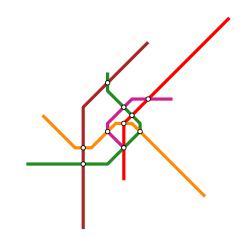


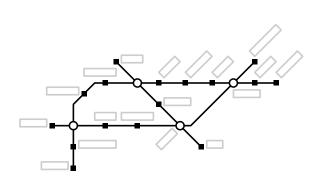
Visualization of Graphs

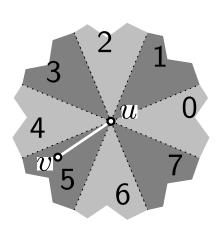
Octilinear Graph Drawing
Metro Map Layout

Part I: Schematic Metro Maps

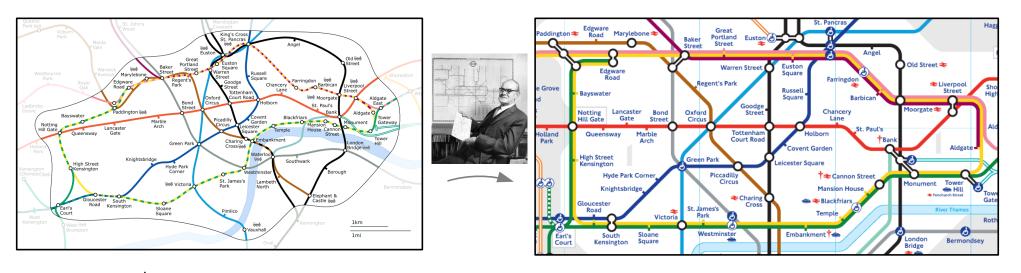
Jonathan Klawitter



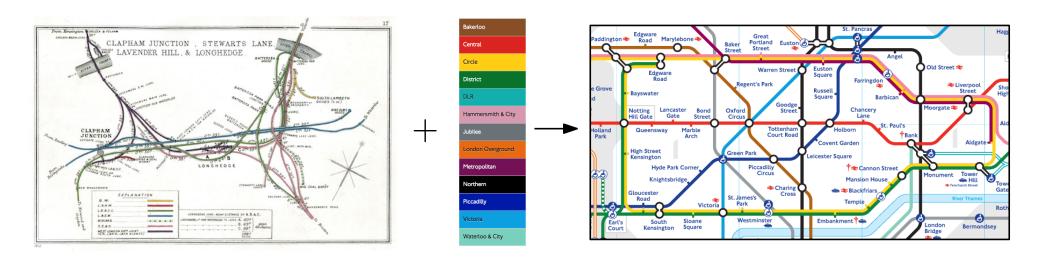




What is a Schematic Metro Map?



- map/diagram that shows stations connected by metro lines
- focus on topology rather than topography
- goal: easy-to-use visual navigation aid for passengers
 - "How do I quickly get from A to B?"
 - "Where do I need to change trains?"
- distorts scale and geometry
- metro map design still a largely manual process
- optimizing network layout computationally challenging



- Input. \blacksquare geographically embedded railway network G
 - lacksquare set of metro lines $\mathcal L$ serving G
- Output.

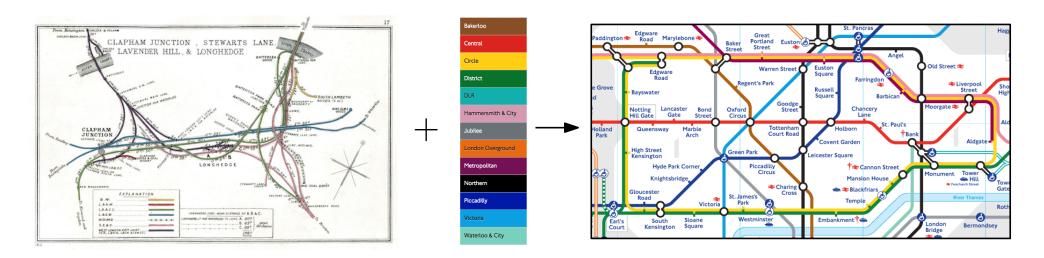
 optimal metro map layout (whatever it means)

Divide the task into several subtasks:

- rendering and design choices
- network layout
- station labeling
- metro line routing

 \rightarrow very salient,

but not a computational problem



Input. \blacksquare geographically embedded railway network G

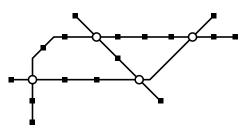
lacksquare set of metro lines $\mathcal L$ serving G

Output.

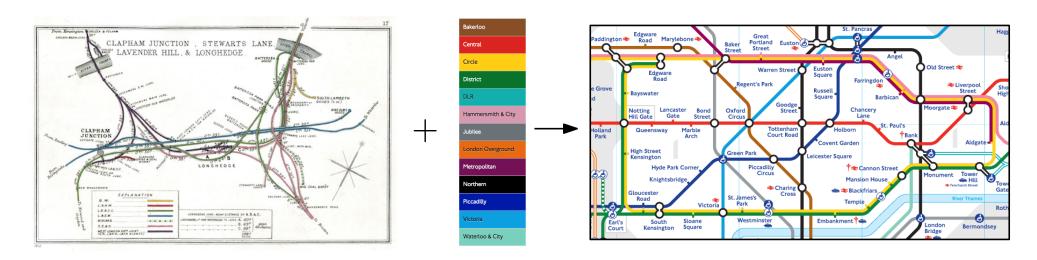
optimal metro map layout (whatever it means)

Divide the task into several subtasks:

- rendering and design choices
- network layout
- station labeling
- metro line routing



determine geometry of network layout



Input. \blacksquare geographically embedded railway network G

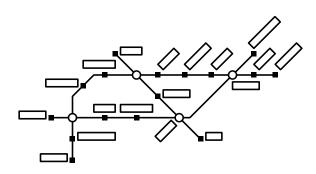
lacksquare set of metro lines $\mathcal L$ serving G

Output.

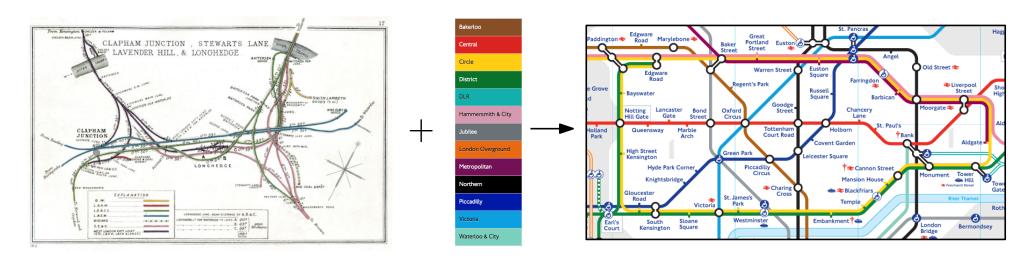
optimal metro map layout (whatever it means)

Divide the task into several subtasks:

- rendering and design choices
- network layout
- station labeling
- metro line routing



determine positions of station names

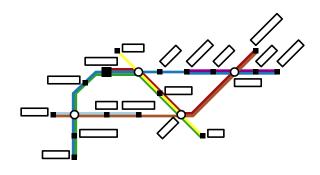


- Input. \blacksquare geographically embedded railway network G
 - lacksquare set of metro lines $\mathcal L$ serving G
- Output.

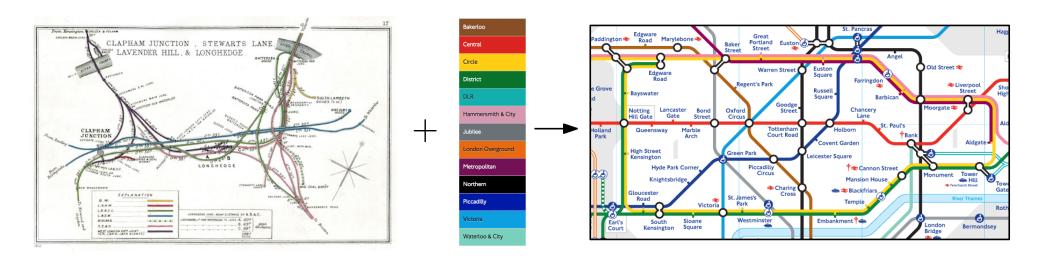
 optimal metro map layout (whatever it means)

Divide the task into several subtasks:

- rendering and design choices
- network layout
- station labeling
- metro line routing



determine line routing and ordering of bundles



- Input. \blacksquare geographically embedded railway network G
 - lacksquare set of metro lines $\mathcal L$ serving G
- Output.

