
1

Visualization of Graphs

Part I:
Algorithm Framework

Lecture 2:
Force-Directed Drawing Algorithms

Jonathan Klawitter

2 - 2

General Layout Problem

Input: Graph G = (V,E)

Output: Clear and readable straight-line drawing of G

2 - 10

General Layout Problem

Input: Graph G = (V,E)

Output: Clear and readable straight-line drawing of G

Drawing aesthetics:

� adjacent vertices are close

� non-adjacent vertices are far apart

� edges short, straight-line, similar length

� densely connected parts (clusters) form communities

� as few crossings as possible

� nodes distributed evenly

Optimization criteria partially contradict each other

3 - 6

Fixed Edge Lengths?

NP-hard for

� uniform edge lengths in any dimension [Johnson ’82]

� uniform edge lengths in planar drawings [Eades, Wormald ’90]

� edge lengths {1, 2} [Saxe ’80]

Input: Graph G = (V,E), required edge length `(e), ∀e ∈ E
Output: Drawing of G which realizes all the edge lengths

3 - 9

Fixed Edge Lengths?

NP-hard for

� uniform edge lengths in any dimension [Johnson ’82]

� uniform edge lengths in planar drawings [Eades, Wormald ’90]

� edge lengths {1, 2} [Saxe ’80]

Input: Graph G = (V,E), required edge length `(e), ∀e ∈ E
Output: Drawing of G which realizes all the edge lengths

4 - 4

Physical Analogy

Idea. [Eades ’84]
“To embed a graph we replace the vertices by steel rings and replace each edge with
a spring to form a mechanical system . . . The vertices are placed in some initial
layout and let go so that the spring forces on the rings move the system to a minimal
energy state.”

4 - 12

Physical Analogy

Idea. [Eades ’84]
“To embed a graph we replace the vertices by steel rings and replace each edge with
a spring to form a mechanical system . . . The vertices are placed in some initial
layout and let go so that the spring forces on the rings move the system to a minimal
energy state.”

adjacent vertices u and v:

u v
fattr

Repulsive forces.

all vertices x and y:

x
yfrep

So-called spring-embedder algorithms that
work according to this or similar principles are
among the most frequently used graph-drawing
methods in practice.

Attractive forces.

5 - 13

Force-Directed Algorithms

ForceDirected(G = (V,E), p = (pv)v∈V , ε > 0, K ∈ N)

t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)←

∑
v∈V frep(u, v) +

∑
uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t+ 1

return p

end layout

initial layout threshold
max # iterations

u

u

cooling factor

5 - 15

Force-Directed Algorithms

ForceDirected(G = (V,E), p = (pv)v∈V , ε > 0, K ∈ N)

t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)←

∑
v∈V frep(u, v) +

∑
uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t+ 1

return p

end layout

initial layout threshold
max # iterations

u

cooling factor

δ(t)

t

u

6

Visualization of Graphs

Part II:
Spring Embedders by Eades
and Fruchterman & Reingold

Lecture 2:
Force-Directed Drawing Algorithms

Jonathan Klawitter

7 - 10

Spring Embedder by Eades – Model

� Repulsive forces

frep(u, v) =
crep

||pv − pu||2
· −−→pvpu

� Attractive forces

fspring(u, v) = cspring · log
||pv − pu||

`
· −−→pupv

fattr(u, v) = fspring(u, v)− frep(u, v)

� Resulting displacement vector

Fu =
∑
v∈V

frep(u, v) +
∑
uv∈E

fattr(u, v)

Notation.

� −−→pupv = unit vector
pointing from u to v

� ||pu − pv|| = Euclidean
distance between u and v

� ` = ideal spring length
for edges

repulsion constant (e.g. 2.0)

spring constant (e.g. 1.0)

ForceDirected(G = (V,E), p = (pv)v∈V , ε > 0, K ∈ N)

t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)←

∑
v∈V frep(u, v) +

∑
uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t+ 1

return p

8 - 2

Spring Embedder by Eades – Force Diagram

Distance
`

Force

p
u
ll
u
to
v

p
u
sh
u
aw

ay

frep(u, v) =
crep

||pv − pu||2
· −−→pvpu

8 - 5

Spring Embedder by Eades – Force Diagram

Distance
`

Force

p
u
ll
u
to
v

p
u
sh
u
aw

ay

fspring(u, v) = cspring · log
||pv − pu||

`
· −−→pupv

frep(u, v) =
crep

||pv − pu||2
· −−→pvpu

fattr(u, v) = fspring(u, v)− frep(u, v)

9 - 1

Spring Embedder by Eades – Discussion

Advantages.

