Julius-Maximilians-
UNIVERSITAT
WURZBURG

Domiyes

Algorithmen fur Programmierwettbewerbe

Sommersemester 2021

Sarah Baurich Florian Strunz

The Problem

Input: A set of dominoes positioned on a board.

The Problem

Input: A set of dominoes positioned on a board.

2 -2

The Problem

Input: A set of dominoes positioned on a board.

Output: A numbering of domino endpoints such that...

e Adjacent endpoints have the
same number.

The Problem

Input: A set of dominoes positioned on a board.

Output: A numbering of domino endpoints such that...

e Adjacent endpoints have the

same number.

The Problem

Input: A set of dominoes positioned on a board.

Output: A numbering of domino endpoints such that...

e Adjacent endpoints have the

same number.

e Every number is used at most

twice.
o o
e Endpoints belonging to the
same domino have differing o o
numbers. I
® [

2-5

The Problem

Input: A set of dominoes positioned on a board.

Output: A numbering of domino endpoints such that...

e Adjacent endpoints have the

same number.

[®
e Every number is used at most ®ol|| *
twice. ©olloe
e Endpoints belonging to the =22
same domino have differing o °*,
numbers. I
e °,

Modeling the Problem

e Can we solve this problem graph theoretically?

Modeling the Problem

e Can we solve this problem graph theoretically?

e In the domino graph D = (V, E)...

3-2

Modeling the Problem

e Can we solve this problem graph theoretically?
® In the domino graph D = (V, FE)...

e there i1s a node in V for each
domino endpoint.

Modeling the Problem

e Can we solve this problem graph theoretically?
® In the domino graph D = (V, FE)...

e there i1s a node in V for each
domino endpoint.

o uv € F iff u is adjacent to v
and uv is not on the domino

Modeling the Problem — Il

e What does a solution to our numbering problem look like
in D7?

Modeling the Problem — Il
e What does a solution to our numbering problem look like
in D7?

e If a solution exists, then there is a perfect matching in
the domino graph.

4-2

Modeling the Problem — Il
e What does a solution to our numbering problem look like
in D7?

e If a solution exists, then there is a perfect matching in
the domino graph.

4-3

Modeling the Problem — Il

e What does a solution to our numbering problem look like
in D7?

e If a solution exists, then there is a perfect matching in
the domino graph.

Algorithm: e
Calculate a perfect matching and . | . |
give nodes in the same matching

edge the same number.

Modeling the Problem — Il

e What does a solution to our numbering problem look like
in D7?

e If a solution exists, then there is a perfect matching in
the domino graph.

Algorithm: 4)4
Calculate a perfect matching and 1]
. . . 8

give nodes in the same matching
edge the same number. — 5
2

4.5

Maximum Matchings in Forests

® Suppose a domino graph is a tree (or forest)...

Maximum Matchings in Forests

® Suppose a domino graph is a tree (or forest)...

® Then we could calculate a maximum matching M in O(V)
time.

b-2

Maximum Matchings in Forests

® Suppose a domino graph is a tree (or forest)...

® Then we could calculate a maximum matching M in O(V)
time.

1. Find all leaves L.

Maximum Matchings in Forests

® Suppose a domino graph is a tree (or forest)...

® Then we could calculate a maximum matching M in O(V)
time.

1. Find all leaves L.

2. For each edge uv with
velL..
M = M UA{uv}.
Delete u and v.

Maximum Matchings in Forests

® Suppose a domino graph is a tree (or forest)...

® Then we could calculate a maximum matching M in O(V)
time.

1. Find all leaves L. ./\’
2. For each edge uv with

veE L.
M = M UA{uv}.

Delete © and v. / | | / |

5-5

Maximum Matchings in Forests

® Suppose a domino graph is a tree (or forest)...

® Then we could calculate a maximum matching M in O(V)
time.

1. Find all leaves L. ./\’
2. For each edge uv with

veL..

M = M UA{uv}.

Delete u and v. / | | / |
3. If there are remaining

leaves, go to step 1.

Maximum Matchings in Forests

® Suppose a domino graph is a tree (or forest)...

® Then we could calculate a maximum matching M in O(V)
time.

1. Find all leaves L. /\
2. For each edge uv with

veL..

M = M UA{uv}.

Delete u and v. / | | / |
3. If there are remaining

leaves, go to step 1.

