Visualization of Graphs

Lecture 2:
 Force-Directed Drawing Algorithms

General Layout Problem

Input: Graph $G=(V, E)$
Output: Clear and readable straight-line drawing of G

General Layout Problem

Input: Graph $G=(V, E)$
Output: Clear and readable straight-line drawing of G Drawing aesthetics:

■ adjacent vertices are close

- non-adjacent vertices are far apart

■ edges short, straight-line, similar length

- densely connected parts (clusters) form communities
- as few crossings as possible

■ nodes distributed evenly
Optimization criteria partially contradict each other

Fixed Edge Lengths?

Input: Graph $G=(V, E)$, required edge length $\ell(e), \forall e \in E$ Output: Drawing of G which realizes all the edge lengths

NP-hard for

Fixed Edge Lengths?

Input: Graph $G=(V, E)$, required edge length $\ell(e), \forall e \in E$
Output: Drawing of G which realizes all the edge lengths

NP-hard for
■ uniform edge lengths in any dimension [Johnson '82]
■ uniform edge lengths in planar drawings [Eades, Wormald '90]
■ edge lengths $\{1,2\}$ [Saxe '80]

Physical Analogy

Idea.

[Eades '84]
"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

Physical Analogy

Idea.

[Eades '84]
"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

So-called spring-embedder algorithms that work according to this or similar principles are among the most frequently used graph-drawing methods in practice.

Attractive forces.

 adjacent vertices u and v :```
uammwo v
 fattr
```


## Repulsive forces.

all vertices $x$ and $y$ :


## Force-Directed Algorithms



## Force-Directed Algorithms

## initial layout

 thresholdForceDirected $\left(G=(V, E), p=\left(p_{v}\right)_{v \in V}, \varepsilon>0, K \in \mathbb{N}\right)$
$t \leftarrow 1$
while $t<K$ and $\max _{v \in V}\left\|F_{v}(t)\right\|>\varepsilon$ do foreach $u \in V$ do

$$
F_{u}(t) \leftarrow \sum_{v \in V} f_{\text {rep }}(u, v)+\sum_{u v \in E} f_{\text {attr }}(u, v)
$$


foreach $u \in V$ do $p_{u} \leftarrow p_{u}+\delta(t) \cdot F_{u}(t)$
$t \leftarrow t+1$
cooling factor
return $p$

max \# iterations


## Visualization of Graphs

## Lecture 2: <br> Force-Directed Drawing Algorithms



## Spring Embedder by Eades - Model

■ Repulsive forces
repulsion constant (e.g. 2.0)

$$
f_{\mathrm{rep}}(u, v)=\frac{c_{\mathrm{rep}}}{\left\|p_{v}-p_{u}\right\|^{2}} \cdot \overrightarrow{p_{v} p_{u}}
$$

- Attractive forces
spring constant (e.g. 1.0)

$$
f_{\text {spring }}(u, v)=c_{\text {spring }} \cdot \log \frac{\left\|p_{v}-p_{u}\right\|}{\ell} \cdot \overrightarrow{p_{u} p_{v}}
$$

$$
f_{\text {attr }}(u, v)=f_{\text {spring }}(u, v)-f_{\text {rep }}(u, v)
$$

