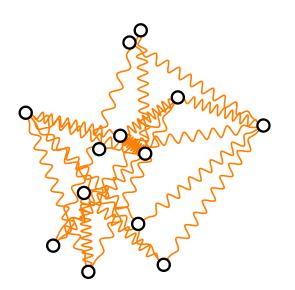


Visualization of Graphs

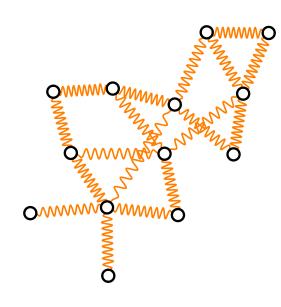
Lecture 2:

Force-Directed Drawing Algorithms

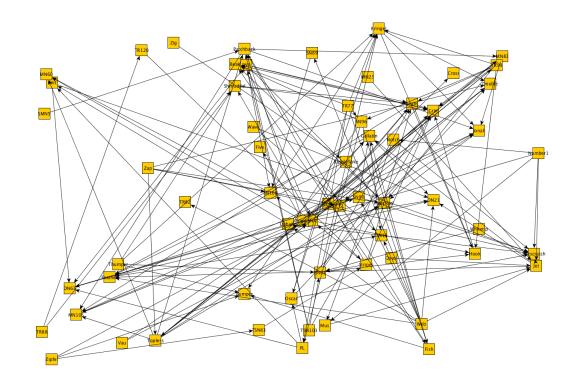


Part I: Algorithm Framework

Jonathan Klawitter

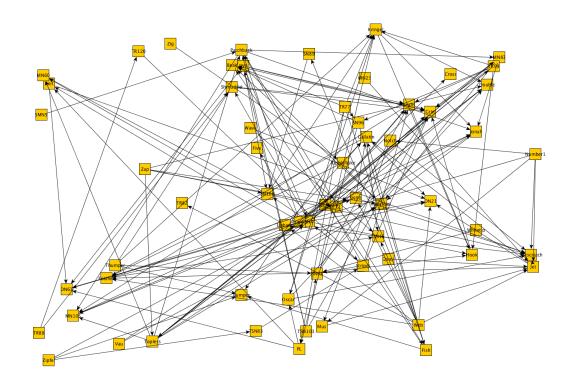


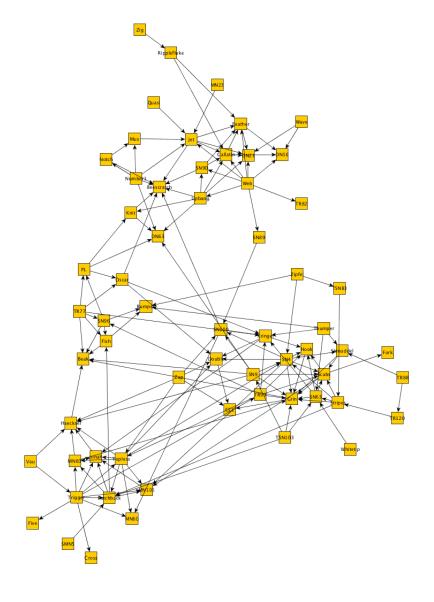
Input: Graph G = (V, E)



Input: Graph G = (V, E)

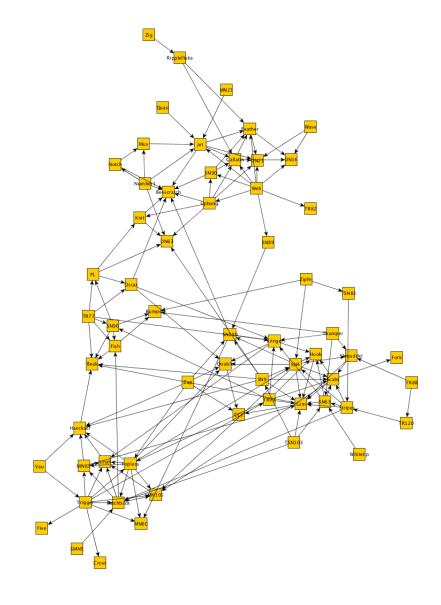
Output: Clear and readable straight-line drawing of G





Input: Graph G = (V, E)

Output: Clear and readable straight-line drawing of G

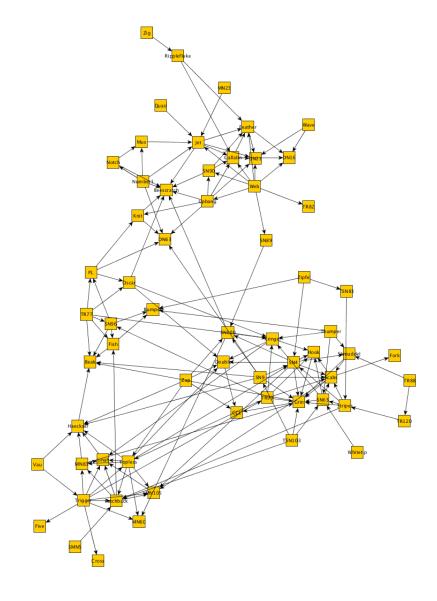


Input: Graph G = (V, E)

Output: Clear and readable straight-line drawing of G

Drawing aesthetics:

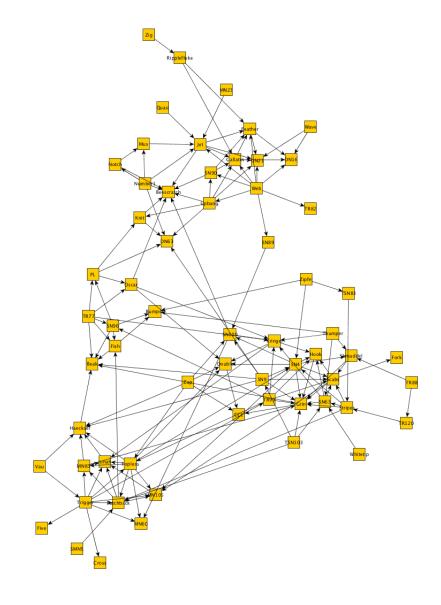
adjacent vertices are close



Input: Graph G = (V, E)

Output: Clear and readable straight-line drawing of G

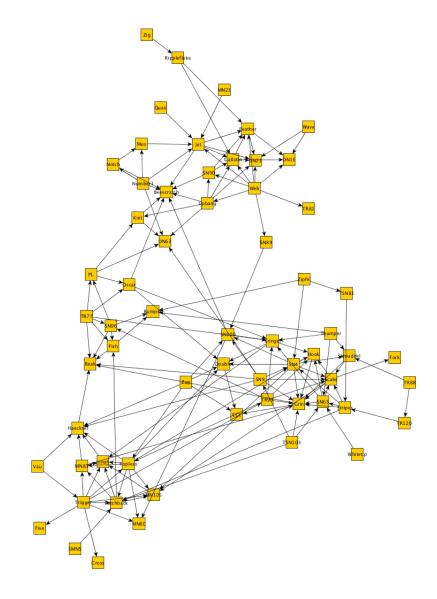
- adjacent vertices are close
- non-adjacent vertices are far apart



Input: Graph G = (V, E)