5-7

Maximum Matchings in Forests

® Suppose a domino graph is a tree (or forest)...

® Then we could calculate a maximum matching M in O(V)
time.

1. Find all leaves L. /

2. For each edge uv with

veL..

M = M UA{uv}.

Delete u and v. / | | / |
3. If there are remaining

leaves, go to step 1.

Maximum Matchings in Forests

® Suppose a domino graph is a tree (or forest)...

® Then we could calculate a maximum matching M in O(V)
time.

1. Find all leaves L. /
2. For each edge uv with

veE L.
M = M UA{uv}.

Delete u and v. / I I / I
3. If there are remaining

leaves, go to step 1.

What do domino graphs look like?

But are all domino graphs trees (or forests)?

What do domino graphs look like?

But are all domino graphs trees (or forests)?

1L
- [1 []

6-2

What do domino graphs look like?

But are all domino graphs trees (or forests)?
:—[L:
® I I @

Domino graphs can have cycles! = They are not trees. =-
Our O(V') algorithm will not work here.

6-3

What do domino graphs look like? — ||

Question: What is the maximum degree A in the domino
graph?

What do domino graphs look like? — ||

Question: What is the maximum degree A in the domino
graph?

Let us find out using an example...

(-2

What do domino graphs look like? — ||

Question: What is the maximum degree A in the domino
graph?

Let us find out using an example...

What do domino graphs look like? — ||

Question: What is the maximum degree A in the domino
graph?

Let us find out using an example...

What do domino graphs look like? — Il

Question: What is the maximum degree A in the domino
graph?

Let us find out using an example...

/-5

What do domino graphs look like? — Il

Question: What is the maximum degree A in the domino
graph?

Let us find out using an example...

o——+o

What do domino graphs look like? — Il

Question: What is the maximum degree A in the domino
graph?

Let us find out using an example...

o @ @ o —O
o
®
[L @
= A <3
o
7-7

Max. Matchings in General Graphs

e How do we compute maximum (cardinality) matchings in
general graphs?

Max. Matchings in General Graphs

e How do we compute maximum (cardinality) matchings in
general graphs?

e Algorithmic Graph Theory:

8 -2

Max. Matchings in General Graphs

e How do we compute maximum (cardinality) matchings in
general graphs?

e Algorithmic Graph Theory:

® Edmonds’ 1965 Algorithm — O(V*?), too slow and
too complicated!

Max. Matchings in General Graphs

e How do we compute maximum (cardinality) matchings in
general graphs?

e Algorithmic Graph Theory:

® Edmonds’ 1965 Algorithm — O(V*?), too slow and
too complicated!

® Micali-Vazirani Algorithm — O(VV E), way too
complicated!

Max. Matchings in General Graphs

e How do we compute maximum (cardinality) matchings in
general graphs?

e Algorithmic Graph Theory:

® Edmonds’ 1965 Algorithm — O(V*?), too slow and
too complicated!

® Micali-Vazirani Algorithm — O(VV E), way too
complicated!

e \We know that in our domino graphs A < 3. Can we
specialise them further?

8-5

Max. Matchings in General Graphs

e How do we compute maximum (cardinality) matchings in
general graphs?

e Algorithmic Graph Theory:

® Edmonds’ 1965 Algorithm — O(V*?), too slow and
too complicated!

® Micali-Vazirani Algorithm — O(VV E), way too
complicated!

e \We know that in our domino graphs A < 3. Can we
specialise them further?

e Hopefully, such a specialisation will give us faster and/or
simpler algorithms!

8-6

Domino Graph is Bipartite
Theorem. Any domino graph D = (V, E) is bipartite.

Domino Graph is Bipartite

Theorem. Any domino graph D = (V, E) is bipartite.

Proof. Domino graphs are subgraphs of the infinite grid
graph.

9-2

Domino Graph is Bipartite

Theorem. Any domino graph D = (V, E) is bipartite.
Proof. Domino graphs are subgraphs of the infinite grid

graph.
® ® @ ®
® @ @ ®
@ ® L L
® ® @ ®

Domino Graph is Bipartite

Theorem. Any domino graph D = (V, E) is bipartite.
Proof. Domino graphs are subgraphs of the infinite grid

graph.
| ® ® .
. @ @ .
¢ ® ® |
. ® ® |

Domino Graph is Bipartite

Theorem. Any domino graph D = (V, E) is bipartite.
Proof. Domino graphs are subgraphs of the infinite grid

graph.
The infinite grid graph can 7 7 7 7
be two-coloured. Thus, we l | |
can divide V' into two 1
edge-disjoint sets A and B.
L @ L L
L L L L

9-5

Berge's Theorem on Maximum Matchings

Let M be a (not necessarily maximal) matching...

