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e Can we solve this problem graph theoretically?
® In the domino graph D = (V, FE)...

e there i1s a node in V for each
domino endpoint.

o uv € F iff u is adjacent to v
and uv is not on the domino
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What do domino graphs look like?

But are all domino graphs trees (or forests)?
:—[ L:
® I I @

Domino graphs can have cycles! = They are not trees. =-
Our O(V') algorithm will not work here.
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Question: What is the maximum degree A in the domino
graph?

Let us find out using an example...

o @ @ o —O
o
®
[ L @
= A <3
o
7-7




Max. Matchings in General Graphs

e How do we compute maximum (cardinality) matchings in
general graphs?



Max. Matchings in General Graphs

e How do we compute maximum (cardinality) matchings in
general graphs?

e Algorithmic Graph Theory:

8 -2



Max. Matchings in General Graphs

e How do we compute maximum (cardinality) matchings in
general graphs?

e Algorithmic Graph Theory:

® Edmonds’ 1965 Algorithm — O(V*?), too slow and
too complicated!



Max. Matchings in General Graphs

e How do we compute maximum (cardinality) matchings in
general graphs?

e Algorithmic Graph Theory:

® Edmonds’ 1965 Algorithm — O(V*?), too slow and
too complicated!

® Micali-Vazirani Algorithm — O(VV E), way too
complicated!



Max. Matchings in General Graphs

e How do we compute maximum (cardinality) matchings in
general graphs?

e Algorithmic Graph Theory:

® Edmonds’ 1965 Algorithm — O(V*?), too slow and
too complicated!

® Micali-Vazirani Algorithm — O(VV E), way too
complicated!

e \We know that in our domino graphs A < 3. Can we
specialise them further?

8-5



Max. Matchings in General Graphs

e How do we compute maximum (cardinality) matchings in
general graphs?

e Algorithmic Graph Theory:

® Edmonds’ 1965 Algorithm — O(V*?), too slow and
too complicated!

® Micali-Vazirani Algorithm — O(VV E), way too
complicated!

e \We know that in our domino graphs A < 3. Can we
specialise them further?

e Hopefully, such a specialisation will give us faster and/or
simpler algorithms!
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Domino Graph is Bipartite

Theorem. Any domino graph D = (V, E) is bipartite.
Proof. Domino graphs are subgraphs of the infinite grid

graph.
The infinite grid graph can 7 7 7 7
be two-coloured. Thus, we l | |
can divide V' into two 1
edge-disjoint sets A and B.
L @ L L
L L L L
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Berge's Theorem on Maximum Matchings

Let M be a (not necessarily maximal) matching...

An alternating path switches
between matching and
non-matching edges.

An augmenting path is an
alternating path that starts and
ends in an M-free node.

By switching the parity of the matching along an
augmenting path, we can extend the matching by 1 edge.

Theorem. (Berge)

M is maximum matching < BAugmenting path
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Matching Algos using Berge's Theorem

e Berge's theorem immediately gives us an outline for a
general maximum matching algorithm:

MAXMATCHING(G = (V, F))
M=
while 4 Augmenting path P in G do
Augment M along P
return M

e \Why can we not implement this algorithm “directly”?
e [here are many paths that could be augmenting!

e Solution: Specialise the algorithm for bipartite graphs.
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Reduction to Maximum Flow

e Recap from Algorithmic Graph Theory: Let
G = (AU B, E) be a bipartite graph.

e \We can convert the problem of bipartite maximum
matchings into a maximum flow problem...

M| =3
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Specialising Maximum Flow

e Using EDMONDSKARP here works, but we can simplify
the algo for bipartite matchings.

e |dea: Find augmenting paths from an M-free a € A to an
M-free b € B until there are none left.
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Specialising Maximum Flow

e Using EDMONDSKARP here works, but we can simplify
the algo for bipartite matchings.

e |dea: Find augmenting paths from an M-free a € A to an
M-free b € B until there are none left.

2 1
1 2 o
3 3
13
e - :
A 5 22
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DowmiyES(Domino|] D)

P ={p1 | (p1,p2) € D} U{p2 | (p1,p2) € D}
Let f : P — N be a bijection

A={f(p)|p€ PApz=py (mod 2)}
B={f(p)|p€ PApx#py (mod 2)}

E = {{u,v} € (3) | u adj. to v of diff. domino}

M = MAXBIPARTITEMATCHING(A, B, E)
k=0
foreach {a,b} € M do

f_]-(a,).number — k’ f_l(b)number — k
T
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The Domiyes Algorithm n := D .length

DowmiyES(Domino|] D)

P ={p1 | (p1,p2) € D}U{p2 | (p1,p2) € D}  O(n)
Let f : P — N be a bijection
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k=20
foreach {a,b} € M do
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MAXBIPARTITEMATCHING(A, B, E C (4) U (%))

2
M =0
foreach M-free a € A do
if 4 aug. path P from a to M-free b € B then
foreach uwv € P do
if {u,v} € M then
M = M\ {{u,v}}
else
M = MU {{u,v}}

return M
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MAXBIPARTITEMATCHING

MAXBIPARTITEMATCHING(A, B, E C (4) U (%))

2
M =0
foreach M-free a € A do

if 4 aug. path P from a to M-free b € B then
foreach uv € P do

if {u,v} € M then This still runs in
M =M\ {{u,v}} | O(VE) time.

else However...
M=MU{uvk} A <3 g <3V

return M

O(VE) =
OV -3V) = O(V?).

15-7