```
ForceDirected (G=(V,E),p=(\mp@subsup{p}{v}{}\mp@subsup{)}{v\inV,}{},\varepsilon>0,K\in\mathbb{N})
t\leftarrow1
while }t<K\mathrm{ and max }\mp@subsup{\operatorname{meV}}{v\inV}{|}\mp@subsup{F}{v}{}(t)|>\varepsilon\mathrm{ do
 foreach }u\inV\mathrm{ do
 Fu}(t)\leftarrow\mp@subsup{\sum}{v\inV}{}\mp@subsup{f}{\mathrm{ rep }}{}(u,v)+\mp@subsup{\sum}{uv\inE}{}\mp@subsup{f}{\mathrm{ attr }}{}(u,v
 foreach }u\inV\mathrm{ do
 L pu}\leftarrow\mp@subsup{p}{u}{}+\delta(t)\cdot\mp@subsup{F}{u}{}(t
 t\leftarrowt+1
return p
```


## Notation.

■ $\overrightarrow{p_{u} p_{v}}=$ unit vector pointing from $u$ to $v$

- $\left\|p_{u}-p_{v}\right\|=$ Euclidean distance between $u$ and $v$

■ $\ell=$ ideal spring length for edges

■ Resulting displacement vector

$$
F_{u}=\sum_{v \in V} f_{\mathrm{rep}}(u, v)+\sum_{u v \in E} f_{\mathrm{attr}}(u, v)
$$

## Spring Embedder by Eades - Force Diagram



## Spring Embedder by Eades - Force Diagram

$$
f_{\text {attr }}(u, v)=f_{\text {spring }}(u, v)-f_{\text {rep }}(u, v)
$$



## Spring Embedder by Eades - Discussion

Advantages.

## Spring Embedder by Eades - Discussion

## Advantages.

■ very simple algorithm
■ good results for small and medium-sized graphs
■ empirically good representation of symmetry and structure

## Disadvantages.

■ system is not stable at the end
■ converging to local minima
■ timewise $f_{\text {spring }}$ in $\mathcal{O}(|E|)$ and $f_{\text {rep }}$ in $\mathcal{O}\left(|V|^{2}\right)$

## Influence.

■ original paper by Peter Eades [Eades '84] got ~ 2000 citations

- basis for many further ideas


## Variant by Fruchterman \& Reingold

■ Repulsive forces


```
t\leftarrow1
while }t<K\mathrm{ and max }\mp@subsup{\operatorname{meV}}{v\in|}{|}\mp@subsup{F}{v}{}(t)|>\varepsilon\mathrm{ do
 foreach }u\inV\mathrm{ do
 Fu}(t)\leftarrow\mp@subsup{\sum}{v\inV}{}\mp@subsup{f}{\mathrm{ rep }}{}(u,v)+\mp@subsup{\sum}{uv\inE}{}\mp@subsup{f}{\mathrm{ attr }}{}(u,v
 foreach }u\inV\mathrm{ do
 L pu}\leftarrow\mp@subsup{p}{u}{}+\delta(t)\cdot\mp@subsup{F}{u}{}(t
 t\leftarrowt+1
return p
```


## Notation.

- $\left\|p_{u}-p_{v}\right\|=$ Euclidean distance between $u$ and $v$
$\square \overrightarrow{p_{u} p_{v}}=$ unit vector pointing from $u$ to $v$

■ $\ell=$ ideal spring length for edges

■ Resulting displacement vector

$$
F_{u}=\sum_{v \in V} f_{\mathrm{rep}}(u, v)+\sum_{u v \in E} f_{\mathrm{attr}}(u, v)
$$

## Variant by Fruchterman \& Reingold

■ Repulsive forces

$$
f_{\text {rep }}(u, v)=\frac{\ell^{2}}{\left\|p_{v}-p_{u}\right\|} \cdot \overrightarrow{p_{v} p_{u}}
$$

■ Attractive forces

$$
f_{\mathrm{attr}}(u, v)=\frac{\left\|p_{v}-p_{u}\right\|^{2}}{\ell} \cdot \overrightarrow{p_{u} p_{v}}
$$

