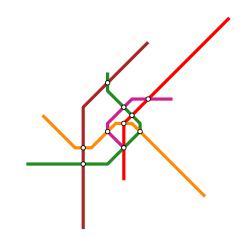


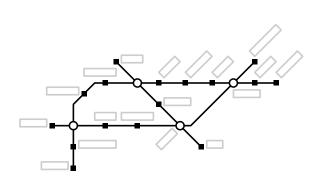
Visualization of Graphs

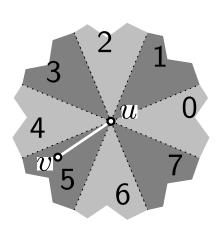
Octilinear Graph Drawing
Metro Map Layout

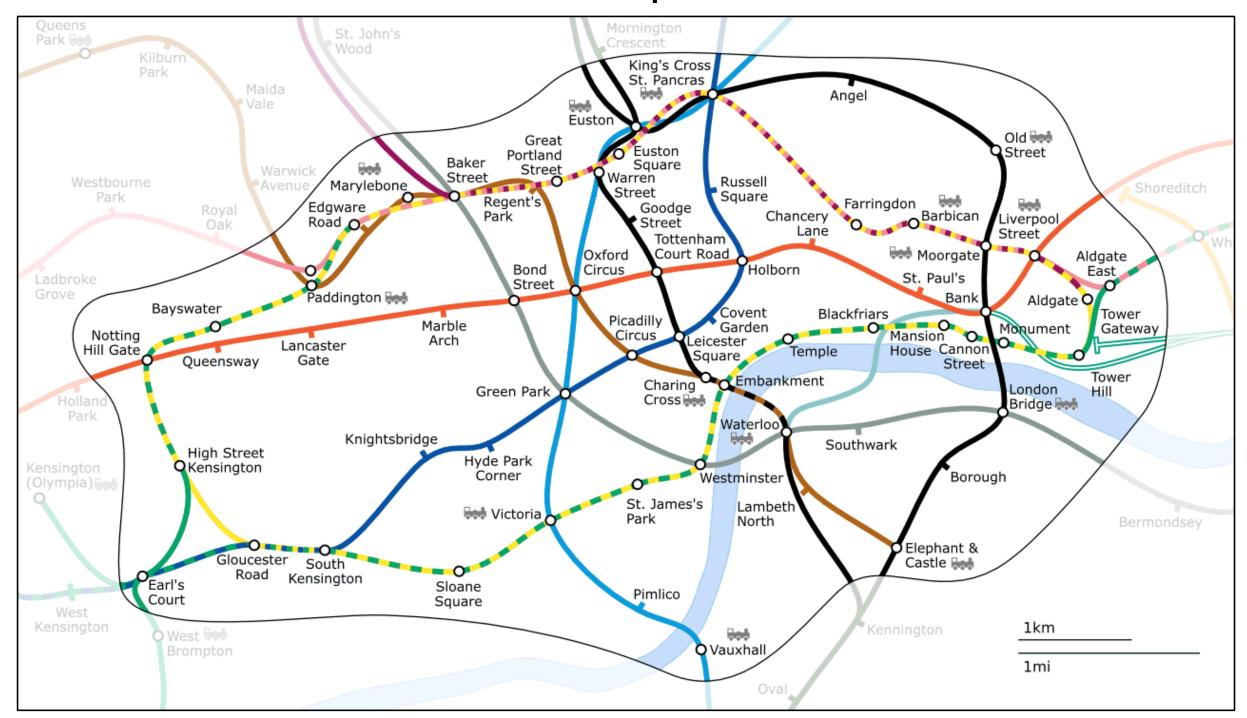
Part I: Schematic Metro Maps

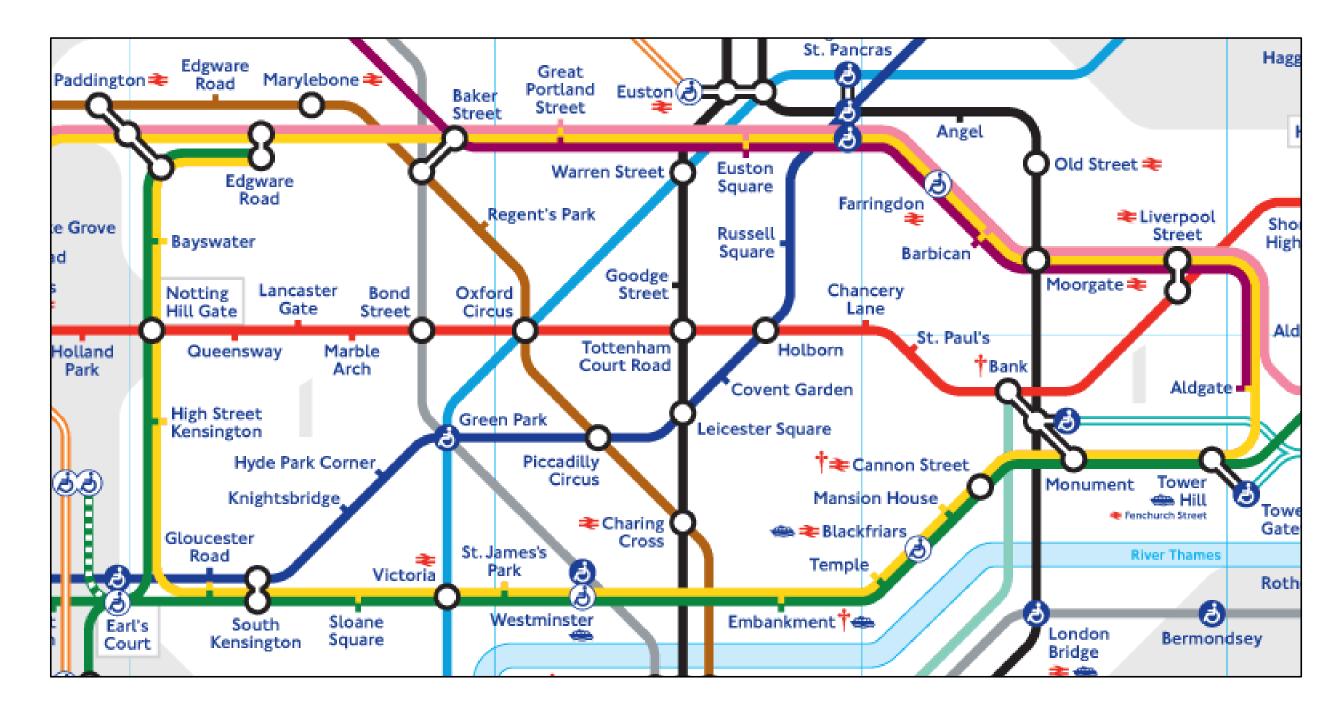
Jonathan Klawitter

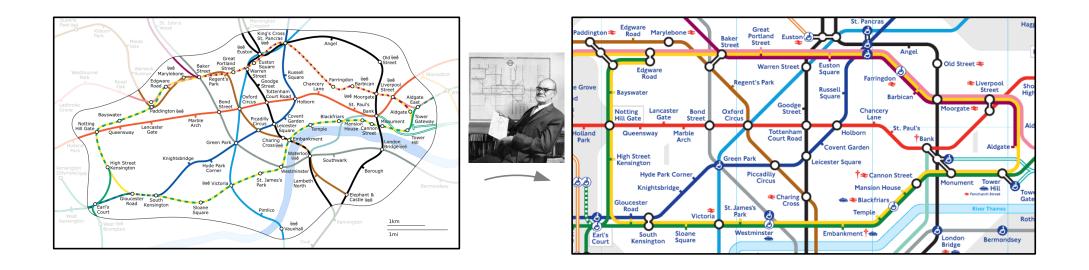


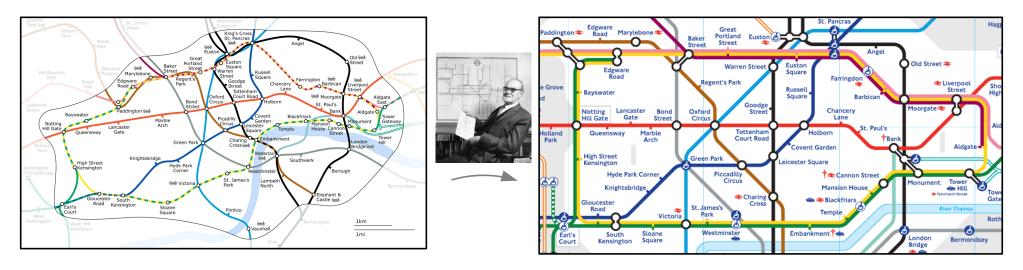




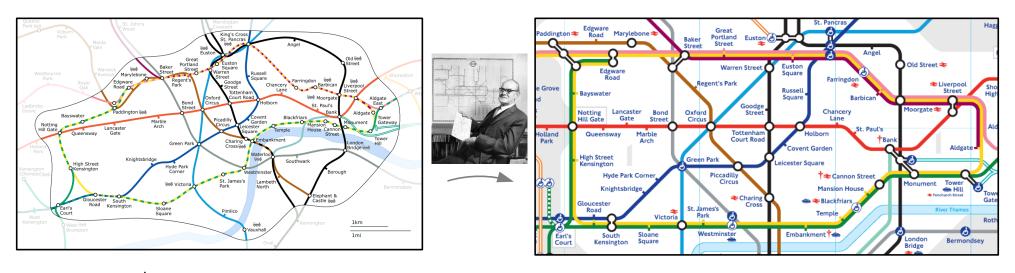




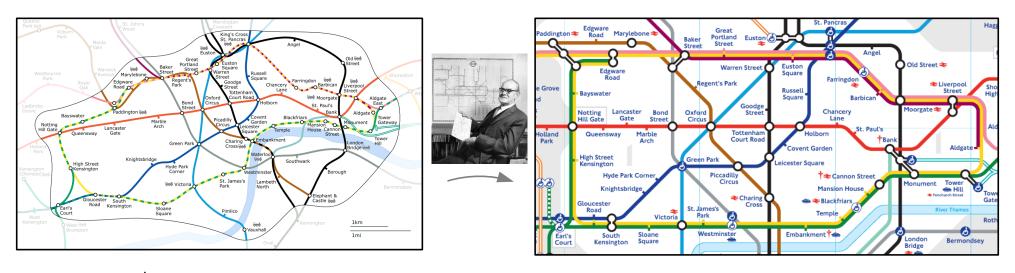




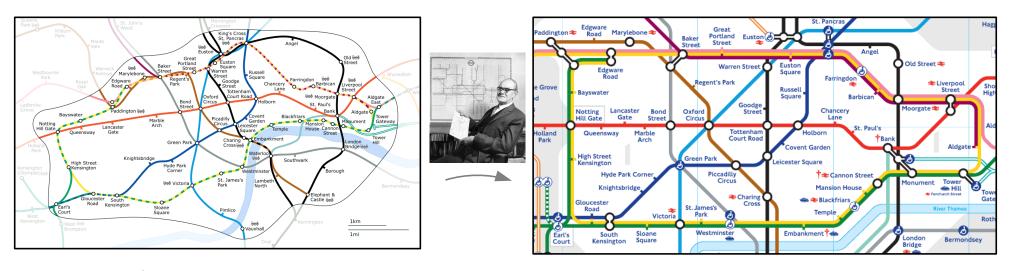
map/diagram that shows stations connected by metro lines



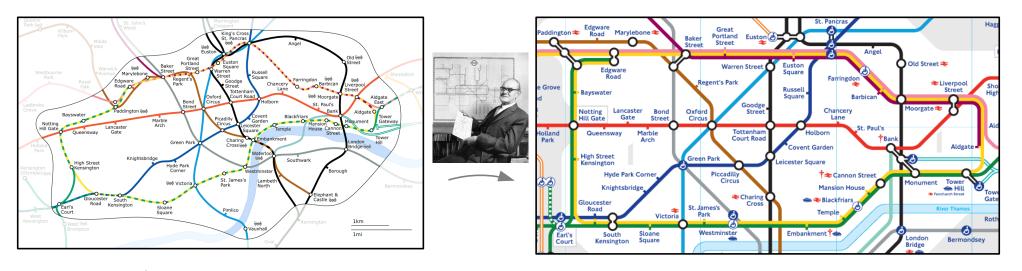
- map/diagram that shows stations connected by metro lines
- focus on topology rather than topography



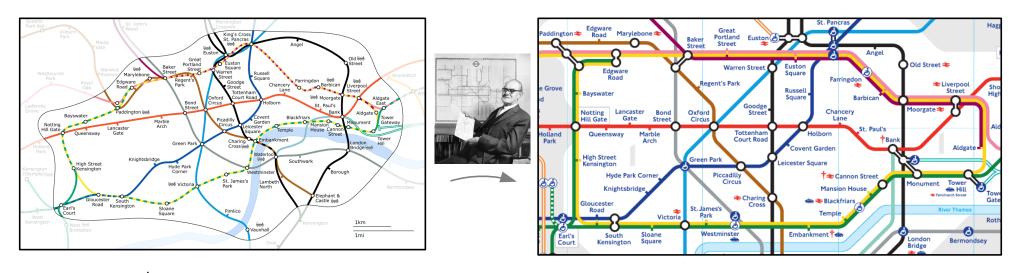
- map/diagram that shows stations connected by metro lines
- focus on topology rather than topography
- goal: easy-to-use visual navigation aid for passengers



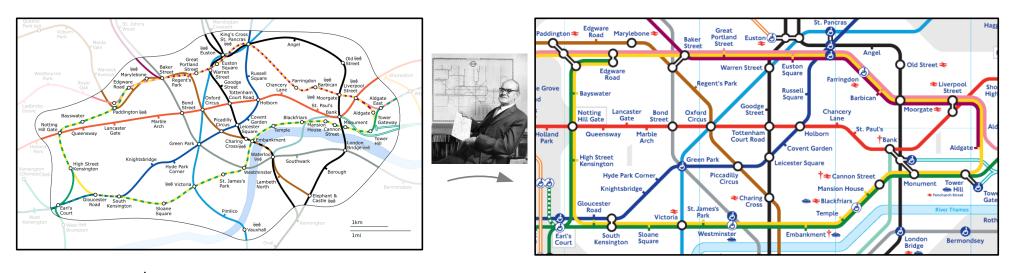
- map/diagram that shows stations connected by metro lines
- focus on topology rather than topography
- goal: easy-to-use visual navigation aid for passengers
 - "How do I quickly get from A to B?"



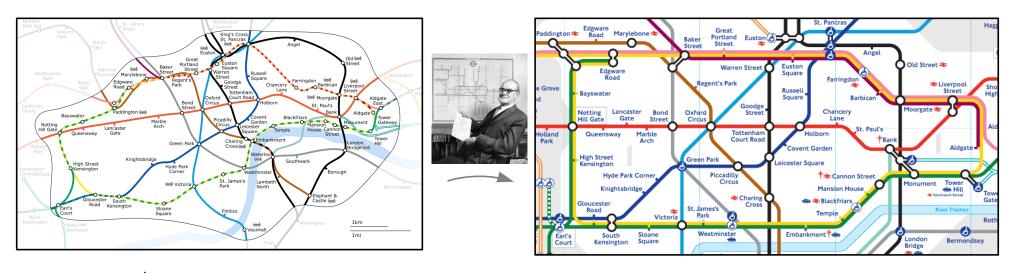
- map/diagram that shows stations connected by metro lines
- focus on topology rather than topography
- goal: easy-to-use visual navigation aid for passengers
 - "How do I quickly get from A to B?"
 - "Where do I need to change trains?"



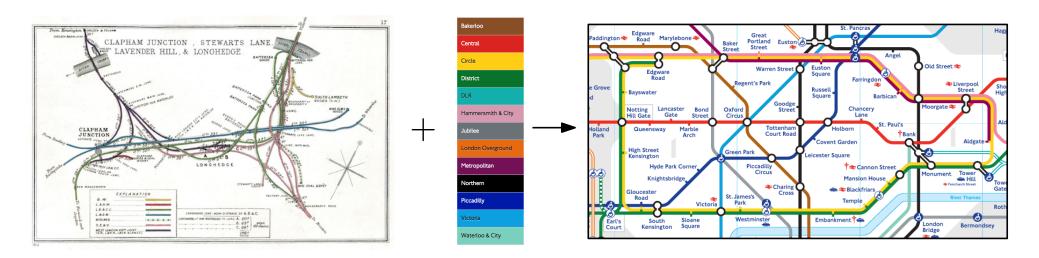
- map/diagram that shows stations connected by metro lines
- focus on topology rather than topography
- goal: easy-to-use visual navigation aid for passengers
 - "How do I quickly get from A to B?"
 - "Where do I need to change trains?"
- distorts scale and geometry



- map/diagram that shows stations connected by metro lines
- focus on topology rather than topography
- goal: easy-to-use visual navigation aid for passengers
 - "How do I quickly get from A to B?"
 - "Where do I need to change trains?"
- distorts scale and geometry
- metro map design still a largely manual process

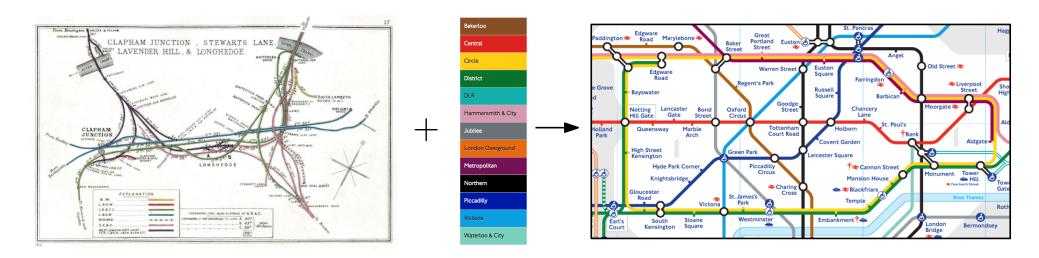


- map/diagram that shows stations connected by metro lines
- focus on topology rather than topography
- goal: easy-to-use visual navigation aid for passengers
 - "How do I quickly get from A to B?"
 - "Where do I need to change trains?"
- distorts scale and geometry
- metro map design still a largely manual process
- optimizing network layout computationally challenging



Input.

- lacksquare geographically embedded railway network G
- lacksquare set of metro lines $\mathcal L$ serving G

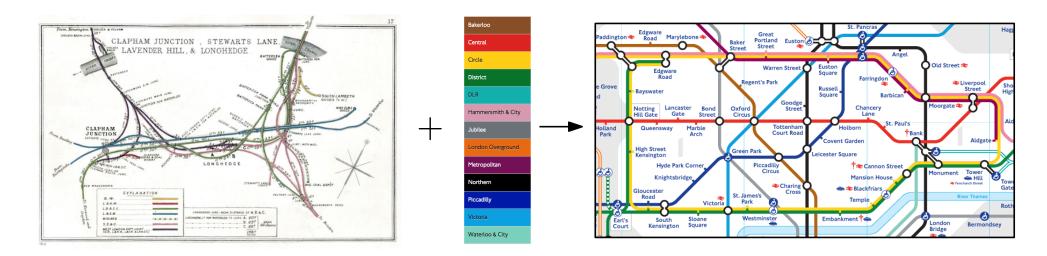


Input. \blacksquare geographically embedded railway network G

lacksquare set of metro lines $\mathcal L$ serving G

Output.

optimal metro map layout (whatever it means)

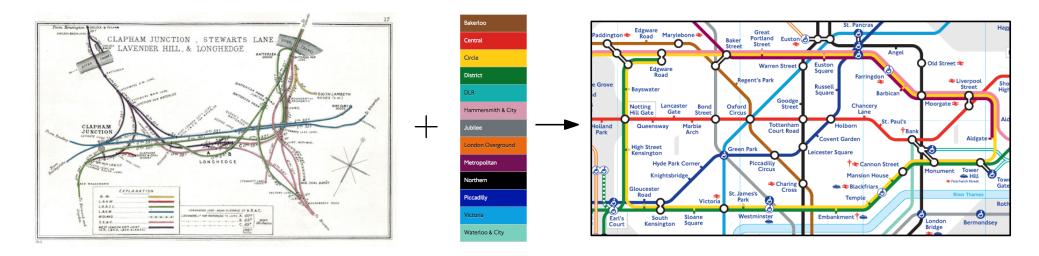


Input. \blacksquare geographically embedded railway network G

lacksquare set of metro lines $\mathcal L$ serving G

Output.

optimal metro map layout (whatever it means)



Input. \blacksquare geographically embedded railway network G

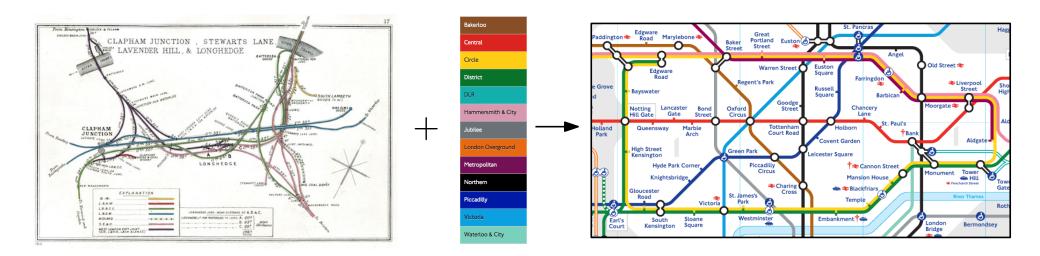
lacksquare set of metro lines $\mathcal L$ serving G

Output.

optimal metro map layout (whatever it means)