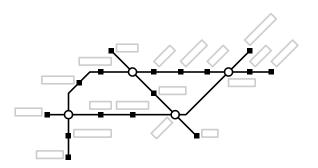
 optimal metro map layout (whatever it means)

Divide the task into several subtasks:

- rendering and design choices
- network layout

focus today

- station labeling
- metro line routing

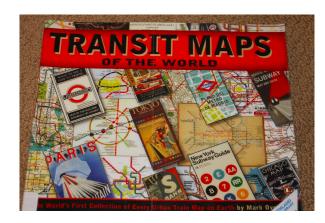


Formalizing the Network Layout Problem

- Given. \blacksquare graph G = (V, E) geometrically embedded in \mathbb{R}^2
 - \blacksquare vertex set V (stations)
 - \blacksquare edge set E (rail links)
 - \blacksquare set of paths \mathcal{L} (metro lines in G)
- **Goal.** schematic layout of (G, \mathcal{L}) that
 - satisfies a set of layout constraints
 - optimizes a set of quality criteria

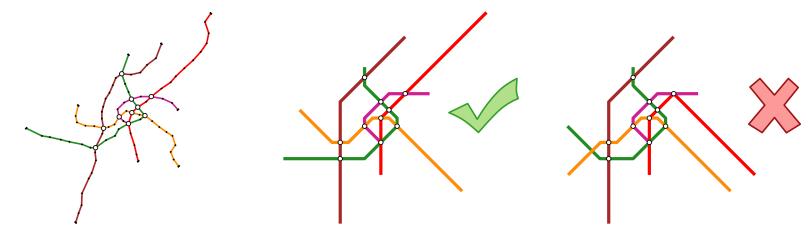
But what are the constraints and quality criteria?

→ extract common principles of existing, manually designed metro maps

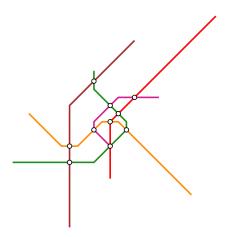


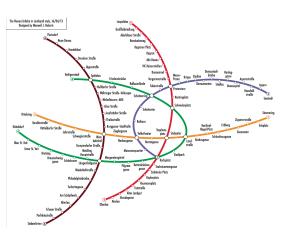
(R1) Do not change the network topology.

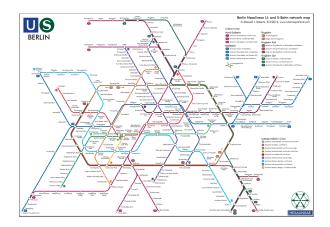
- no new crossings
- no changes in circular vertex orders

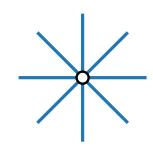


- (R1) Do not change the network topology.
- (R2) Restrict edge orientations.
 - mostly octilinear (octolinear) orientation systems
 - also curvilinear and other alternative orientation systems

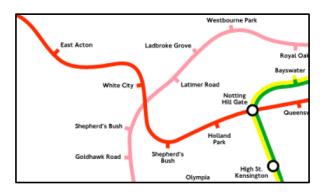


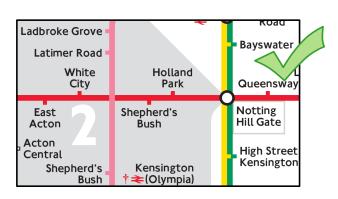


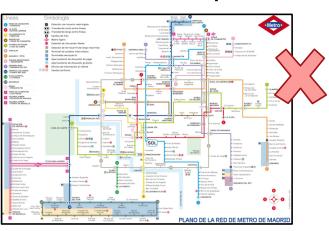




- (R1) Do not change the network topology.
- (R2) Restrict edge orientations.
- (R3) Draw metro lines as simple and monotone as possible.
 - avoid bends
 - prefer obtuse bend angles
 - for curves: prefer uniform curvature, few inflection points

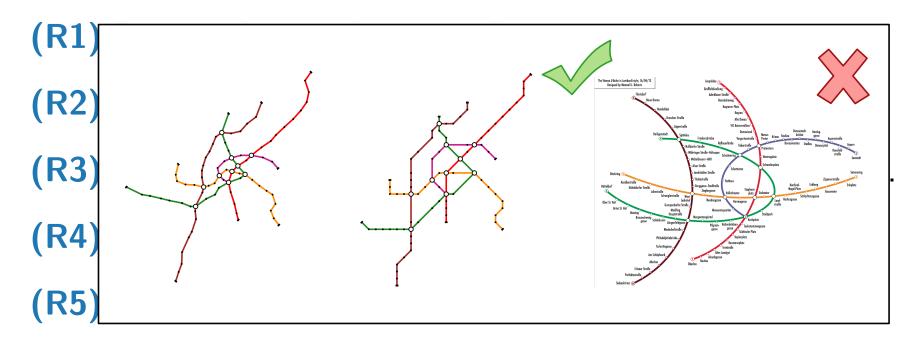






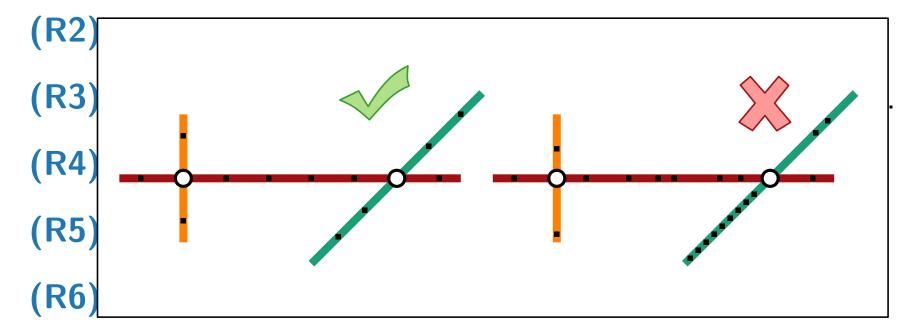
- (R1) Do not change the network topology.
- (R2) Restrict edge orientations.
- (R3) Draw metro lines as simple and monotone as possible.
- (R4) Let lines pass straight through interchanges.
 - avoids visual ambiguities in complex stations

- (R1) Do not change the network topology.
- (R2) Restrict edge orientations.
- (R3) Draw metro lines as simple and monotone as possible.
- (R4) Let lines pass straight through interchanges.
- (R5) Use large angular resolution in stations.
 - distributes edges evenly for balanced appearance



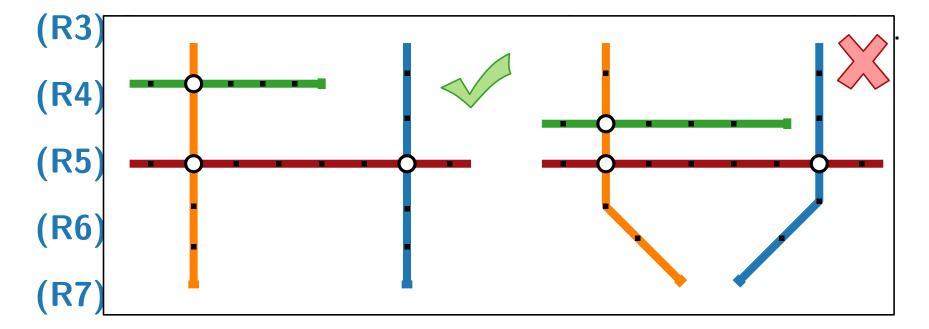
- (R6) Minimize geometric distortion and displacement.
 - maintains resemblance to geography
 - topographicity preserves user's mental map
 - applicable locally or globally

(R1) Do not change the network topology.



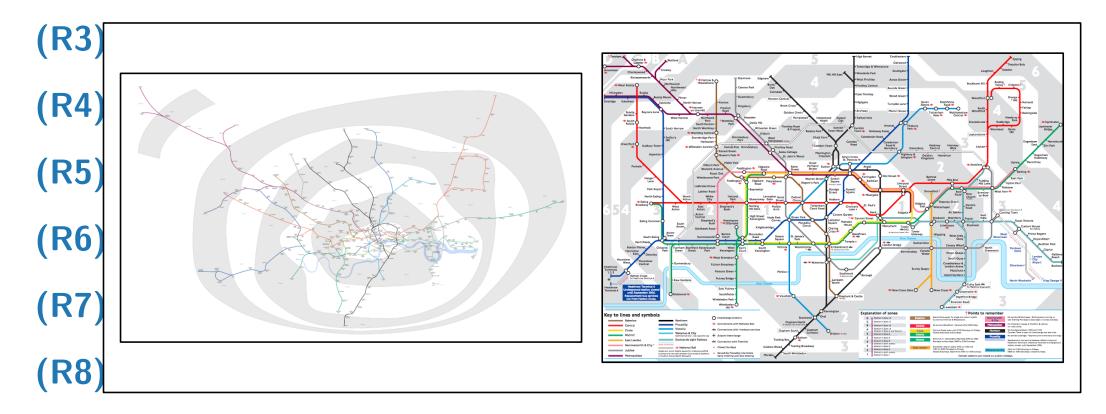
- (R7) Use uniform edge lengths.
 - geographic distances less important
 - network hop-distances more important
 - balanced appearance

- (R1) Do not change the network topology.
- (R2) Restrict edge orientations.



