Julius-Maximilians-
UNIVERSITAT
WURZBURG

Problem L: Well Spoken

Algorithmen fur Programmierwettbewerbe

Hendrik Meininger Johannes Schleicher



Problem

Problem > Approach > Runtime
it
Given: 0

-Timespan [A:B] @ ‘ ! @
-Road network
-Intersections as nodes
BN Vv
-Streets as edges ° /
Cfa
mit;

Find the minimum maximum waiting time, given that Janet be ready between
[A:B]

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher




Problem

Problem > Approach > Runtime
> Input:
10 20 [A:B] [10:20]
35 IVI IE| ﬁ
137 | ] %)

1

211

211 || @; )
235 e(start, end, cost)
3 2 4 - A Vv
o
™
> Output:
N\
t

D Output is always an int @

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher




Approach

Problem > Approach > Runtime

Find the minimum maximum waiting time, given that Janet be ready between
[A:B]

1. Compute the distance from Richard to all vertices and from all vertices to

Janet using two runs of Dijkstra
2. Binary search on the maximum waiting time boundaries
3. Check if given delay ¢ is possible

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher



Approach - Example

> Approach > Runtime

7—0
OSdelayS7—>6={T‘+0=3

[A:B] = [10:20]

N\
T

@\ 1 /@
GOt

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher




Approach

> Approach > Runtime

1. Mark vertices u as “good” if distFromHome(u) + distToJanet(u) <A+ 4§
and distToJanet(u) < §

If node u does not satisfy this condition, then there won't be a route through u that satisfies the delay delta, given that the
signal will come at time A or when arriving at u

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher




Approach - Example

> Approach > Runtime

1. Step:
0<delay<7-6§=3

Mark vertices u as “good” if:
distFromHome|u] + distToJanet[u] < A + 6 and distToJanet[u] < §

Uq: 0+7<104+3and7 <3
Uy: 11+2<10+3and2<3 . [A: B] = [10:20]
'ITSE%
Ug: 7+0<10+3and0<3 @< 1 e
BN "’%

24

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher




Approach

> Approach > Runtime

1. Mark vertices u as “good” if distFromHome(u) + distToJanet(u) <A+ 6§
and distToJanet(u) < §

If node u does not satisfy this condition, then there won't be a route through u that satisfies the delay delta, given that the
signal will come at time A or when arriving at u

l
2. Propagate: if u is good and u — v with | + distToJanet(v) < §, then mark v
and edge [ as good too

An edge is good, should Richard still be able to meet the delay, if Janet calls while Richard is currently riding that edge

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher




Approach - Example

> Approach > Runtime

1. Step:
0<delay<7-6§=3 e(start,end, cost)

l
Propagate: if u is good and u = v with [ 4+ distToJanet[v] < 6,
then mark v and edge [ as good too

uy, e(2,1,1): 1+7<3
Uy, e(2,3,2): 24+0<3 e [A:B] = [10:20]
Uy, e(2,3,5): 5+40<3 @: 1
us, €(3,2,4): 44+2<3
s V7

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher




Approach

> Approach >

Check if delay 6 is possible:

1.

Mark vertices u as “good” if distFromHome(u) + distToJanet(u) < A+ 6
and distToJanet(u) < §

If node u does not satisfy this condition, then there won't be a route through u that satisfies the delay delta, given that the
signal will come at time A or when arriving at u

l
Propagate: if u is good and u — v with [ 4+ distToJanet(v) < §, then mark v
and edge [ as good too

An edge is good, should Richard still be able to meet the delay, if Janet calls while Richard is currently riding that edge

If subgraph of good edges has cycle — delay ¢ is possible

We can stay in the cycle until Janet calls and arrive at her place at most delta after she has called

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher

10



Approach - Example

>

1. Step:
0<delay<7-6§=3

Approach > Runtime

If subgraph of good edges has cycle — delay § is possible

hasCycle() = false

[A: B] = [10:20]
i
o0

"4

ot
t

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher

1



Approach

> Approach >

Check if delay 6 is possible:

1.

Mark vertices u as “good” if distFromHome(u) + distToJanet(u) < A+ 6
and distToJanet(u) < §

If node u does not satisfy this condition, then there won't be a route through u that satisfies the delay delta, given that the
signal will come at time A or when arriving at u

l
Propagate: if u is good and u — v with [ 4+ distToJanet(v) < §, then mark v
and edge [ as good too

An edge is good, should Richard still be able to meet the delay, if Janet calls while Richard is currently riding that edge

If subgraph of good edges has cycle — delay ¢ is possible

We can stay in the cycle until Janet calls and arrive at her place at most delta after she has called

Otherwise, the subgraph of good nodes and edges is acyclic. Compute
longest time Richard can stay in the subgraph. If this is > B then delay § is
possible

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher

12



Approach —longestPath()