Divide the task into several subtasks:

rendering and design choices



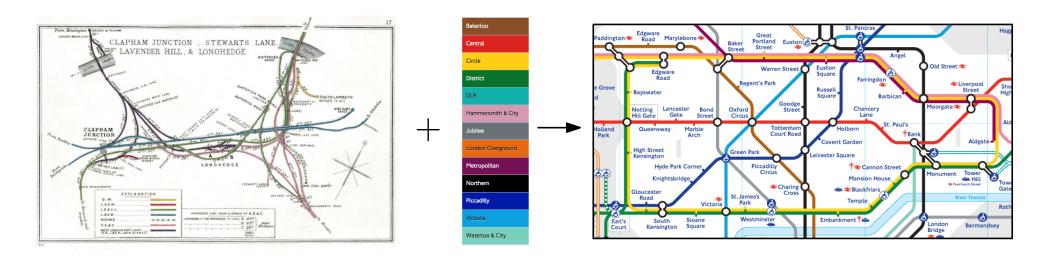
Input. \blacksquare geographically embedded railway network G

lacksquare set of metro lines $\mathcal L$ serving G

Output.

optimal metro map layout (whatever it means)

- rendering and design choices
- network layout



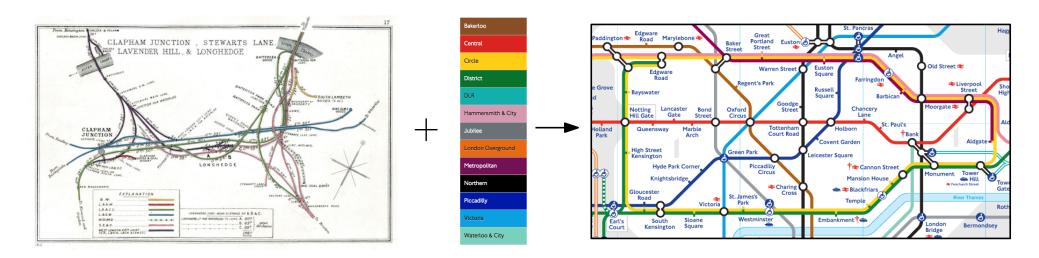
Input. \blacksquare geographically embedded railway network G

lacksquare set of metro lines $\mathcal L$ serving G

Output.

optimal metro map layout (whatever it means)

- rendering and design choices
- network layout
- station labeling



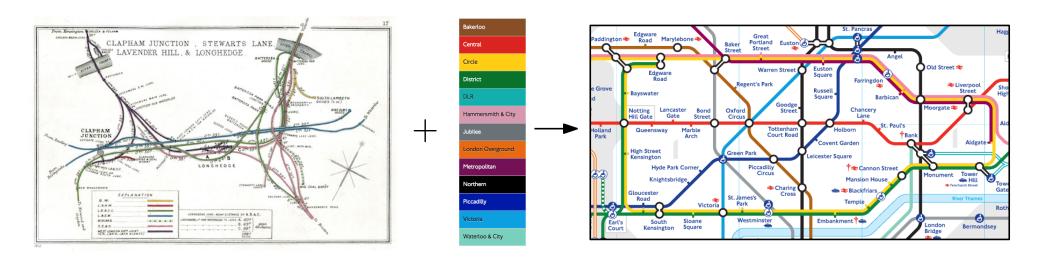
Input. \blacksquare geographically embedded railway network G

lacksquare set of metro lines $\mathcal L$ serving G

Output.

optimal metro map layout (whatever it means)

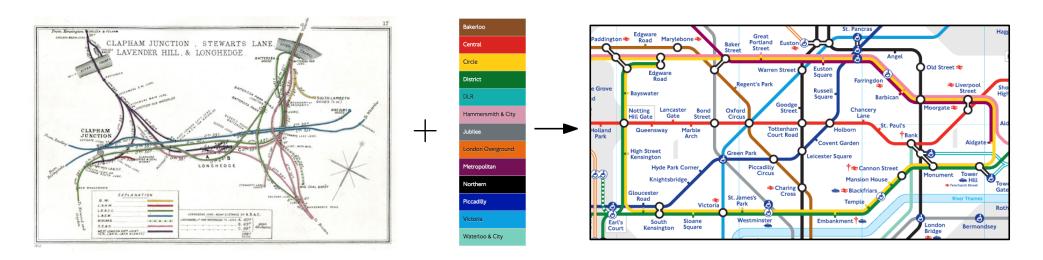
- rendering and design choices
- network layout
- station labeling
- metro line routing



- Input. \blacksquare geographically embedded railway network G
 - lacksquare set of metro lines $\mathcal L$ serving G
- Output.

 optimal metro map layout (whatever it means)

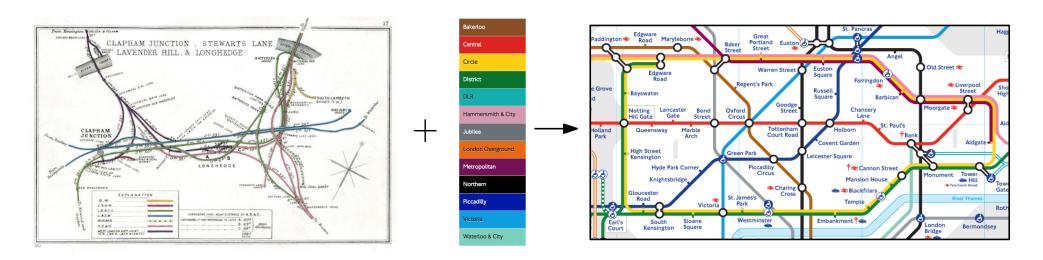
- rendering and design choices
- network layout
- station labeling
- metro line routing



- Input. \blacksquare geographically embedded railway network G
 - lacksquare set of metro lines $\mathcal L$ serving G
- Output.

 optimal metro map layout (whatever it means)

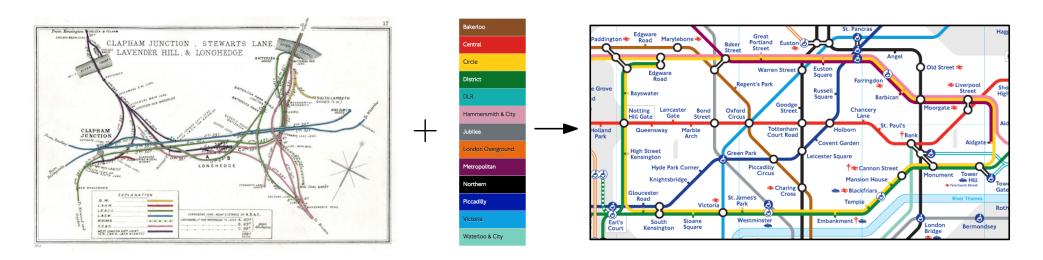
- rendering and design choices
- network layout
- station labeling
- metro line routing



- Input. \blacksquare geographically embedded railway network G
 - lacksquare set of metro lines $\mathcal L$ serving G
- Output.

 optimal metro map layout (whatever it means)

- rendering and design choices
- network layout
- station labeling
- metro line routing



- Input. \blacksquare geographically embedded railway network G
 - lacksquare set of metro lines $\mathcal L$ serving G
- Output.

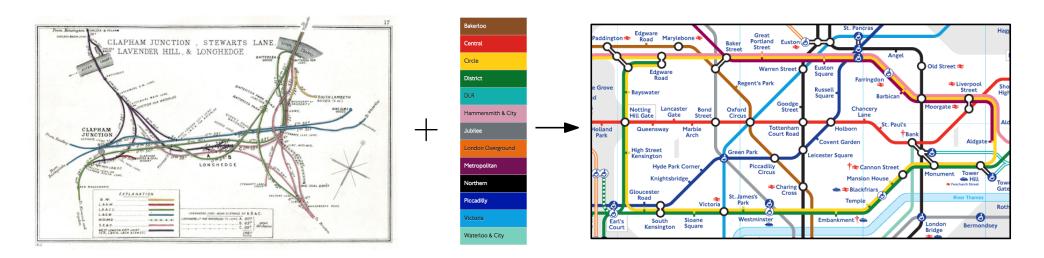
 optimal metro map layout (whatever it means)

Divide the task into several subtasks:

- rendering and design choices
- network layout
- station labeling
- metro line routing

 \rightarrow very salient,

but not a computational problem



Input. \blacksquare geographically embedded railway network G

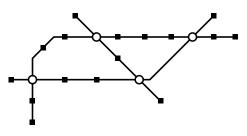
lacksquare set of metro lines $\mathcal L$ serving G

Output.

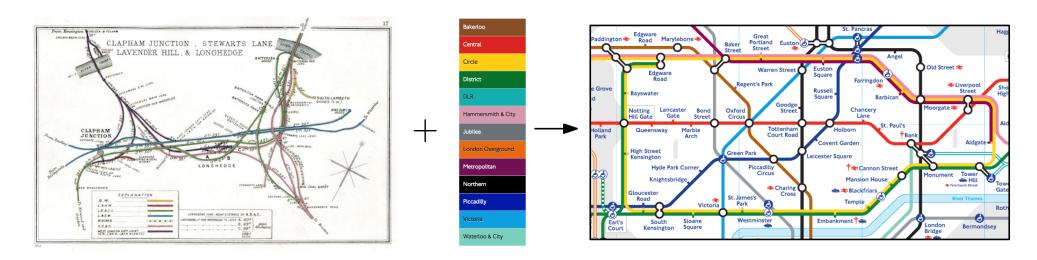
optimal metro map layout (whatever it means)

Divide the task into several subtasks:

- rendering and design choices
- network layout
- station labeling
- metro line routing



determine geometry of network layout



Input. \blacksquare geographically embedded railway network G

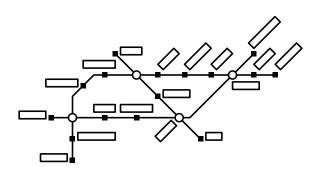
lacksquare set of metro lines $\mathcal L$ serving G

Output.

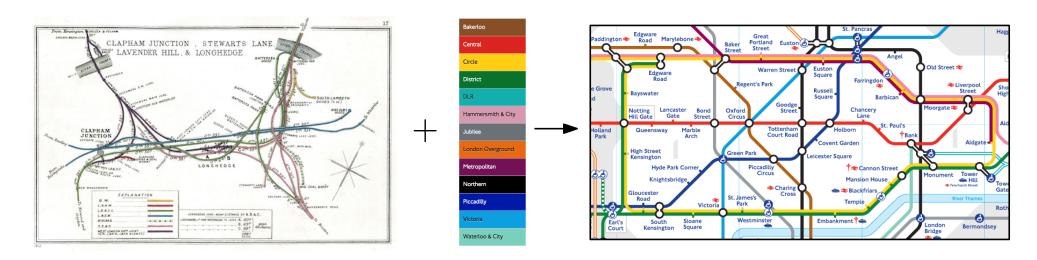
optimal metro map layout (whatever it means)

Divide the task into several subtasks:

- rendering and design choices
- network layout
- station labeling
- metro line routing



determine positions of station names



Input. \blacksquare geographically embedded railway network G

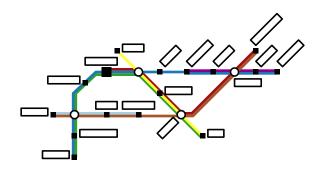
lacksquare set of metro lines $\mathcal L$ serving G

Output.

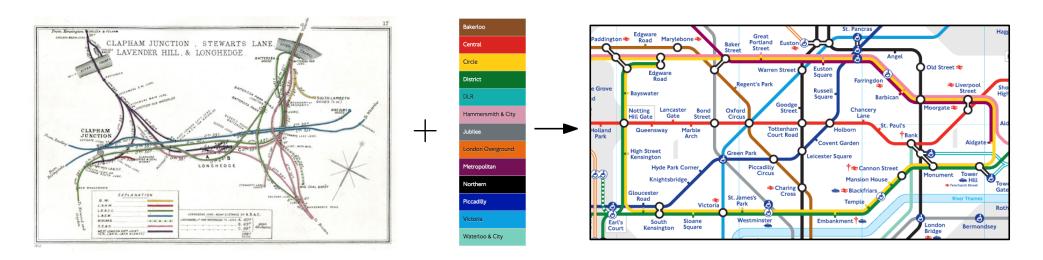
optimal metro map layout (whatever it means)

Divide the task into several subtasks:

- rendering and design choices
- network layout
- station labeling
- metro line routing



determine line routing and ordering of bundles



- Input. \blacksquare geographically embedded railway network G
 - lacksquare set of metro lines $\mathcal L$ serving G
- Output.

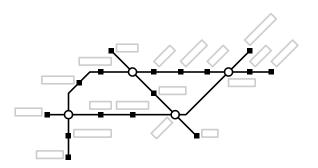
 optimal metro map layout (whatever it means)

Divide the task into several subtasks:

- rendering and design choices
- network layout

focus today

- station labeling
- metro line routing



Formalizing the Network Layout Problem

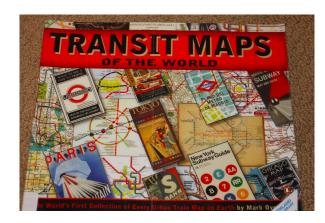
- **Given.** \blacksquare graph G = (V, E) geometrically embedded in \mathbb{R}^2
 - \blacksquare vertex set V (stations)
 - \blacksquare edge set E (rail links)
 - \blacksquare set of paths \mathcal{L} (metro lines in G)
- **Goal.** schematic layout of (G, \mathcal{L}) that
 - satisfies a set of layout constraints
 - optimizes a set of quality criteria

Formalizing the Network Layout Problem

- Given. \blacksquare graph G = (V, E) geometrically embedded in \mathbb{R}^2
 - \blacksquare vertex set V (stations)
 - \blacksquare edge set E (rail links)
 - \blacksquare set of paths \mathcal{L} (metro lines in G)
- **Goal.** schematic layout of (G, \mathcal{L}) that
 - satisfies a set of layout constraints
 - optimizes a set of quality criteria

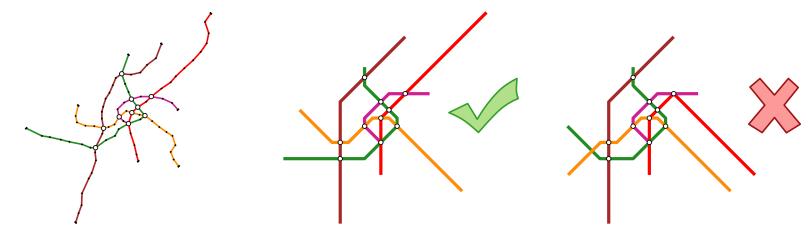
But what are the constraints and quality criteria?

→ extract common principles of existing, manually designed metro maps

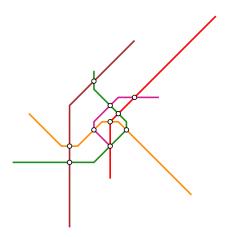


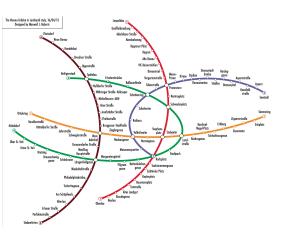
(R1) Do not change the network topology.

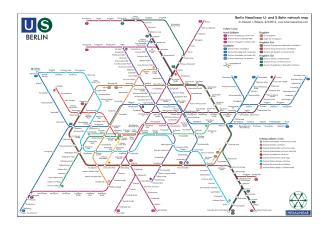
- no new crossings
- no changes in circular vertex orders

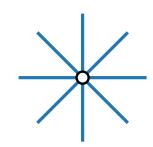


- (R1) Do not change the network topology.
- (R2) Restrict edge orientations.
 - mostly octilinear (octolinear) orientation systems
 - also curvilinear and other alternative orientation systems

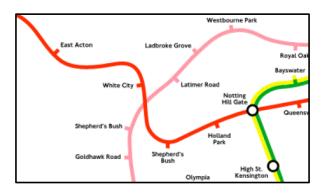


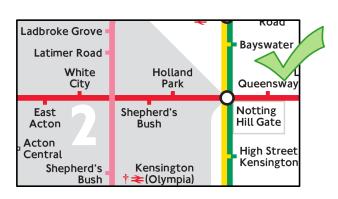


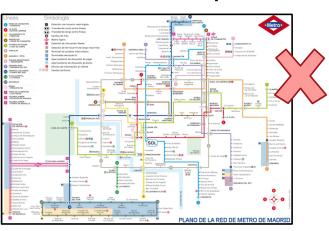




- (R1) Do not change the network topology.
- (R2) Restrict edge orientations.
- (R3) Draw metro lines as simple and monotone as possible.
 - avoid bends
 - prefer obtuse bend angles
 - for curves: prefer uniform curvature, few inflection points

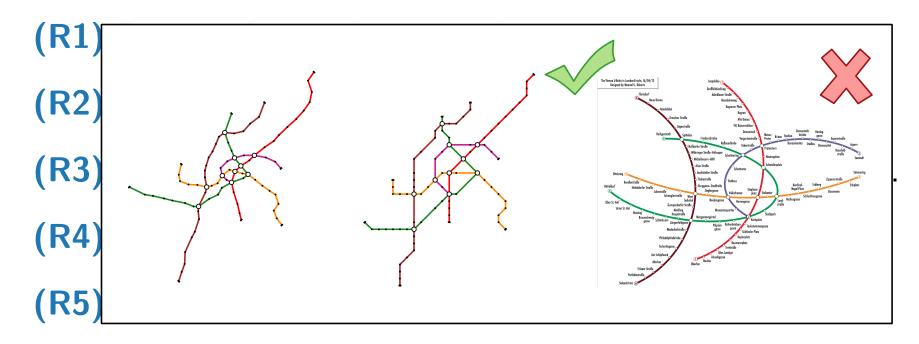






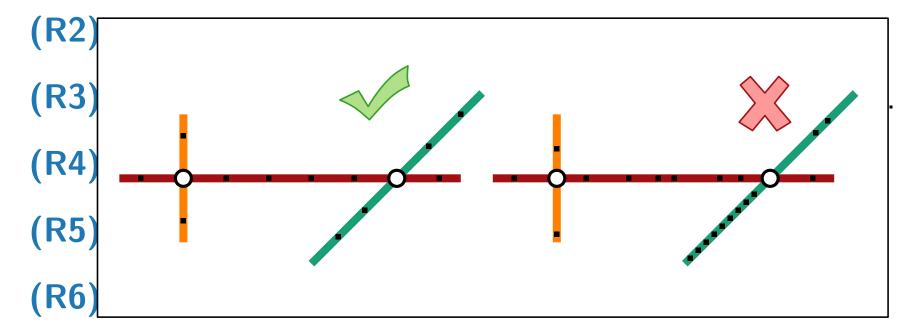
- (R1) Do not change the network topology.
- (R2) Restrict edge orientations.
- (R3) Draw metro lines as simple and monotone as possible.
- (R4) Let lines pass straight through interchanges.
 - avoids visual ambiguities in complex stations

- (R1) Do not change the network topology.
- (R2) Restrict edge orientations.
- (R3) Draw metro lines as simple and monotone as possible.
- (R4) Let lines pass straight through interchanges.
- (R5) Use large angular resolution in stations.
 - distributes edges evenly for balanced appearance



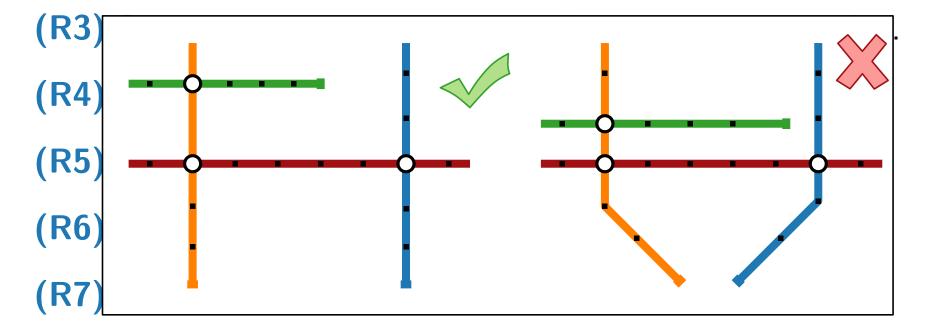
- (R6) Minimize geometric distortion and displacement.
 - maintains resemblance to geography
 - topographicity preserves user's mental map
 - applicable locally or globally

(R1) Do not change the network topology.



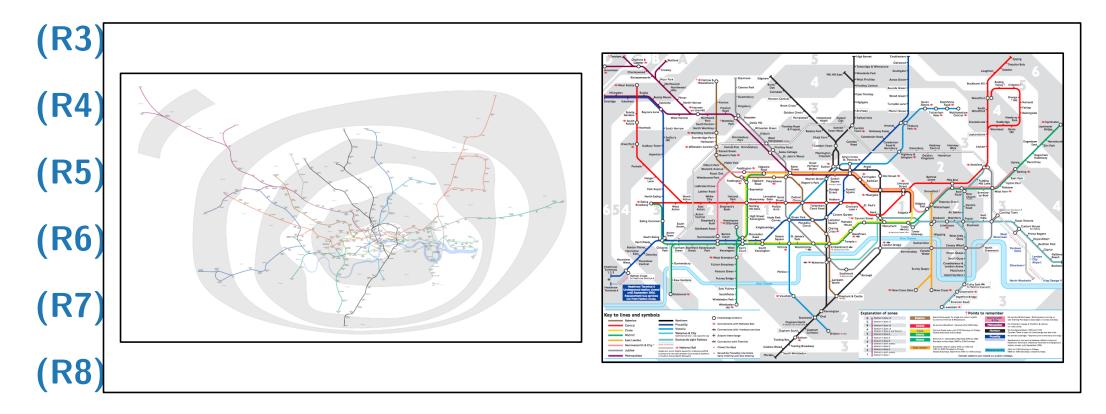
- (R7) Use uniform edge lengths.
 - geographic distances less important
 - network hop-distances more important
 - balanced appearance

- (R1) Do not change the network topology.
- (R2) Restrict edge orientations.