10-1

Berge's Theorem on Maximum Matchings

Let M be a (not necessarily maximal) matching...

An alternating path switches
between matching and
non-matching edges.

10 - 2

Berge's Theorem on Maximum Matchings

Let M be a (not necessarily maximal) matching...

An alternating path switches
between matching and
non-matching edges.

An augmenting path is an
alternating path that starts and
ends in an M-free node.

10 -3

Berge's Theorem on Maximum Matchings

Let M be a (not necessarily maximal) matching...

An alternating path switches
between matching and
non-matching edges.

An augmenting path is an
alternating path that starts and
ends in an M-free node.

By switching the parity of the matching along an
augmenting path, we can extend the matching by 1 edge.

10-4

Berge's Theorem on Maximum Matchings

Let M be a (not necessarily maximal) matching...

An alternating path switches
between matching and
non-matching edges.

An augmenting path is an
alternating path that starts and
ends in an M-free node.

By switching the parity of the matching along an
augmenting path, we can extend the matching by 1 edge.

10-5

Berge's Theorem on Maximum Matchings

Let M be a (not necessarily maximal) matching...

An alternating path switches
between matching and
non-matching edges.

An augmenting path is an
alternating path that starts and
ends in an M-free node.

By switching the parity of the matching along an
augmenting path, we can extend the matching by 1 edge.

10 -6

Berge's Theorem on Maximum Matchings

Let M be a (not necessarily maximal) matching...

An alternating path switches
between matching and
non-matching edges.

An augmenting path is an
alternating path that starts and
ends in an M-free node.

By switching the parity of the matching along an
augmenting path, we can extend the matching by 1 edge.

Theorem. (Berge)

M is maximum matching < BAugmenting path

10 -7

Matching Algos using Berge's Theorem

e Berge's theorem immediately gives us an outline for a
general maximum matching algorithm:

11-1

Matching Algos using Berge's Theorem

e Berge's theorem immediately gives us an outline for a
general maximum matching algorithm:

MAXMATCHING(G = (V, F))
M=
while 4 Augmenting path P in G do
Augment M along P
return M

11 -2

Matching Algos using Berge's Theorem

e Berge's theorem immediately gives us an outline for a
general maximum matching algorithm:

MAXMATCHING(G = (V, F))
M=
while 4 Augmenting path P in G do
Augment M along P
return M

e \Why can we not implement this algorithm “directly”?

11-3

Matching Algos using Berge's Theorem

e Berge's theorem immediately gives us an outline for a
general maximum matching algorithm:

MAXMATCHING(G = (V, F))
M=
while 4 Augmenting path P in G do
Augment M along P
return M

e \Why can we not implement this algorithm “directly”?
e [here are many paths that could be augmenting!

11 -4

Matching Algos using Berge's Theorem

e Berge's theorem immediately gives us an outline for a
general maximum matching algorithm:

MAXMATCHING(G = (V, F))
M=
while 4 Augmenting path P in G do
Augment M along P
return M

e \Why can we not implement this algorithm “directly”?
e [here are many paths that could be augmenting!

e Solution: Specialise the algorithm for bipartite graphs.

11-5

Reduction to Maximum Flow

e Recap from Algorithmic Graph Theory: Let
G = (AU B, E) be a bipartite graph.

12 -1

Reduction to Maximum Flow

e Recap from Algorithmic Graph Theory: Let
G = (AU B, E) be a bipartite graph.

e \We can convert the problem of bipartite maximum
matchings into a maximum flow problem...

12 - 2

Reduction to Maximum Flow

e Recap from Algorithmic Graph Theory: Let
G = (AU B, E) be a bipartite graph.

e \We can convert the problem of bipartite maximum
matchings into a maximum flow problem...

AN

12 - 3

Reduction to Maximum Flow

e Recap from Algorithmic Graph Theory: Let
G = (AU B, E) be a bipartite graph.

e \We can convert the problem of bipartite maximum
matchings into a maximum flow problem...