> Approach > Runtime

indeg[u]: = indegree of good nodes in subgraph
corresponds to the number of good incoming edges

goodNodes = u.isGood and indeg|u] = 0

goodNodes contains at the beginning all good nodes with indegree 0, so that one can calculate the longest Path correctly
afterwards

latest|u] = A + delay — distToJanet[u]

for each good node u, the latest time of arrival at the node, so that the delay can still be met

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher

13



Approach - Example

> Approach > Runtime

1. Step:
0<delay<7-6§=3

Compute longest time Richard can stay in the subgraph
If this is = B then delay ¢ is possible
latest|u] = A + delay — distToJanet[u]

latest[2] =10+3 -2 =11 [A:B] = [10:20]
latest[3] = 10 +3 — 0 = 13 i

B

ot
t

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher




Approach —longestPath()

> Approach >

Pseudocode:

longestPath(8)
while(! goodNodes.isEmpty)
u = goodNodes.remove(0)
if latest[u] + distToJanet[u] = B
return true
for Edge e in goodEdges[u]
indeg|e.dest] —=1
if indegle.dest] == 0
goodNodes.add(e.dest)
| latest[e.dest] = max(latest[e.dest], latest[u] + e.weight)

return false

Hendrik Meininger, Johannes Schleicher

15



Approach - Example

> Approach

1. Step:
0<delay<7-6§=3

Compute longest time Richard can stay in the subgraph
If this is = B then delay ¢ is possible
latest|u] = A + delay — distToJanet[u]

latest[2] = 11

latest[3] = 13 fﬁ%

[A: B] = [10:20]

(1)

Start with good nodes with indeg[u] 0

Check if: latest[u] + distToJanet|[u] = B

latest|[2] + distToJanet[2] = 11+ 2 = 20
latest[3] = max(latest[B], latest[2] + e(2,3,2)) =13
latest[3] + distToJanet[3] = 13+ 0 = 20

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher

1 2

ot
t

16



Approach - Example

> Approach > Runtime

2. Step:
4 <delay<7->6=5

Mark vertices u as “good” if:
distFromHome|u] + distToJanet[u] < A + 6 and distToJanet|u] < §

Uq: 0+7<104+5and7 <5
Usy: 11+2<10+5and7<5 ) [A: B] = [10:20]
: i
Ug: 7+0<10+5and7 <5 @< 1
BN "’%

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher

17



Approach - Example

> Approach > Runtime

2. Step:
4 <delay<7->6=5

l
Propagate: if u is good and u = v with [ 4+ distToJanet[v] < 6,
then mark v and edge [ as good too

uz, e(2,1,1): 1+7<5
u,, €(2,3,2): 24+40<5 w%& [A: B] = [10:20]
Uy, e(2,3,5): 5+40<5 @: 1
us, €(3,2,4): 44+2<5

A YV {

ot
t

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher




Approach - Example

>

2. Step:
4 <delay<7->6=5

Approach > Runtime

If subgraph of good edges has cycle — delay § is possible

hasCycle() = false

[A: B] = [10:20]
i
o0

ot
t

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher

19



Approach - Example

> Approach >

2. Step:
4 <delay<7->6=5

Compute longest time Richard can stay in the subgraph
If this is = B then delay ¢ is possible
latest|u] = A + delay — distToJanet[u]

latest|2] =10+5—-2 =13 [A: B] = [10:20]
latest[3] =10 +5—0 = 15 w%

Yo @

Start with good nodes with indeg[u] 0

Check if: latest[u] + distToJanet|[u] = B

q/
PN
A

latest[2] + distToJanet[2] = 11+ 2 = 20 >

latest[3] = max(latest[3], latest[2] + e(2,3,2)) = 15 “

latest[3] = max(latest[3], latest[2] + e(2,3,5)) = 18 e §

latest[3] + distToJanet[3] = 18 + 0 = 20
UNJ Problem L: Well Spoken 20
WU

Hendrik Meininger, Johannes Schleicher



Approach - Example

> Approach > Runtime

3. Step:
6 <delay<7->56§=6

Mark vertices u as “good” if:
distFromHome|u] + distToJanet[u] < A + 6 and distToJanet|u] < §

Uq: 0+7<10+6and7 <6
Uy 11+2<10+6and7 <6 ‘ [4:B] = [10:20]
? W%L%
Us: 7+0<10+6and7 <6 @ 1
S q’%

24

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher

21



Approach - Example

> Approach > Runtime

3. Step:
6 <delay<7->56§=6

l
Propagate: if u is good and u = v with [ 4+ distToJanet[v] < 6,
then mark v and edge [ as good too

uy, e(2,1,1): 1+7<6
u,, €(2,3,2): 24+0<6 w%& [A: B] = [10:20]
Uy, e(2,3,5): 5+40<6 @: 1
us, €(3,2,4): 44+2<6
BN Y {

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher




Approach - Example

> Approach > Runtime

3. Step:
6 <delay<7->56§=6

If subgraph of good edges has cycle — delay § is possible
hasCycle() = true

) [A: B] = [10:20]
i

e

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher




Approach - Example

> Approach > Runtime

4. Step:
6 < delay < 6 - left ==right
- Qutput =6

[A: B] = [10:20]
(T
&

=§'L

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher




Runtime

Problem > Approach

> Runtime

WellSpoken()

S—

o m

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher

O(E + VliogV)

O(logw) * 0(?)

withw = distToJanet(s)

25



Runtime

> > Runtime

checkDelay(5)

1.