- (R8) Keep unrelated features apart.
 - guarantees minimum clearance between features
 - avoids ambiguities

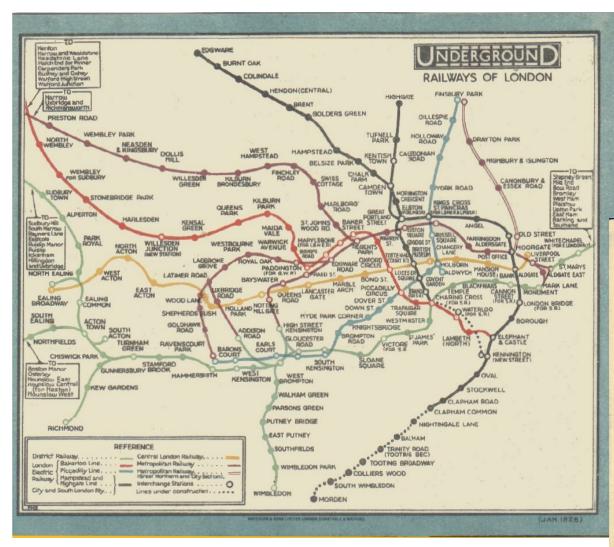
- (R1) Do not change the network topology.
- (R2) Restrict edge orientations.



- (R9) Avoid large empty spaces.
 - balances local feature density
 - possibly fill gaps with legends

- (R1) Do not change the network topology.
- (R2) Restrict edge orientations.
- (R3) Draw metro lines as simple and monotone as possible.
- (R4) Let lines pass straight through interchanges.
- (R5) Use large angular resolution in stations.
- (R6) Minimize geometric distortion and displacement.
- (R7) Use uniform edge lengths.
- (R8) Keep unrelated features apart.
- (R9) Avoid large empty spaces.
 - → rules are potentially conflicting and need priorities

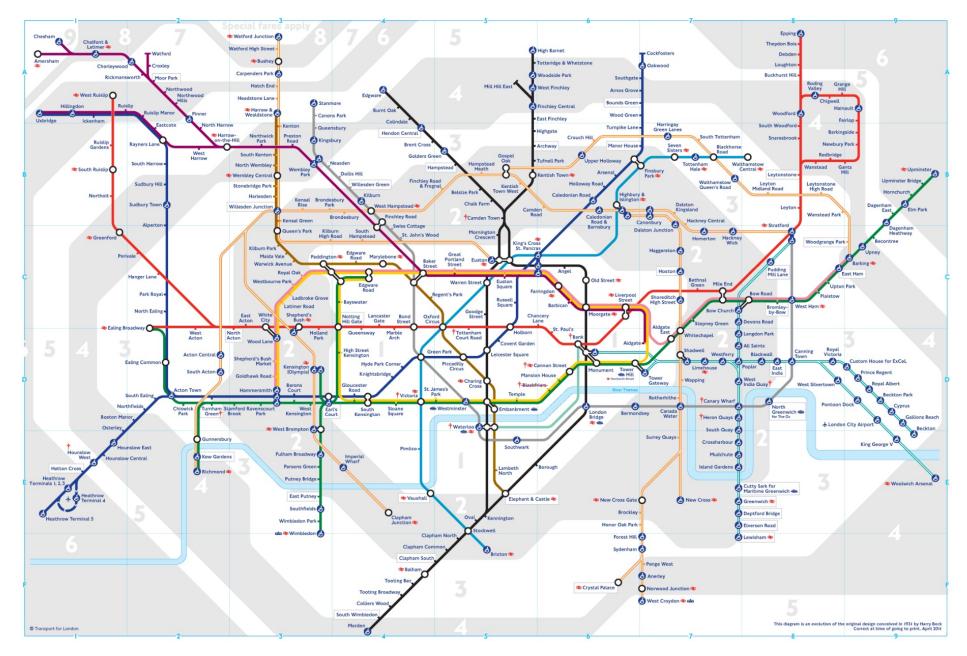
A Bit of History



London 1927 (Fred H. Stingemore)

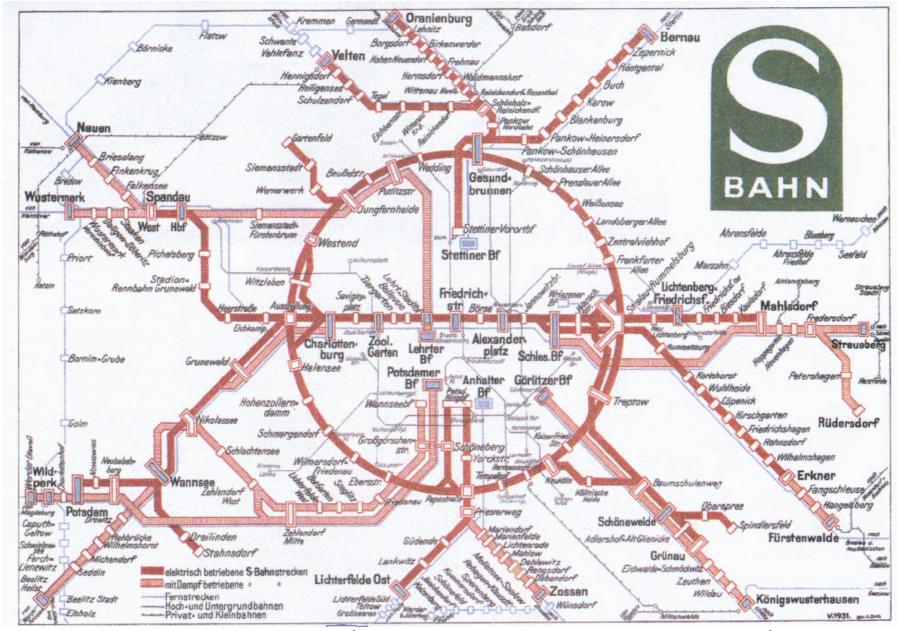
(c) Mike Yashworth

A Bit of History



Tube Map voted Design Icon 2006 (2nd after Concorde)

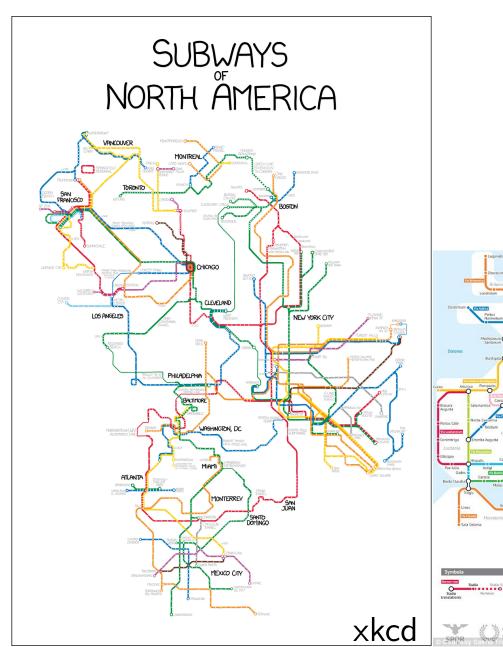
A Bit of History

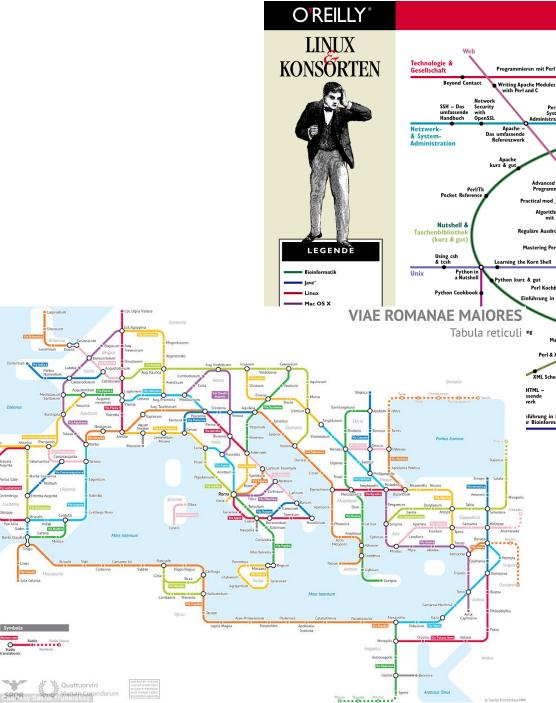


Berlin 1931 (redrawn by Maxwell Roberts)

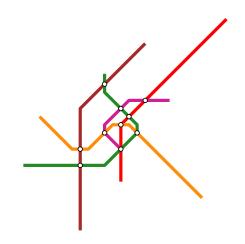
2003 OPEN SOURCE ROUTE MAP

A Bit of History



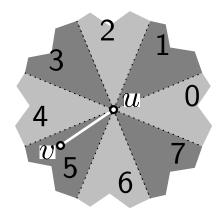


Visualization of Graphs



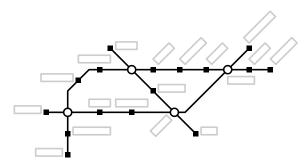
Lecture 12:

Octilinear Graph Drawing Metro Map Layout



Part II:

Complexity and Path-Based Schematization



Jonathan Klawitter

Complexity

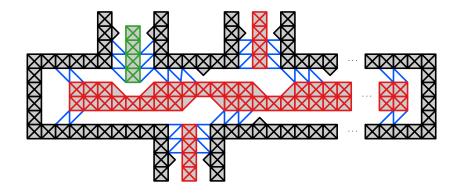
Theorem 1.