```
ForceDirected (G=(V,E),p=(\mp@subsup{p}{v}{}\mp@subsup{)}{v\inV}{},\varepsilon>0,K\in\mathbb{N})
while }t<K\mathrm{ and max}\mp@subsup{\operatorname{m\inV}}{}{|}|\mp@subsup{F}{v}{}(t)|>\varepsilon\mathrm{ do
 foreach u\inV do
 Fu}(t)\leftarrow\mp@subsup{\sum}{v\inV}{}\mp@subsup{f}{\mathrm{ rep }}{}(u,v)+\mp@subsup{\sum}{uv\inE}{}\mp@subsup{f}{\mathrm{ attr }}{}(u,v
 foreach }u\inV\mathrm{ do
 L pu}\leftarrow\mp@subsup{p}{u}{}+\delta(t)\cdot\mp@subsup{F}{u}{}(t
 t\leftarrowt+1
return p
```


## Notation.

- $\left\|p_{u}-p_{v}\right\|=$ Euclidean distance between $u$ and $v$
$\square \overrightarrow{p_{u} p_{v}}=$ unit vector pointing from $u$ to $v$

■ $\ell=$ ideal spring length for edges

■ Resulting displacement vector

$$
F_{u}=\sum_{v \in V} f_{\mathrm{rep}}(u, v)+\sum_{u v \in E} f_{\mathrm{attr}}(u, v)
$$

## Fruchterman \& Reingold - Force Diagram



Fruchterman \& Reingold - Force Diagram

$$
\begin{aligned}
& f_{\text {attr }}(u, v)=\frac{\left\|p_{v}-p_{u}\right\|^{2}}{\ell} \cdot \overrightarrow{p_{u} p_{v}} \\
& f_{\text {spring }}(u, v)=f_{\text {attr }}(u, v)+f_{\text {rep }}(u, v)
\end{aligned}
$$

$$
f_{\text {rep }}(u, v)=\frac{\ell^{2}}{\left\|p_{v}-p_{u}\right\|} \cdot \overrightarrow{p_{v} p_{u}}
$$

## Visualization of Graphs

## Lecture 2: <br> Force-Directed Drawing Algorithms



Jonathan Klawitter


## Adaptability

## Inertia.

■ Define vertex mass $\Phi(v)=1+\operatorname{deg}(v) / 2$
$\square$ Set $f_{\text {attr }}\left(p_{u}, p_{v}\right) \leftarrow f_{\text {attr }}\left(p_{u}, p_{v}\right) \cdot 1 / \Phi(v)$

## Gravitation.

- Define centroid $p_{\text {bary }}=1 /|V| \cdot \sum_{v \in V} p_{v}$
$\square$ Add force $f_{\text {grav }}\left(p_{v}\right)=c_{\text {grav }} \cdot \Phi(v) \cdot \overrightarrow{p_{v} p_{\text {bary }}}$ Restricted drawing area. If $F_{v}$ points beyond area $R$, clip vector appropriately at the border of $R$.
And many more...
■ magnetic orientation of edges [GD Ch. 10.4]


■ other energy models
■ planarity preserving
■ speedups

## Speeding up "Convergence" by Adaptive Displacement $\delta_{v}(t)$