ANl

12 - 4

Reduction to Maximum Flow

e Recap from Algorithmic Graph Theory: Let
G = (AU B, E) be a bipartite graph.

e \We can convert the problem of bipartite maximum
matchings into a maximum flow problem...

12 -5

Reduction to Maximum Flow

e Recap from Algorithmic Graph Theory: Let
G = (AU B, E) be a bipartite graph.

e \We can convert the problem of bipartite maximum
matchings into a maximum flow problem...

12 -6

Reduction to Maximum Flow

e Recap from Algorithmic Graph Theory: Let
G = (AU B, E) be a bipartite graph.

e \We can convert the problem of bipartite maximum
matchings into a maximum flow problem...

M| =3

12 -7

Specialising Maximum Flow

e Using EDMONDSKARP here works, but we can simplify
the algo for bipartite matchings.

13-1

Specialising Maximum Flow

e Using EDMONDSKARP here works, but we can simplify
the algo for bipartite matchings.

e |dea: Find augmenting paths from an M-free a € A to an
M-free b € B until there are none left.

o
o o
A b

13 -2

Specialising Maximum Flow

e Using EDMONDSKARP here works, but we can simplify
the algo for bipartite matchings.

e |dea: Find augmenting paths from an M-free a € A to an
M-free b € B until there are none left.

A

oy

13-3

Specialising Maximum Flow

e Using EDMONDSKARP here works, but we can simplify
the algo for bipartite matchings.

e |dea: Find augmenting paths from an M-free a € A to an
M-free b € B until there are none left.

A

oy

13-4

Specialising Maximum Flow

e Using EDMONDSKARP here works, but we can simplify
the algo for bipartite matchings.

e |dea: Find augmenting paths from an M-free a € A to an
M-free b € B until there are none left.

A

S

13-5

Specialising Maximum Flow

e Using EDMONDSKARP here works, but we can simplify
the algo for bipartite matchings.

e |dea: Find augmenting paths from an M-free a € A to an
M-free b € B until there are none left.

13-6

Specialising Maximum Flow

e Using EDMONDSKARP here works, but we can simplify
the algo for bipartite matchings.

e |dea: Find augmenting paths from an M-free a € A to an
M-free b € B until there are none left.

13-7

Specialising Maximum Flow

e Using EDMONDSKARP here works, but we can simplify
the algo for bipartite matchings.

e |dea: Find augmenting paths from an M-free a € A to an
M-free b € B until there are none left.

13 -8

Specialising Maximum Flow

e Using EDMONDSKARP here works, but we can simplify
the algo for bipartite matchings.

e |dea: Find augmenting paths from an M-free a € A to an
M-free b € B until there are none left.

13-9

Specialising Maximum Flow

e Using EDMONDSKARP here works, but we can simplify
the algo for bipartite matchings.

e |dea: Find augmenting paths from an M-free a € A to an
M-free b € B until there are none left.

2 1

1 2

s -
_ ,I

A B e

13 - 10

Specialising Maximum Flow

e Using EDMONDSKARP here works, but we can simplify
the algo for bipartite matchings.

e |dea: Find augmenting paths from an M-free a € A to an
M-free b € B until there are none left.

2 1
1 2 o
3 3
13
e - :
A 5 22

13-11

The Domiyes Algorithm

DowmiyES(Domino|] D)

14 -1

The Domiyes Algorithm

DowmiyES(Domino|] D)

P ={p1 | (p1,p2) € D} U{p2 | (p1,p2) € D}
Let f : P — N be a bijection

14 - 2

The Domiyes Algorithm

DowmiyES(Domino|] D)

P ={p1 | (p1,p2) € D} U{p2 | (p1,p2) € D}
Let f : P — N be a bijection

A={f(p)|p€ PApz=py (mod 2)}
B={f(p)|p€ PApx#py (mod 2)}

14 - 3

The Domiyes Algorithm

DowmiyES(Domino|] D)

P ={p1 | (p1,p2) € D} U{p2 | (p1,p2) € D}
Let f : P — N be a bijection

A={f(p)|p€ PApz=py (mod 2)}
B={f(p)|p€ PApx#py (mod 2)}

E = {{u,v} € (3) | u adj. to v of diff. domino}

14 - 4

The Domiyes Algorithm

DowmiyES(Domino|] D)