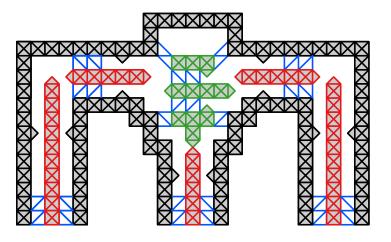
Nöllenburg 2005]

For an embedded graph G (vertex degrees ≤ 8) bend minimization (R3) is NP-hard if preserving topology (R1) and octilinearity (R2) are required.

Sketch of proof.

Reduction from Boolean satisfiability problem PLANAR-3SAT using rigid "mechanical" gadgets





Remark.

- no efficient exact algorithms to expect
- same problem without diagonals (rectilinear) is efficiently solvable

[Tamassia '87]

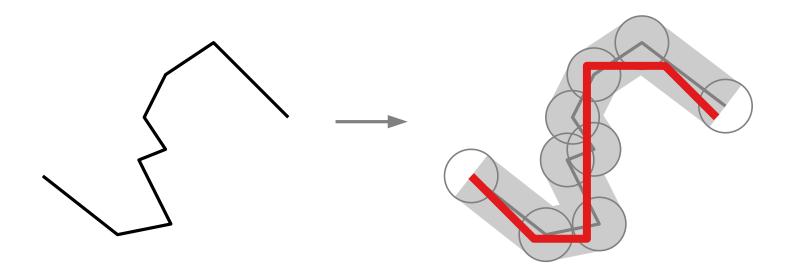
Path-Based Schematization

Goal. Solve restricted problem, where G is a path (or polyline)

Constraints. \blacksquare C-oriented edges (e.g. octilinear) (R2)

bounded displacement (R6)

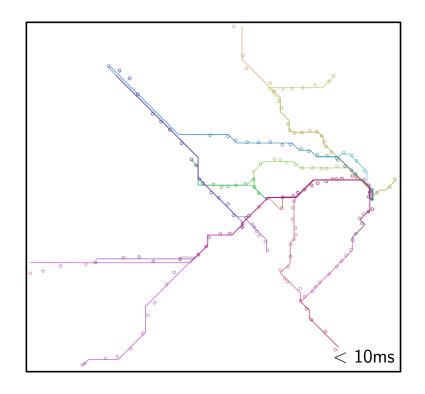
Criteria. I minimize number of links (R3)

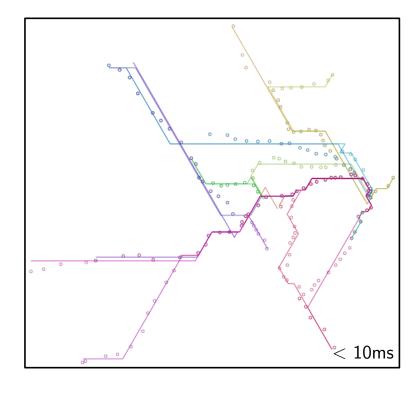


Path-based schematization – example

Theorem 2. [Dwyer, Hurst, Merrick '08]

For a path P of length n and orientation set \mathcal{C} a \mathcal{C} -oriented schematized path can heuristically be fitted to the vertices in $O(|\mathcal{C}|n)$ time (or $O(|\mathcal{C}|n\log n)$) using least-squares regression.





C-oriented Route Sketches

Theorem 3.

[Delling et al. 2010]

Given a monotone path P and a set \mathcal{C} of admissible edge slopes, we can compute, in $O(n^2)+\operatorname{solve}(\operatorname{LP})$ time, a \mathcal{C} -oriented schematization of P, which

- \blacksquare preserves the orthogonal order of P,
- has minimum slope deviation,
- has minimum total length.

relative north-south-east-west relationship of all vertices

- **Proof.** dynamic programming for slope assignment
 - LP for length assignment

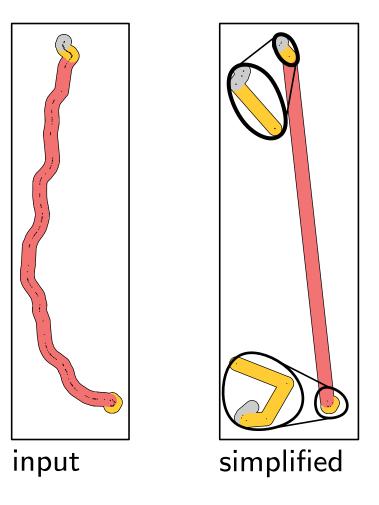
Theorem 4.

[Brandes & Pampel 2009, Gemsa et al. 2011]

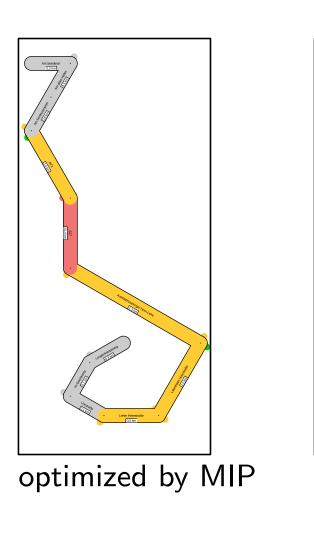
The d-regular (non-monotone) route sketch problem is NP-hard for any $d \geq 1$, where $C = \{i \cdot 90^{\circ}/d \mid i \in \mathbb{Z}\}.$

C-oriented Route Sketches

Example. Bremen to Cuxhaven



[Gemsa et al. 2011]



including length order constraint

Path-Based Schematization — Discussion

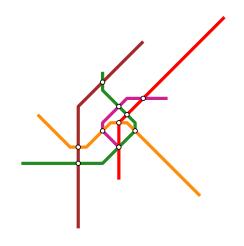
Pros.

- polynomial running times
- lacktriangle C-orientation and bounded displacement guaranteed
- bend minimization
- extends to metro networks:
 - decompose metro network into paths
 - schematize individual paths
 - glue schematized paths together at interchanges

Cons.

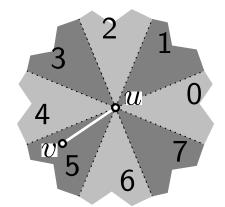
- no guarantee on network topology (R1)
- distortion/displacement too limited for metro maps

Visualization of Graphs



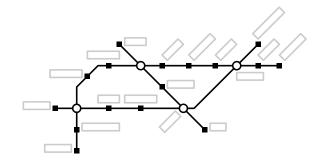
Lecture 12:

Octilinear Graph Drawing Metro Map Layout



Part III:

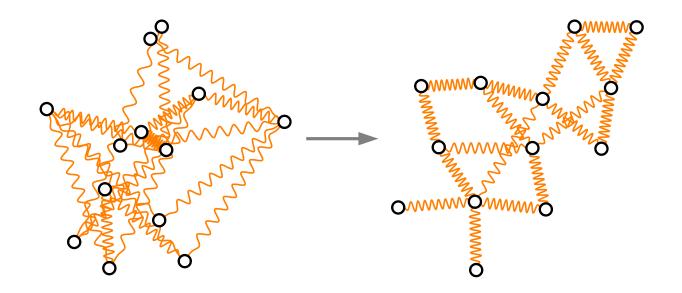
Force-Based Schematization



Jonathan Klawitter

Force-Based Schematization

Idea. Apply well known force-based graph drawing approach



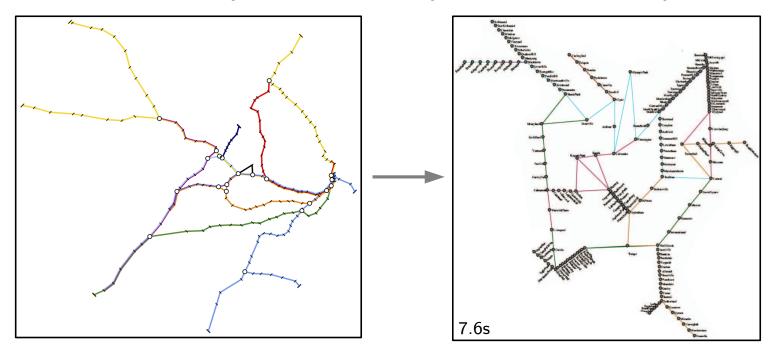
Recall.