```
ForceDirected \(\left(G=(V, E), p=\left(p_{v}\right)_{v \in V}, \varepsilon>0, K \in \mathbb{N}\right)\)
 \(t \leftarrow 1\)
 while \(t<K\) and \(\max _{v \in V}\left\|F_{v}(t)\right\|>\varepsilon\) do
 foreach \(u \in V\) do
 \(F_{u}(t) \leftarrow \sum_{v \in V} f_{\text {rep }}(u, v)+\sum_{u v \in E} f_{\text {attr }}(u, v)\)
 foreach \(u \in V\) do
 \(p_{u} \leftarrow p_{u}+\delta(t) \cdot F_{u}(t)\)
 \(t \leftarrow t+1 \quad \delta_{v}(t)\)
 return \(p\)
```

Speeding up "Convergence" by Adaptive Displacement $\delta_{v}(t)$ [Frick, Ludwig, Mehldau '95]


Same direction.<br>$\rightarrow$ increase temperature $\delta_{v}(t)$

Speeding up "Convergence" by Adaptive Displacement $\delta_{v}(t)$ [Frick, Ludwig, Mehldau '95]


Same direction.
$\rightarrow$ increase temperature $\delta_{v}(t)$
Oszillation.
$\rightarrow$ decrease temperature $\delta_{v}(t)$

## Speeding up "Convergence" by Adaptive Displacement $\delta_{v}(t)$

 [Frick, Ludwig, Mehldau '95]

Same direction.
$\rightarrow$ increase temperature $\delta_{v}(t)$
Oszillation.
$\rightarrow$ decrease temperature $\delta_{v}(t)$

## Rotation.

- count rotations
- if applicable
$\rightarrow$ decrease temperature $\delta_{v}(t)$


## Speeding up "Convergence" via Grids

## [Fruchterman \& Reingold '91]



- divide plane into grid
- consider repelling forces only to vertices in neighboring cells
$\square$ and only if distance is less than some max distance


## Discussion.

- good idea to improve runtime

■ worst-case has not improved
■ might introduce oszillation and thus a quality loss

## Speeding up with Quad Trees

## [Barnes, Hut '86]



## Speeding up with Quad Trees

## [Barnes, Hut '86]


for each child $R_{i}$ of a vertex on path from $u$ to $R_{0}$

## Visualization of Graphs

## Lecture 2: <br> Force-Directed Drawing Algorithms



## Idea

Consider a fixed triangle ( $a, b, c$ ) with one common neighbor $v$ Where would you place $v$ ?



William T. Tutte 1917-2002

## Idea

Consider a fixed triangle ( $a, b, c$ ) with one common neighbor $v$

Where would you place $v ?$

$\operatorname{barycenter}\left(x_{1}, \ldots, x_{k}\right)=\sum_{i=1}^{k} x_{i} / k$
William T. Tutte 1917-2002

## Idea.

Repeatedly place every vertex at barycenter of neighbors.

## Tutte's Forces

Goal.

$$
\begin{aligned}
p_{u} & =\operatorname{barycenter}\left(\bigcup_{u v \in E} v\right) \\
& =\sum_{u v \in E} p_{v} / \operatorname{deg}(u)
\end{aligned}
$$

$$
F_{u}(t)=\sum_{u v \in E} p_{v} / \operatorname{deg}(u)-p_{u}
$$

$$
=\sum_{u v \in E}\left(p_{v}-p_{u}\right) / \operatorname{deg}(u)
$$

$$
=\sum_{u v \in E}\left\|p_{u}-p_{v}\right\| / \operatorname{deg}(u)
$$

ForceDirected $\left(G=(V, E), p=\left(p_{v}\right)_{v \in V}, \varepsilon>0, K \in \mathbb{N}\right)$ $t \leftarrow 1$
while $t<K$ and $\max _{v \in V}\left\|F_{v}(t)\right\|>\varepsilon$ do
foreach $u \in V$ do

$$
F_{u}(t) \leftarrow \sum_{v \in V} f_{\text {rep }}(u, v)+\sum_{u v \in E} f_{\text {attr }}(u, v)
$$

foreach $u \in V$ do

$$
p_{u} \leftarrow p_{u}+\delta+{ }_{x} 1 \cdot F_{u}(t)
$$

$$
t \leftarrow t+1
$$

return $p$

$$
\operatorname{barycenter}\left(x_{1}, \ldots, x_{k}\right)=\sum_{i=1}^{k} x_{i} / k
$$

■ Repulsive forces
Solution: $p_{u}=(0,0) \forall u \in V$

$$
f_{\text {rep }}(u, v)=0
$$

■ Attractive forces

$$
f_{\mathrm{attr}}(u, v)= \begin{cases}0 & u \text { fixed } \\ \frac{1}{\operatorname{deg}(u)} \cdot\left\|p_{u}-p_{v}\right\| & \text { else }\end{cases}
$$

## Linear System of Equations

$$
\begin{aligned}
& \text { Goal. } p_{u}=\left(x_{u}, y_{u}\right) \\
& p_{u}=\operatorname{barycenter}\left(\bigcup_{u v \in E} v\right)=\sum_{u v \in E} p_{v} / \operatorname{deg}(u) \\
& A x=b \quad A y=b \quad b=(0)_{n} \\
& x_{u}=\sum_{u v \in E} x_{v} / \operatorname{deg}(u) \Leftrightarrow \operatorname{deg}(u) \cdot x_{u}=\sum_{u v \in E} x_{v} \quad \Leftrightarrow \operatorname{deg}(u) \cdot x_{u}-\sum_{u v \in E} x_{v}=0 \\
& y_{u}=\sum_{u v \in E} y_{v} / \operatorname{deg}(u) \Leftrightarrow \operatorname{deg}(u) \cdot y_{u}=\sum_{u v \in E} y_{v} \\
& 2 \text { Systems of linear equations } \\
& \Leftrightarrow \operatorname{deg}(u) \cdot y_{u}-\sum_{u v \in E} y_{v}=0 \\
& A_{i i}=\operatorname{deg}\left(u_{i}\right) \\
& A_{i j, i \neq j}= \begin{cases}-1 & u_{i} u_{j} \in E \\
0 & u_{i} u_{j} \notin E\end{cases}
\end{aligned}
$$

$n$ variables, $n$ constraints, $\operatorname{det}(A)=0$ $\Rightarrow$ no unique solution

## Linear System of Equations

Goal. $p_{u}=\left(x_{u}, y_{u}\right)$
$p_{u}=\operatorname{barycenter}\left(\bigcup_{u v \in E} v\right)$