Mark vertices u as “good" if distFromHome(u) + distToJanet(u) < A+ 6
and distToJanet(u) < 6

l
Propagate: if u is good and u - v with [ + distToJanet(v) < §, then mark v
and edge [ as good too

If subgraph of good edges has cycle — delay é is possible

Otherwise the subgraph of good nodes and edges is acyclic. Compute
longest time Richard can stay in the subgraph. If this is > B then delay § is
possible

Hendrik Meininger, Johannes Schleicher

26



Runtime

Problem > Approach > Runtime

l
2. Propagate: if u is good and u— v with [ + distToJanet(v) < §, then mark v
and edge [ as good too

3. If subgraph of good edges has cycle — delay § is possible

4. Otherwise the subgraph of good nodes and edges is acyclic. Compute
longest time Richard can stay in the subgraph. If this is > B then delay § is
possible

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher

27




Runtime

Problem > Approach > Runtime

1. Mark vertices u as “good" if distFromHome(u) + distToJanet(u) <A+ 4§ o)
and distToJanet(u) < §

3. If subgraph of good edges has cycle — delay § is possible

4. Otherwise the subgraph of good nodes and edges is acyclic. Compute
longest time Richard can stay in the subgraph. If this is > B then delay § is
possible

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher

28




Runtime

> Approach > Runtime

1. Mark vertices u as “good" if distFromHome(u) + distToJanet(u) <A+ 4§ o)
and distToJanet(u) < §

l
2. Propagate: if u is good and u— v with [ + distToJanet(v) < §, then mark v 0(E)
and edge [ as good too

4. Otherwise the subgraph of good nodes and edges is acyclic. Compute
longest time Richard can stay in the subgraph. If this is > B then delay § is
possible

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher

29




Runtime

Problem > Approach > Runtime

1. Mark vertices u as “good" if distFromHome(u) + distToJanet(u) <A+ 4§

and distToJanet(u) < § 2
l
2. Propagate: if u is good and u— v with [ + distToJanet(v) < §, then mark v 0(E)
and edge [ as good too
3. If subgraph of good edges has cycle — delay § is possible OV +E)

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher

30




Runtime — longestPath()

> > Runtime

Pseudocode:
longestPath(§)
while(! goodNodes.isEmpty)

u = goodNodes.remove(0)
if latest|u] + distToJanet[u] = B
|_ return true
for Edge e in goodEdges|u]
indegle.dest] —=1
if indegle.dest] ==
|_ goodNodes.add(e.dest)
latest[e.dest] = max(latest|[e.dest], latest[u] + e.weight)

return false

31
Hendrik Meininger, Johannes Schleicher



Runtime — longestPath()

Problem > Approach > Runtime
longestPath(9)

return false

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher

32



Runtime — longestPath()

> > Runtime
longestPath ()
while(! goodNodes.isEmpty) o)

u = goodNodes.remove(0)
if latest[u] + distToJanet[u] = B

|_ return true

return false
-0l +E)

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher

33




Runtime

Problem > Approach > Runtime

1. Mark vertices u as “good" if distFromHome(u) + distToJanet(u) <A+ 4§

and distToJanet(u) < § 2
l
2. Propagate: if u is good and u— v with [ + distToJanet(v) < §, then mark v 0(E)
and edge [ as good too
3. If subgraph of good edges has cycle — delay § is possible OV +E)

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher

34




Runtime

> > Runtime

checkDelay(5)

1.

Mark vertices u as “good" if distFromHome(u) + distToJanet(u) < A+ 6
and distToJanet(u) < 6

l
Propagate: if u is good and u - v with [ + distToJanet(v) < §, then mark v
and edge [ as good too

If subgraph of good edges has cycle — delay é is possible

Otherwise the subgraph of good nodes and edges is acyclic. Compute
longest time Richard can stay in the subgraph. If this is > B then delay § is
possible

Hendrik Meininger, Johannes Schleicher

o)

0(E)

OV +E)

OV +E)

> 0V +E)

35



Runtime

Problem > Approach > Runtime

WellSpoken()

- O(E + VliogV)

with w = distTojanet(s)

}0(V+E) —  O(logw) xO(V + E)

Runtime: O((V + E) * log(w))

Problem L: Well Spoken

Hendrik Meininger, Johannes Schleicher