Output: Clear and readable straight-line drawing of G

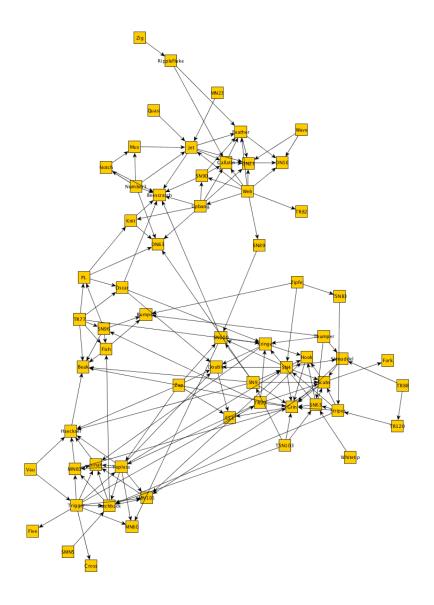
- adjacent vertices are close
- non-adjacent vertices are far apart
- edges short, straight-line, similar length



Input: Graph G = (V, E)

Output: Clear and readable straight-line drawing of G

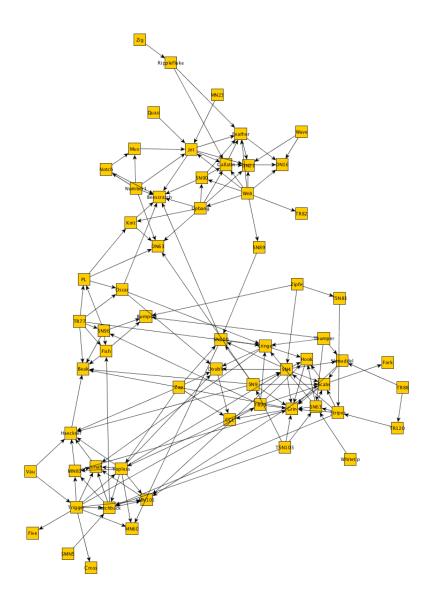
- adjacent vertices are close
- non-adjacent vertices are far apart
- edges short, straight-line, similar length
- densely connected parts (clusters) form communities



Input: Graph G = (V, E)

Output: Clear and readable straight-line drawing of G

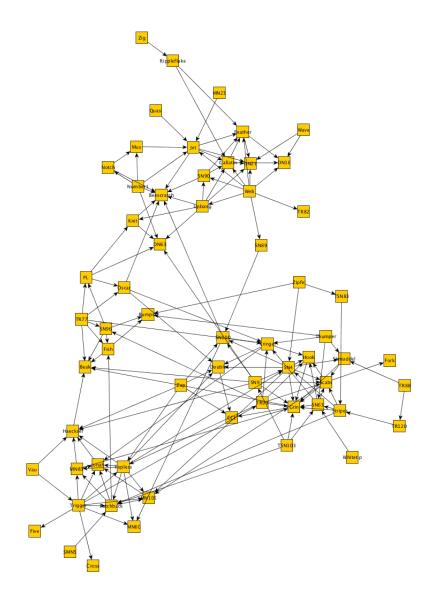
- adjacent vertices are close
- non-adjacent vertices are far apart
- edges short, straight-line, similar length
- densely connected parts (clusters) form communities
- as few crossings as possible



Input: Graph G = (V, E)

Output: Clear and readable straight-line drawing of G

- adjacent vertices are close
- non-adjacent vertices are far apart
- edges short, straight-line, similar length
- densely connected parts (clusters) form communities
- as few crossings as possible
- nodes distributed evenly



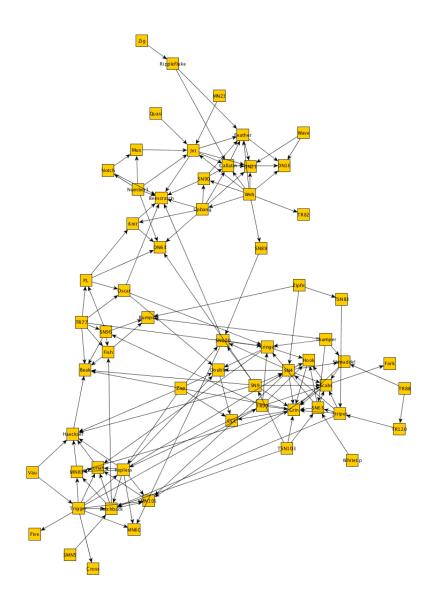
Input: Graph G = (V, E)

Output: Clear and readable straight-line drawing of G

Drawing aesthetics:

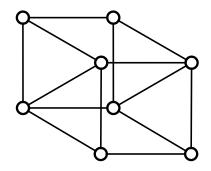
- adjacent vertices are close
- non-adjacent vertices are far apart
- edges short, straight-line, similar length
- densely connected parts (clusters) form communities
- as few crossings as possible
- nodes distributed evenly

Optimization criteria partially contradict each other

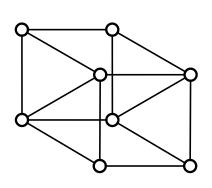


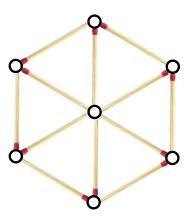
Input: Graph G = (V, E), required edge length $\ell(e)$, $\forall e \in E$

Input: Graph G = (V, E), required edge length $\ell(e)$, $\forall e \in E$

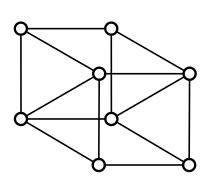


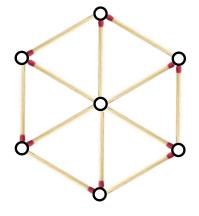
Input: Graph G = (V, E), required edge length $\ell(e)$, $\forall e \in E$

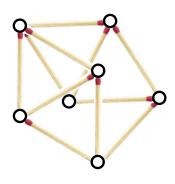




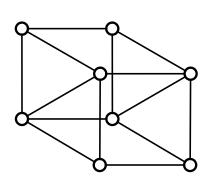
Input: Graph G = (V, E), required edge length $\ell(e)$, $\forall e \in E$

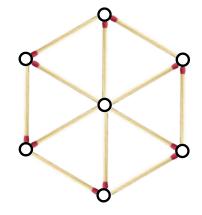


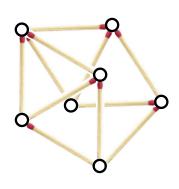


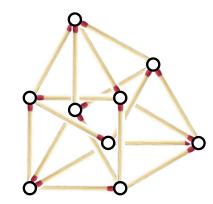


Input: Graph G = (V, E), required edge length $\ell(e)$, $\forall e \in E$

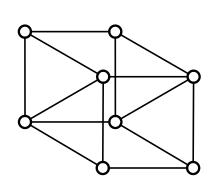


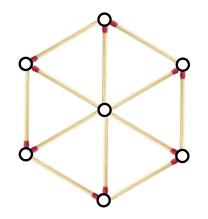


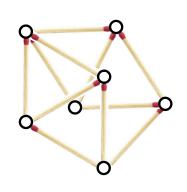


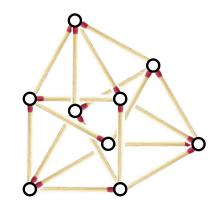


Input: Graph G = (V, E), required edge length $\ell(e)$, $\forall e \in E$





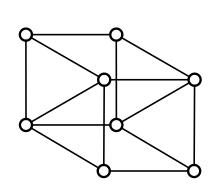


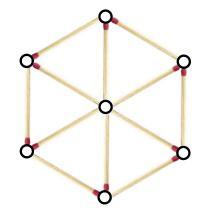


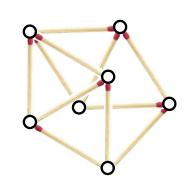
NP-hard for

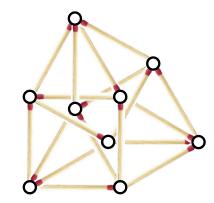
Input: Graph G = (V, E), required edge length $\ell(e)$, $\forall e \in E$