- (R8) Keep unrelated features apart.
 - guarantees minimum clearance between features
 - avoids ambiguities

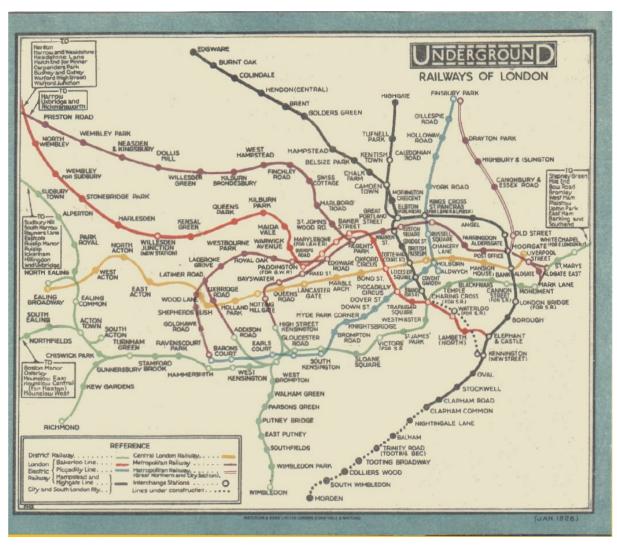
- (R1) Do not change the network topology.
- (R2) Restrict edge orientations.



- (R9) Avoid large empty spaces.
 - balances local feature density
 - possibly fill gaps with legends

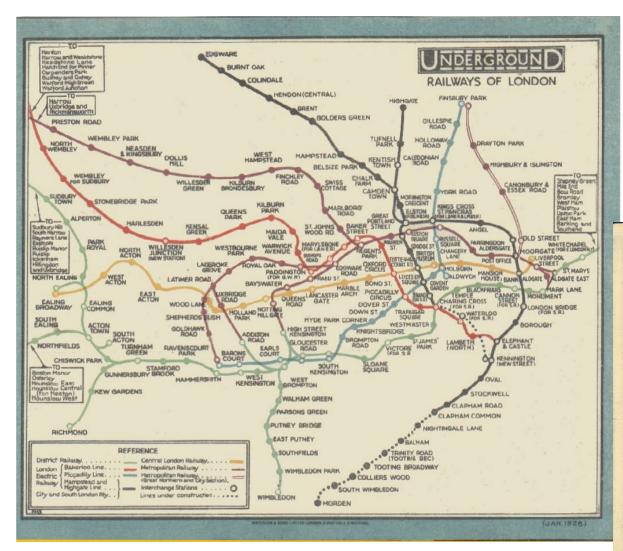
- (R1) Do not change the network topology.
- (R2) Restrict edge orientations.
- (R3) Draw metro lines as simple and monotone as possible.
- (R4) Let lines pass straight through interchanges.
- (R5) Use large angular resolution in stations.
- (R6) Minimize geometric distortion and displacement.
- (R7) Use uniform edge lengths.
- (R8) Keep unrelated features apart.
- (R9) Avoid large empty spaces.

- (R1) Do not change the network topology.
- (R2) Restrict edge orientations.
- (R3) Draw metro lines as simple and monotone as possible.
- (R4) Let lines pass straight through interchanges.
- (R5) Use large angular resolution in stations.
- (R6) Minimize geometric distortion and displacement.
- (R7) Use uniform edge lengths.
- (R8) Keep unrelated features apart.
- (R9) Avoid large empty spaces.
 - → rules are potentially conflicting and need priorities



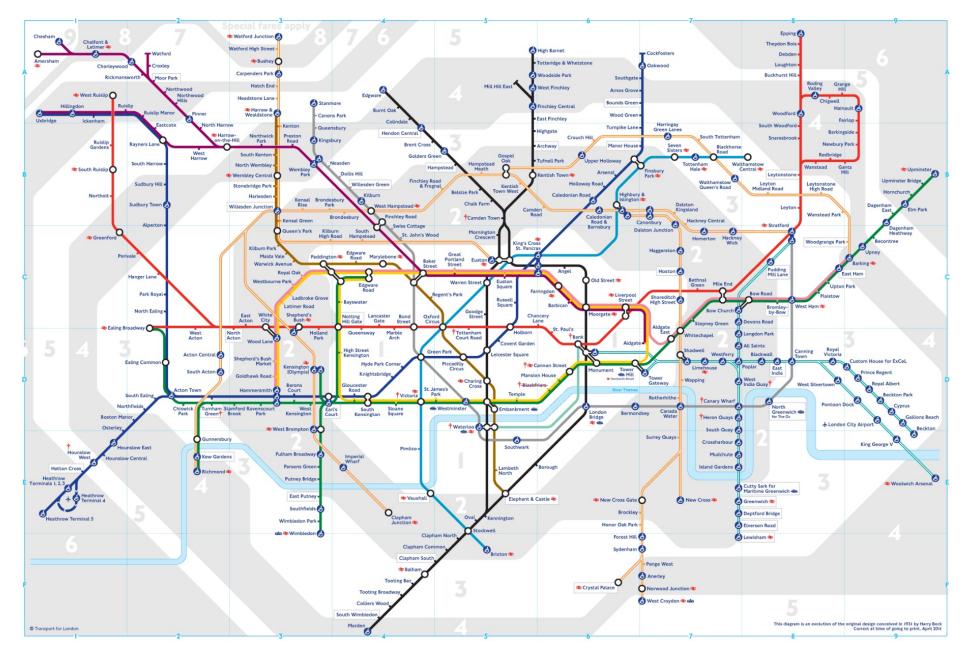
London 1927 (Fred H. Stingemore)

(c) Mike Yashworth

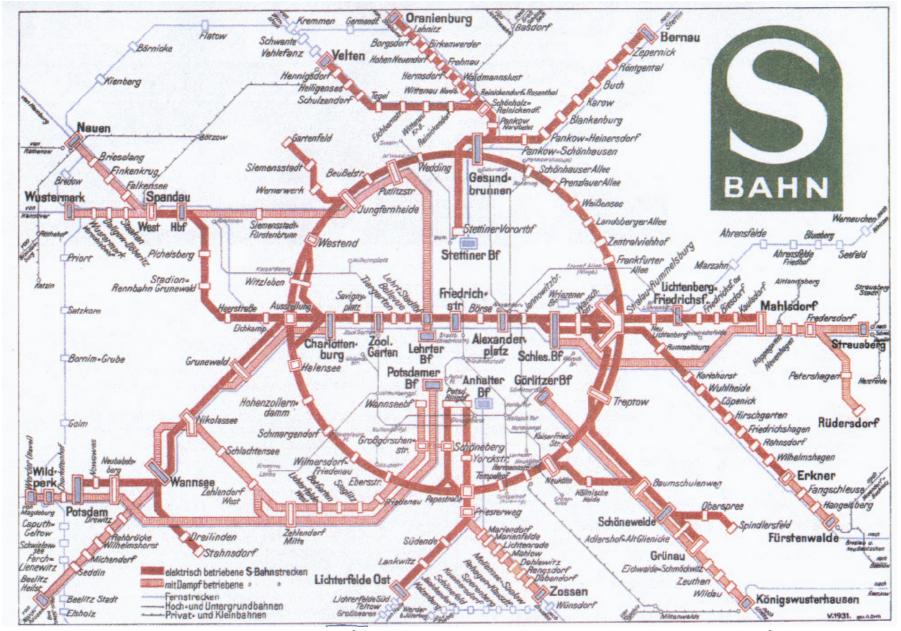


London 1927 (Fred H. Stingemore)

(c) Mike Yashworth



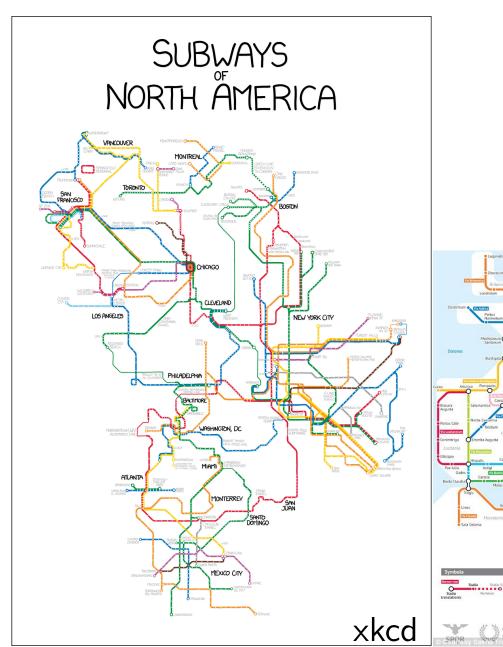
Tube Map voted Design Icon 2006 (2nd after Concorde)

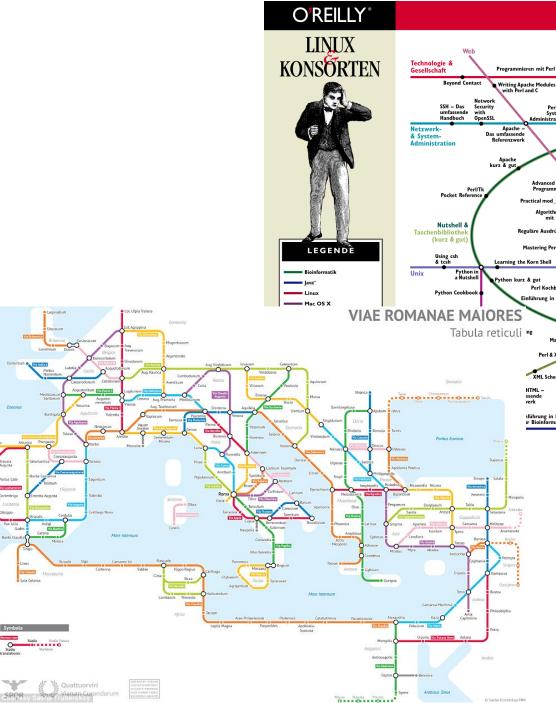


Berlin 1931 (redrawn by Maxwell Roberts)

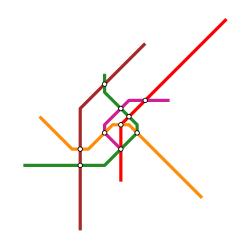
2003 OPEN SOURCE ROUTE MAP

A Bit of History



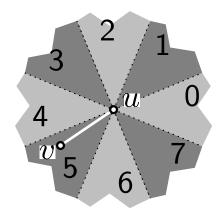


Visualization of Graphs



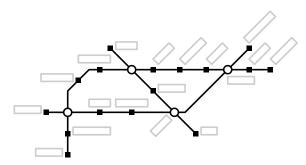
Lecture 12:

Octilinear Graph Drawing Metro Map Layout



Part II:

Complexity and Path-Based Schematization



Jonathan Klawitter

Theorem 1.

[Nöllenburg 2005]

For an embedded graph G (vertex degrees \leq 8) bend minimization (R3) is NP-hard if preserving topology (R1) and octilinearity (R2) are required.

Theorem 1.

[Nöllenburg 2005]

For an embedded graph G (vertex degrees \leq 8) bend minimization (R3) is NP-hard if preserving topology (R1) and octilinearity (R2) are required.

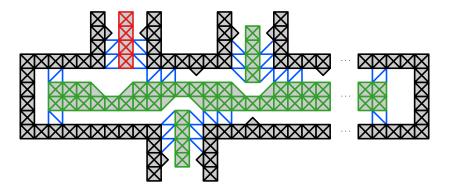
Sketch of proof.

Theorem 1.

[Nöllenburg 2005]

For an embedded graph G (vertex degrees \leq 8) bend minimization (R3) is NP-hard if preserving topology (R1) and octilinearity (R2) are required.

Sketch of proof.

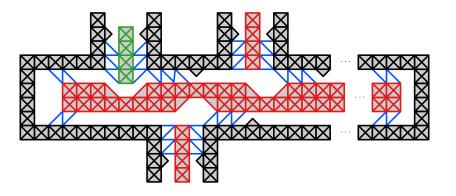


Theorem 1.

[Nöllenburg 2005]

For an embedded graph G (vertex degrees \leq 8) bend minimization (R3) is NP-hard if preserving topology (R1) and octilinearity (R2) are required.

Sketch of proof.

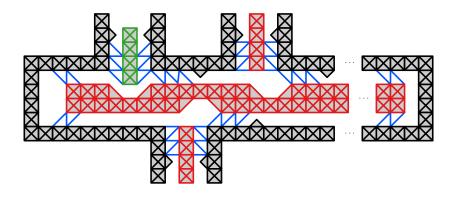


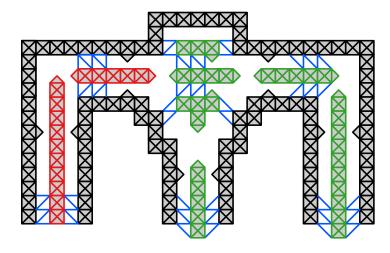
Theorem 1.

[Nöllenburg 2005]

For an embedded graph G (vertex degrees \leq 8) bend minimization (R3) is NP-hard if preserving topology (R1) and octilinearity (R2) are required.

Sketch of proof.



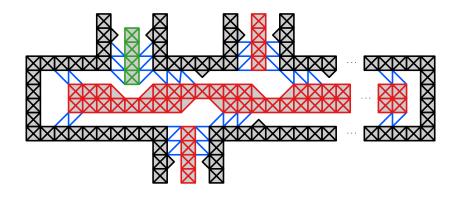


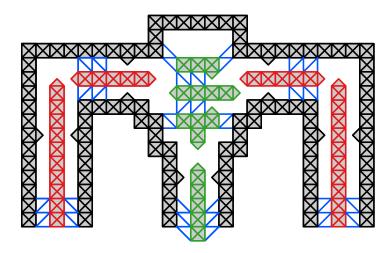
Theorem 1.

[Nöllenburg 2005]

For an embedded graph G (vertex degrees \leq 8) bend minimization (R3) is NP-hard if **preserving** topology (R1) and octilinearity (R2) are required.

Sketch of proof.



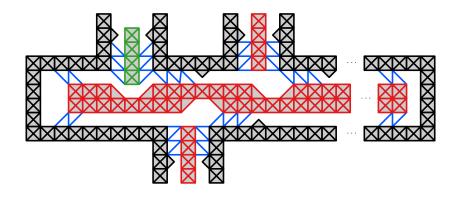


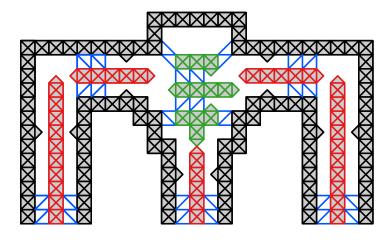
Theorem 1.

[Nöllenburg 2005]

For an embedded graph G (vertex degrees \leq 8) bend minimization (R3) is NP-hard if preserving topology (R1) and octilinearity (R2) are required.

Sketch of proof.





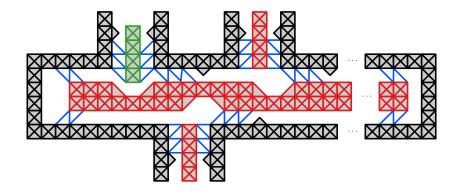
Theorem 1.

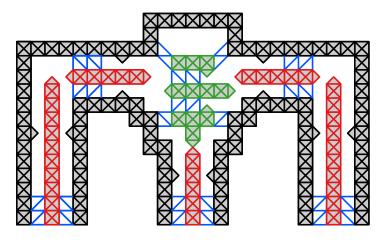
Nöllenburg 2005]

For an embedded graph G (vertex degrees ≤ 8) bend minimization (R3) is NP-hard if preserving topology (R1) and octilinearity (R2) are required.

Sketch of proof.

Reduction from Boolean satisfiability problem PLANAR-3SAT using rigid "mechanical" gadgets





Remark.

- no efficient exact algorithms to expect
- same problem without diagonals (rectilinear) is efficiently solvable

[Tamassia '87]

Goal. Solve restricted problem, where G is a path (or polyline)

Goal. Solve restricted problem, where G is a path (or polyline)

Constraints. \blacksquare C-oriented edges (e.g. octilinear) (R2)

bounded displacement (R6)

Goal. Solve restricted problem, where G is a path (or polyline)

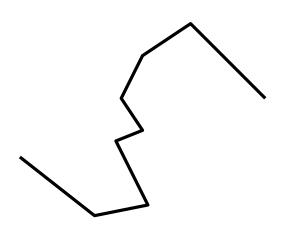
Constraints. \blacksquare C-oriented edges (e.g. octilinear) (R2)

bounded displacement (R6)

Goal. Solve restricted problem, where G is a path (or polyline)

Constraints. \blacksquare C-oriented edges (e.g. octilinear) (R2)

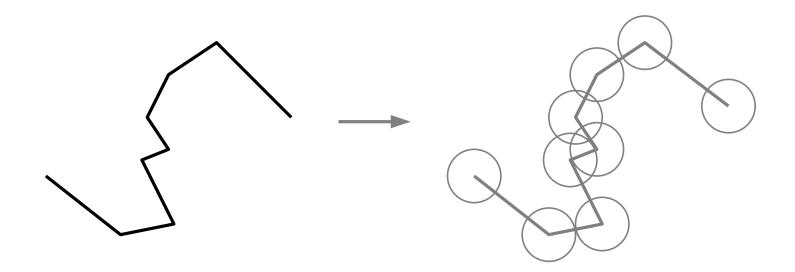
bounded displacement (R6)



Goal. Solve restricted problem, where G is a path (or polyline)

Constraints. \blacksquare C-oriented edges (e.g. octilinear) (R2)

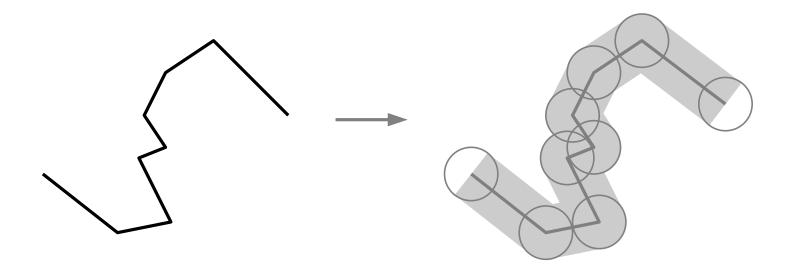
bounded displacement (R6)



Goal. Solve restricted problem, where G is a path (or polyline)

Constraints. \blacksquare C-oriented edges (e.g. octilinear) (R2)

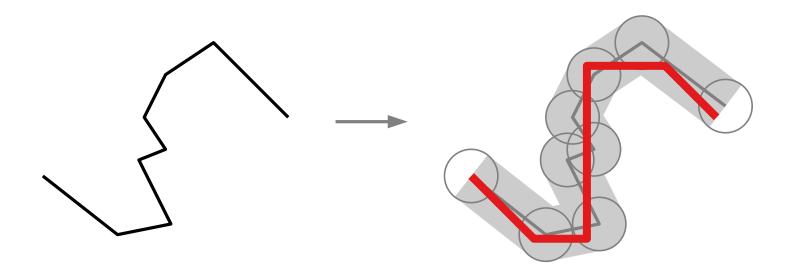
bounded displacement (R6)



Goal. Solve restricted problem, where G is a path (or polyline)

Constraints. \blacksquare C-oriented edges (e.g. octilinear) (R2)

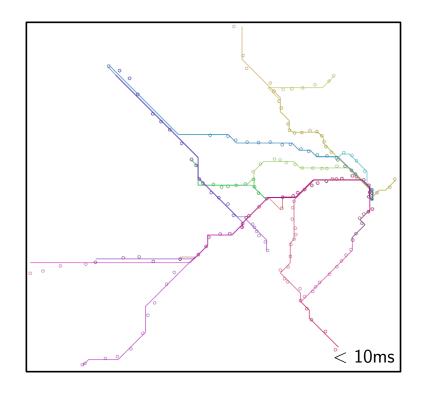
bounded displacement (R6)

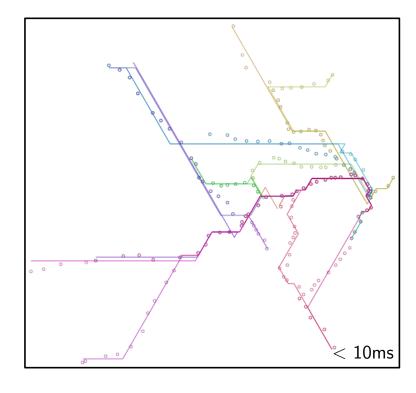


Path-based schematization – example

Theorem 2. [Dwyer, Hurst, Merrick '08]

For a path P of length n and orientation set \mathcal{C} a \mathcal{C} -oriented schematized path can heuristically be fitted to the vertices in $O(|\mathcal{C}|n)$ time (or $O(|\mathcal{C}|n\log n)$) using least-squares regression.





Theorem 3.

[Delling et al. 2010]

Given a monotone path P and a set \mathcal{C} of admissible edge slopes, we can compute, in $O(n^2)+\operatorname{solve}(\operatorname{LP})$ time, a \mathcal{C} -oriented schematization of P, which

- \blacksquare preserves the orthogonal order of P,
- has minimum slope deviation,
- has minimum total length.