� very simple algorithm

� good results for small and medium-sized graphs

� empirically good representation of symmetry and structure

9 - 11

Spring Embedder by Eades – Discussion

Advantages.

� very simple algorithm

� good results for small and medium-sized graphs

� empirically good representation of symmetry and structure

Disadvantages.

� system is not stable at the end

� converging to local minima

� timewise fspring in O(|E|) and frep in O(|V |2)

Influence.
� original paper by Peter Eades [Eades ’84] got ∼ 2000 citations

� basis for many further ideas

10 - 1

Variant by Fruchterman & Reingold

� Resulting displacement vector

Fu =
∑
v∈V

frep(u, v) +
∑
uv∈E

fattr(u, v)

Notation.

� ||pu − pv|| = Euclidean
distance between u and v

� −−→pupv = unit vector
pointing from u to v

� ` = ideal spring length
for edges

ForceDirected(G = (V,E), p = (pv)v∈V , ε > 0, K ∈ N)

t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)←

∑
v∈V frep(u, v) +

∑
uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t+ 1

return p

� Repulsive forces

frep(u, v) =
crep

||pv − pu||2
· −−→pvpu

� Attractive forces

fspring(u, v) = cspring · log
||pv − pu||

`
· −−→pupv

fattr(u, v) = fspring(u, v)− frep(u, v)

repulsion constant (e.g. 2.0)

spring constant (e.g. 1.0)

10 - 3

Variant by Fruchterman & Reingold

� Repulsive forces

frep(u, v) =
`2

||pv − pu||
· −−→pvpu

� Attractive forces

fattr(u, v) =
||pv − pu||2

`
· −−→pupv

� Resulting displacement vector

Fu =
∑
v∈V

frep(u, v) +
∑
uv∈E

fattr(u, v)

Notation.

� ||pu − pv|| = Euclidean
distance between u and v

� −−→pupv = unit vector
pointing from u to v

� ` = ideal spring length
for edges

ForceDirected(G = (V,E), p = (pv)v∈V , ε > 0, K ∈ N)

t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)←

∑
v∈V frep(u, v) +

∑
uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t+ 1

return p

11 - 2

Fruchterman & Reingold – Force Diagram

Distance
`

Force

p
u
ll
u
to
v

p
u
sh
u
aw

ay

frep(u, v) =
`2

||pv − pu||
· −−→pvpu

11 - 4

Fruchterman & Reingold – Force Diagram

Distance
`

Force

p
u
ll
u
to
v

p
u
sh
u
aw

ay

frep(u, v) =
`2

||pv − pu||
· −−→pvpu

fattr(u, v) =
||pv − pu||2

`
· −−→pupv

fspring(u, v) = fattr(u, v) + frep(u, v)

12

Visualization of Graphs

Part III:
Variants & Improvements

Lecture 2:
Force-Directed Drawing Algorithms

Jonathan Klawitter

13 - 6

Adaptability

Inertia.

� Define vertex mass Φ(v) = 1 + deg(v)/2

� Set fattr(pu, pv)← fattr(pu, pv) · 1/Φ(v)

Gravitation.

� Define centroid pbary = 1/|V | ·
∑

v∈V pv

� Add force fgrav(pv) = cgrav · Φ(v) · −−−−→pvpbary

Restricted drawing area.
If Fv points beyond area R, clip vector appropriately at
the border of R.

v

Fv

And many more...

� magnetic orientation of edges [GD Ch. 10.4]

� other energy models

� planarity preserving

� speedups

R

14 - 2

Speeding up “Convergence” by Adaptive Displacement δv(t)

ForceDirected(G = (V,E), p = (pv)v∈V , ε > 0, K ∈ N)

t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)←

∑
v∈V frep(u, v) +

∑
uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t+ 1

return p

δv(t)

14 - 5

Speeding up “Convergence” by Adaptive Displacement δv(t)

Fv(t− 1)

Fv(t)

αv(t)

[Frick, Ludwig, Mehldau ’95]

Same direction.
→ increase temperature δv(t)

14 - 7

Speeding up “Convergence” by Adaptive Displacement δv(t)

Fv(t− 1)

Fv(t)

αv(t)

[Frick, Ludwig, Mehldau ’95]

Same direction.
→ increase temperature δv(t)

Oszillation.
→ decrease temperature δv(t)

14 - 9

Speeding up “Convergence” by Adaptive Displacement δv(t)

Fv(t− 1)

Fv(t)αv(t)

F ′v(t)

[Frick, Ludwig, Mehldau ’95]

Same direction.
→ increase temperature δv(t)

Oszillation.
→ decrease temperature δv(t)

Rotation.