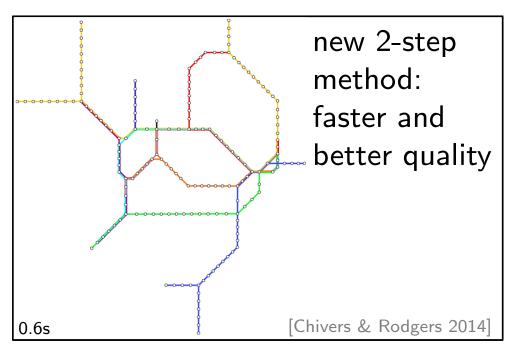
- vertices are charged particles repelling each other
- edges are springs pulling edges into target length
- iteratively calculate and apply forces until system stabilizes
 - → define additional forces to model subset of metro map design rules

Force-Based Schematization — Octilinear

[Hong et al. 2006]

- contract degree-2 vertices into weighted edges (R3)
- define octilinear magnetic field attracting edges (R2)
- only apply topology preserving vertex moves (R1)
- spring lengths model uniform edge lengths (R7)
- vertex repulsion models feature separation (R8)
- station labels placed in independent 2nd step

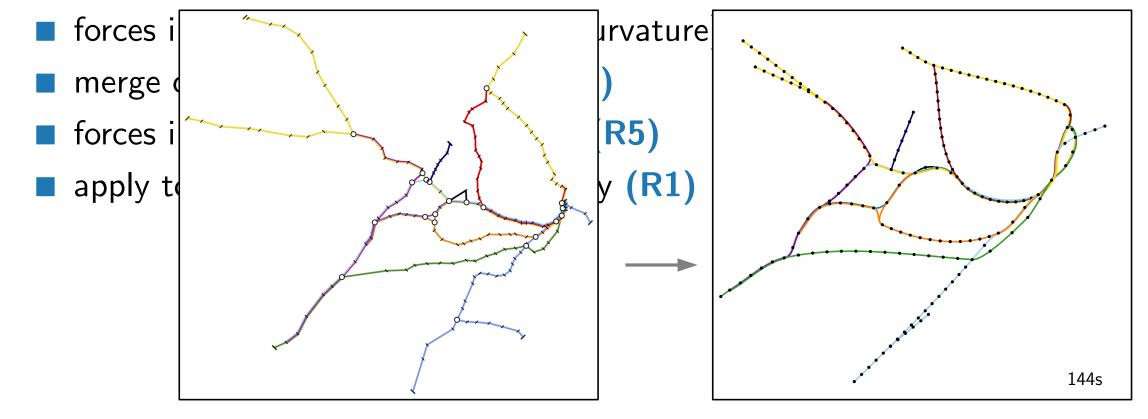




Force-Based Schematization — Bézier

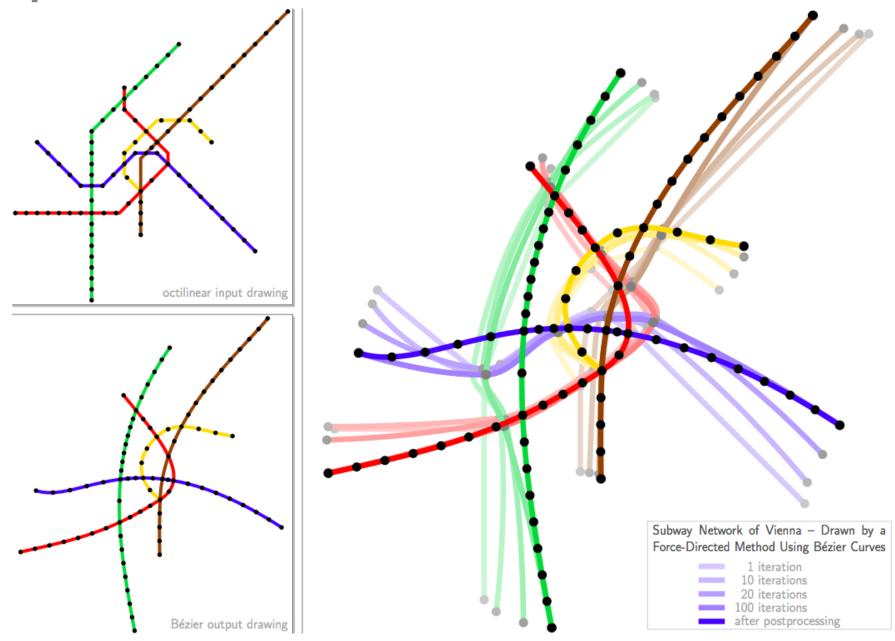
[Fink et al. 2013]

- convert (octilinear) input layout into Bézier curves
 → vertices and control points, both subject to forces
- metro line subcurves share tangents in common vertex (R4)
- (standard) attractive and repulsive forces (R7)+(R8)
- (weak) force towards initial position (R6)



Force-Based Schematization – Bézier

[Fink et al. 2013]



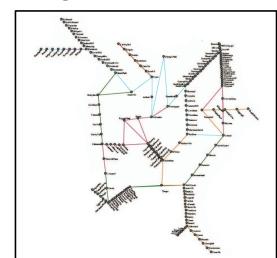
Force-Based Schematization — Discussion

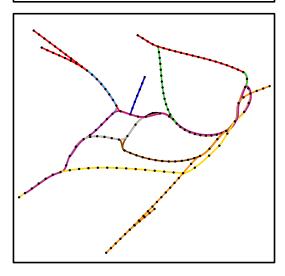
Octilinear.

- guarantees topology (R1)
- slower than path-based algorithms, but still fast enough
- no strict enforcement of octilinearity
- quite unbalanced edge lengths
- bends in interchanges
- no distortion restriction

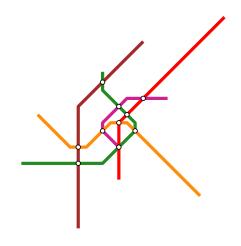
Bézier.

- guarantees topology (R1)
- takes almost all design rules into account
- first curvilinear metro map algorithm
- works well on small and medium instances
- difficulties with more complex networks



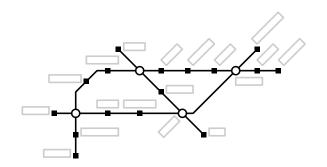


Visualization of Graphs

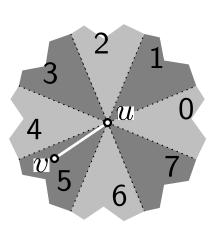


Lecture 12:

Octilinear Graph Drawing Metro Map Layout

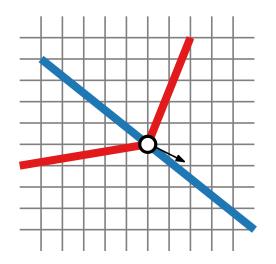


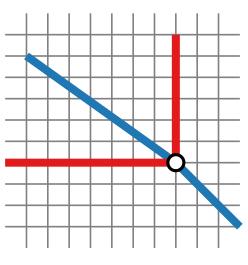
Jonathan Klawitter



Idea.

- define a (multi-criteria) layout quality function
- improve layout quality step-by-step by locally moving vertices to better nearby (grid) positions
- applicable optimization techniques: hill climbing, simulated annealing, ant colony optimization, . . .





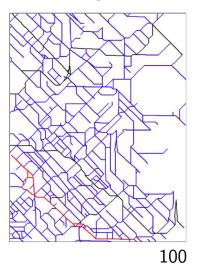
Idea.

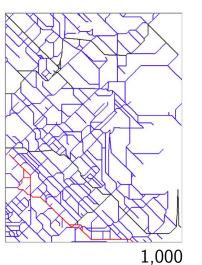
- define a (multi-criteria) layout quality function
- improve layout quality step-by-step by locally moving vertices to better nearby (grid) positions
- applicable optimization techniques: hill climbing, simulated annealing, ant colony optimization, . . .

[Avelar & Müller 2000]

- calculate best vertex position in each criterion (octilinearity (R2), min. separation (R8))
- move vertex to average of positions without violating topology (R1)





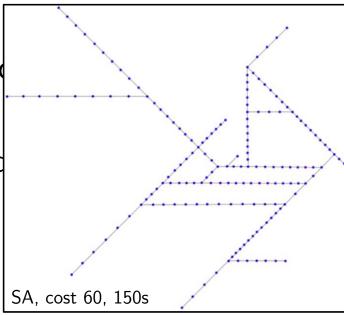


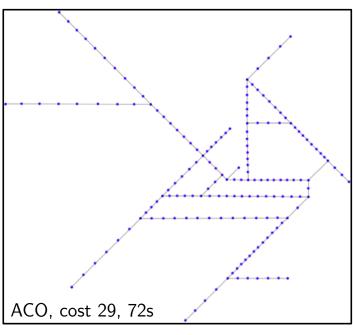
Idea.