Theorem 3.

[Delling et al. 2010]

Given a monotone path P and a set \mathcal{C} of admissible edge slopes, we can compute, in $O(n^2)+\operatorname{solve}(\operatorname{LP})$ time, a \mathcal{C} -oriented schematization of P, which

- \blacksquare preserves the orthogonal order of P,
- has minimum slope deviation,
- has minimum total length.

relative north-south-east-west relationship of all vertices

Theorem 3.

[Delling et al. 2010]

Given a monotone path P and a set \mathcal{C} of admissible edge slopes, we can compute, in $O(n^2)+$ solve(LP) time, a \mathcal{C} -oriented schematization of P, which

- \blacksquare preserves the orthogonal order of P,
- has minimum slope deviation,
- has minimum total length.

relative north-south-east-west relationship of all vertices

- **Proof.** dynamic programming for slope assignment
 - LP for length assignment

Theorem 3.

[Delling et al. 2010]

Given a monotone path P and a set \mathcal{C} of admissible edge slopes, we can compute, in $O(n^2)+$ solve(LP) time, a \mathcal{C} -oriented schematization of P, which

- \blacksquare preserves the orthogonal order of P,
- has minimum slope deviation,
- has minimum total length.

relative north-south-east-west relationship of all vertices

- **Proof.** dynamic programming for slope assignment
 - LP for length assignment

Theorem 4.

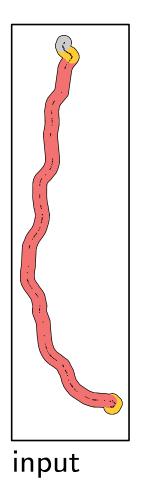
[Brandes & Pampel 2009, Gemsa et al. 2011]

The d-regular (non-monotone) route sketch problem is NP-hard for any $d \geq 1$, where $C = \{i \cdot 90^{\circ}/d \mid i \in \mathbb{Z}\}.$

Example. Bremen to Cuxhaven

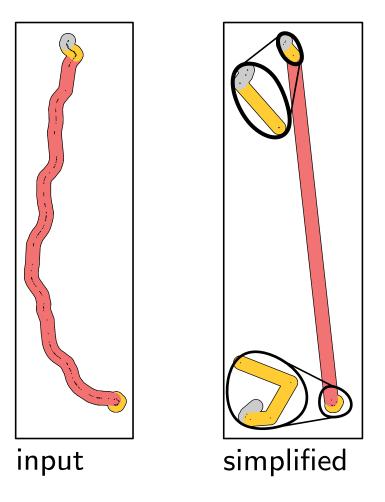
[Gemsa et al. 2011]

Example. Bremen to Cuxhaven



[Gemsa et al. 2011]

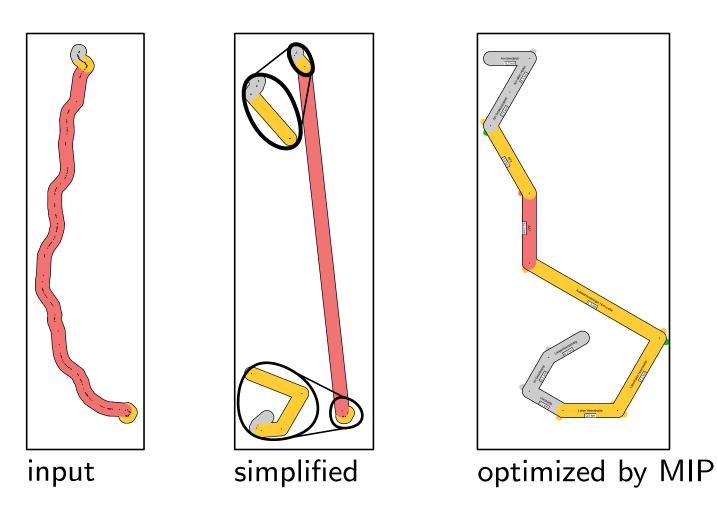
Example. Bremen to Cuxhaven



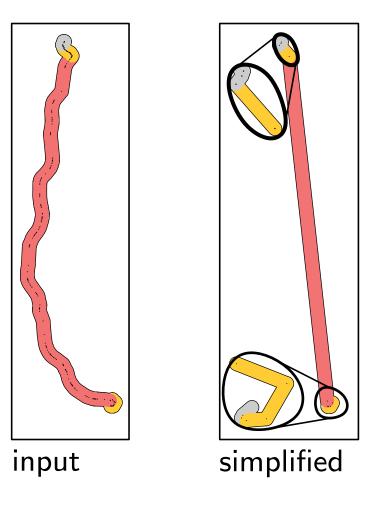
[Gemsa et al. 2011]

Example. Bremen to Cuxhaven

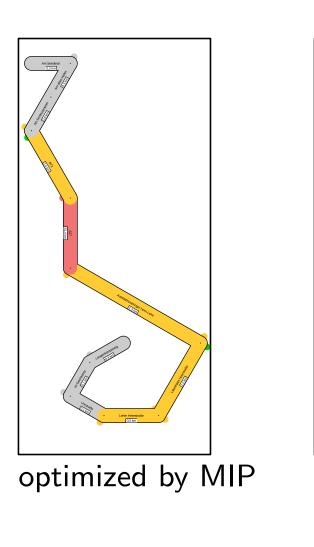
[Gemsa et al. 2011]



Example. Bremen to Cuxhaven



[Gemsa et al. 2011]



including length order constraint

Path-Based Schematization - Discussion

Pros.

Cons.

Pros.

polynomial running times

Pros.

- polynomial running times
- lacktriangleright C-orientation and bounded displacement guaranteed

Pros.

- polynomial running times
- lacktriangleright C-orientation and bounded displacement guaranteed
- bend minimization

Pros.

- polynomial running times
- lacktriangleright C-orientation and bounded displacement guaranteed
- bend minimization
- extends to metro networks:

Pros.

- polynomial running times
- lacktriangleright C-orientation and bounded displacement guaranteed
- bend minimization
- extends to metro networks:
 - decompose metro network into paths

Pros.

- polynomial running times
- lacktriangleright \mathcal{C} -orientation and bounded displacement guaranteed
- bend minimization
- extends to metro networks:
 - decompose metro network into paths
 - schematize individual paths

Pros.

- polynomial running times
- lacktriangleright \mathcal{C} -orientation and bounded displacement guaranteed
- bend minimization
- extends to metro networks:
 - decompose metro network into paths
 - schematize individual paths
 - glue schematized paths together at interchanges

Pros.

- polynomial running times
- lacktriangle C-orientation and bounded displacement guaranteed
- bend minimization
- extends to metro networks:
 - decompose metro network into paths
 - schematize individual paths
 - glue schematized paths together at interchanges

Cons.

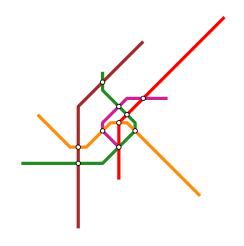
no guarantee on network topology (R1)

Pros.

- polynomial running times
- lacktriangleright \mathcal{C} -orientation and bounded displacement guaranteed
- bend minimization
- extends to metro networks:
 - decompose metro network into paths
 - schematize individual paths
 - glue schematized paths together at interchanges

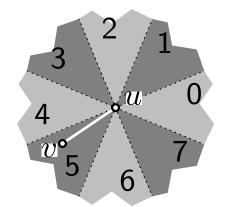
- no guarantee on network topology (R1)
- distortion/displacement too limited for metro maps

Visualization of Graphs



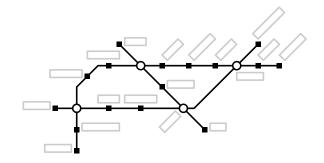
Lecture 12:

Octilinear Graph Drawing Metro Map Layout



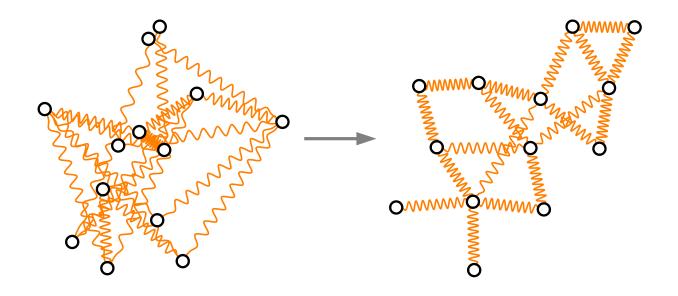
Part III:

Force-Based Schematization

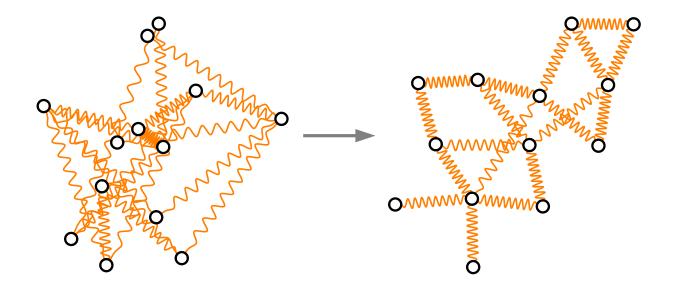


Jonathan Klawitter

Idea. Apply well known force-based graph drawing approach



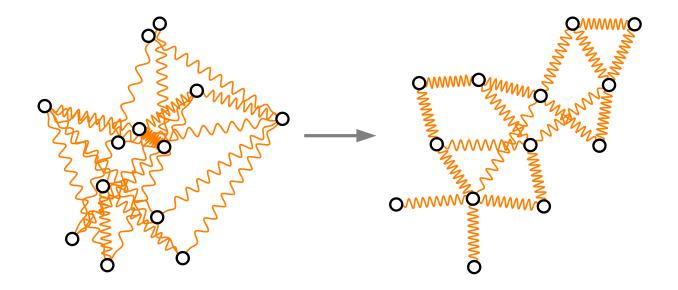
Idea. Apply well known force-based graph drawing approach



Recall.

vertices are charged particles repelling each other

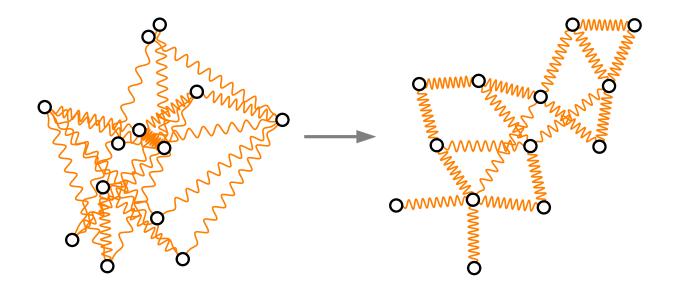
Idea. Apply well known force-based graph drawing approach



Recall.

- vertices are charged particles repelling each other
- edges are springs pulling edges into target length

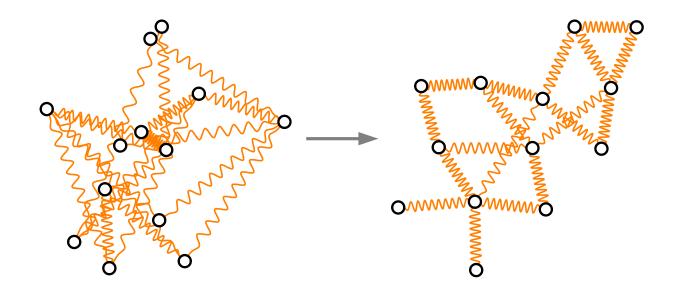
Idea. Apply well known force-based graph drawing approach



Recall.

- vertices are charged particles repelling each other
- edges are springs pulling edges into target length
- iteratively calculate and apply forces until system stabilizes

Idea. Apply well known force-based graph drawing approach



Recall.

- vertices are charged particles repelling each other
- edges are springs pulling edges into target length
- iteratively calculate and apply forces until system stabilizes
 - → define additional forces to model subset of metro map design rules

[Hong et al. 2006]

contract degree-2 vertices into weighted edges (R3)

- contract degree-2 vertices into weighted edges (R3)
- define octilinear magnetic field attracting edges (R2)

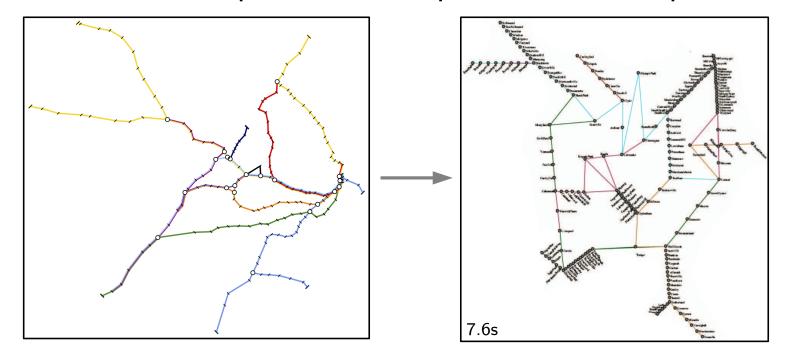
- contract degree-2 vertices into weighted edges (R3)
- define octilinear magnetic field attracting edges (R2)
- only apply topology preserving vertex moves (R1)

- contract degree-2 vertices into weighted edges (R3)
- define octilinear magnetic field attracting edges (R2)
- only apply topology preserving vertex moves (R1)
- spring lengths model uniform edge lengths (R7)

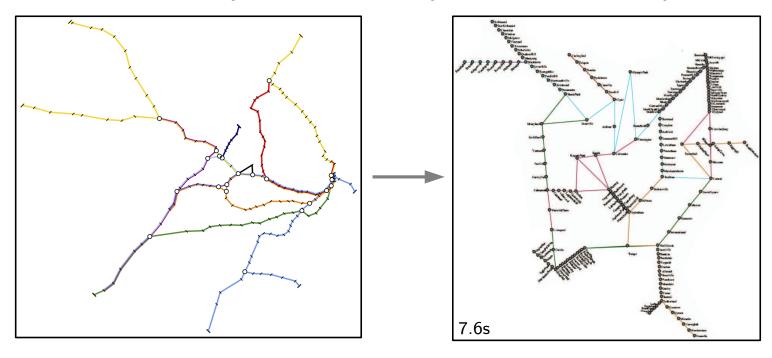
- contract degree-2 vertices into weighted edges (R3)
- define octilinear magnetic field attracting edges (R2)
- only apply topology preserving vertex moves (R1)
- spring lengths model uniform edge lengths (R7)
- vertex repulsion models feature separation (R8)

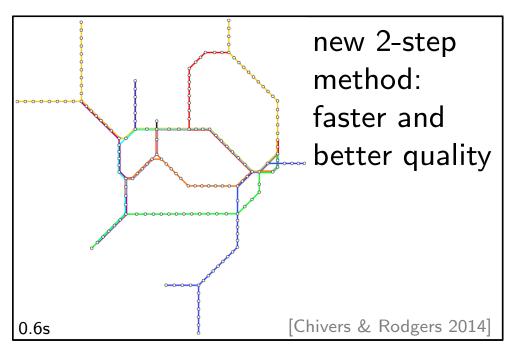
- contract degree-2 vertices into weighted edges (R3)
- define octilinear magnetic field attracting edges (R2)
- only apply topology preserving vertex moves (R1)
- spring lengths model uniform edge lengths (R7)
- vertex repulsion models feature separation (R8)
- station labels placed in independent 2nd step

- contract degree-2 vertices into weighted edges (R3)
- define octilinear magnetic field attracting edges (R2)
- only apply topology preserving vertex moves (R1)
- spring lengths model uniform edge lengths (R7)
- vertex repulsion models feature separation (R8)
- station labels placed in independent 2nd step



- contract degree-2 vertices into weighted edges (R3)
- define octilinear magnetic field attracting edges (R2)
- only apply topology preserving vertex moves (R1)
- spring lengths model uniform edge lengths (R7)
- vertex repulsion models feature separation (R8)
- station labels placed in independent 2nd step





- convert (octilinear) input layout into Bézier curves
 - → vertices and control points, both subject to forces

- convert (octilinear) input layout into Bézier curves
 - → vertices and control points, both subject to forces
- metro line subcurves share tangents in common vertex (R4)

- convert (octilinear) input layout into Bézier curves
 → vertices and control points, both subject to forces
- metro line subcurves share tangents in common vertex (R4)
- (standard) attractive and repulsive forces (R7)+(R8)

- convert (octilinear) input layout into Bézier curves
 → vertices and control points, both subject to forces
- metro line subcurves share tangents in common vertex (R4)
- (standard) attractive and repulsive forces (R7)+(R8)
- (weak) force towards initial position (R6)

- convert (octilinear) input layout into Bézier curves \rightarrow vertices and control points, both subject to forces
- metro line subcurves share tangents in common vertex (R4)
- (standard) attractive and repulsive forces (R7)+(R8)
- (weak) force towards initial position (R6)
- forces improving curve shape (low curvature) (R3)

- convert (octilinear) input layout into Bézier curves
 → vertices and control points, both subject to forces
- metro line subcurves share tangents in common vertex (R4)
- (standard) attractive and repulsive forces (R7)+(R8)
- (weak) force towards initial position (R6)
- forces improving curve shape (low curvature) (R3)
- merge curves whenever possible (R3)

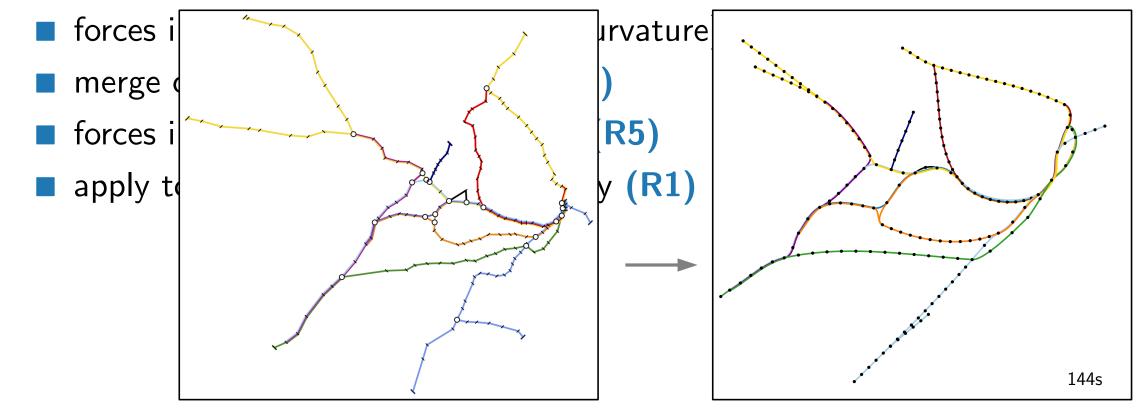
- convert (octilinear) input layout into Bézier curves
 → vertices and control points, both subject to forces
- metro line subcurves share tangents in common vertex (R4)
- (standard) attractive and repulsive forces (R7)+(R8)
- (weak) force towards initial position (R6)
- forces improving curve shape (low curvature) (R3)
- merge curves whenever possible (R3)
- forces improving angular resolution (R5)

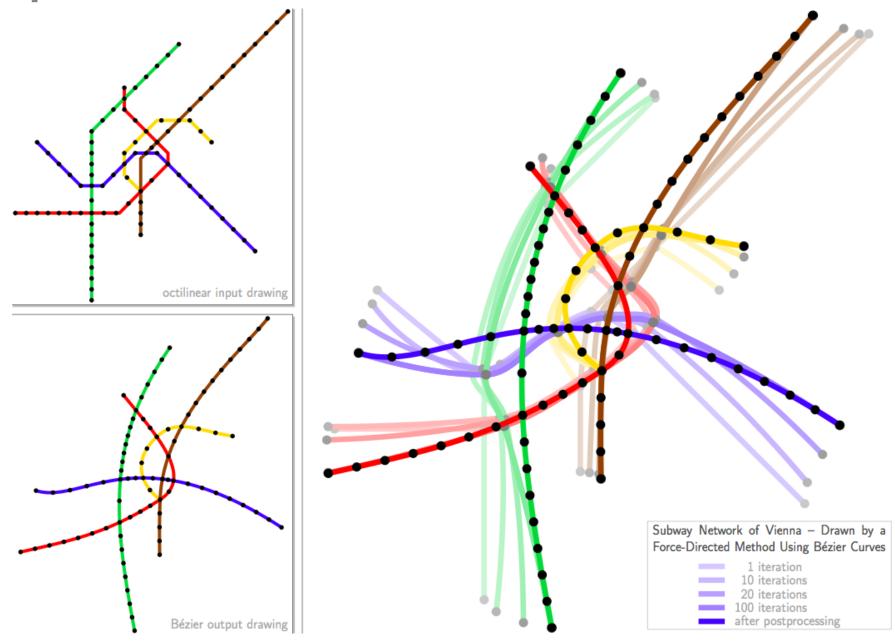
- convert (octilinear) input layout into Bézier curves
 → vertices and control points, both subject to forces
- metro line subcurves share tangents in common vertex (R4)
- (standard) attractive and repulsive forces (R7)+(R8)
- (weak) force towards initial position (R6)
- forces improving curve shape (low curvature) (R3)
- merge curves whenever possible (R3)
- forces improving angular resolution (R5)
- apply topology-preserving moves only (R1)

- convert (octilinear) input layout into Bézier curves \rightarrow vertices and control points, both subject to forces
- metro line subcurves share tangents in common vertex (R4)
- (standard) attractive and repulsive forces (R7)+(R8)
- (weak) force towards initial position (R6)



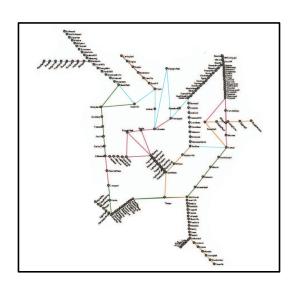
- convert (octilinear) input layout into Bézier curves
 → vertices and control points, both subject to forces
- metro line subcurves share tangents in common vertex (R4)
- (standard) attractive and repulsive forces (R7)+(R8)
- (weak) force towards initial position (R6)





Force-Based Schematization – Discussion

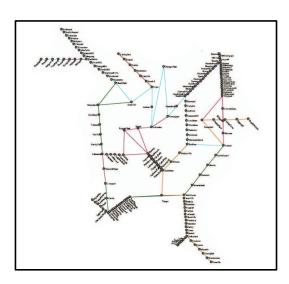
Octilinear.