Output: Drawing of G which realizes all the edge lengths







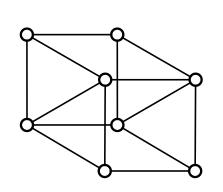


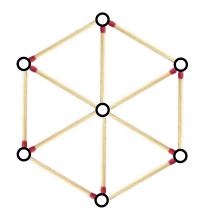
NP-hard for

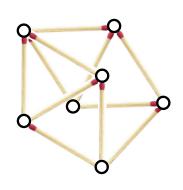
uniform edge lengths in any dimension [Johnson '82]

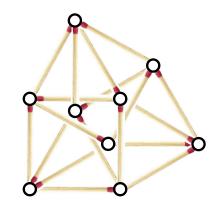
Input: Graph G = (V, E), required edge length $\ell(e)$, $\forall e \in E$

Output: Drawing of G which realizes all the edge lengths







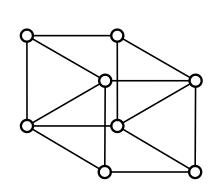


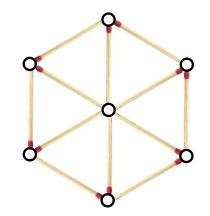
NP-hard for

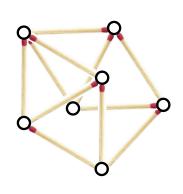
- uniform edge lengths in any dimension [Johnson '82]
- uniform edge lengths in planar drawings [Eades, Wormald '90]

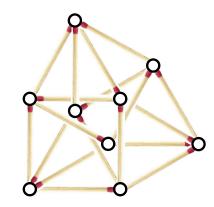
Input: Graph G = (V, E), required edge length $\ell(e)$, $\forall e \in E$

Output: Drawing of G which realizes all the edge lengths









NP-hard for

- uniform edge lengths in any dimension [Johnson '82]
- uniform edge lengths in planar drawings [Eades, Wormald '90]
- \blacksquare edge lengths $\{1,2\}$ [Saxe '80]

Idea.

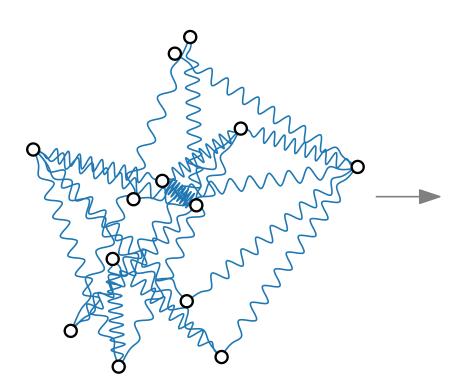
[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system ...

Idea.

[Eades '84]

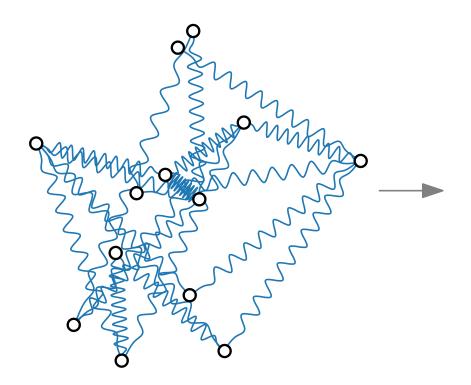
"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system ...



Idea.

[Eades '84]

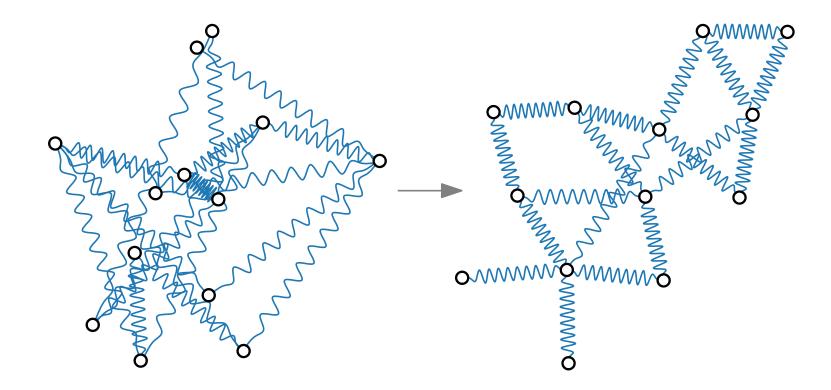
"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."



Idea.

[Eades '84]

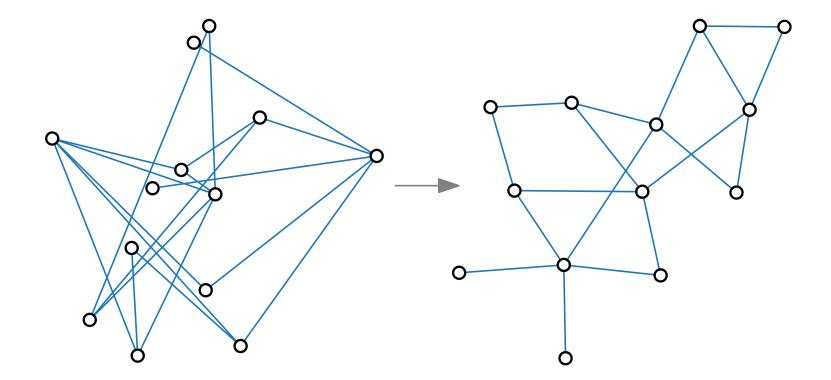
"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."



Idea.

[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."



Idea.

[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

Attractive forces.

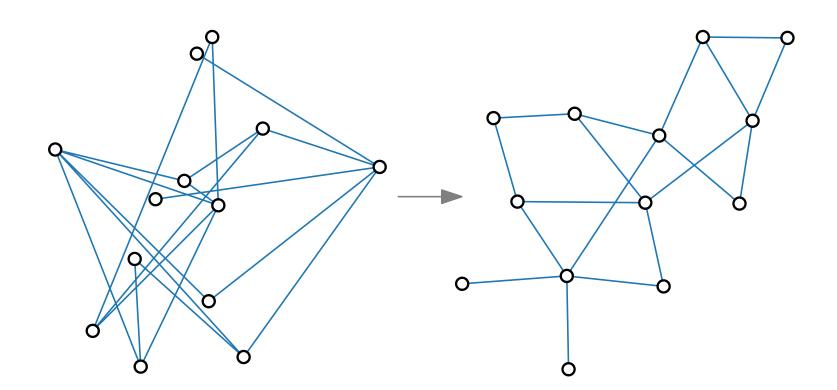
Idea.

[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

Attractive forces.

adjacent vertices u and v:



Idea.

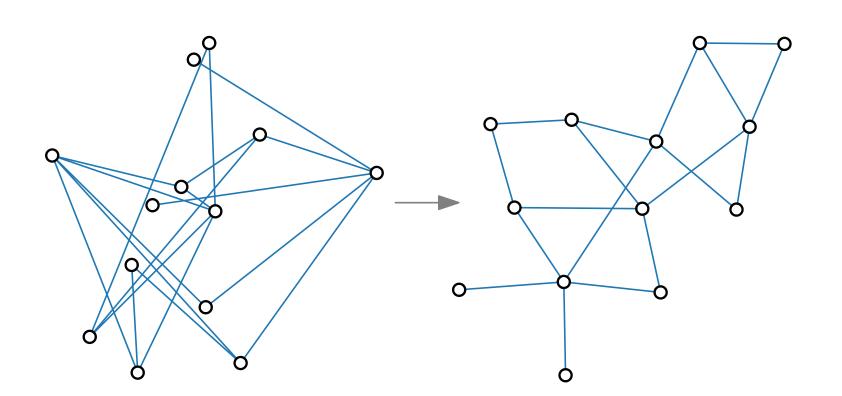
[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

Attractive forces.

adjacent vertices u and v:

u owwwo v f_{attr}



Idea.