## Theorem.

## Tutte drawing

Tutte's barycentric algorithm admits a unique solution. It can be computed in polynomial time.

$$
\begin{array}{ll}
x_{u}=\sum_{u v \in E} x_{v} / \operatorname{deg}(u) & \Leftrightarrow \operatorname{deg}(u) \cdot x_{u}=\sum_{u v \in E} x_{v}
\end{array} \quad \Leftrightarrow \operatorname{deg}(u) \cdot x_{u}-\sum_{u v \in E} x_{v}=0
$$


$u_{1}$
$u_{2}$
$u_{3}$
$u_{4}$
$u_{5}$
$u_{6}$$\left(\begin{array}{rrrrrr}u_{1} & u_{2} & u_{3} & u_{4} & u_{5} & u_{6} \\ 3 & -1 & -1 & 0 & -1 & 0 \\ -1 & 3 & -1 & -1 & 0 & 0 \\ -1 & -1 & 3 & 0 & 0 & -1 \\ 0 & -1 & 0 & 3 & -1 & -1 \\ -1 & 0 & 0 & -1 & 2 & 0 \\ 0 & 0 & -1 & -1 & 0 & 2\end{array}\right)$

$$
\begin{aligned}
& A_{i i}=\operatorname{deg}\left(u_{i}\right) \\
& A_{i j, i \neq j}= \begin{cases}-1 & u_{i} u_{j} \in E \\
0 & u_{i} u_{j} \notin E\end{cases}
\end{aligned}
$$

$k$ variables, $k$ constraints, $\operatorname{det}(A)>0$
$k=\#$ free vertices
$\Rightarrow$ unique solution

## 3-Connected Planar Graphs

| planar: | $G$ can be drawn in such a way <br> that no edges cross each other |
| :--- | :--- |
| connected: | There is a $u$-v-path for every $u, v \in V$ |
| $k$-connected: | $G-\left\{v_{1}, \ldots, v_{k-1}\right\}$ is connected <br>  <br>  <br> for any $v_{1} \ldots, v_{k-1} \in V$ |

## 3-Connected Planar Graphs

planar: $\quad G$ can be drawn in such a way that no edges cross each other
connected: $\quad$ There is a $u$ - $v$-path for every $u, v \in V$
$k$-connected: $G-\left\{v_{1}, \ldots, v_{k-1}\right\}$ is connected
for any $v_{1} \ldots, v_{k-1} \in V$
or (equivalently)
There are at least $k$ vertex-disjoint $u$-v-paths for every $u, v \in V$


## $\Gamma_{1}$



## Theorem.

[Whitney 1933]
Every 3-connected planar graph has a unique planar embedding.

Proof sketch.
$\Gamma_{1}, \Gamma_{2}$ embeddings of $G$
$C$ face of $\Gamma_{2}$, but not $\Gamma_{1}$
$u$ inside $C$ in $\Gamma_{1}, v$ outside $C$ in $\Gamma_{1}$ both on same side in $\Gamma_{2}$


## 3-Connected Planar Graphs

planar: $\quad G$ can be drawn in such a way that no edges cross each other
connected: $\quad$ There is a $u$ - $v$-path for every $u, v \in V$
$k$-connected: $G-\left\{v_{1}, \ldots, v_{k-1}\right\}$ is connected
for any $v_{1} \ldots, v_{k-1} \in V$
or (equivalently)
There are at least $k$ vertex-disjoint $u$-v-paths for every $u, v \in V$

## Theorem. <br> [Whitney 1933]

Every 3-connected planar graph has a unique planar embedding.

Proof sketch.
$\Gamma_{1}, \Gamma_{2}$ embeddings of $G$
$C$ face of $\Gamma_{2}$, but not $\Gamma_{1}$
$u$ inside $C$ in $\Gamma_{1}, v$ outside $C$ in $\Gamma_{1}$ both on same side in $\Gamma_{2}$

$\Gamma_{1}$



## 3-Connected Planar Graphs

planar: $\quad G$ can be drawn in such a way that no edges cross each other
connected: $\quad$ There is a $u$ - $v$-path for every $u, v \in V$
$k$-connected: $G-\left\{v_{1}, \ldots, v_{k-1}\right\}$ is connected
for any $v_{1} \ldots, v_{k-1} \in V$
or (equivalently)
There are at least $k$ vertex-disjoint $u$ - $v$-paths for every $u, v \in V$

## Theorem. <br> [Whitney 1933]

Every 3-connected planar graph has a unique planar embedding.

## Proof sketch.

$\Gamma_{1}, \Gamma_{2}$ embeddings of $G$
$C$ face of $\Gamma_{2}$, but not $\Gamma_{1}$
$u$ inside $C$ in $\Gamma_{1}, v$ outside $C$ in $\Gamma_{1}$ both on same side in $\Gamma_{2}$

$\Gamma_{1}$


## Tutte's Theorem

## Theorem.

[Tutte 1963]
Let $G$ be a 3-connected planar graph, and let $C$ be a face of its unique embedding.
If we fix $C$ on a strictly convex polygon, then the Tutte drawing of $G$ is planar and all its faces are strictly convex.


## Properties of Tutte Drawings

Property 1. Let $v \in V$ free, $\ell$ line through $v$.
$\exists u v \in E$ on one side of $\ell \Rightarrow \exists v w \in E$ on other side Otherwise, all forces to same side
Property 2. All free vertices lie inside


## Properties of Tutte Drawings

Property 1. Let $v \in V$ free, $\ell$ line through $v$.
$\exists u v \in E$ on one side of $\ell \Rightarrow \exists v w \in E$ on other side Otherwise, all forces to same side
Property 2. All free vertices lie inside
Property 3. Let $\ell$ be any line.
Let $V_{\ell}$ be all vertices on one side of $\ell$. Then $G\left[V_{\ell}\right]$ is connected.
$v$ furthest away from $\ell$
Pick any vertex $u, \ell^{\prime}$ parallel to $\ell$ throught $u$
$G$ connected, $v$ not on $\ell^{\prime} \Rightarrow \exists w$ on $\ell^{\prime}$ with neighbor further away from $\ell$
$\Rightarrow \exists$ path from $u$ to $v$
Property 4. No vertex is collinear with all of its neighbors.