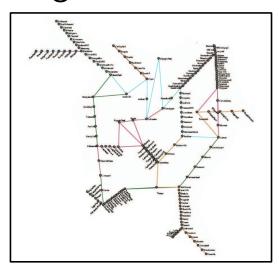
Force-Based Schematization — Discussion

Octilinear.

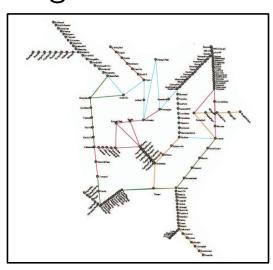
guarantees topology (R1)



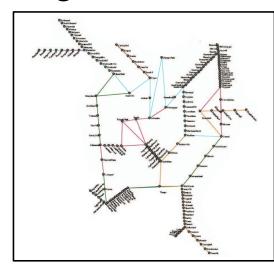
- guarantees topology (R1)
- slower than path-based algorithms, but still fast enough



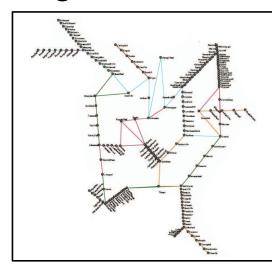
- guarantees topology (R1)
- slower than path-based algorithms, but still fast enough
- no strict enforcement of octilinearity



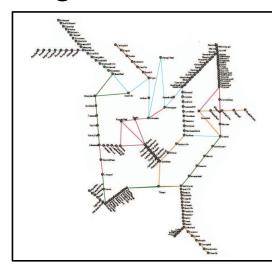
- guarantees topology (R1)
- slower than path-based algorithms, but still fast enough
- no strict enforcement of octilinearity
- quite unbalanced edge lengths



- guarantees topology (R1)
- slower than path-based algorithms, but still fast enough
- no strict enforcement of octilinearity
- quite unbalanced edge lengths
- bends in interchanges

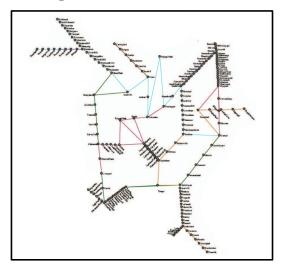


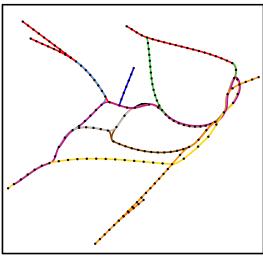
- guarantees topology (R1)
- slower than path-based algorithms, but still fast enough
- no strict enforcement of octilinearity
- quite unbalanced edge lengths
- bends in interchanges
- no distortion restriction



Octilinear.

- guarantees topology (R1)
- slower than path-based algorithms, but still fast enough
- no strict enforcement of octilinearity
- quite unbalanced edge lengths
- bends in interchanges
- no distortion restriction



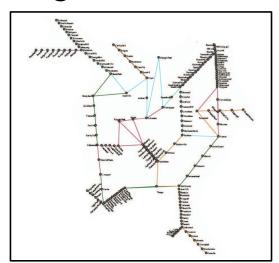


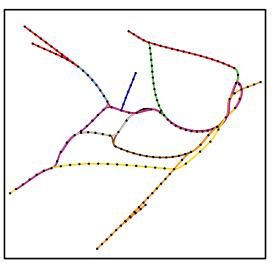
Octilinear.

- guarantees topology (R1)
- slower than path-based algorithms, but still fast enough
- no strict enforcement of octilinearity
- quite unbalanced edge lengths
- bends in interchanges
- no distortion restriction

Bézier.

guarantees topology (R1)

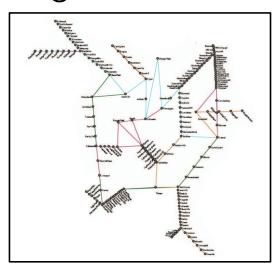


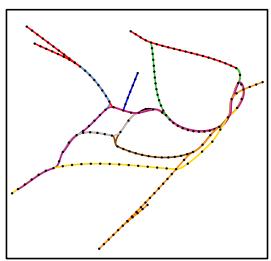


Octilinear.

- guarantees topology (R1)
- slower than path-based algorithms, but still fast enough
- no strict enforcement of octilinearity
- quite unbalanced edge lengths
- bends in interchanges
- no distortion restriction

- guarantees topology (R1)
- takes almost all design rules into account

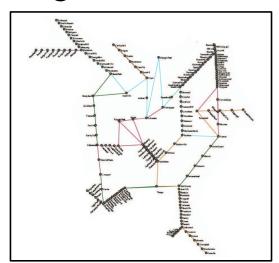


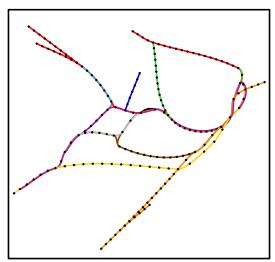


Octilinear.

- guarantees topology (R1)
- slower than path-based algorithms, but still fast enough
- no strict enforcement of octilinearity
- quite unbalanced edge lengths
- bends in interchanges
- no distortion restriction

- guarantees topology (R1)
- takes almost all design rules into account
- first curvilinear metro map algorithm

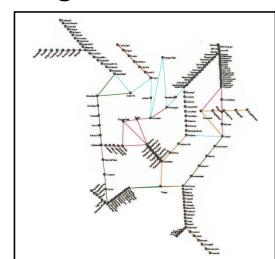


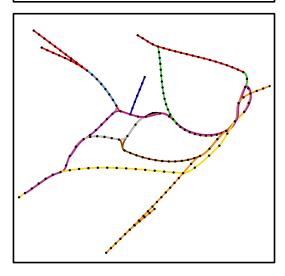


Octilinear.

- guarantees topology (R1)
- slower than path-based algorithms, but still fast enough
- no strict enforcement of octilinearity
- quite unbalanced edge lengths
- bends in interchanges
- no distortion restriction

- guarantees topology (R1)
- takes almost all design rules into account
- first curvilinear metro map algorithm
- works well on small and medium instances

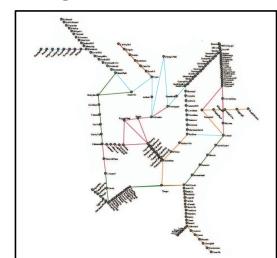


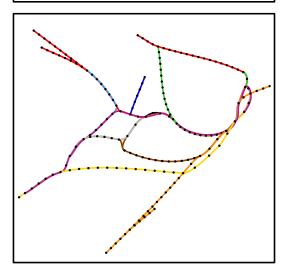


Octilinear.

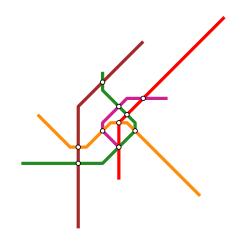
- guarantees topology (R1)
- slower than path-based algorithms, but still fast enough
- no strict enforcement of octilinearity
- quite unbalanced edge lengths
- bends in interchanges
- no distortion restriction

- guarantees topology (R1)
- takes almost all design rules into account
- first curvilinear metro map algorithm
- works well on small and medium instances
- difficulties with more complex networks



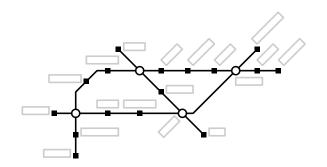


Visualization of Graphs

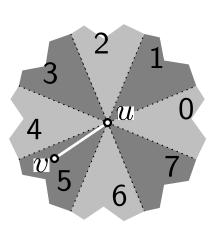


Lecture 12:

Octilinear Graph Drawing Metro Map Layout



Jonathan Klawitter



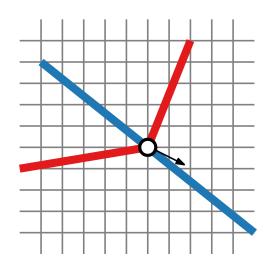
Idea.

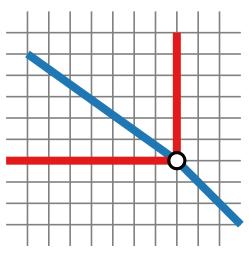
define a (multi-criteria) layout quality function

es

Idea.

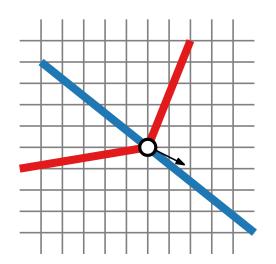
- define a (multi-criteria) layout quality function
- improve layout quality step-by-step by locally moving vertices to better nearby (grid) positions

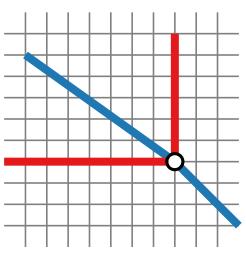




Idea.

- define a (multi-criteria) layout quality function
- improve layout quality step-by-step by locally moving vertices to better nearby (grid) positions
- applicable optimization techniques: hill climbing, simulated annealing, ant colony optimization, . . .





Idea.

- define a (multi-criteria) layout quality function
- improve layout quality step-by-step by locally moving vertices to better nearby (grid) positions
- applicable optimization techniques: hill climbing, simulated annealing, ant colony optimization, . . .

[Avelar & Müller 2000]

 calculate best vertex position in each criterion (octilinearity (R2), min. separation (R8))

Idea.

- define a (multi-criteria) layout quality function
- improve layout quality step-by-step by locally moving vertices to better nearby (grid) positions
- applicable optimization techniques: hill climbing, simulated annealing, ant colony optimization, . . .

- calculate best vertex position in each criterion (octilinearity (R2), min. separation (R8))
- move vertex to average of positions without violating topology (R1)

Idea.

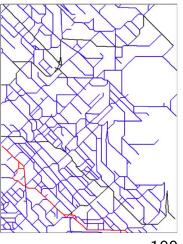
- define a (multi-criteria) layout quality function
- improve layout quality step-by-step by locally moving vertices to better nearby (grid) positions
- applicable optimization techniques: hill climbing, simulated annealing, ant colony optimization, . . .

- calculate best vertex position in each criterion (octilinearity (R2), min. separation (R8))
- move vertex to average of positions without violating topology (R1)

Idea.

- define a (multi-criteria) layout quality function
- improve layout quality step-by-step by locally moving vertices to better nearby (grid) positions
- applicable optimization techniques: hill climbing, simulated annealing, ant colony optimization, . . .

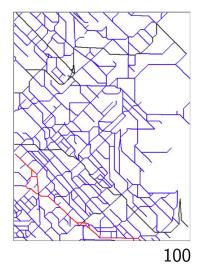
- calculate best vertex position in each criterion (octilinearity (R2), min. separation (R8))
- move vertex to average of positions without violating topology (R1)

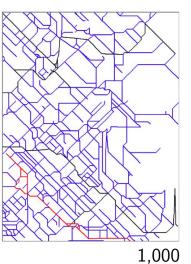


Idea.

- define a (multi-criteria) layout quality function
- improve layout quality step-by-step by locally moving vertices to better nearby (grid) positions
- applicable optimization techniques: hill climbing, simulated annealing, ant colony optimization, . . .

- calculate best vertex position in each criterion (octilinearity (R2), min. separation (R8))
- move vertex to average of positions without violating topology (R1)

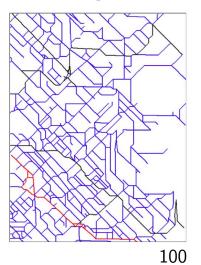




Idea.

- define a (multi-criteria) layout quality function
- improve layout quality step-by-step by locally moving vertices to better nearby (grid) positions
- applicable optimization techniques: hill climbing, simulated annealing, ant colony optimization, . . .

- calculate best vertex position in each criterion (octilinearity (R2), min. separation (R8))
- move vertex to average of positions without violating topology (R1)





Idea.

- define a (multi-criteria) layout quality function
- improve layout quality step-by-step by locally moving vertices to better nearby (grid) positions
- applicable optimization techniques: hill climbing, simulated annealing, ant colony optimization, . . .

[Ware et al. 2006, Ware & Richards 2013]

weighted multicriteria function

Idea.

- define a (multi-criteria) layout quality function
- improve layout quality step-by-step by locally moving vertices to better nearby (grid) positions
- applicable optimization techniques: hill climbing, simulated annealing, ant colony optimization, . . .

- weighted multicriteria function
- contract degree-2 vertices prior to optimization

Idea.

- define a (multi-criteria) layout quality function
- improve layout quality step-by-step by locally moving vertices to better nearby (grid) positions
- applicable optimization techniques: hill climbing, simulated annealing, ant colony optimization, . . .

- weighted multicriteria function
- contract degree-2 vertices prior to optimization
- implemented more design rules (topology (R1), octilinearity (R2), displacement (R6), edge lengths (R7), separation (R8))

Idea.

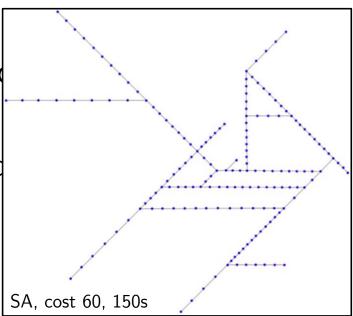
- define a (multi-criteria) layout quality function
- improve layout quality step-by-step by locally moving vertices to better nearby (grid) positions
- applicable optimization techniques: hill climbing, simulated annealing, ant colony optimization, . . .

- weighted multicriteria function
- contract degree-2 vertices prior to optimization
- implemented more design rules (topology (R1), octilinearity (R2), displacement (R6), edge lengths (R7), separation (R8))
- simulated annealing (2006) and ant colony optimization (2013)

Idea.

- define a (multi-criteria) layout quality function
- improve layout quality step-by-step by locally moving vertice to better nearby (grid) positions
- applicable optimization techniques: hill climbing, simulated annealing, ant colony optimization, ...

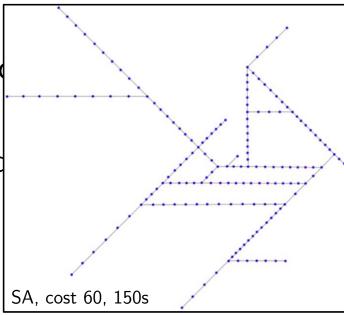
- weighted multicriteria function
- contract degree-2 vertices prior to optimization
- implemented more design rules (topology (R1), octilinearity (R2), displacement (R6), edge lengths (R7), separation (R8))
- simulated annealing (2006) and ant colony optimization (2013)

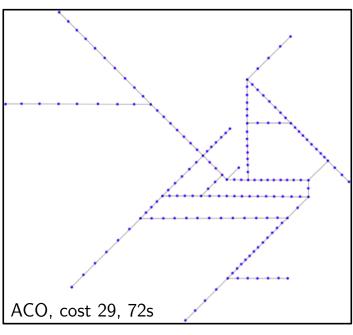


Idea.

- define a (multi-criteria) layout quality function
- improve layout quality step-by-step by locally moving vertice to better nearby (grid) positions
- applicable optimization techniques: hill climbing, simulated annealing, ant colony optimization, . . .

- weighted multicriteria function
- contract degree-2 vertices prior to optimization
- implemented more design rules (topology (R1), octilinearity (R2), displacement (R6), edge lengths (R7), separation (R8))
- simulated annealing (2006) and ant colony optimization (2013)





[Stott et al. 2011]

Idea.

design rules as before

[Stott et al. 2011]

Idea.

- design rules as before
- additionally include metro map specific criteria (bend minimization (R3), interchange straightness (R4), angular resolution (R5), relative positions (R6))

[Stott et al. 2011]

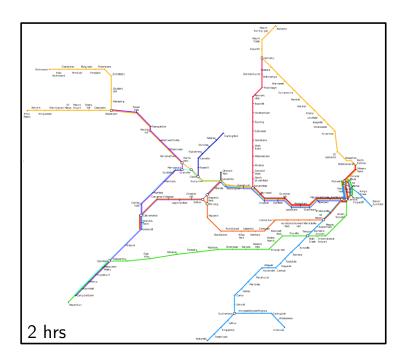
- design rules as before
- additionally include metro map specific criteria (bend minimization (R3), interchange straightness (R4), angular resolution (R5), relative positions (R6))
- integrate alternating label placement rounds

[Stott et al. 2011]

- design rules as before
- additionally include metro map specific criteria (bend minimization (R3), interchange straightness (R4), angular resolution (R5), relative positions (R6))
- integrate alternating label placement rounds
- some ad-hoc fixes for local minima situations

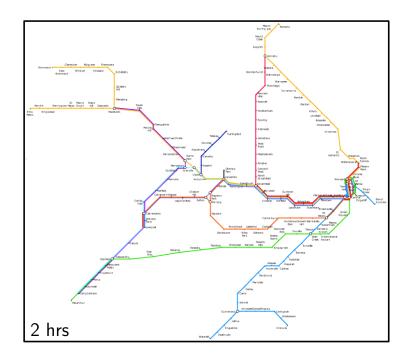
[Stott et al. 2011]

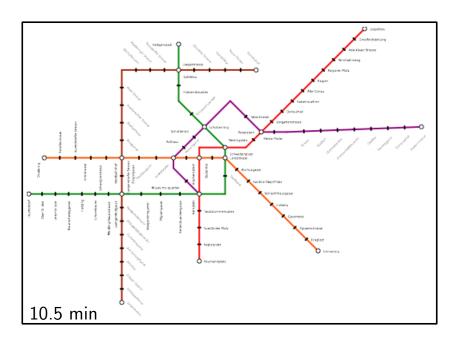
- design rules as before
- additionally include metro map specific criteria (bend minimization (R3), interchange straightness (R4), angular resolution (R5), relative positions (R6))
- integrate alternating label placement rounds
- some ad-hoc fixes for local minima situations



[Stott et al. 2011]

- design rules as before
- additionally include metro map specific criteria (bend minimization (R3), interchange straightness (R4), angular resolution (R5), relative positions (R6))
- integrate alternating label placement rounds
- some ad-hoc fixes for local minima situations





Local Schematization – Discussion

Pros.

Cons.

Local Schematization – Discussion

Pros.

■ flexible framework, easy to integrate new criteria

Cons.

Local Schematization – Discussion

Pros.

- flexible framework, easy to integrate new criteria
- recent methods improved visual layout quality

Cons.

Pros.

- flexible framework, easy to integrate new criteria
- recent methods improved visual layout quality
- integration of layout and labeling

Cons.

Pros.

- I flexible framework, easy to integrate new criteria
- recent methods improved visual layout quality
- integration of layout and labeling

Cons.

optimization of criteria, but no guarantees (except topology)

Pros.

- flexible framework, easy to integrate new criteria
- recent methods improved visual layout quality
- integration of layout and labeling

Cons.

- optimization of criteria, but no guarantees (except topology)
- susceptible to local minima

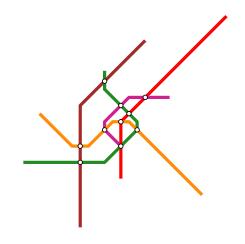
Pros.

- flexible framework, easy to integrate new criteria
- recent methods improved visual layout quality
- integration of layout and labeling

Cons.