[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

Attractive forces.

adjacent vertices u and v:

u owwwo v f_{attr}

Repulsive forces.

Idea.

[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

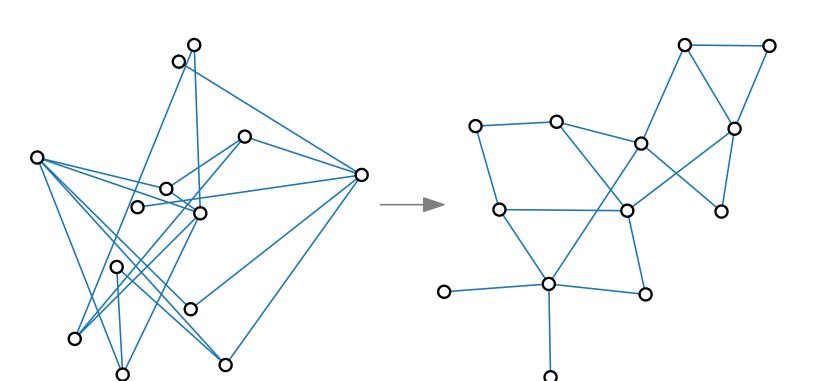
Attractive forces.

adjacent vertices u and v:

u ommo v f_{attr}

Repulsive forces.

all vertices x and y:



Idea.

[Eades '84]

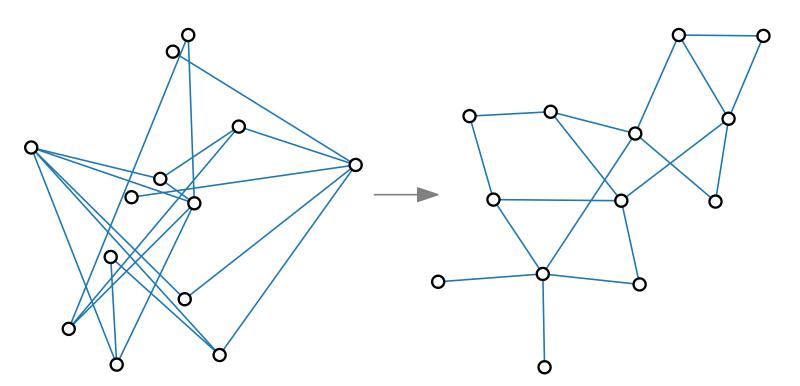
"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

Attractive forces.

adjacent vertices u and v:

u ommo v f_{attr}

all vertices x and y:



Idea.

[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

So-called spring-embedder algorithms that work according to this or similar principles are among the most frequently used graph-drawing methods in practice.

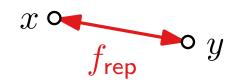
Attractive forces.

adjacent vertices u and v:

$$u$$
 ommo v f_{attr}

Repulsive forces.

all vertices x and y:



ForceDirected $(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})$

return p

initial layout

ForceDirected
$$(G=(V,E), p=(p_v)_{v\in V}, \varepsilon>0, K\in\mathbb{N})$$

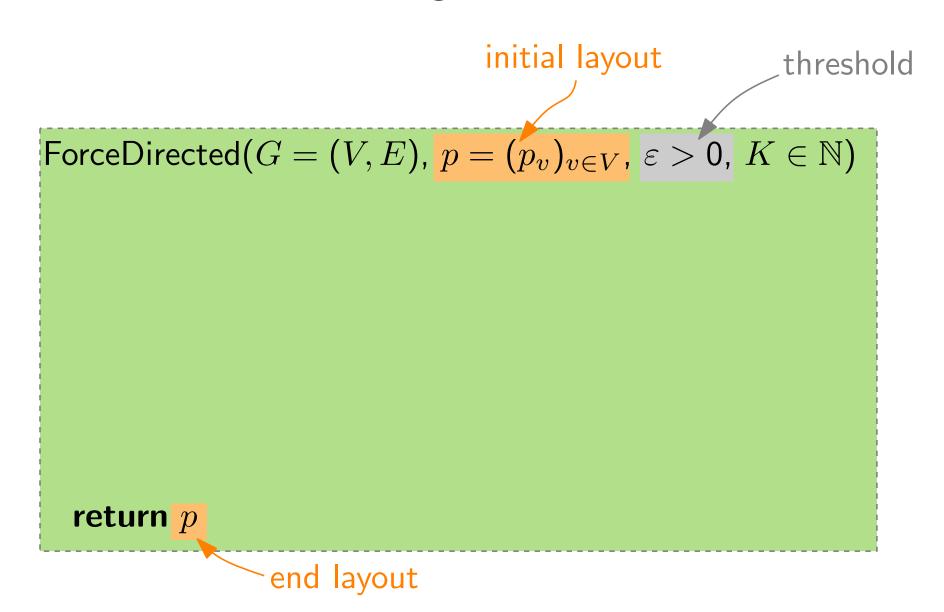
return p

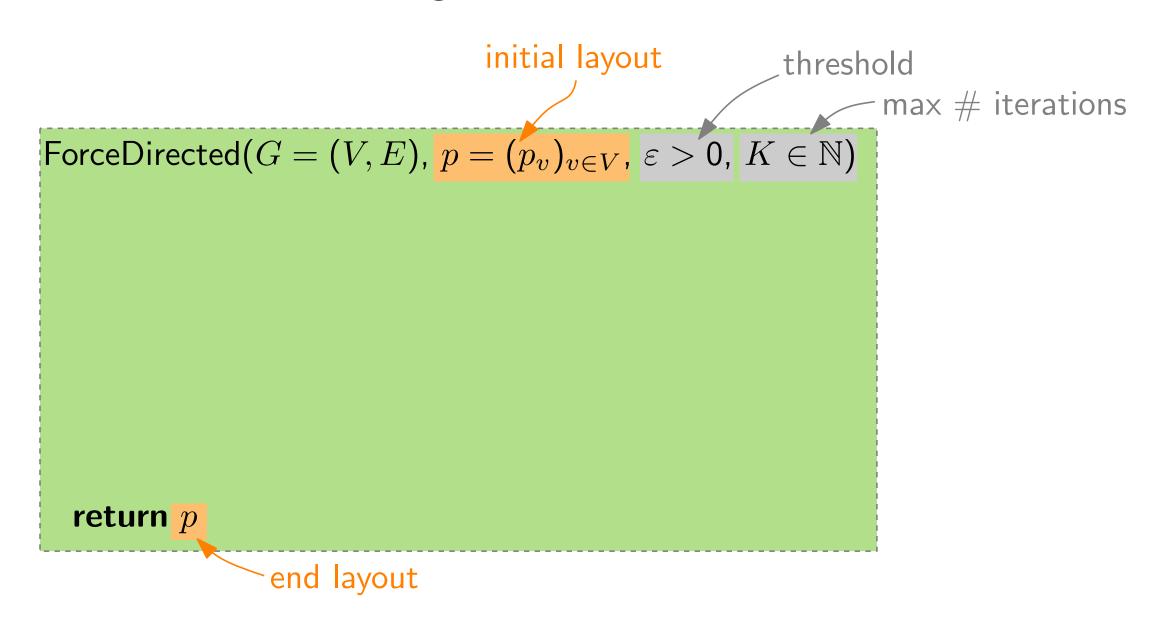
initial layout

ForceDirected $(G=(V,E), p=(p_v)_{v\in V}, \varepsilon>0, K\in\mathbb{N})$

return p

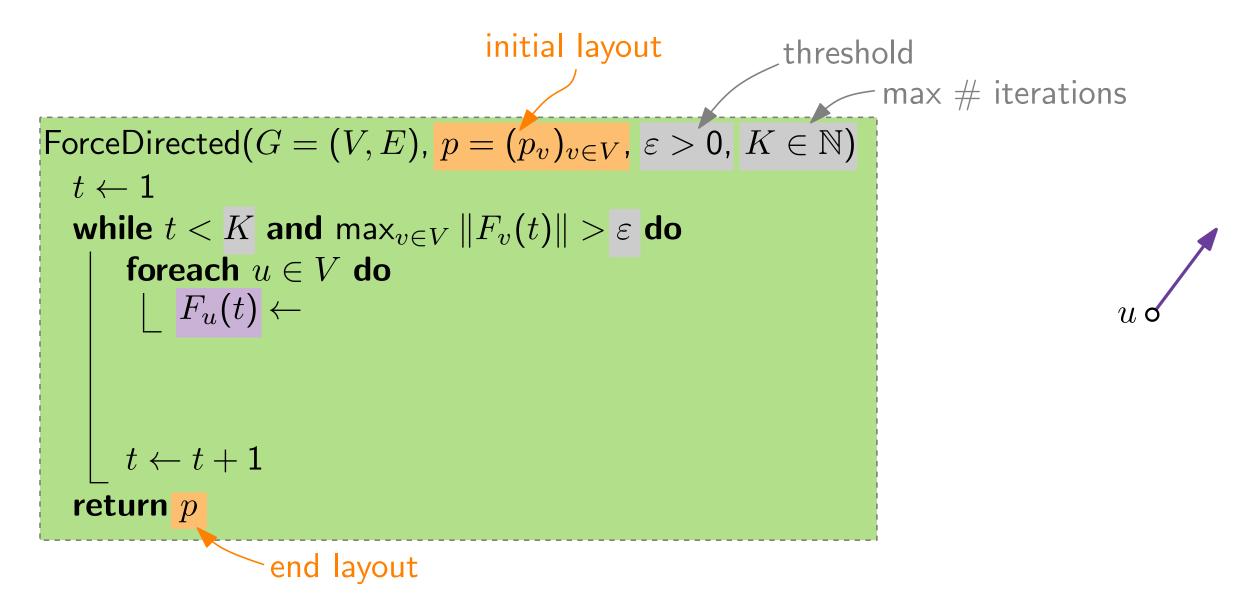
end layout

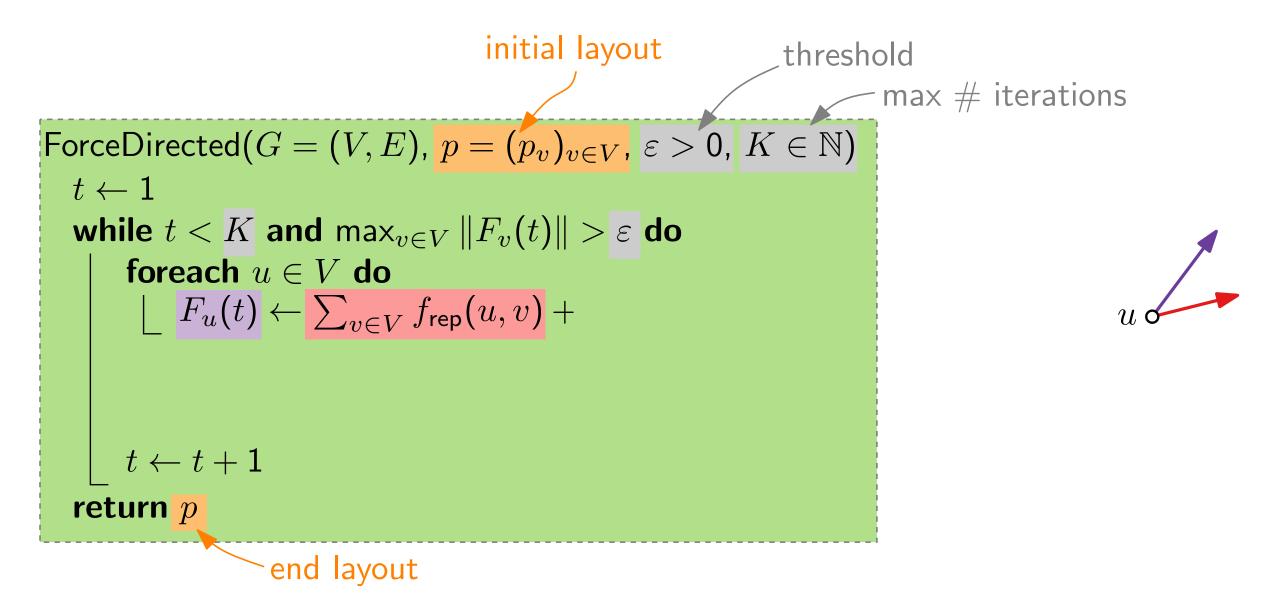


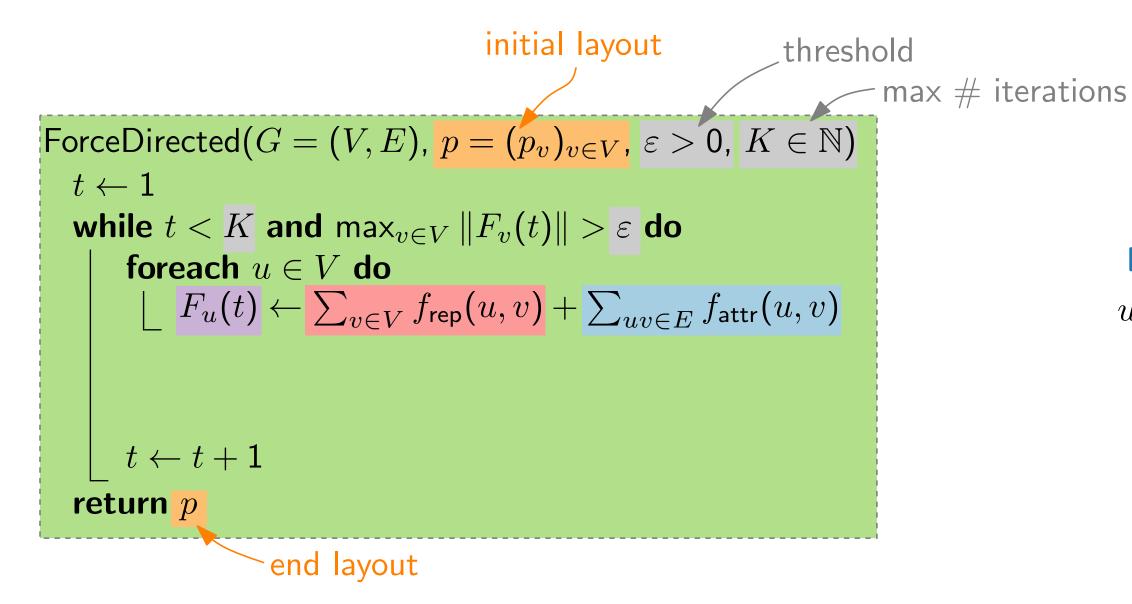


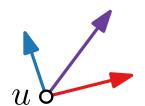
```
initial layout
                                                                 threshold
                                                                   max # iterations
ForceDirected(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})
  t \leftarrow 1
  while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
  return p
                   end layout
```

```
initial layout
                                                               threshold
                                                                  max # iterations
ForceDirected(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})
  t \leftarrow 1
  while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
       foreach u \in V do
  return p
                   end layout
```