� count rotations

� if applicable

→ decrease temperature δv(t)

15 - 6

Speeding up “Convergence” via Grids

v

[Fruchterman & Reingold ’91]

� divide plane into grid

� consider repelling forces only to
vertices in neighboring cells

� and only if distance is less than
some max distance

Discussion.

� good idea to improve runtime

� worst-case has not improved

� might introduce oszillation and
thus a quality loss

16 - 6

Speeding up with Quad Trees

QT
R0

R1 R2 R3 R4

R5

R12

R13

R16

R17 R18

[Barnes, Hut ’86]

� height h ≤ log sinit
dmin

+ 3
2

� time/space in O(hn)

� compressed quad tree can be
computed in O(n log n) time

� h ∈ O(log n) if vertices evenly
distriputedsinit

16 - 11

Speeding up with Quad Trees

QT
R0

R1 R2 R3 R4

R5

R12

R13

R16

R17 R18

[Barnes, Hut ’86]

u

u

frep(Ri, pu) = |Ri| · frep(σRi , pu)

for each child Ri of a vertex on path from u to R0

17

Visualization of Graphs

Part IV:
Tutte Embedding

Lecture 2:
Force-Directed Drawing Algorithms

Jonathan Klawitter

18 - 4

Idea

William T. Tutte
1917 – 2002

Consider a fixed triangle (a, b, c)
with one common neighbor v

v
a

b

c

Where would you place v?

18 - 11

Idea

William T. Tutte
1917 – 2002

Consider a fixed triangle (a, b, c)
with one common neighbor v v

a

b

c
barycenter(a, b, c)

barycenter(x1, . . . , xk) =
∑k

i=1 xi/k

Where would you place v?

Idea.
Repeatedly place every vertex at barycenter of neighbors.

19 - 15

Tutte’s Forces ForceDirected(G = (V,E), p = (pv)v∈V , ε > 0, K ∈ N)

t← 1
while t < K and maxv∈V ‖Fv(t)‖ > ε do

foreach u ∈ V do
Fu(t)←

∑
v∈V frep(u, v) +

∑
uv∈E fattr(u, v)

foreach u ∈ V do
pu ← pu + δ(t) · Fu(t)

t← t+ 1

return p

1

Goal.
pu = barycenter(

⋃
uv∈E v)

barycenter(x1, . . . , xk) =
∑k

i=1 xi/k

=
∑

uv∈E pv/ deg(u)

Fu(t) =
∑

uv∈E pv/ deg(u)− pu
=

∑
uv∈E(pv − pu)/ deg(u)

=
∑

uv∈E ||pu − pv||/ deg(u)

� Repulsive forces

frep(u, v) = 0

� Attractive forces

fattr(u, v) =

{
0 u fixed

1
deg(u) · ||pu − pv|| else

Solution: pu = (0, 0) ∀u ∈ V

Fix coordinates
of outer face!

20 - 34

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) =

∑
uv∈E pv/ deg(u)

pu = (xu, yu)

xu =
∑

uv∈E xv/ deg(u)

yu =
∑

uv∈E yv/ deg(u)

⇔ deg(u) · xu =
∑

uv∈E xv
⇔ deg(u) · yu =

∑
uv∈E yv

⇔ deg(u) · xu −
∑

uv∈E xv = 0

⇔ deg(u) · yu −
∑

uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6
Aii = deg(ui)

Aij,i 6=j =

{
−1 uiuj ∈ E
0 uiuj /∈ E

Ay = b b = (0)n

Laplacian matrix of G

n variables, n constraints, det(A) = 0

⇒ no unique solution

20 - 42

Linear System of Equations

Goal.
pu = barycenter(

⋃
uv∈E v) =

∑
uv∈E pv/ deg(u)

pu = (xu, yu)

xu =
∑

uv∈E xv/ deg(u)

yu =
∑

uv∈E yv/ deg(u)

⇔ deg(u) · xu =
∑

uv∈E xv
⇔ deg(u) · yu =

∑
uv∈E yv

⇔ deg(u) · xu −
∑

uv∈E xv = 0

⇔ deg(u) · yu −
∑

uv∈E yv = 0

2 Systems of linear equations

u1

u2

u3

u4

Ax = b

3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2

u5

u6

A
u1
u2
u3
u4
u5
u6

u1 u2 u3 u4 u5 u6
Aii = deg(ui)

Aij,i 6=j =

{
−1 uiuj ∈ E
0 uiuj /∈ E

Ay = b b = (0)n

Laplacian matrix of G

n variables, n constraints, det(A) = 0

⇒ no unique solution

k

k = #free vertices

k >

⇒

Theorem.
Tutte’s barycentric algorithm admits a unique solution.
It can be computed in polynomial time.