```
Not all vertices collinear
G 3-connected
#}\mp@subsup{K}{3,3}{}\mathrm{ minor
```



## Proof of Tutte's Theorem

Lemma. Let $u v \in E$ be a non-boundary edge, $\ell$ line through $u v$. Then the two faces $f_{1}, f_{2}$ incident to $u v$ lie completely on opposite sides of $\ell$.

Property 1. Let $v \in V$ free, $\ell$ line through $v$.
$\exists u v \in E$ on one side of $\ell \Rightarrow \exists v w \in E$ on other side
Property 3. Let $\ell$ be any line.
Let $V_{\ell}$ be all vertices on one side of $\ell$. Then $G\left[V_{\ell}\right]$ is connected.
Property 4. No vertex is collinear with all of its neighbors.
Lemma. All faces are strictly convex.


Lemma. The drawing is planar.

$p$ inside two faces
Property 2. All free vertices lie inside $C$. $\Rightarrow q$ in one face jumping over edge
$\rightarrow$ \#faces the same
$\Rightarrow p$ inside one face


## Literature

Main sources:

- [GD Ch. 10] Force-Directed Methods

■ [DG Ch. 4] Drawing on Physical Analogies
Original papers:
■ [Eades 1984] A heuristic for graph drawing
■ [Fruchterman, Reingold 1991] Graph drawing by force-directed placement
■ [Tutte 1963] How to draw a graph