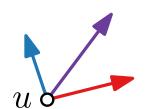


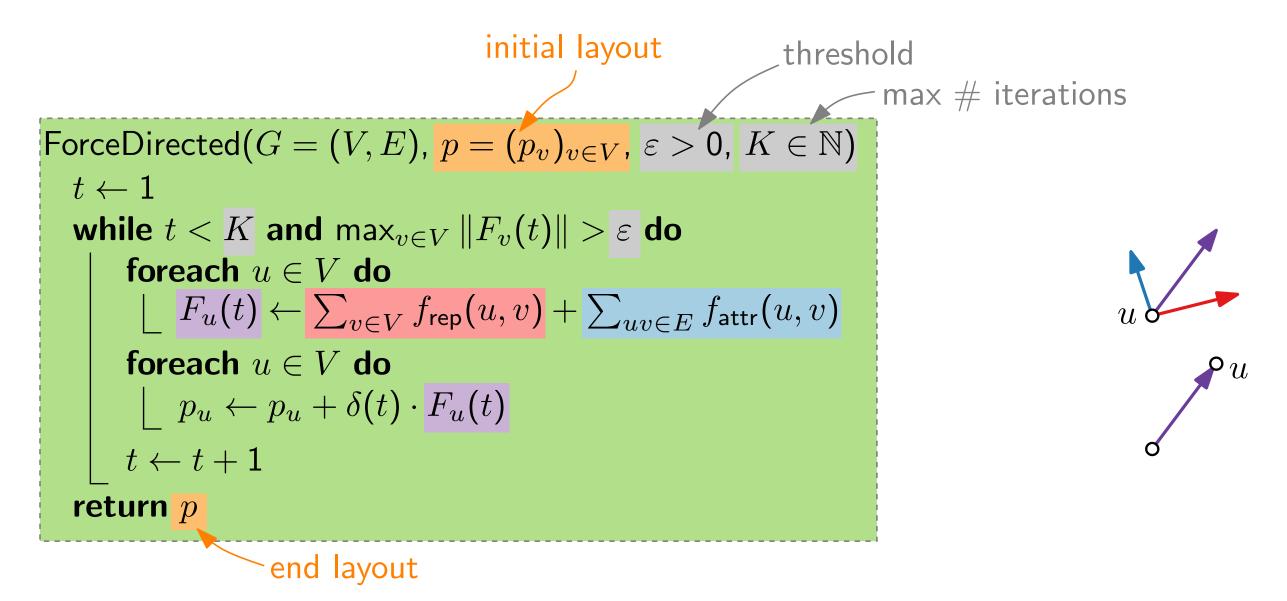


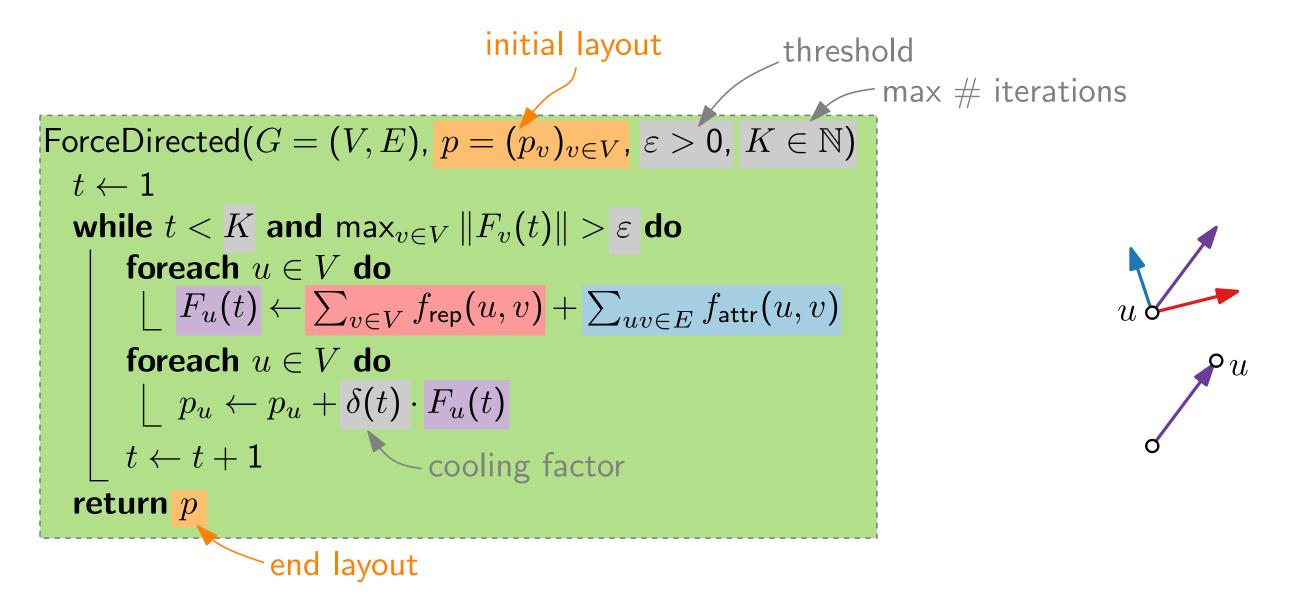


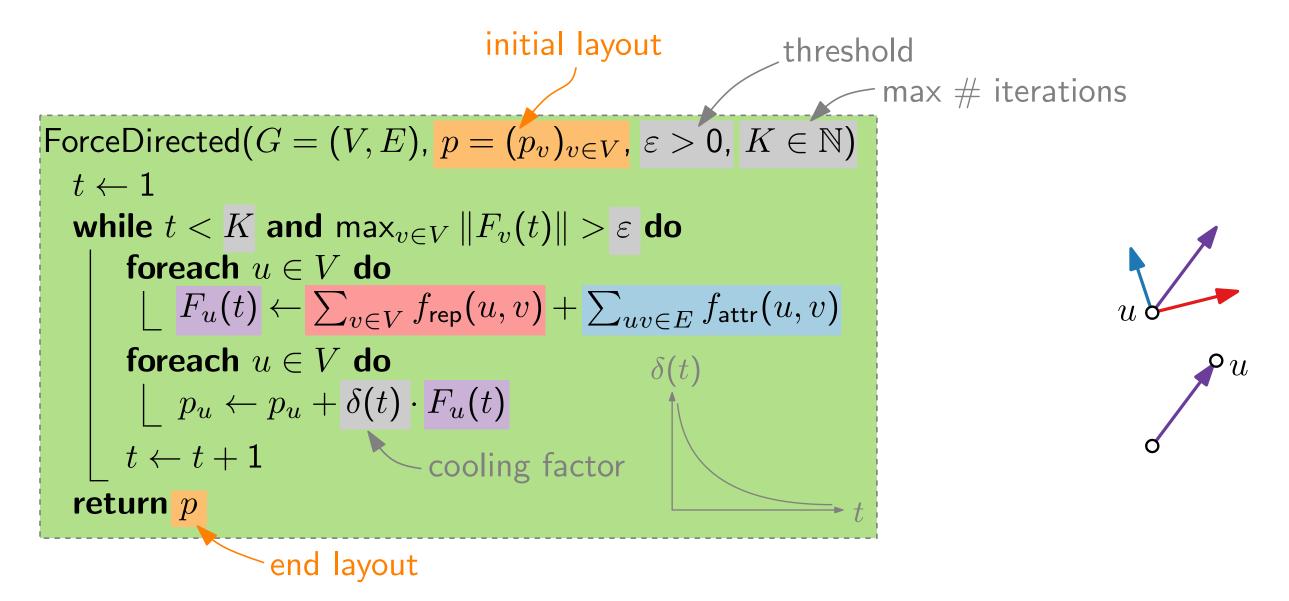


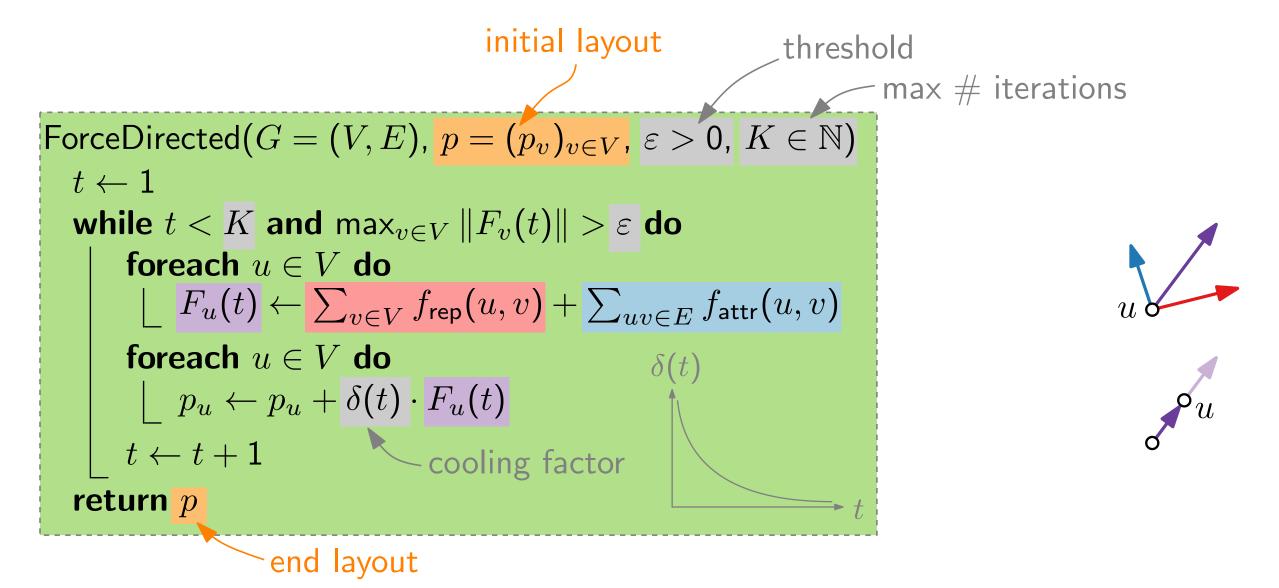
```
initial layout
                                                              threshold
                                                                 max # iterations
ForceDirected(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})
  t \leftarrow 1
  while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
       foreach u \in V do
        F_u(t) \leftarrow \sum_{v \in V} f_{\text{rep}}(u, v) + \sum_{uv \in E} f_{\text{attr}}(u, v)
       foreach u \in V do
      return p
                  end layout
```







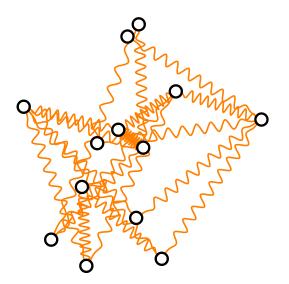




Visualization of Graphs

Lecture 2:

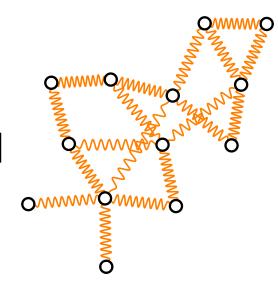
Force-Directed Drawing Algorithms



Part II:

Spring Embedders by Eades and Fruchterman & Reingold

Jonathan Klawitter



```
ForceDirected(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})
  t \leftarrow 1
  while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
       foreach u \in V do
        F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{uv \in E} f_{\mathsf{attr}}(u, v)
      foreach u \in V do
      return p
```

Repulsive forces

Attractive forces

Resulting displacement vector

$$F_u = \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{uv \in E} f_{\mathsf{attr}}(u, v)$$

```