- optimization of criteria, but no guarantees (except topology)
- susceptible to local minima
- long running times

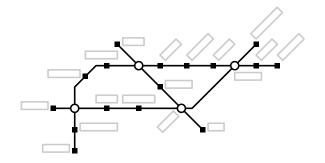
Visualization of Graphs



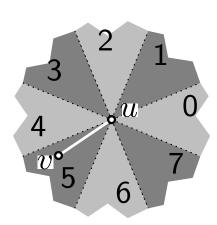
Lecture 12:

Octilinear Graph Drawing Metro Map Layout

Mixed-Integer Programming



Jonathan Klawitter



[Nöllenburg & Wolff 2011]

find exact optimum solution using combinatorial optimization

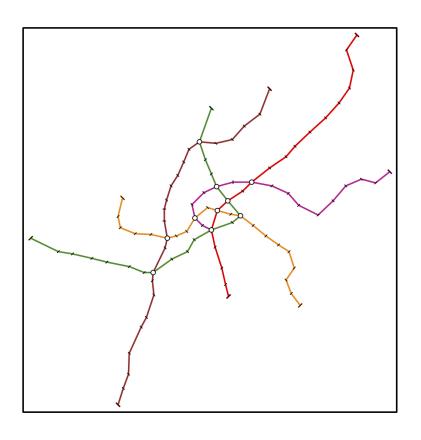
- find exact optimum solution using combinatorial optimization
- split design rules into hard and soft constraints

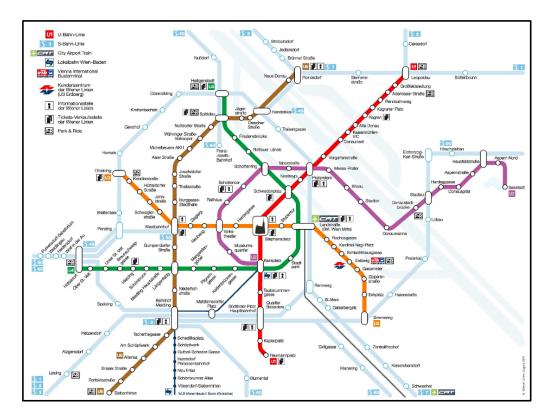
- find exact optimum solution using combinatorial optimization
- split design rules into hard and soft constraints
- lacktriangleright model constraints as linear (in)equalities and linear objective function ightarrow mixedinteger programming lacktriangleright

- find exact optimum solution using combinatorial optimization
- split design rules into hard and soft constraints
- lacktriangleright model constraints as linear (in)equalities and linear objective function ightarrow mixedinteger programming lacktriangleright
- integrate overlap-free station labeling in same model

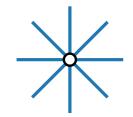
- find exact optimum solution using combinatorial optimization
- split design rules into hard and soft constraints
- $lue{lue}$ model constraints as linear (in)equalities and linear objective function \rightarrow mixed-integer programming $lue{lue}$
- integrate overlap-free station labeling in same model
- can use sophisticated optimization tools as black box solvers (e.g., CPLEX, Gurobi)

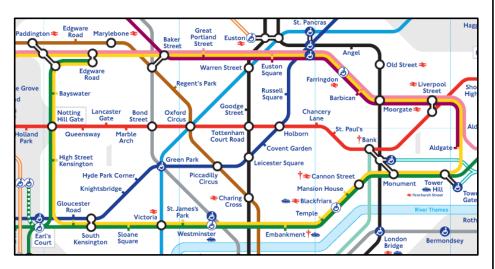
(R1) preserve embedding/topology and planarity

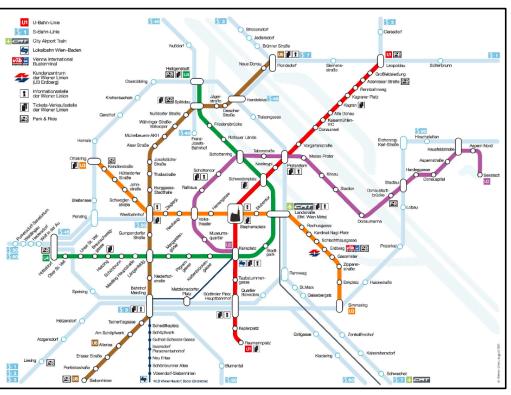




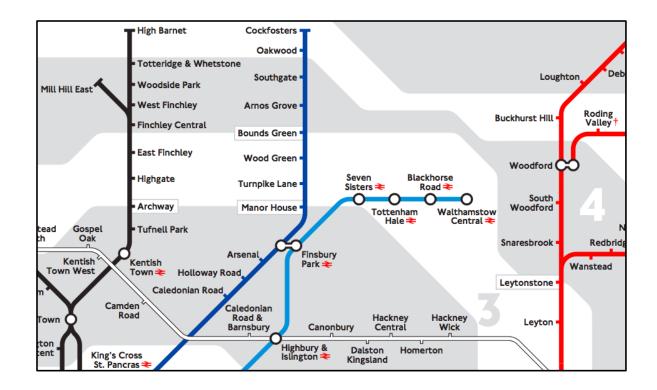
- (R1) preserve embedding/topology and planarity
- (R2) draw all edges octilinearly

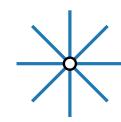




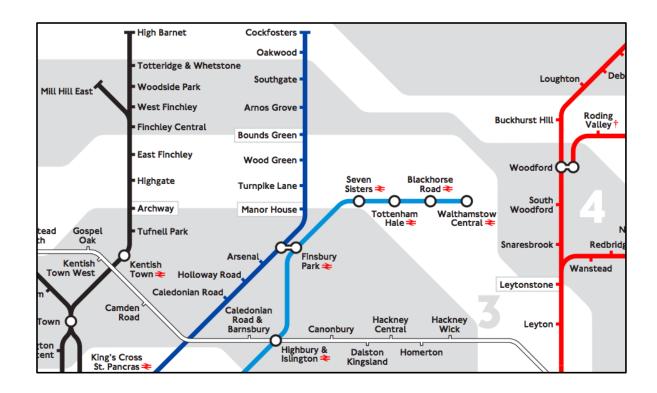


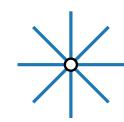
- (R1) preserve embedding/topology and planarity
- (R2) draw all edges octilinearly
- (R7) enforce minimum edge length ℓ_{min}





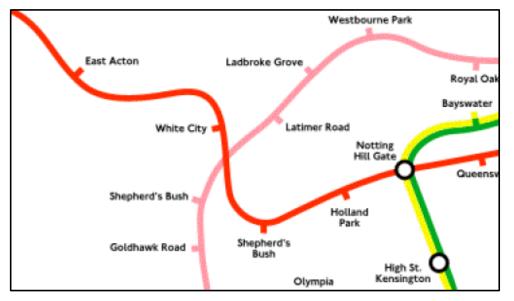
- (R1) preserve embedding/topology and planarity
- (R2) draw all edges octilinearly
- (R7) enforce minimum edge length ℓ_{min}
- (R8) enforce minimum feature separation d_{min}

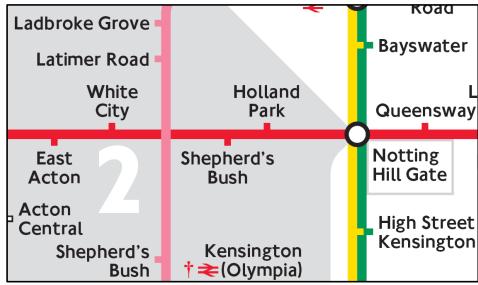




Soft Constraints

(R3+R4) draw lines in \mathcal{L} with few bends

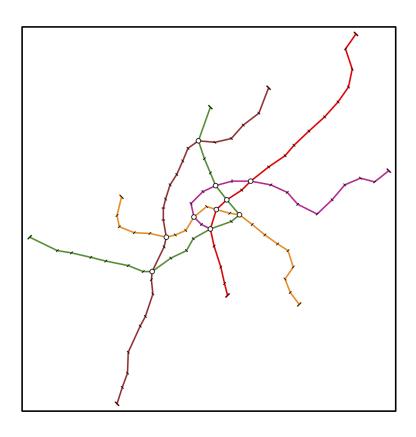


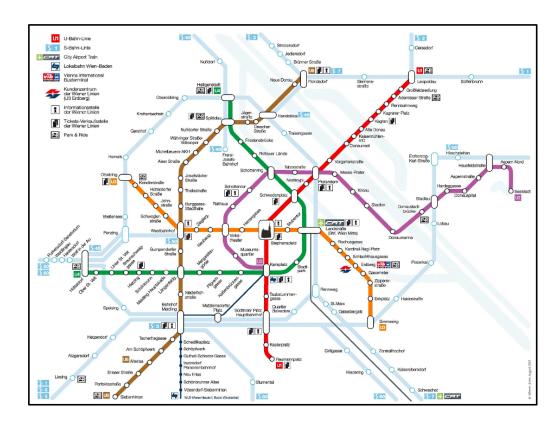


Soft Constraints

(R3+R4) draw lines in \mathcal{L} with few bends

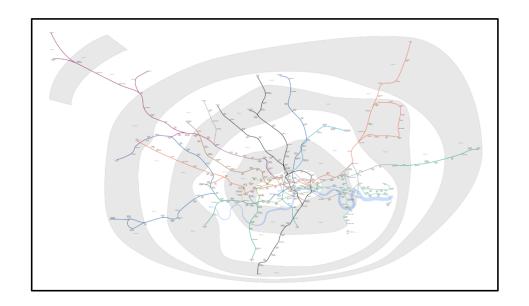
(R6) minimize geometric distortion

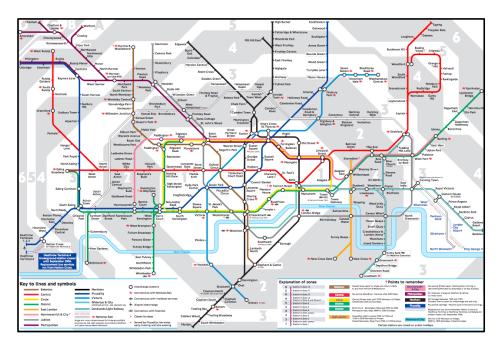


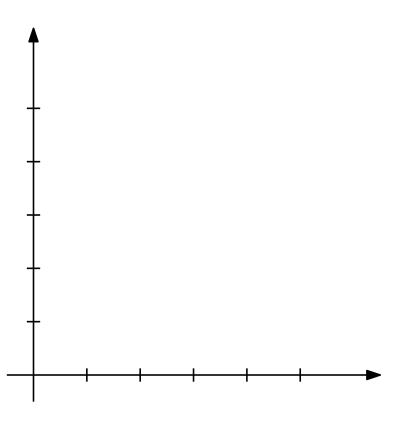


Soft Constraints

- (R3+R4) draw lines in \mathcal{L} with few bends
- (R6) minimize geometric distortion
- (R7) minimize total edge length

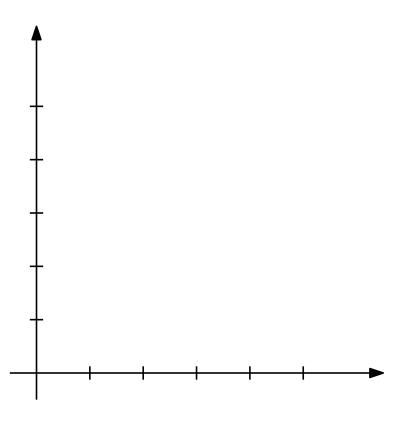




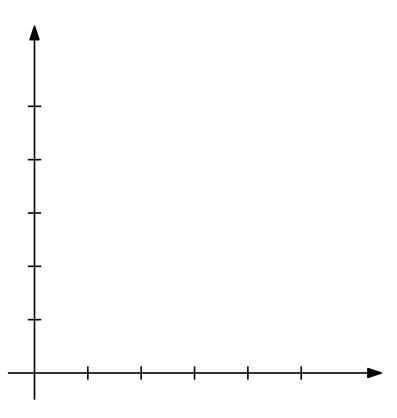


Linear Programming (LP) is an efficient optimization method for

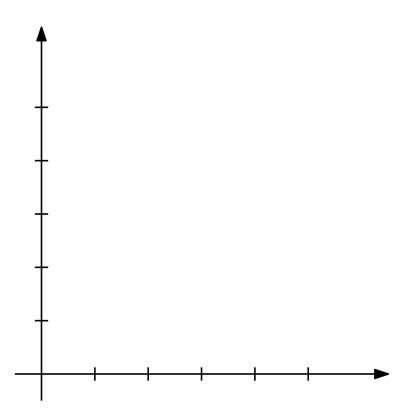
linear constraints



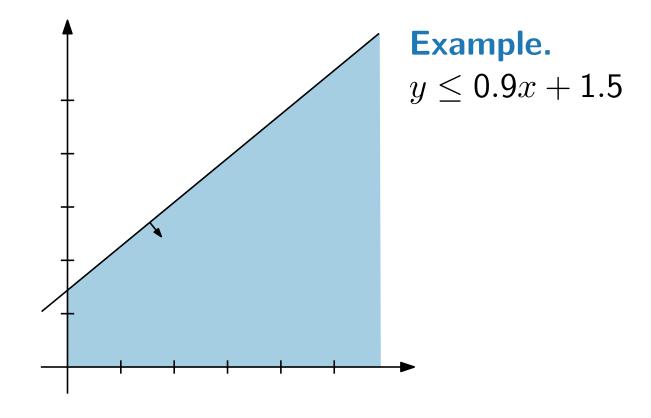
- linear constraints
- linear objective function



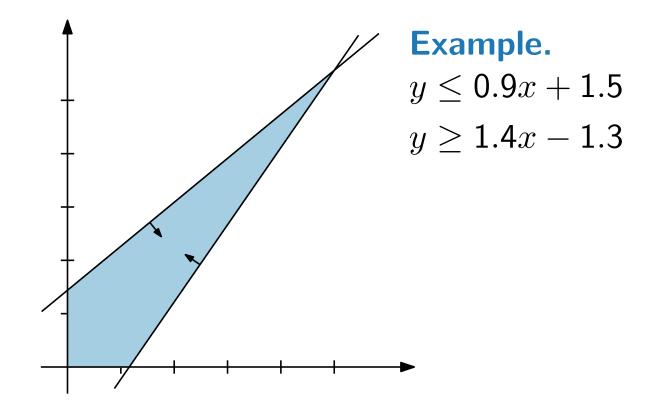
- linear constraints
- linear objective function
- real-valued variables



- linear constraints
- linear objective function
- real-valued variables

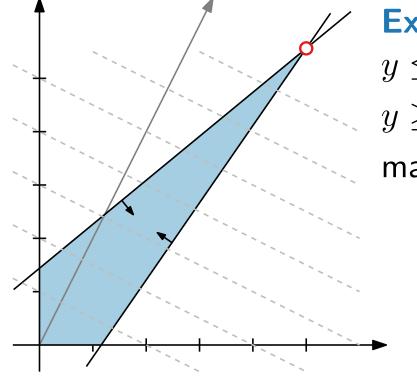


- linear constraints
- linear objective function
- real-valued variables



Linear Programming (LP) is an efficient optimization method for

- linear constraints
- linear objective function
- real-valued variables



Example.

$$y \le 0.9x + 1.5$$

$$y \ge 1.4x - 1.3$$

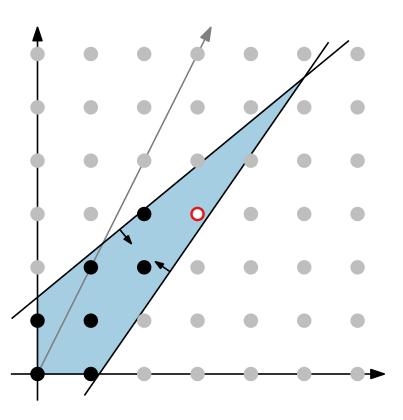
maximize x + 2y

Linear Programming (LP) is an efficient optimization method for

- linear constraints
- linear objective function
- real-valued variables

Mixed Integer Programming (MIP)

in addition binary and integer variables

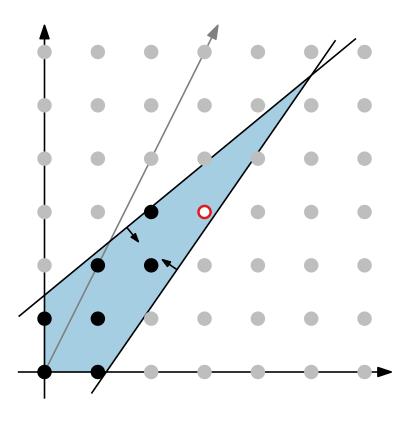


Linear Programming (LP) is an efficient optimization method for

- linear constraints
- linear objective function
- real-valued variables

Mixed Integer Programming (MIP)

- in addition binary and integer variables
- NP-hard optimization problem

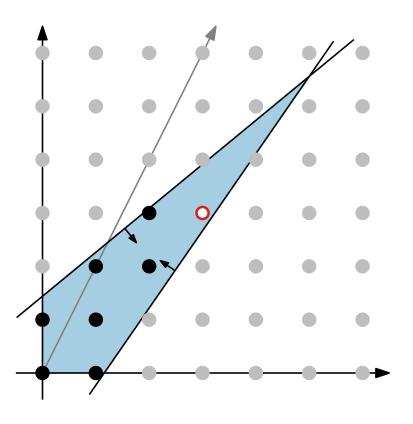


Linear Programming (LP) is an efficient optimization method for

- linear constraints
- linear objective function
- real-valued variables

Mixed Integer Programming (MIP)

- in addition binary and integer variables
- NP-hard optimization problem
- still method of choice for many practical optimization tasks



Linear Programming (LP) is an efficient optimization method for

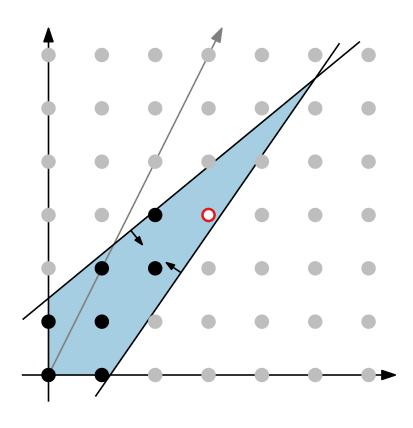
- linear constraints
- linear objective function
- real-valued variables

Mixed Integer Programming (MIP)

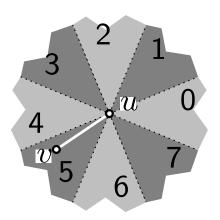
- in addition binary and integer variables
- NP-hard optimization problem
- still method of choice for many practical optimization tasks

Metro map layout can be modeled as MIP such that

- \blacksquare hard constraints \rightarrow linear constraints
- lacksquare soft constraints o linear objective function



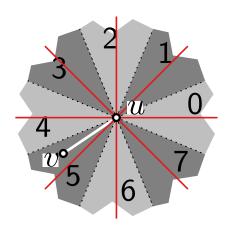
Sectors and Coordinates



Sectors.

for each vertex u partition the plane into eight sectors numbered 0–7 here: $\sec(u,v)=5$ in the input

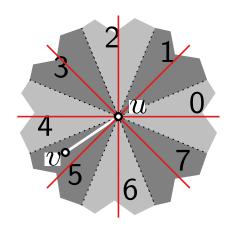
Sectors and Coordinates



Sectors.

- for each vertex u partition the plane into eight sectors numbered 0–7 here: $\sec(u,v)=5$ in the input
- number octilinear edge directions accordingly here, e.g., dir(u, v) = 5

Sectors and Coordinates



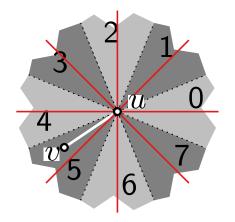
Sectors.

- for each vertex u partition the plane into eight sectors numbered 0–7 here: $\sec(u,v)=5$ in the input
- number octilinear edge directions accordingly here, e.g., dir(u, v) = 5

y z_1 z_2

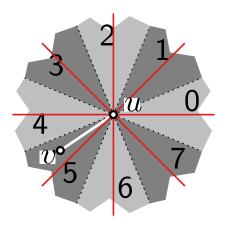
Coordinates.

- lacktriangleright assign (redundant) z_1 and z_2 -coordinates to each vertex v
 - $z_1(v) = \frac{1}{2} \cdot (x(v) + y(v))$
 - $z_2(v) = \frac{1}{2} \cdot (x(v) y(v))$



Goal.

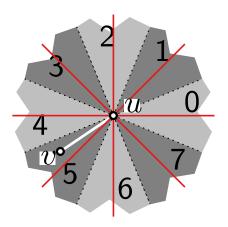
Draw the edge uv



Goal.

Draw the edge uv

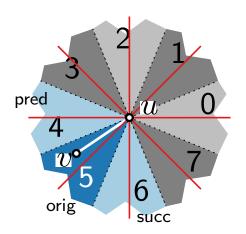
octilinearly (R2)



Goal.

Draw the edge uv

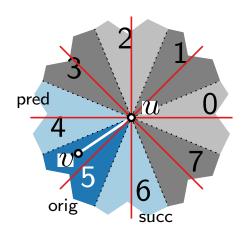
- octilinearly (R2)
- with minimum length $\ell = \ell_{uv}$ (R7)



Goal.

Draw the edge uv

- octilinearly (R2)
- with minimum length $\ell = \ell_{uv}$ (R7)
- restricted to the three best directions (R6)

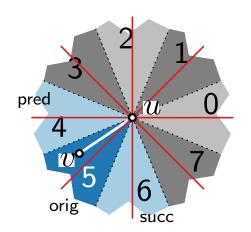


Goal.

Draw the edge uv

- octilinearly (R2)
- with minimum length $\ell = \ell_{uv}$ (R7)
- restricted to the three best directions (R6)

How to model this using linear constraints in a MIP?



Goal.

Draw the edge uv

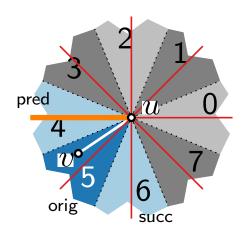
- octilinearly (R2)
- with minimum length $\ell = \ell_{uv}$ (R7)
- restricted to the three best directions (R6)

How to model this using linear constraints in a MIP?

Introduce binary variables

$$\alpha_{\mathsf{pred}}(u,v) + \alpha_{\mathsf{orig}}(u,v) + \alpha_{\mathsf{succ}}(u,v) = 1$$

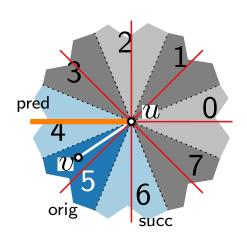
to select exactly one of the three sectors.