- define a (multi-criteria) layout quality function
- improve layout quality step-by-step by locally moving vertice to better nearby (grid) positions
- applicable optimization techniques: hill climbing, simulated annealing, ant colony optimization, . . .

[Ware et al. 2006, Ware & Richards 2013]

- weighted multicriteria function
- contract degree-2 vertices prior to optimization
- implemented more design rules (topology (R1), octilinearity (R2), displacement (R6), edge lengths (R7), separation (R8))
- simulated annealing (2006) and ant colony optimization (2013)

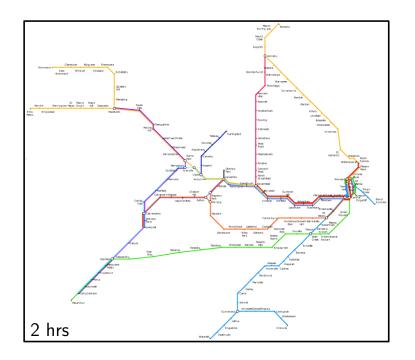


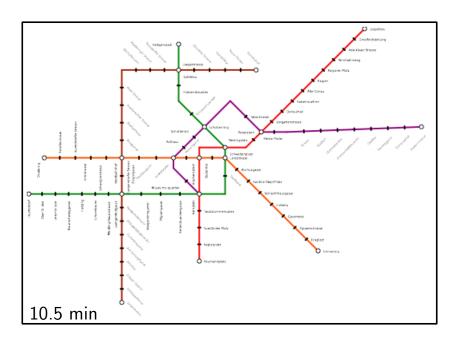


[Stott et al. 2011]

ldea.

- design rules as before
- additionally include metro map specific criteria (bend minimization (R3), interchange straightness (R4), angular resolution (R5), relative positions (R6))
- integrate alternating label placement rounds
- some ad-hoc fixes for local minima situations





Local Schematization – Discussion

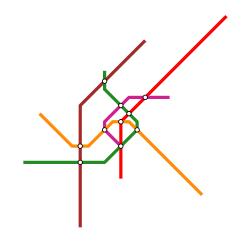
Pros.

- flexible framework, easy to integrate new criteria
- recent methods improved visual layout quality
- integration of layout and labeling

Cons.

- optimization of criteria, but no guarantees (except topology)
- susceptible to local minima
- long running times

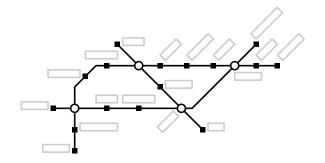
Visualization of Graphs



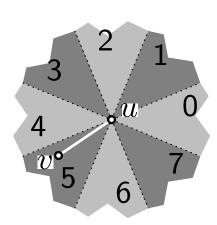
Lecture 12:

Octilinear Graph Drawing Metro Map Layout

Mixed-Integer Programming



Jonathan Klawitter



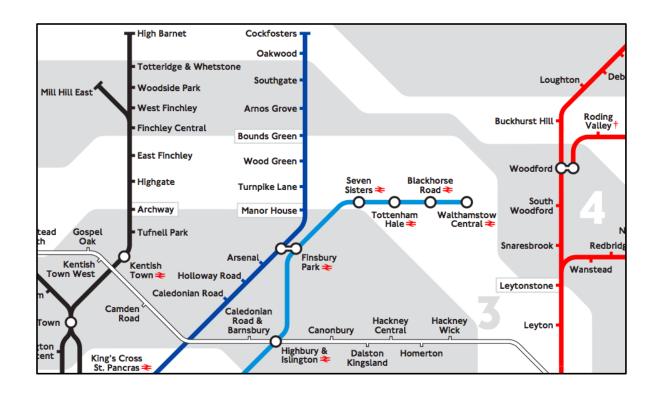
Mixed-Integer Programming

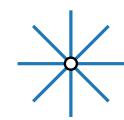
[Nöllenburg & Wolff 2011]

- find exact optimum solution using combinatorial optimization
- split design rules into hard and soft constraints
- $lue{lue}$ model constraints as linear (in)equalities and linear objective function \rightarrow mixed-integer programming $lue{lue}$
- integrate overlap-free station labeling in same model
- can use sophisticated optimization tools as black box solvers (e.g., CPLEX, Gurobi)

Hard Constraints

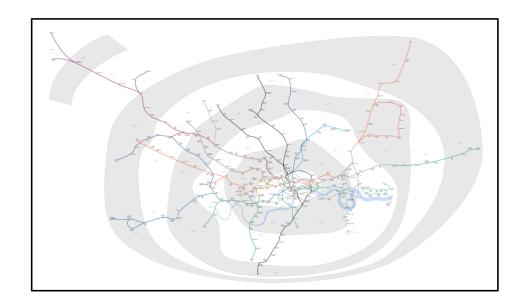
- (R1) preserve embedding/topology and planarity
- (R2) draw all edges octilinearly
- (R7) enforce minimum edge length ℓ_{min}
- (R8) enforce minimum feature separation d_{min}

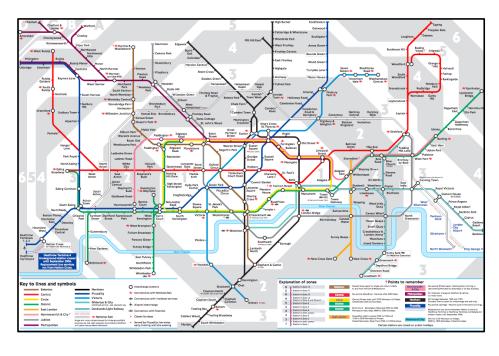




Soft Constraints

- (R3+R4) draw lines in \mathcal{L} with few bends
- (R6) minimize geometric distortion
- (R7) minimize total edge length

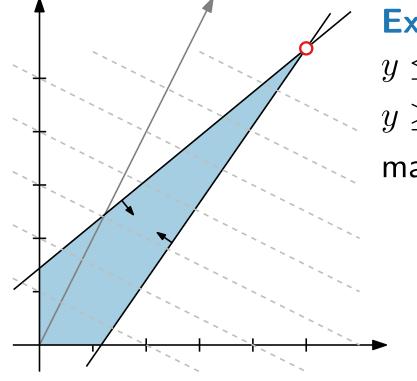




Linear Programming

Linear Programming (LP) is an efficient optimization method for

- linear constraints
- linear objective function
- real-valued variables



Example.

$$y \le 0.9x + 1.5$$

$$y \ge 1.4x - 1.3$$

maximize x + 2y

Linear Programming

Linear Programming (LP) is an efficient optimization method for

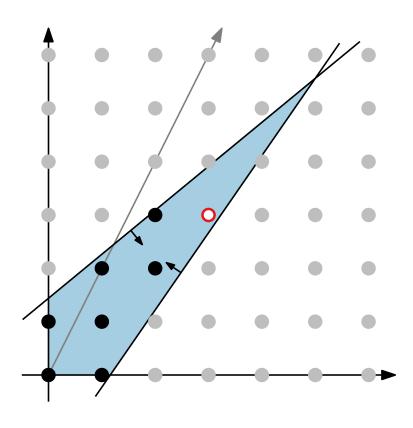
- linear constraints
- linear objective function
- real-valued variables

Mixed Integer Programming (MIP)

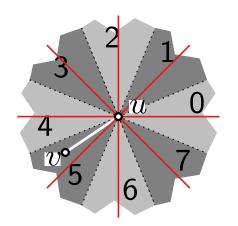
- in addition binary and integer variables
- NP-hard optimization problem
- still method of choice for many practical optimization tasks

Metro map layout can be modeled as MIP such that

- \blacksquare hard constraints \rightarrow linear constraints
- lacksquare soft constraints o linear objective function



Sectors and Coordinates



Sectors.

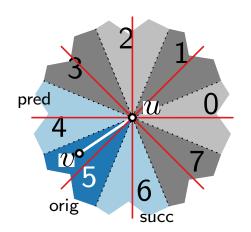
- for each vertex u partition the plane into eight sectors numbered 0–7 here: $\sec(u,v)=5$ in the input
- number octilinear edge directions accordingly here, e.g., dir(u, v) = 5

y z_1 z_2

Coordinates.

- lacktriangleright assign (redundant) z_1 and z_2 -coordinates to each vertex v
 - $z_1(v) = \frac{1}{2} \cdot (x(v) + y(v))$
 - $z_2(v) = \frac{1}{2} \cdot (x(v) y(v))$

Octilinearity and Relative Position



Goal.