ForceDirected(G=(V,E),\ p=(p_v)_{v\in V},\ \varepsilon>0,\ K\in\mathbb{N}) t\leftarrow 1 while t< K and \max_{v\in V}\|F_v(t)\|>\varepsilon do foreach u\in V do \bigsqcup_{v\in V}\|F_v(v)\|+\sum_{uv\in E}f_{\mathsf{attr}}(u,v) foreach u\in V do \bigsqcup_{v\in V}f_{\mathsf{rep}}(u,v)+\sum_{uv\in E}f_{\mathsf{attr}}(u,v) f_{\mathsf{rep}}(u,v) f_{\mathsf{rep}}(u,v) f_{\mathsf{rep}}(u,v) foreach f_{\mathsf{rep}}(u,v) foreach f_{\mathsf{rep}}(u,v) f_{\mathsf{rep}}(u,v) f_{\mathsf{rep}}(u,v) f_{\mathsf{rep}}(u,v) foreach f_{\mathsf{rep}}(u,v) f_{\mathsf{rep}}(u,v) foreach f_{\mathsf{rep
```

Repulsive forces

$$f_{\text{rep}}(u,v) = \frac{c_{\text{rep}}}{||p_v - p_u||^2} \cdot \overrightarrow{p_v p_u}$$

Attractive forces

Resulting displacement vector

$$F_u = \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{uv \in E} f_{\mathsf{attr}}(u, v)$$

Repulsive forces

$$f_{\text{rep}}(u,v) = \frac{c_{\text{rep}}}{||p_v - p_u||^2} \cdot \overrightarrow{p_v p_u}$$

Attractive forces

Resulting displacement vector

$$F_u = \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{uv \in E} f_{\mathsf{attr}}(u, v)$$

Notation.

 $\overrightarrow{p_up_v} = \text{unit vector}$ pointing from u to v

Repulsive forces repulsion constant (e.g. 2.0) $f_{\text{rep}}(u,v) = \frac{c_{\text{rep}}}{||p_v - p_u||^2} \cdot \overrightarrow{p_v p_u}$

Attractive forces

Resulting displacement vector

$$F_u = \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{uv \in E} f_{\mathsf{attr}}(u, v)$$

Notation.