Tutte drawing

21 - 6

3-Connected Planar Graphs

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V
k-connected: G− {v1, . . . , vk−1} is connected

for any v1 . . . , vk−1 ∈ V

1

2

5

21 - 36

3-Connected Planar Graphs

v

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V
k-connected: G− {v1, . . . , vk−1} is connected

for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

[Whitney 1933]Theorem.
Every 3-connected planar graph
has a unique planar embedding.

Proof sketch.
Γ1, Γ2 embeddings of G

C face of Γ2, but not Γ1

Γ1

C

u

v

Γ2

C

u

u inside C in Γ1 , v outside C in Γ1

both on same side in Γ2

21 - 38

3-Connected Planar Graphs

v

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V
k-connected: G− {v1, . . . , vk−1} is connected

for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

[Whitney 1933]Theorem.
Every 3-connected planar graph
has a unique planar embedding.

Proof sketch.
Γ1, Γ2 embeddings of G

C face of Γ2, but not Γ1

Γ1

C

u

v

Γ2

C

u

u inside C in Γ1 , v outside C in Γ1

both on same side in Γ2

21 - 39

3-Connected Planar Graphs

v

3

4

planar:

connected:

G can be drawn in such a way
that no edges cross each other

There is a u-v-path for every u, v ∈ V
k-connected: G− {v1, . . . , vk−1} is connected

for any v1 . . . , vk−1 ∈ V
or (equivalently)
There are at least k vertex-disjoint
u-v-paths for every u, v ∈ V

1

2

5

[Whitney 1933]Theorem.
Every 3-connected planar graph
has a unique planar embedding.

Proof sketch.
Γ1, Γ2 embeddings of G

C face of Γ2, but not Γ1

Γ1

C

u

v

Γ2

C
u

u inside C in Γ1 , v outside C in Γ1

both on same side in Γ2

22 - 5

Tutte’s Theorem

Theorem.

Let G be a 3-connected planar graph, and
let C be a face of its unique embedding.
If we fix C on a strictly convex polygon, then the Tutte drawing
of G is planar and all its faces are strictly convex.

[Tutte 1963]

23 - 13

Properties of Tutte Drawings

Property 1. Let v ∈ V free, ` line through v. v

∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side
u

w

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside C.

23 - 42

Properties of Tutte Drawings

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of `⇒ ∃vw ∈ E on other side

Let V` be all vertices on one side of `.
Then G[V`] is connected.

Otherwise, all forces to same side . . .

v

v furthest away from `
Pick any vertex u

u

, `′ parallel to ` throught u

`′

G connected, v not on `′⇒ ∃w on `′ with neighbor further away from `

w

⇒ ∃ path from u to v

Not all vertices collinear
G 3-connected
⇒ K3,3 minor

A

B

Property 2. All free vertices lie inside C.

24 - 42

Proof of Tutte’s Theorem

Lemma. Let uv ∈ E be a non-boundary edge, ` line through
uv. Then the two faces f1, f2 incident to uv lie
completely on opposite sides of `.

Property 1. Let v ∈ V free, ` line through v.
∃uv ∈ E on one side of ` ⇒ ∃vw ∈ E on other side

Property 4. No vertex is collinear with all of its neighbors.

Property 3. Let ` be any line.
Let V` be all vertices on one side of `.
Then G[V`] is connected.

Lemma. All faces are strictly convex. Lemma. The drawing is planar.

p

p inside two faces

q

Property 2. All free vertices lie inside C.
⇒ q in one face

jumping over edge
→ #faces the same
⇒ p inside one face

25

Literature

Main sources:

� [GD Ch. 10] Force-Directed Methods

� [DG Ch. 4] Drawing on Physical Analogies

Original papers:

� [Eades 1984] A heuristic for graph drawing

� [Fruchterman, Reingold 1991] Graph drawing by force-directed placement

� [Tutte 1963] How to draw a graph

	Algorithmic Framework
	General Layout Problem

	Fixed Edge Lengths?
	Physical Analogy
	Force-Directed Algorithms Framework

	Eades' Algorithm and Fruchtermann & Reingold's Algorithm
	Model
	Force diagram
	Discussion
	Fruchterman \& Reingold
	Force diagram

	Variants & Improvements
	Adaptability
	Adaptive Displacement

	Speeding up ``Convergence'' via Grids
	Speeding up with Quad Trees

	Tutte Embedding
	Idea
	Tutte's Forces
	Linear System of Equations
	3-Connected Planar Graphs
	Tutte's Theorem
	Properties of Tutte Drawings
	Proof of Tutte's Theorem

	Literature