Draw the edge uv

- octilinearly (R2)
- with minimum length $\ell = \ell_{uv}$ (R7)
- restricted to the three best directions (R6)

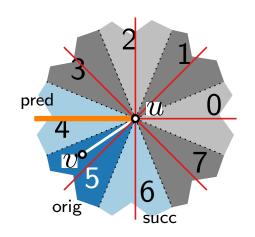
How to model this using linear constraints in a MIP?

Introduce binary variables

$$\alpha_{\mathsf{pred}}(u,v) + \alpha_{\mathsf{orig}}(u,v) + \alpha_{\mathsf{succ}}(u,v) = 1$$

to select exactly one of the three sectors.

Octilinearity and Relative Position



Predecessor sector.

$$y(u) - y(v) \le M(1 - \alpha_{\mathsf{pred}}(u, v))$$

 $-y(u) + y(v) \le M(1 - \alpha_{\mathsf{pred}}(u, v))$
 $x(u) - x(v) \ge -M(1 - \alpha_{\mathsf{pred}}(u, v)) + \ell$

How does this work?

Case 1:
$$\alpha_{\mathsf{pred}}(u,v) = 1$$

$$y(u) - y(v) \leq 0$$

$$-y(u) + y(v) \leq 0$$

$$x(u) - x(v) \geq \ell$$

Case 2:
$$\alpha_{\text{pred}}(u,v)=0$$

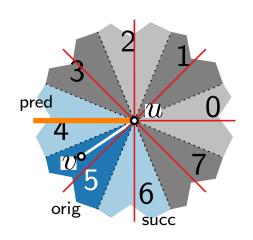
very large constant

$$y(u) - y(v) \leq M$$

$$-y(u) + y(v) \leq M$$

$$x(u) - x(v) \geq -M + \ell$$

Octilinearity and Relative Position



Predecessor sector.

$$y(u) - y(v) \le M(1 - \alpha_{\mathsf{pred}}(u, v))$$

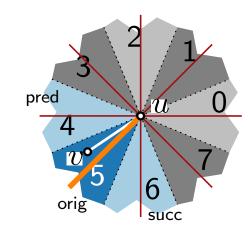
 $-y(u) + y(v) \le M(1 - \alpha_{\mathsf{pred}}(u, v))$
 $x(u) - x(v) \ge -M(1 - \alpha_{\mathsf{pred}}(u, v)) + \ell$

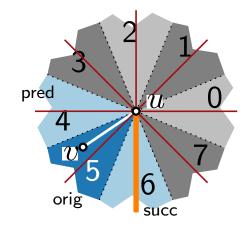
very large constant

Original sector.

$$z_2(u) - z_2(v) \le M(1 - \alpha_{\text{orig}}(u, v))$$

 $-z_2(u) + z_2(v) \le M(1 - \alpha_{\text{orig}}(u, v))$
 $z_1(u) - z_1(v) \ge -M(1 - \alpha_{\text{orig}}(u, v)) + \ell$





Successor sector.

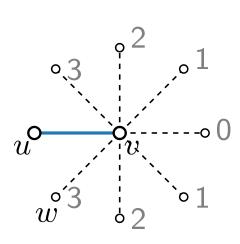
$$x(u) - x(v) \le M(1 - \alpha_{\mathsf{succ}}(u, v))$$

 $-x(u) + x(v) \le M(1 - \alpha_{\mathsf{succ}}(u, v))$
 $y(u) - y(v) \ge -M(1 - \alpha_{\mathsf{succ}}(u, v)) + \ell$

Objective Function

- models the three soft constraints
- weighted sum of individual cost functions minimize λ_{bends} cost_{bends} + λ_{length} cost_{length} + λ_{dist} cost_{dist}

Example: line bends (R3/R4)



Edges uv and vw on a line $L \in \mathcal{L}$

- draw as straight as possible
- increasing cost bend(u, v, w) for increasing acuteness of $\angle(\overline{uv}, \overline{vw})$

$$\mathsf{cost}_{\mathsf{bends}} = \sum_{L \in \mathcal{L}} \sum_{uv.vw \in L} \mathsf{bend}(u, v, w)$$

To assign bend(u, v, w) correctly, we need to define some linear constraints based on the direction variables dir(u, v) and dir(v, w).

Overview MIP model

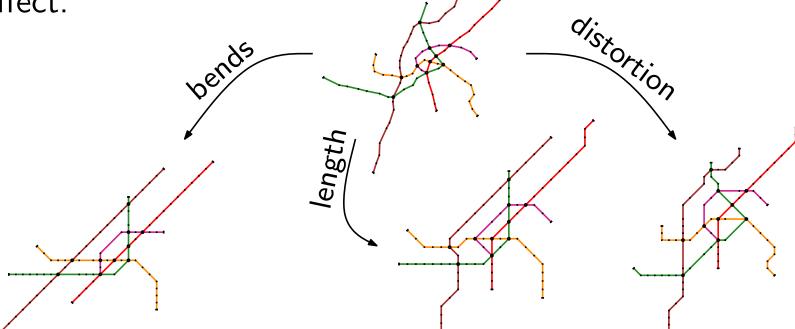
Constraints.

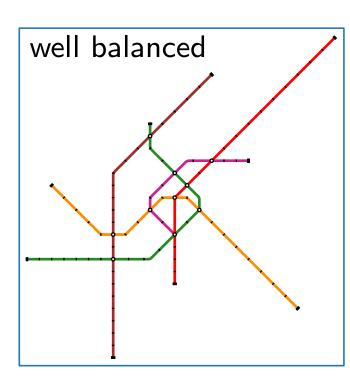
- linearization of all hard constraints
- $O(n^2)$ variables and constraints (due to planarity)

Objective function.

- weighted sum of the three soft constraints
- $lacktriangleq \min \sum_{\mathsf{bend}} \mathsf{cost}_{\mathsf{bend}} + \lambda_{\mathsf{len}} \mathsf{cost}_{\mathsf{len}} + \lambda_{\mathsf{dist}} \mathsf{cost}_{\mathsf{dist}}$

effect:

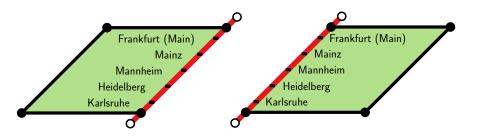




Station Labeling

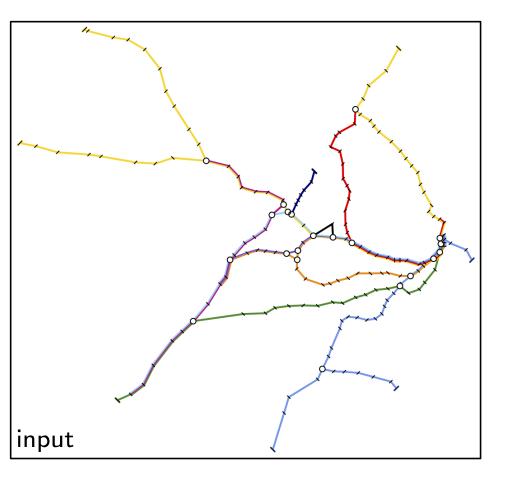
- unlabeled map mostly useless
- labels need space
- labels may not overlap each other
- graph labeling problem is NP-hard [Tollis & Kakoulis 2001]

→ combine layout & labeling for optimal results!