P ={p1 | (p1,p2) € D} U{p2 | (p1,p2) € D}
Let f : P — N be a bijection

A={f(p)|p€ PApz=py (mod 2)}
B={f(p)|p€ PApx#py (mod 2)}

E = {{u,v} € (3) | u adj. to v of diff. domino}

M = MAXBIPARTITEMATCHING(A, B, E)

14 -5

The Domiyes Algorithm

DowmiyES(Domino|] D)

P ={p1 | (p1,p2) € D} U{p2 | (p1,p2) € D}
Let f : P — N be a bijection

A={f(p)|p€ PApz=py (mod 2)}
B={f(p)|p€ PApx#py (mod 2)}

E = {{u,v} € (3) | u adj. to v of diff. domino}

M = MAXBIPARTITEMATCHING(A, B, E)
k=0
foreach {a,b} € M do

f_]-(a,).number — k’ f_l(b)number — k
T

14 - 6

The Domiyes Algorithm n := D .length

DowmiyES(Domino|] D)

P ={p1 | (p1,p2) € D}U{p2 | (p1,p2) € D} O(n)
Let f : P — N be a bijection

A={f(p)|p€ PApx=py (mod 2)} O(n)
B={f(p)|p€ PApx#py (mod 2)}

E = {{u,v} € (];) | u adj. to v of diff. domino} O(n?)

M = MAXBIPARTITEMATCHING(A, B, F) O(VE)
k=20
foreach {a,b} € M do

|_f1(a).number = k; f~1(b).number = k o)
k

—k+1

14 - 7

The Domiyes Algorithm n := D .length

DowmiyES(Domino|] D)

P ={p1 | (p1,p2) € D}U{p2 | (p1,p2) € D} O(n)
Let f : P — N be a bijection

A={f(p)|p€ PApx=py (mod 2)} O(n)
B={f(p)|p€ PApx#py (mod 2)}

E = {{u,v} € (];) | u adj. to v of diff. domino} O(n?)

M = MAXBIPARTITEMATCHING(A, B, F) O(VE)
k=20
foreach {a,b} € M do

|_f1(a).number = k; f~1(b).number = k o)
k

—k+1

14 - 8

MAXBIPARTITEMATCHING

MAXBIPARTITEMATCHING(A, B, E C (4) U (%))

15-1

MAXBIPARTITEMATCHING

MAXBIPARTITEMATCHING(A, B, E C (4) U (%))

2
M =0
foreach M-free a € A do

return M

15 -2

MAXBIPARTITEMATCHING

MAXBIPARTITEMATCHING(A, B, E C (4) U (%))

2
M =1

foreach M-free a € A do

if 4 aug. path P from a to M-free b € B then

return M

15 -3

MAXBIPARTITEMATCHING

MAXBIPARTITEMATCHING(A, B, E C (4) U (%))

2
M =0
foreach M-free a € A do
if 4 aug. path P from a to M-free b € B then
foreach uwv € P do
if {u,v} € M then
M = M\ {{u,v}}
else
M = MU {{u,v}}

return M

15 - 4

MAXBIPARTITEMATCHING

MAXBIPARTITEMATCHING(A, B, E C (4) U (%))

2
M =0

foreach M-free a € A do

if 4 aug. path P from a to M-free b € B then
foreach uwv € P do

if {u,v} € M then This still runs in
M =M\ {{u,v}} | O(VE) time.

else However...
M=MU {{uav}}

return M

15-5

MAXBIPARTITEMATCHING

MAXBIPARTITEMATCHING(A, B, E C (4) U (%))

2
M =0

foreach M-free a € A do

if 4 aug. path P from a to M-free b € B then
foreach uwv € P do

if {u,v} € M then This still runs in
M =M\ {{u,v}} | O(VE) time.

else However...
M=MU{uvk} A <3 g <3V

return M

15-6

MAXBIPARTITEMATCHING

MAXBIPARTITEMATCHING(A, B, E C (4) U (%))

2
M =0
foreach M-free a € A do

if 4 aug. path P from a to M-free b € B then
foreach uv € P do

if {u,v} € M then This still runs in
M =M\ {{u,v}} | O(VE) time.

else However...
M=MU{uvk} A <3 g <3V

return M

O(VE) =
OV -3V) = O(V?).

15-7