Predecessor sector.

$$y(u) - y(v) \le M(1 - \alpha_{\mathsf{pred}}(u, v))$$

 $-y(u) + y(v) \le M(1 - \alpha_{\mathsf{pred}}(u, v))$
 $x(u) - x(v) \ge -M(1 - \alpha_{\mathsf{pred}}(u, v)) + \ell$

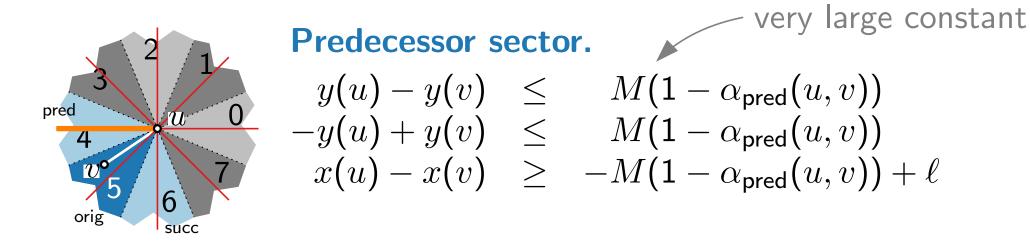


Predecessor sector.

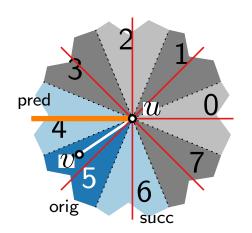
$$y(u) - y(v) \le M(1 - \alpha_{\mathsf{pred}}(u, v))$$

 $-y(u) + y(v) \le M(1 - \alpha_{\mathsf{pred}}(u, v))$
 $x(u) - x(v) \ge -M(1 - \alpha_{\mathsf{pred}}(u, v)) + \ell$

very large constant



How does this work?



Predecessor sector.

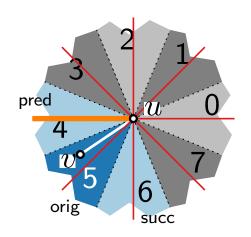
$$y(u) - y(v) \le M(1 - \alpha_{\mathsf{pred}}(u, v))$$

 $-y(u) + y(v) \le M(1 - \alpha_{\mathsf{pred}}(u, v))$
 $x(u) - x(v) \ge -M(1 - \alpha_{\mathsf{pred}}(u, v)) + \ell$

very large constant

How does this work?

Case 1:
$$\alpha_{\mathsf{pred}}(u,v)=1$$



Predecessor sector.

$$y(u) - y(v) \le M(1 - \alpha_{\mathsf{pred}}(u, v))$$

 $-y(u) + y(v) \le M(1 - \alpha_{\mathsf{pred}}(u, v))$
 $x(u) - x(v) \ge -M(1 - \alpha_{\mathsf{pred}}(u, v)) + \ell$

very large constant

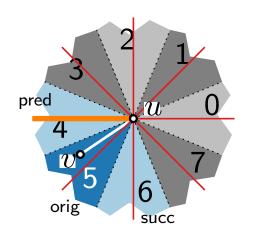
How does this work?

Case 1:
$$\alpha_{\text{pred}}(u,v)=1$$

$$y(u) - y(v) \leq 0$$

$$-y(u) + y(v) \leq 0$$

$$x(u) - x(v) \geq \ell$$



Predecessor sector.

$$y(u) - y(v) \le M(1 - \alpha_{\mathsf{pred}}(u, v))$$

 $-y(u) + y(v) \le M(1 - \alpha_{\mathsf{pred}}(u, v))$
 $x(u) - x(v) \ge -M(1 - \alpha_{\mathsf{pred}}(u, v)) + \ell$

How does this work?

Case 1:
$$\alpha_{\mathsf{pred}}(u,v) = 1$$

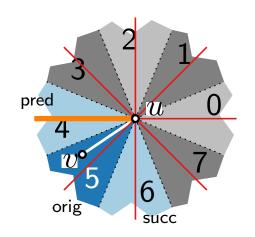
$$y(u) - y(v) \leq 0$$

$$-y(u) + y(v) \leq 0$$

$$x(u) - x(v) \geq \ell$$

Case 2:
$$\alpha_{\text{pred}}(u,v)=0$$

very large constant



Predecessor sector.

$$y(u) - y(v) \le M(1 - \alpha_{\mathsf{pred}}(u, v))$$

 $-y(u) + y(v) \le M(1 - \alpha_{\mathsf{pred}}(u, v))$
 $x(u) - x(v) \ge -M(1 - \alpha_{\mathsf{pred}}(u, v)) + \ell$

How does this work?

Case 1:
$$\alpha_{\mathsf{pred}}(u,v) = 1$$

$$y(u) - y(v) \leq 0$$

$$-y(u) + y(v) \leq 0$$

$$x(u) - x(v) \geq \ell$$

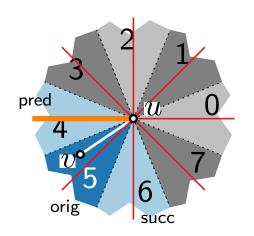
Case 2:
$$\alpha_{\text{pred}}(u,v)=0$$

very large constant

$$y(u) - y(v) \leq M$$

$$-y(u) + y(v) \leq M$$

$$x(u) - x(v) \geq -M + \ell$$



Predecessor sector.

$$y(u) - y(v) \le M(1 - \alpha_{\mathsf{pred}}(u, v))$$

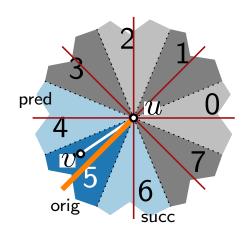
 $-y(u) + y(v) \le M(1 - \alpha_{\mathsf{pred}}(u, v))$
 $x(u) - x(v) \ge -M(1 - \alpha_{\mathsf{pred}}(u, v)) + \ell$

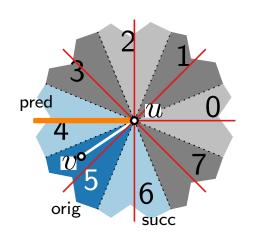
very large constant

Original sector.

$$z_2(u) - z_2(v) \le M(1 - \alpha_{\text{orig}}(u, v))$$

 $-z_2(u) + z_2(v) \le M(1 - \alpha_{\text{orig}}(u, v))$
 $z_1(u) - z_1(v) \ge -M(1 - \alpha_{\text{orig}}(u, v)) + \ell$





Predecessor sector.

$$y(u) - y(v) \le M(1 - \alpha_{\mathsf{pred}}(u, v))$$

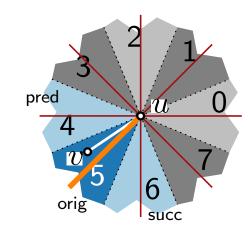
 $-y(u) + y(v) \le M(1 - \alpha_{\mathsf{pred}}(u, v))$
 $x(u) - x(v) \ge -M(1 - \alpha_{\mathsf{pred}}(u, v)) + \ell$

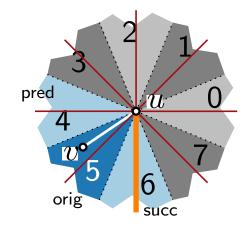
very large constant

Original sector.

$$z_2(u) - z_2(v) \le M(1 - \alpha_{\text{orig}}(u, v))$$

 $-z_2(u) + z_2(v) \le M(1 - \alpha_{\text{orig}}(u, v))$
 $z_1(u) - z_1(v) \ge -M(1 - \alpha_{\text{orig}}(u, v)) + \ell$





Successor sector.

$$x(u) - x(v) \le M(1 - \alpha_{\mathsf{succ}}(u, v))$$

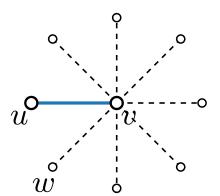
 $-x(u) + x(v) \le M(1 - \alpha_{\mathsf{succ}}(u, v))$
 $y(u) - y(v) \ge -M(1 - \alpha_{\mathsf{succ}}(u, v)) + \ell$

models the three soft constraints

- models the three soft constraints
- weighted sum of individual cost functions minimize $\lambda_{\text{bends}} \operatorname{cost}_{\text{bends}} + \lambda_{\text{length}} \operatorname{cost}_{\text{length}} + \lambda_{\text{dist}} \operatorname{cost}_{\text{dist}}$

- models the three soft constraints
- weighted sum of individual cost functions $\text{minimize } \lambda_{\text{bends}} \operatorname{cost}_{\text{bends}} + \lambda_{\text{length}} \operatorname{cost}_{\text{length}} + \lambda_{\text{dist}} \operatorname{cost}_{\text{dist}}$

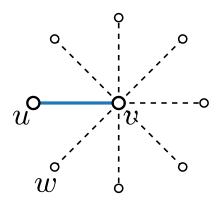
Example: line bends (R3/R4)



- models the three soft constraints
- weighted sum of individual cost functions $\text{minimize } \lambda_{\text{bends}} \operatorname{cost}_{\text{bends}} + \lambda_{\text{length}} \operatorname{cost}_{\text{length}} + \lambda_{\text{dist}} \operatorname{cost}_{\text{dist}}$

Example: line bends (R3/R4)

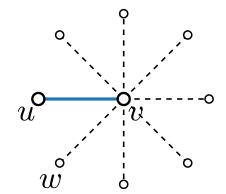
Edges uv and vw on a line $L \in \mathcal{L}$



- models the three soft constraints
- weighted sum of individual cost functions $\text{minimize } \lambda_{\text{bends}} \operatorname{cost}_{\text{bends}} + \lambda_{\text{length}} \operatorname{cost}_{\text{length}} + \lambda_{\text{dist}} \operatorname{cost}_{\text{dist}}$

Example: line bends (R3/R4)

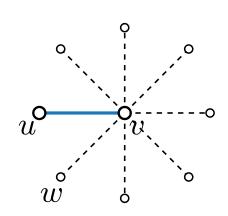
Edges uv and vw on a line $L \in \mathcal{L}$



draw as straight as possible

- models the three soft constraints
- weighted sum of individual cost functions minimize $\lambda_{\text{bends}} \operatorname{cost}_{\text{bends}} + \lambda_{\text{length}} \operatorname{cost}_{\text{length}} + \lambda_{\text{dist}} \operatorname{cost}_{\text{dist}}$

Example: line bends (R3/R4)



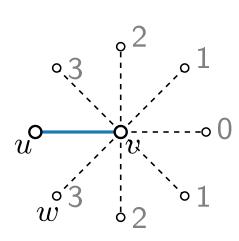
Edges uv and vw on a line $L \in \mathcal{L}$

- draw as straight as possible
- increasing cost bend(u, v, w) for increasing acuteness of $\angle(\overline{uv}, \overline{vw})$

$$\mathsf{cost}_{\mathsf{bends}} = \sum_{L \in \mathcal{L}} \sum_{uv,vw \in L} \mathsf{bend}(u,v,w)$$

- models the three soft constraints
- weighted sum of individual cost functions minimize λ_{bends} cost_{bends} + λ_{length} cost_{length} + λ_{dist} cost_{dist}

Example: line bends (R3/R4)



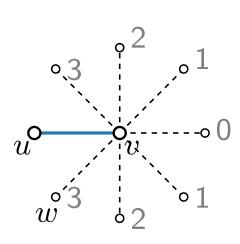
Edges uv and vw on a line $L \in \mathcal{L}$

- draw as straight as possible
- increasing cost bend(u, v, w) for increasing acuteness of $\angle(\overline{uv}, \overline{vw})$

$$\mathsf{cost}_{\mathsf{bends}} = \sum_{L \in \mathcal{L}} \ \sum_{uv,vw \in L} \mathsf{bend}(u,v,w)$$

- models the three soft constraints
- weighted sum of individual cost functions minimize λ_{bends} cost_{bends} + λ_{length} cost_{length} + λ_{dist} cost_{dist}

Example: line bends (R3/R4)



Edges uv and vw on a line $L \in \mathcal{L}$

- draw as straight as possible
- increasing cost bend(u, v, w) for increasing acuteness of $\angle(\overline{uv}, \overline{vw})$

$$\mathsf{cost}_{\mathsf{bends}} = \sum_{L \in \mathcal{L}} \sum_{uv.vw \in L} \mathsf{bend}(u, v, w)$$

To assign bend(u, v, w) correctly, we need to define some linear constraints based on the direction variables dir(u, v) and dir(v, w).

Constraints.

- linearization of all hard constraints
- $O(n^2)$ variables and constraints (due to planarity)

Constraints.

- linearization of all hard constraints
- $O(n^2)$ variables and constraints (due to planarity)

Objective function.

- weighted sum of the three soft constraints
- lacktriangle minimize $\lambda_{\mathsf{bend}} \mathsf{cost}_{\mathsf{bend}} + \lambda_{\mathsf{len}} \mathsf{cost}_{\mathsf{len}} + \lambda_{\mathsf{dist}} \mathsf{cost}_{\mathsf{dist}}$

Constraints.

- linearization of all hard constraints
- $O(n^2)$ variables and constraints (due to planarity)

Objective function.

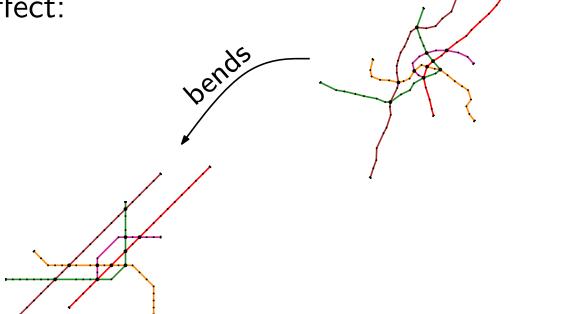
- weighted sum of the three soft constraints
- lacktriangle minimize $\lambda_{\mathsf{bend}} \mathsf{cost}_{\mathsf{bend}} + \lambda_{\mathsf{len}} \mathsf{cost}_{\mathsf{len}} + \lambda_{\mathsf{dist}} \mathsf{cost}_{\mathsf{dist}}$

Constraints.

- linearization of all hard constraints
- $O(n^2)$ variables and constraints (due to planarity)

Objective function.

- weighted sum of the three soft constraints
- lacktriangle minimize $\lambda_{\mathsf{bend}} \mathsf{cost}_{\mathsf{bend}} + \lambda_{\mathsf{len}} \mathsf{cost}_{\mathsf{len}} + \lambda_{\mathsf{dist}} \mathsf{cost}_{\mathsf{dist}}$

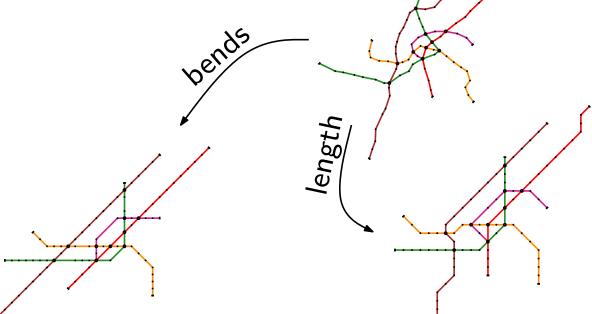


Constraints.

- linearization of all hard constraints
- $O(n^2)$ variables and constraints (due to planarity)

Objective function.

- weighted sum of the three soft constraints
- lacktriangle minimize $\lambda_{\mathsf{bend}} \mathsf{cost}_{\mathsf{bend}} + \lambda_{\mathsf{len}} \mathsf{cost}_{\mathsf{len}} + \lambda_{\mathsf{dist}} \mathsf{cost}_{\mathsf{dist}}$

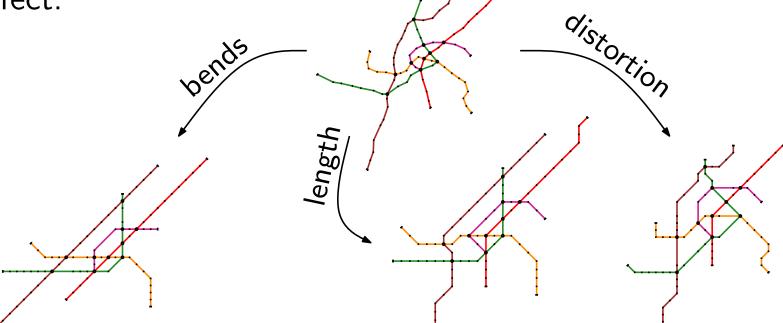


Constraints.

- linearization of all hard constraints
- $O(n^2)$ variables and constraints (due to planarity)

Objective function.

- weighted sum of the three soft constraints
- \blacksquare minimize $\lambda_{\mathsf{bend}}\mathsf{cost}_{\mathsf{bend}} + \lambda_{\mathsf{len}}\mathsf{cost}_{\mathsf{len}} + \lambda_{\mathsf{dist}}\mathsf{cost}_{\mathsf{dist}}$

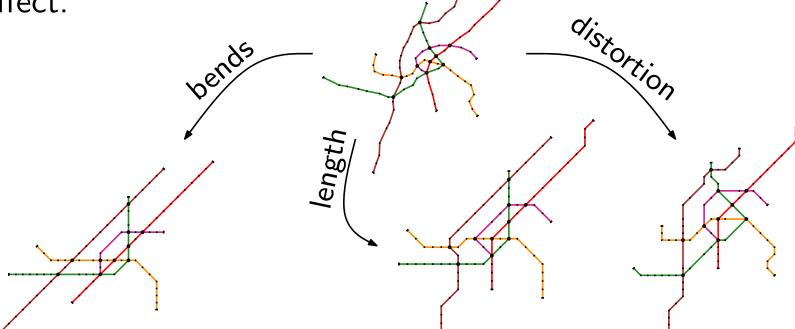


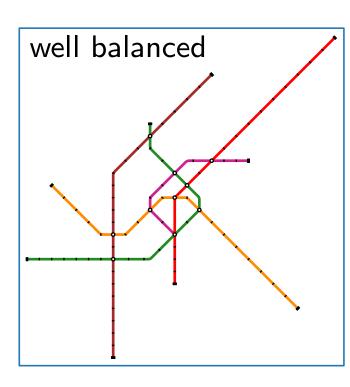
Constraints.

- linearization of all hard constraints
- $O(n^2)$ variables and constraints (due to planarity)

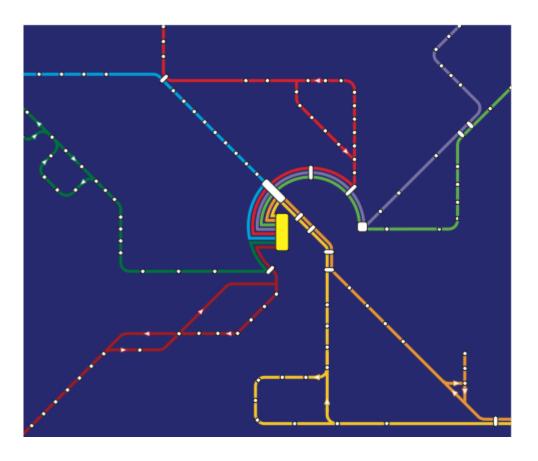
Objective function.

- weighted sum of the three soft constraints
- $lacktriangleq \min \sum_{\mathsf{bend}} \mathsf{cost}_{\mathsf{bend}} + \lambda_{\mathsf{len}} \mathsf{cost}_{\mathsf{len}} + \lambda_{\mathsf{dist}} \mathsf{cost}_{\mathsf{dist}}$





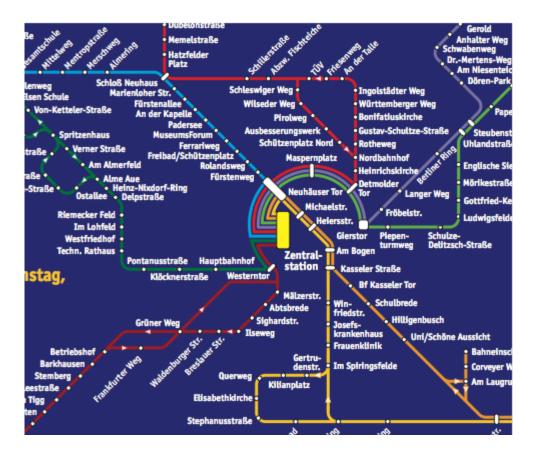
unlabeled map mostly useless



unlabeled map mostly useless

- unlabeled map mostly useless
- labels need space

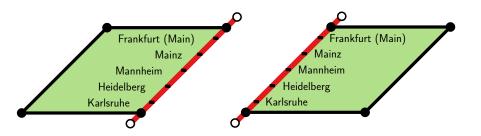
- unlabeled map mostly useless
- labels need space
- labels may not overlap each other



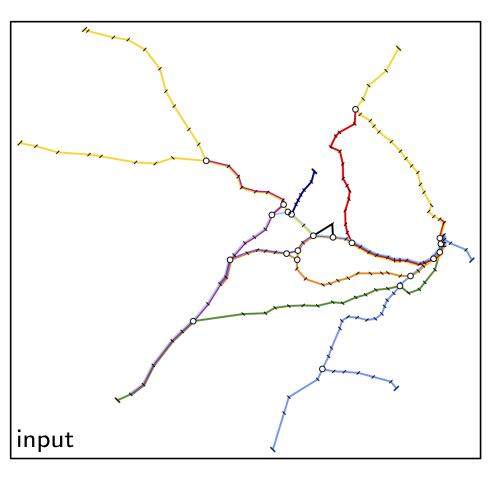
- unlabeled map mostly useless
- labels need space
- labels may not overlap each other
- graph labeling problem is NP-hard [Tollis & Kakoulis 2001]

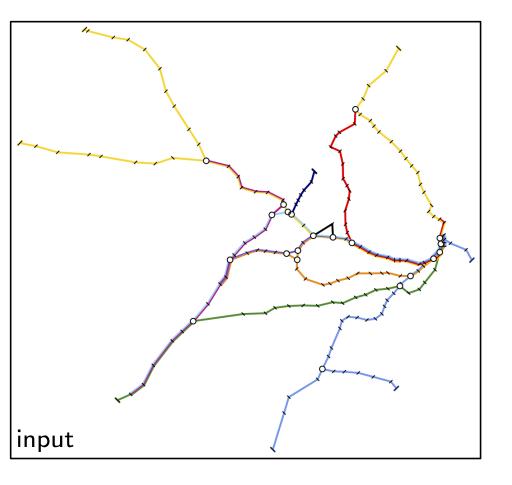
- unlabeled map mostly useless
- labels need space
- labels may not overlap each other
- graph labeling problem is NP-hard [Tollis & Kakoulis 2001]

→ combine layout & labeling for optimal results!

