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Can we solve this problem graph theoretically?

In the domino graph D = (V,E)...

there is a node in V for each
domino endpoint.

uv ∈ E iff u is adjacent to v
and uv is not on the domino
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What do domino graphs look like?

But are all domino graphs trees (or forests)?

Domino graphs can have cycles! ⇒ They are not trees. ⇒
Our O(V ) algorithm will not work here.
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What do domino graphs look like? — II

Question: What is the maximum degree ∆ in the domino
graph?

Let us find out using an example...

⇒ ∆ ≤ 3
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Max. Matchings in General Graphs

How do we compute maximum (cardinality) matchings in
general graphs?

Algorithmic Graph Theory :

Micali-Vazirani Algorithm – O(
√
V E), way too

complicated!

Edmonds’ 1965 Algorithm – O(V 3), too slow and
too complicated!

We know that in our domino graphs ∆ ≤ 3. Can we
specialise them further?

Hopefully, such a specialisation will give us faster and/or
simpler algorithms!
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Domino Graph is Bipartite

Theorem. Any domino graph D = (V,E) is bipartite.

Proof. Domino graphs are subgraphs of the infinite grid
graph.

The infinite grid graph can
be two-coloured. Thus, we
can divide V into two
edge-disjoint sets A and B.
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An alternating path switches
between matching and
non-matching edges.

Let M be a (not necessarily maximal) matching...

Berge’s Theorem on Maximum Matchings

An augmenting path is an
alternating path that starts and
ends in an M -free node.

By switching the parity of the matching along an
augmenting path, we can extend the matching by 1 edge.

Theorem. (Berge)

M is maximum matching⇔ @Augmenting path
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Matching Algos using Berge’s Theorem

Berge’s theorem immediately gives us an outline for a
general maximum matching algorithm:

MaxMatching(G = (V,E))

while ∃ Augmenting path P in G do
M = ∅

Augment M along P
return M

Why can we not implement this algorithm “directly”?

There are many paths that could be augmenting!

Solution: Specialise the algorithm for bipartite graphs.
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Reduction to Maximum Flow

Recap from Algorithmic Graph Theory : Let
G = (A ∪B,E) be a bipartite graph.

A B

ts

We can convert the problem of bipartite maximum
matchings into a maximum flow problem...

|M | = 3
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Using EdmondsKarp here works, but we can simplify
the algo for bipartite matchings.

A B

Idea: Find augmenting paths from an M-free a ∈ A to an
M-free b ∈ B until there are none left.
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Domiyes(Domino[] D)

Let f : P → N be a bijection

A = {f(p) | p ∈ P ∧ p.x ≡ p.y (mod 2)}
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B = {f(p) | p ∈ P ∧ p.x 6≡ p.y (mod 2)}
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f−1(a).number = k;

k = 0

f−1(b).number = k

O(n)

O(n)
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O(V E)
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Domiyes(Domino[] D)

Let f : P → N be a bijection

A = {f(p) | p ∈ P ∧ p.x ≡ p.y (mod 2)}

P = {p1 | (p1, p2) ∈ D} ∪ {p2 | (p1, p2) ∈ D}

E = {{u, v} ∈
(
P
2

)
| u adj. to v of diff. domino}

M = MaxBipartiteMatching(A,B,E)

B = {f(p) | p ∈ P ∧ p.x 6≡ p.y (mod 2)}

foreach {a, b} ∈M do
f−1(a).number = k;

k = 0

f−1(b).number = k

O(n)

O(n)

O(n2)

n := D.length

O(V E)

O(n)

O(n2 + V E)

k = k + 1
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MaxBipartiteMatching(A, B, E ⊆
(
A
2

)
∪
(
B
2

)
)

foreach M -free a ∈ A do
if ∃ aug. path P from a to M -free b ∈ B then

foreach uv ∈ P do
if {u, v} ∈M then

M = ∅

M = M \ {{u, v}}
else

M = M ∪ {{u, v}}

return M

This still runs in
O(V E) time.
However...

∆ ≤ 3⇒ |E| ≤ 3V

O(V E) =
O(V · 3V ) = O(V 2).