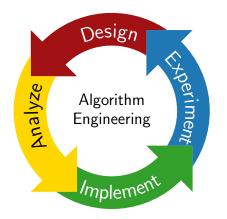


- parallelogram as special metro line
- switching sides allowed

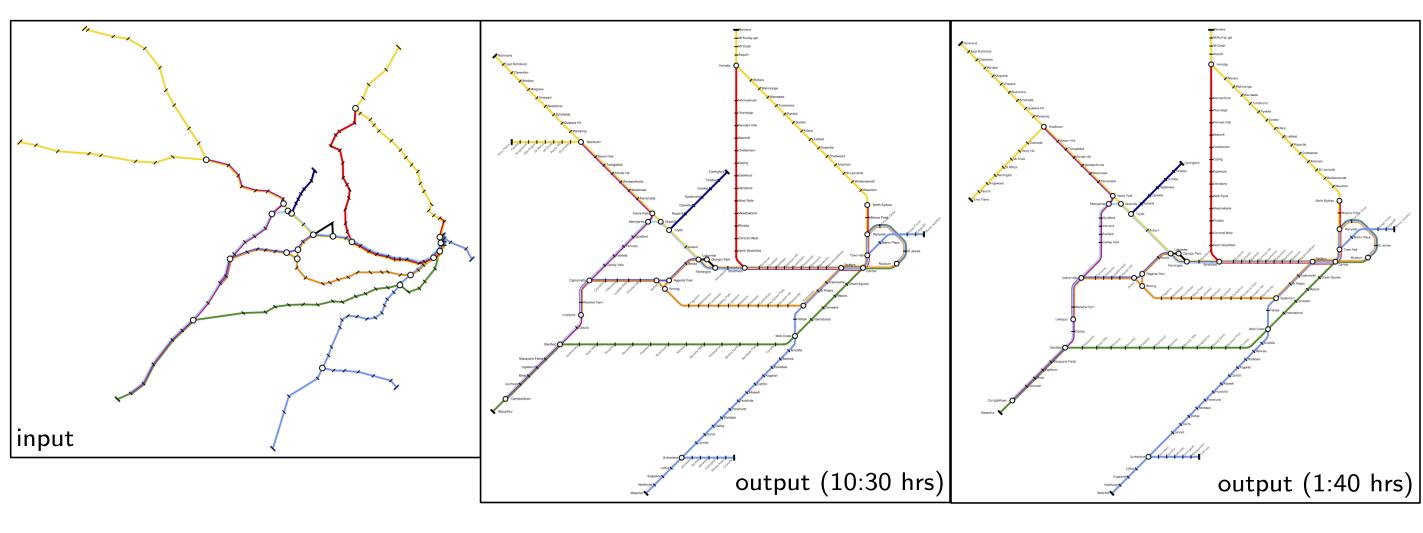
Example: Sydney &



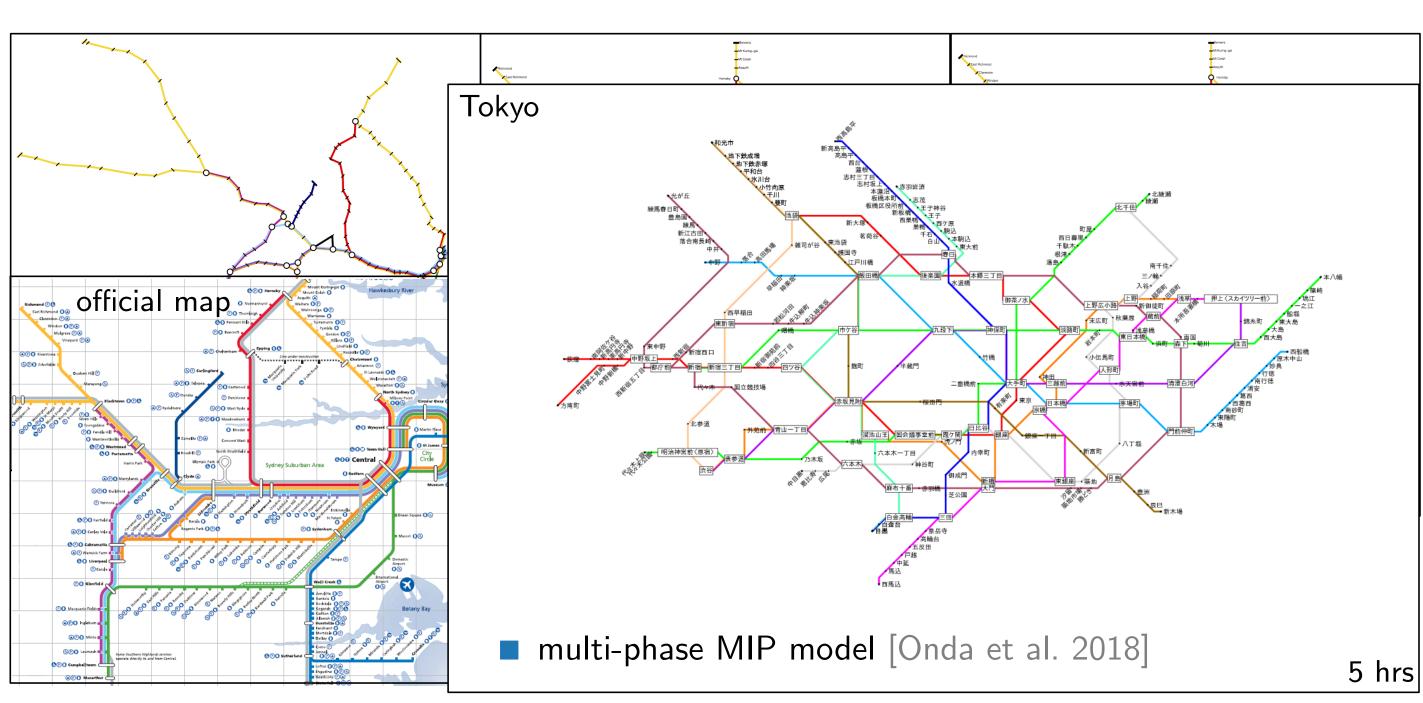
Input	V	E	fcs.	$ \mathcal{L} $	
full reduced	174 88	183 97	11	10	
labeled	242	270	30		
MIP	constraints		vari	variables	
full	1,1	1,191,406		290,137	
callback	21,988		92	92,681	



Example: Sydney &



Example: Sydney & Tokyo



Mixed-Integer Programming – Discussion

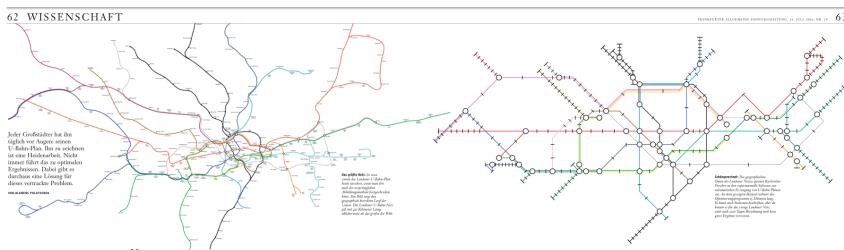
Pros.

- flexible framework, but integration and linearization of new criteria requires some effort
- high layout and labeling quality
- theoretical guarantees
- can integrate user constraints dynamically

Cons.

- long, sometimes unpredictable running times
- for large labeled networks no proof of optimality
- solutions only as good as the model specification

Mixed-Integer Programming – Discussion



DIE SCHÖNHEIT DES UNTERGRUNDES

Der Mann, der die Nudeln geradezog

Seit 1895 das Magazin der Credit Suisse Nummer 4 Nov /Dez 09 Struktur Child's Dream Kindern eine bessere Zukunft bieten CH-Wirtschaft Die Gewinner und Verlierer der Krise Ben van Berkel Der Stararchitekt im Gespräch

Least-Squares Schematization

[Wang, Chi '11]

- Idea. model layout problem as minimization of a set of (squared) energy terms
 - variables for vertex positions and edge slopes
 - use iterative numerical optimization method
- 3-step approach
 - compute topologically correct non-octilinear layout optimizing angular resolution (R5),
 uniform edge lengths (R7), displacement (R6)
 - octilinearly discretize edge orientations (R2) by extra energy term
 - optimize label placement by energy minimization in fixed layout
- described for focus route, generalizes to entire maps

Discussion.

- very fast method for good quality layouts
- no guarantee on constraints unless final energy is zero

Summary

- variety of layout methods evolved over the last 15-20 years
- many shared design rules
- trade-off between speed and quality, but quite reasonable maps can be computed in a matter of seconds to minutes
- many approaches are customizable and open to new criteria
- current trend: beyond octilinear metro maps

Why automated maps?

- base layouts for graphic designers (semi-automated process)
- large quantities of individual or special-purpose maps

Challenges

- global quality criteria like harmony, coherence, balance
- edge bundles and large vertices

Literature

- [Nöllenburg '14] A Survey on Automated Metro Map Layout Methods
- [Dwyer, Hurst, Merrick '08] A fast and simple heuristic for metro map path simplification
- [Delling et al. '14] On d-regular schematization of embedded paths
- [Brandes & Pampel '09] On the Hardness of Orthogonal-Order Preserv-ing Graph Drawing
- [Gema et al. '11] On d-Regular Schematization of Embedded Paths
- [Hong et al. '06] Automaticvisualisation of metro maps
- [Chivers & Rodgers '14] Octilinear Force-Directed Layout with Mental MapPreservation for Schematic Diagrams
- [Fink, Haverkort, Nöllenburg, Roberts, Schuhmann, Wolff '12] Drawing metro maps using Bézier curves
- [Avelar & Müller '00] Generating topologically correct schematicmaps
- [Ware et al. '06] Automatedproduction of schematic maps for mobile application
- [Ware & Richards '13] An ant colony system algorithm forautomatically schematizing transport network data set
- [Stott et al. '11] Auto-matic metro map layout using multicriteria optimization
- lacktriangle Nolff $^{\prime}11]$ Drawing and labeling high-quality metro maps by mixed-integer programming
- [Onda, Moriguchi, Imai '18] Automatic Drawing for Tokyo Metro Map
- [Wang & Chi '11] Focus+context metro maps