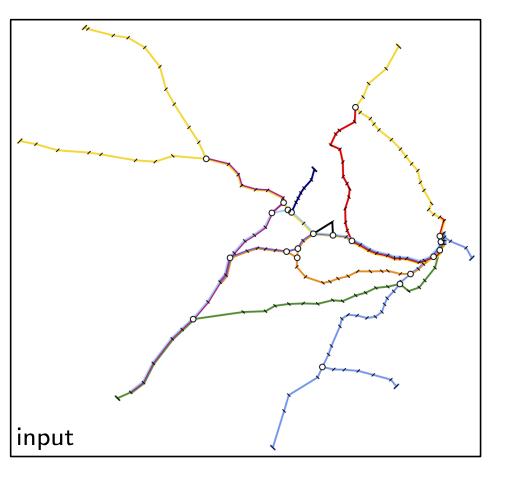


- parallelogram as special metro line
- switching sides allowed

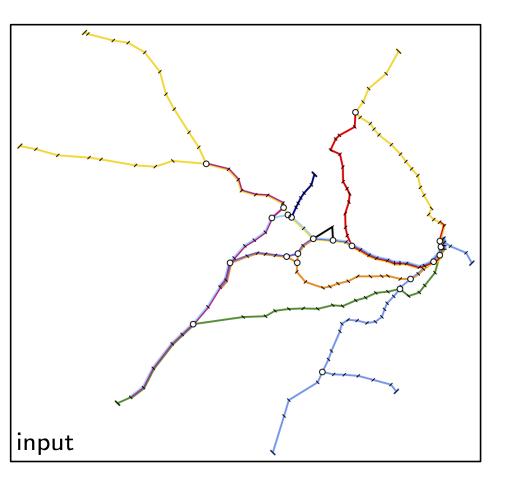




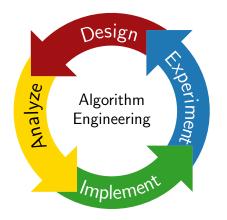
Input	V	E	fcs.	$ \mathcal{L} $
full reduced	174 88	183 97	11	10
labeled	242	270	30	

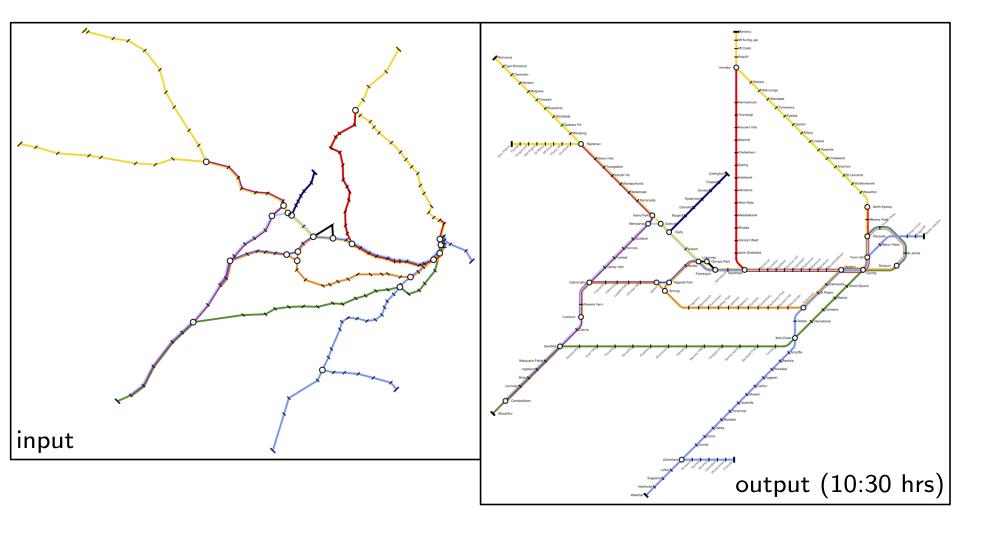


Input	V	E	fcs.	$ \mathcal{L} $	
full reduced	174 88	183 97	11	10	
labeled	242	270	30		
MIP	cons	traints	vari	variables	
full		1,191,406		290,137	
callback	21,988		92	2,681	



Input	V	E	fcs.	$ \mathcal{L} $	
full reduced	174 88	183 97	11	10	
labeled	242	270	30		
MIP	constraints		vari	variables	
full	1,1	1,191,406		290,137	
callback	21,988		92	2,681	

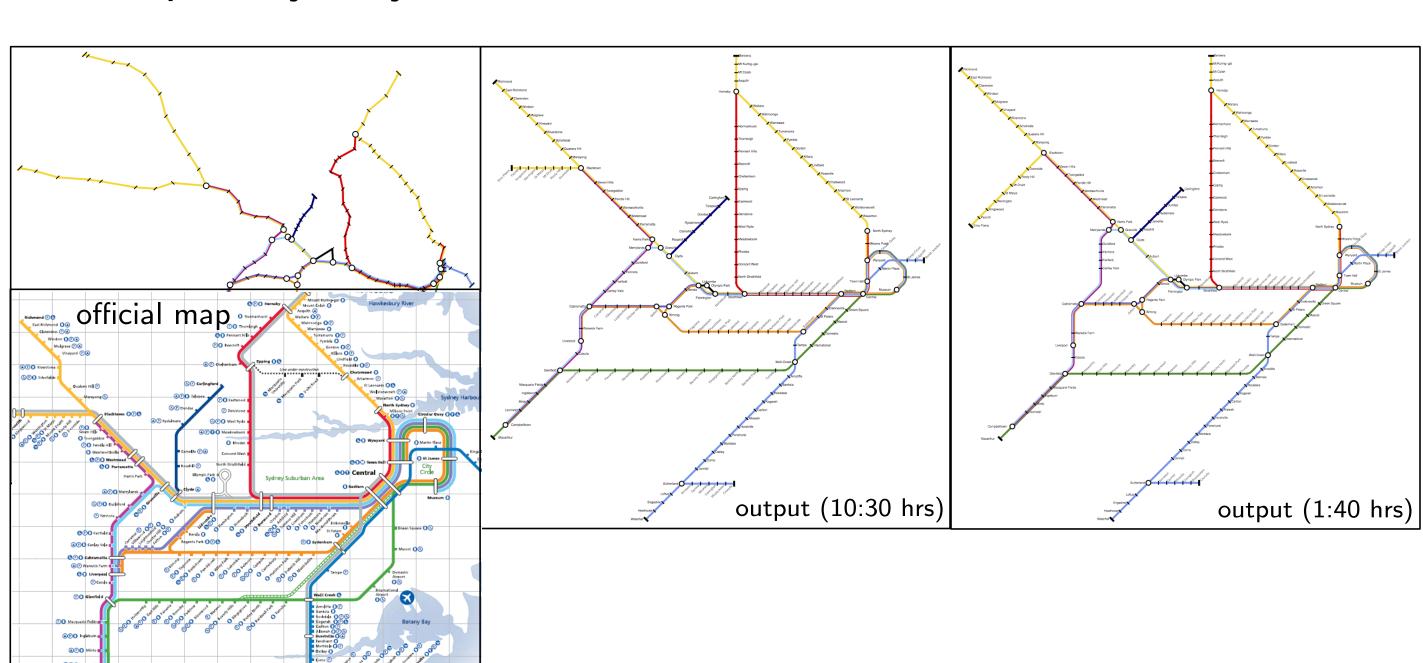




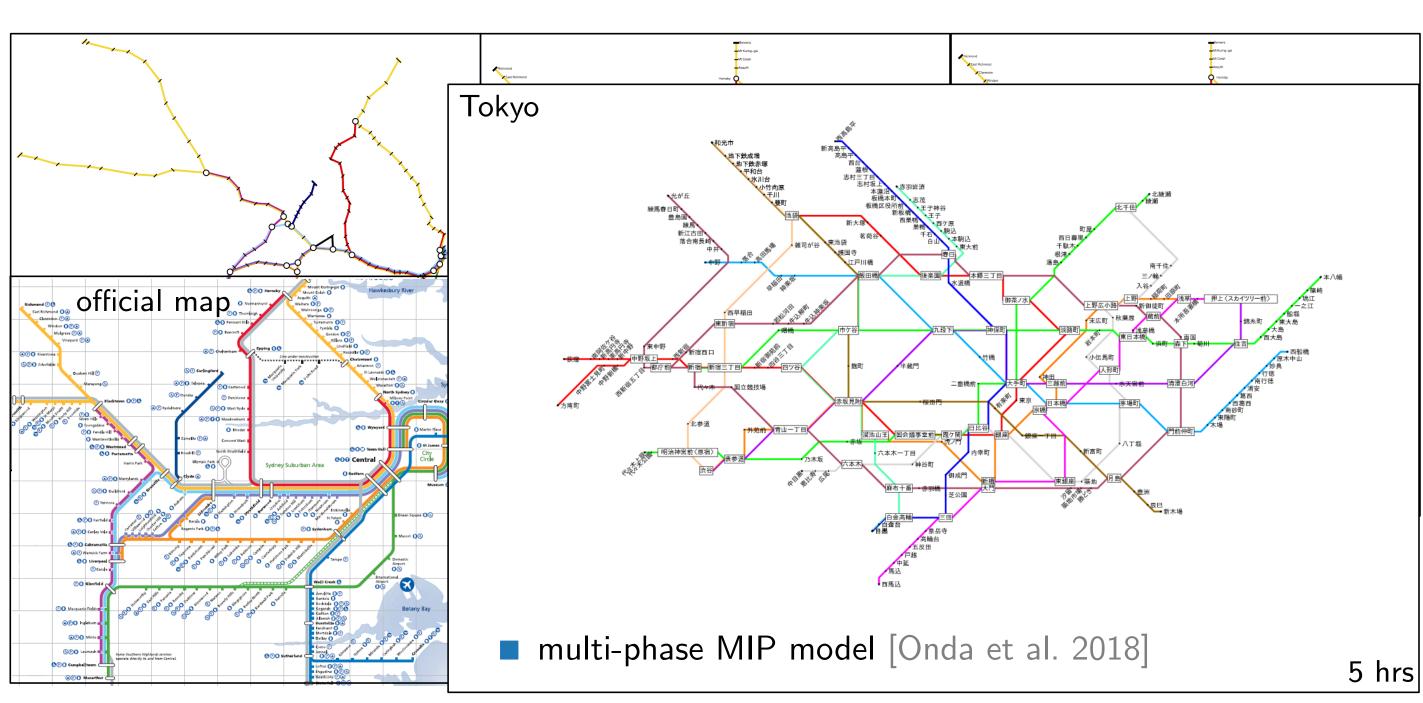
Example: Sydney &



Example: Sydney &



Example: Sydney & Tokyo



Pros.

Pros.

flexible framework, but integration and linearization of new criteria requires some effort

Pros.

- flexible framework, but integration and linearization of new criteria requires some effort
- high layout and labeling quality

Pros.

- flexible framework, but integration and linearization of new criteria requires some effort
- high layout and labeling quality
- theoretical guarantees

Pros.

- flexible framework, but integration and linearization of new criteria requires some effort
- high layout and labeling quality
- theoretical guarantees
- can integrate user constraints dynamically

Pros.

- flexible framework, but integration and linearization of new criteria requires some effort
- high layout and labeling quality
- theoretical guarantees
- can integrate user constraints dynamically

Cons.

long, sometimes unpredictable running times

Pros.

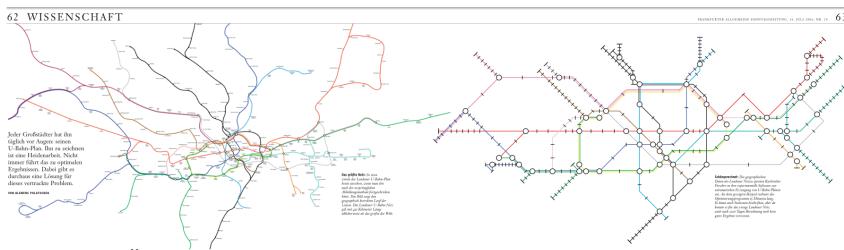
- flexible framework, but integration and linearization of new criteria requires some effort
- high layout and labeling quality
- theoretical guarantees
- can integrate user constraints dynamically

- long, sometimes unpredictable running times
- for large labeled networks no proof of optimality

Pros.

- flexible framework, but integration and linearization of new criteria requires some effort
- high layout and labeling quality
- theoretical guarantees
- can integrate user constraints dynamically

- long, sometimes unpredictable running times
- for large labeled networks no proof of optimality
- solutions only as good as the model specification



DIE SCHÖNHEIT DES UNTERGRUNDES

Der Mann, der die Nudeln geradezog

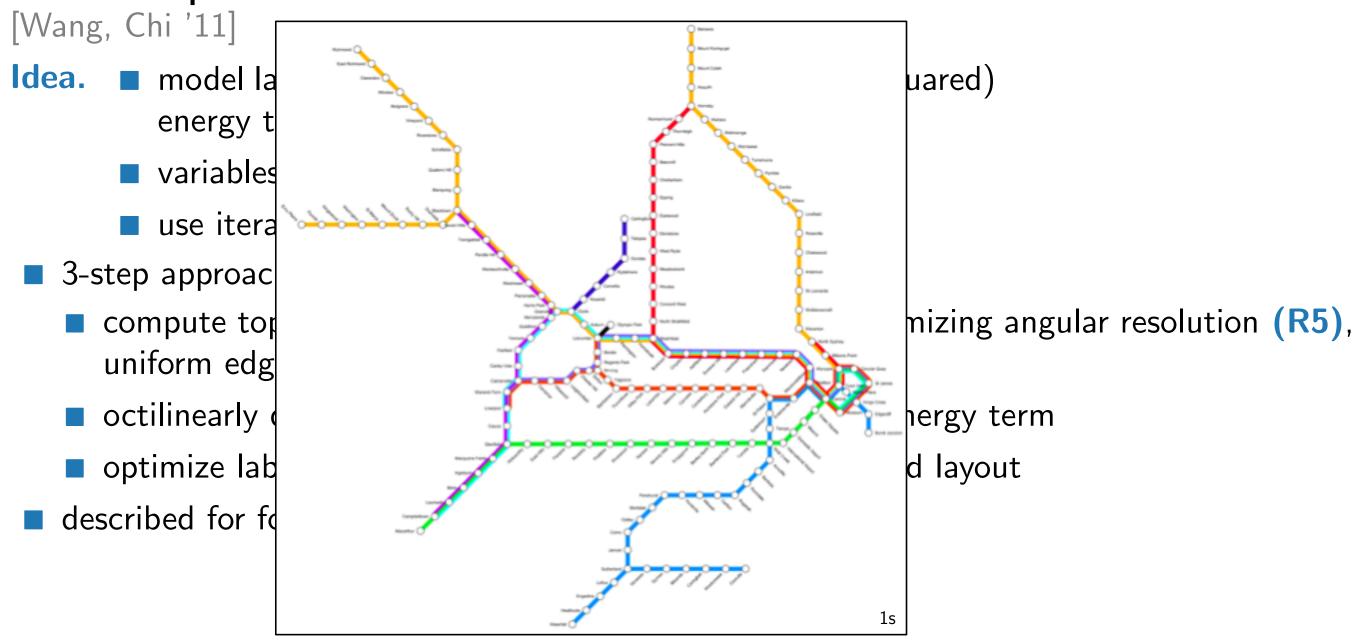
Seit 1895 das Magazin der Credit Suisse Nummer 4 Nov /Dez 09 Struktur Child's Dream Kindern eine bessere Zukunft bieten CH-Wirtschaft Die Gewinner und Verlierer der Krise Ben van Berkel Der Stararchitekt im Gespräch

[Wang, Chi '11]

- Idea. model layout problem as minimization of a set of (squared) energy terms
 - variables for vertex positions and edge slopes
 - use iterative numerical optimization method

[Wang, Chi '11]

- Idea. model layout problem as minimization of a set of (squared) energy terms
 - variables for vertex positions and edge slopes
 - use iterative numerical optimization method
- 3-step approach
 - compute topologically correct non-octilinear layout optimizing angular resolution (R5),
 uniform edge lengths (R7), displacement (R6)
 - octilinearly discretize edge orientations (R2) by extra energy term
 - optimize label placement by energy minimization in fixed layout
- described for focus route, generalizes to entire maps



[Wang, Chi '11]

- Idea. model layout problem as minimization of a set of (squared) energy terms
 - variables for vertex positions and edge slopes
 - use iterative numerical optimization method
- 3-step approach
 - compute topologically correct non-octilinear layout optimizing angular resolution (R5),
 uniform edge lengths (R7), displacement (R6)
 - octilinearly discretize edge orientations (R2) by extra energy term
 - optimize label placement by energy minimization in fixed layout
- described for focus route, generalizes to entire maps

Discussion.

- very fast method for good quality layouts
- no guarantee on constraints unless final energy is zero

variety of layout methods evolved over the last 15-20 years

- variety of layout methods evolved over the last 15-20 years
- many shared design rules

- variety of layout methods evolved over the last 15-20 years
- many shared design rules
- trade-off between speed and quality, but quite reasonable maps can be computed in a matter of seconds to minutes

- variety of layout methods evolved over the last 15-20 years
- many shared design rules
- trade-off between speed and quality, but quite reasonable maps can be computed in a matter of seconds to minutes
- many approaches are customizable and open to new criteria

- variety of layout methods evolved over the last 15-20 years
- many shared design rules
- trade-off between speed and quality, but quite reasonable maps can be computed in a matter of seconds to minutes
- many approaches are customizable and open to new criteria
- current trend: beyond octilinear metro maps

- variety of layout methods evolved over the last 15-20 years
- many shared design rules
- trade-off between speed and quality, but quite reasonable maps can be computed in a matter of seconds to minutes
- many approaches are customizable and open to new criteria
- current trend: beyond octilinear metro maps

Why automated maps?

- variety of layout methods evolved over the last 15-20 years
- many shared design rules
- trade-off between speed and quality, but quite reasonable maps can be computed in a matter of seconds to minutes
- many approaches are customizable and open to new criteria
- current trend: beyond octilinear metro maps

Why automated maps?

base layouts for graphic designers (semi-automated process)

- variety of layout methods evolved over the last 15-20 years
- many shared design rules
- trade-off between speed and quality, but quite reasonable maps can be computed in a matter of seconds to minutes
- many approaches are customizable and open to new criteria
- current trend: beyond octilinear metro maps

Why automated maps?

- base layouts for graphic designers (semi-automated process)
- large quantities of individual or special-purpose maps

- variety of layout methods evolved over the last 15-20 years
- many shared design rules
- trade-off between speed and quality, but quite reasonable maps can be computed in a matter of seconds to minutes
- many approaches are customizable and open to new criteria
- current trend: beyond octilinear metro maps

Why automated maps?

- base layouts for graphic designers (semi-automated process)
- large quantities of individual or special-purpose maps

Challenges

- variety of layout methods evolved over the last 15-20 years
- many shared design rules
- trade-off between speed and quality, but quite reasonable maps can be computed in a matter of seconds to minutes
- many approaches are customizable and open to new criteria
- current trend: beyond octilinear metro maps

Why automated maps?

- base layouts for graphic designers (semi-automated process)
- large quantities of individual or special-purpose maps

Challenges

global quality criteria like harmony, coherence, balance

- variety of layout methods evolved over the last 15-20 years
- many shared design rules
- trade-off between speed and quality, but quite reasonable maps can be computed in a matter of seconds to minutes
- many approaches are customizable and open to new criteria
- current trend: beyond octilinear metro maps

Why automated maps?

- base layouts for graphic designers (semi-automated process)
- large quantities of individual or special-purpose maps

Challenges

- global quality criteria like harmony, coherence, balance
- edge bundles and large vertices

Literature

- [Nöllenburg '14] A Survey on Automated Metro Map Layout Methods
- [Dwyer, Hurst, Merrick '08] A fast and simple heuristic for metro map path simplification
- [Delling et al. '14] On d-regular schematization of embedded paths
- [Brandes & Pampel '09] On the Hardness of Orthogonal-Order Preserv-ing Graph Drawing
- [Gema et al. '11] On d-Regular Schematization of Embedded Paths
- [Hong et al. '06] Automaticvisualisation of metro maps
- [Chivers & Rodgers '14] Octilinear Force-Directed Layout with Mental MapPreservation for Schematic Diagrams
- [Fink, Haverkort, Nöllenburg, Roberts, Schuhmann, Wolff '12] Drawing metro maps using Bézier curves
- [Avelar & Müller '00] Generating topologically correct schematicmaps
- [Ware et al. '06] Automatedproduction of schematic maps for mobile application
- [Ware & Richards '13] An ant colony system algorithm forautomatically schematizing transport network data set
- [Stott et al. '11] Auto-matic metro map layout using multicriteria optimization
- lacktriangle Nolff $^{\prime}11]$ Drawing and labeling high-quality metro maps by mixed-integer programming
- [Onda, Moriguchi, Imai '18] Automatic Drawing for Tokyo Metro Map
- [Wang & Chi '11] Focus+context metro maps