B] = [10:20]
? W%L%
Us: 7+0<10+6and7 <6 @ 1
S q’%
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Approach - Example

> Approach > Runtime

3. Step:
6 <delay<7->56§=6

l
Propagate: if u is good and u = v with [ 4+ distToJanet[v] < 6,
then mark v and edge [ as good too

uy, e(2,1,1): 1+7<6
u,, €(2,3,2): 24+0<6 w%& [A: B] = [10:20]
Uy, e(2,3,5): 5+40<6 @: 1
us, €(3,2,4): 44+2<6
BN Y {
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Approach - Example

> Approach > Runtime

3. Step:
6 <delay<7->56§=6

If subgraph of good edges has cycle — delay § is possible
hasCycle() = true

) [A: B] = [10:20]
i

e
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Approach - Example

> Approach > Runtime

4. Step:
6 < delay < 6 - left ==right
- Qutput =6

[A: B] = [10:20]
(T
&

=§'L
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Runtime

Problem > Approach

> Runtime

WellSpoken()

S—

o m

Problem L: Well Spoken
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O(E + VliogV)

O(logw) * 0(?)

withw = distToJanet(s)
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Runtime

> > Runtime

checkDelay(5)

1.

Mark vertices u as “good" if distFromHome(u) + distToJanet(u) < A+ 6
and distToJanet(u) < 6

l
Propagate: if u is good and u - v with [ + distToJanet(v) < §, then mark v
and edge [ as good too

If subgraph of good edges has cycle — delay é is possible

Otherwise the subgraph of good nodes and edges is acyclic. Compute
longest time Richard can stay in the subgraph. If this is > B then delay § is
possible

Hendrik Meininger, Johannes Schleicher
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Runtime

Problem > Approach > Runtime

l
2. Propagate: if u is good and u— v with [ + distToJanet(v) < §, then mark v
and edge [ as good too

3. If subgraph of good edges has cycle — delay § is possible

4. Otherwise the subgraph of good nodes and edges is acyclic. Compute
longest time Richard can stay in the subgraph. If this is > B then delay § is
possible

Problem L: Well Spoken
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Runtime

Problem > Approach > Runtime

1. Mark vertices u as “good" if distFromHome(u) + distToJanet(u) <A+ 4§ o)
and distToJanet(u) < §

3. If subgraph of good edges has cycle — delay § is possible

4. Otherwise the subgraph of good nodes and edges is acyclic. Compute
longest time Richard can stay in the subgraph. If this is > B then delay § is
possible

Problem L: Well Spoken
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Runtime

> Approach > Runtime

1. Mark vertices u as “good" if distFromHome(u) + distToJanet(u) <A+ 4§ o)
and distToJanet(u) < §

l
2. Propagate: if u is good and u— v with [ + distToJanet(v) < §, then mark v 0(E)
and edge [ as good too

4. Otherwise the subgraph of good nodes and edges is acyclic. Compute
longest time Richard can stay in the subgraph. If this is > B then delay § is
possible
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Runtime

Problem > Approach > Runtime

1. Mark vertices u as “good" if distFromHome(u) + distToJanet(u) <A+ 4§

and distToJanet(u) < § 2
l
2. Propagate: if u is good and u— v with [ + distToJanet(v) < §, then mark v 0(E)
and edge [ as good too
3. If subgraph of good edges has cycle — delay § is possible OV +E)

Problem L: Well Spoken
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Runtime — longestPath()

> > Runtime

Pseudocode:
longestPath(§)
while(! goodNodes.isEmpty)

u = goodNodes.remove(0)
if latest|u] + distToJanet[u] = B
|_ return true
for Edge e in goodEdges|u]
indegle.dest] —=1
if indegle.dest] ==
|_ goodNodes.add(e.dest)
latest[e.dest] = max(latest|[e.dest], latest[u] + e.weight)

return false

31
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Runtime — longestPath()

Problem > Approach > Runtime
longestPath(9)

return false

Problem L: Well Spoken
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Runtime — longestPath()

> > Runtime
longestPath ()
while(! goodNodes.isEmpty) o)

u = goodNodes.remove(0)
if latest[u] + distToJanet[u] = B

|_ return true

return false
-0l +E)

Problem L: Well Spoken
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Runtime

Problem > Approach > Runtime

1. Mark vertices u as “good" if distFromHome(u) + distToJanet(u) <A+ 4§

and distToJanet(u) < § 2
l
2. Propagate: if u is good and u— v with [ + distToJanet(v) < §, then mark v 0(E)
and edge [ as good too
3. If subgraph of good edges has cycle — delay § is possible OV +E)

Problem L: Well Spoken
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Runtime

> > Runtime

checkDelay(5)

1.

Mark vertices u as “good" if distFromHome(u) + distToJanet(u) < A+ 6
and distToJanet(u) < 6

l
Propagate: if u is good and u - v with [ + distToJanet(v) < §, then mark v
and edge [ as good too

If subgraph of good edges has cycle — delay é is possible

Otherwise the subgraph of good nodes and edges is acyclic. Compute
longest time Richard can stay in the subgraph. If this is > B then delay § is
possible

Hendrik Meininger, Johannes Schleicher

o)

0(E)

OV +E)

OV +E)

> 0V +E)
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Runtime

Problem > Approach > Runtime

WellSpoken()

- O(E + VliogV)

with w = distTojanet(s)

}0(V+E) —  O(logw) xO(V + E)

Runtime: O((V + E) * log(w))
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