 $\overrightarrow{p_u p_v} = \text{unit vector}$ pointing from u to v

Repulsive forces repulsion constant (e.g. 2.0) $f_{\mathsf{rep}}(u,v) = \frac{c_{\mathsf{rep}}}{||p_v - p_u||^2} \cdot \overline{p_v p_u}$

Attractive forces

Resulting displacement vector

$$F_u = \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{uv \in E} f_{\mathsf{attr}}(u, v)$$

- $\overrightarrow{p_up_v} = \text{unit vector}$ pointing from u to v
- $||p_u p_v|| =$ Euclidean distance between u and v

Repulsive forces repulsion constant (e.g. 2.0) $f_{\text{rep}}(u,v) = \frac{c_{\text{rep}}}{||p_v - p_u||^2} \cdot \overrightarrow{p_v p_u}$

Attractive forces

$$f_{\mathsf{spring}}(u,v) = c_{\mathsf{spring}} \cdot \log \frac{||p_v - p_u||}{\ell} \cdot \overrightarrow{p_u p_v}$$

Resulting displacement vector

$$F_u = \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{uv \in E} f_{\mathsf{attr}}(u, v)$$

- $\overrightarrow{p_u p_v} = \text{unit vector}$ pointing from u to v
- $||p_u p_v|| =$ Euclidean distance between u and v

Repulsive forces repulsion constant (e.g. 2.0) $f_{\mathsf{rep}}(u,v) = \frac{c_{\mathsf{rep}}}{||p_v - p_u||^2} \cdot \overrightarrow{p_v p_u}$

■ Attractive forces spring constant (e.g. 1.0)

$$f_{\mathsf{spring}}(u,v) = c_{\mathsf{spring}} \cdot \log \frac{||p_v - p_u||}{\ell} \cdot \overrightarrow{p_u p_v}$$

Resulting displacement vector

$$F_u = \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{uv \in E} f_{\mathsf{attr}}(u, v)$$

- $\overrightarrow{p_up_v} = \text{unit vector}$ pointing from u to v
- $||p_u p_v|| =$ Euclidean distance between u and v

Repulsive forces repulsion constant (e.g. 2.0) $f_{\text{rep}}(u,v) = \frac{c_{\text{rep}}}{||p_v - p_u||^2} \cdot \overrightarrow{p_v p_u}$

Attractive forces spring constant (e.g. 1.0)

$$f_{\text{spring}}(u, v) = c_{\text{spring}} \cdot \log \frac{||p_v - p_u||}{\ell} \cdot \overrightarrow{p_u p_v}$$

Resulting displacement vector

$$F_u = \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{uv \in E} f_{\mathsf{attr}}(u, v)$$

- $\overrightarrow{p_u p_v} = \text{unit vector}$ pointing from u to v
- $||p_u p_v|| =$ Euclidean distance between u and v
- ℓ = ideal spring length for edges

Repulsive forces repulsion constant (e.g. 2.0) $f_{\mathsf{rep}}(u,v) = \frac{c_{\mathsf{rep}}}{||p_v - p_v||^2} \cdot \overline{p_v p_u}$

■ Attractive forces spring constant (e.g. 1.0)

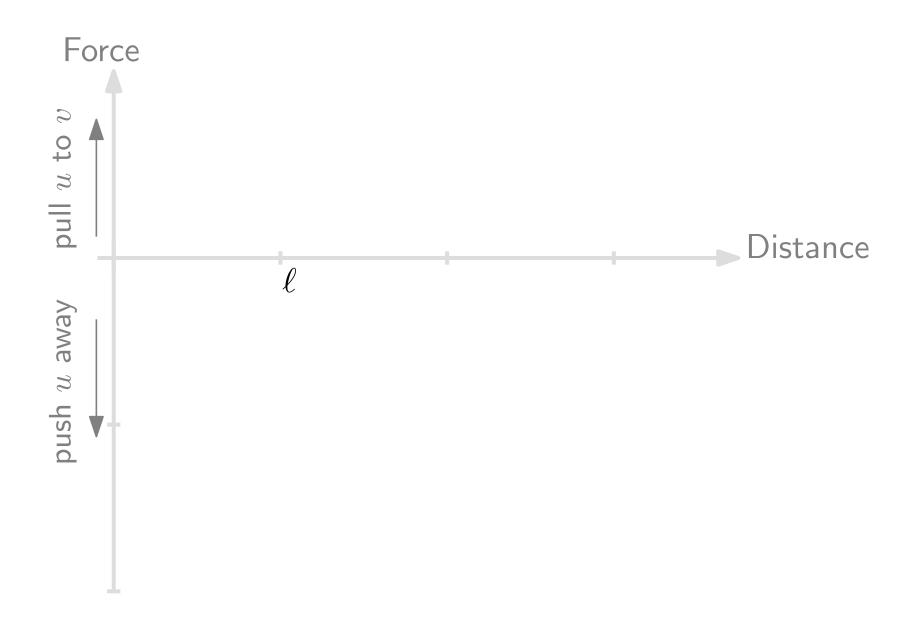
$$f_{\mathsf{spring}}(u,v) = c_{\mathsf{spring}} \cdot \log \frac{||p_v - p_u||}{\ell} \cdot \overrightarrow{p_u p_v}$$

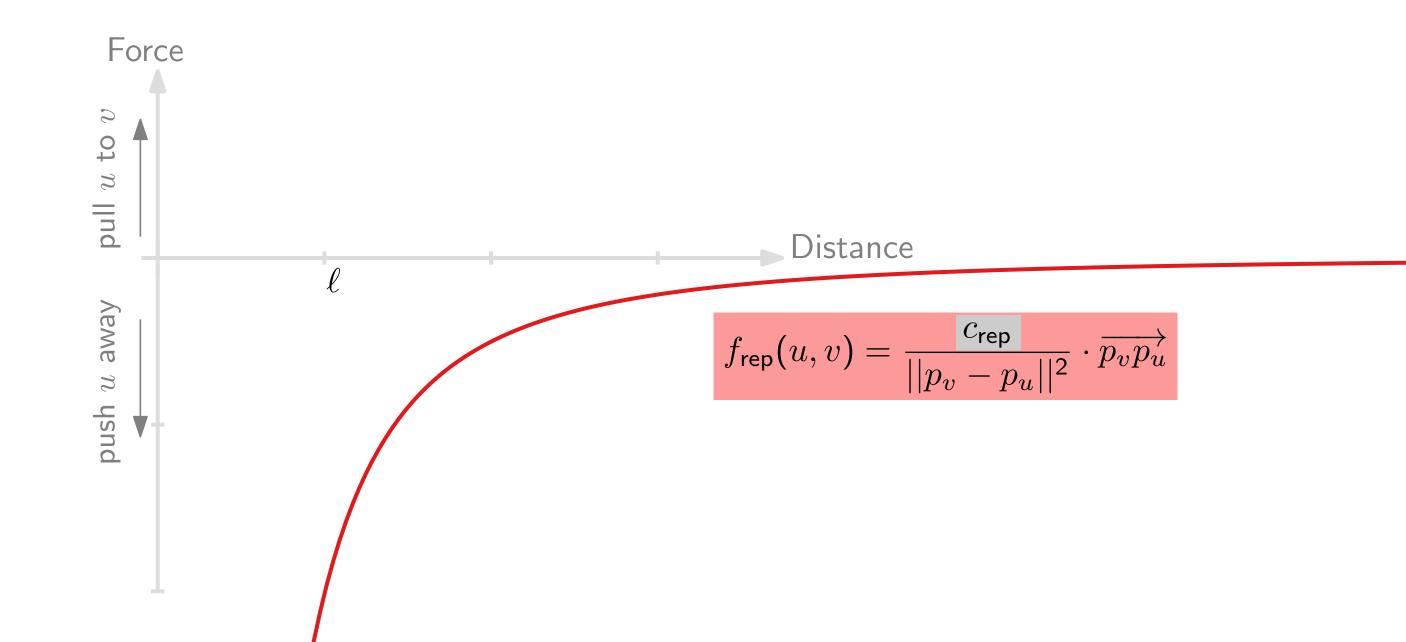
$$f_{\mathsf{attr}}(u,v) = f_{\mathsf{spring}}(u,v) - f_{\mathsf{rep}}(u,v)$$

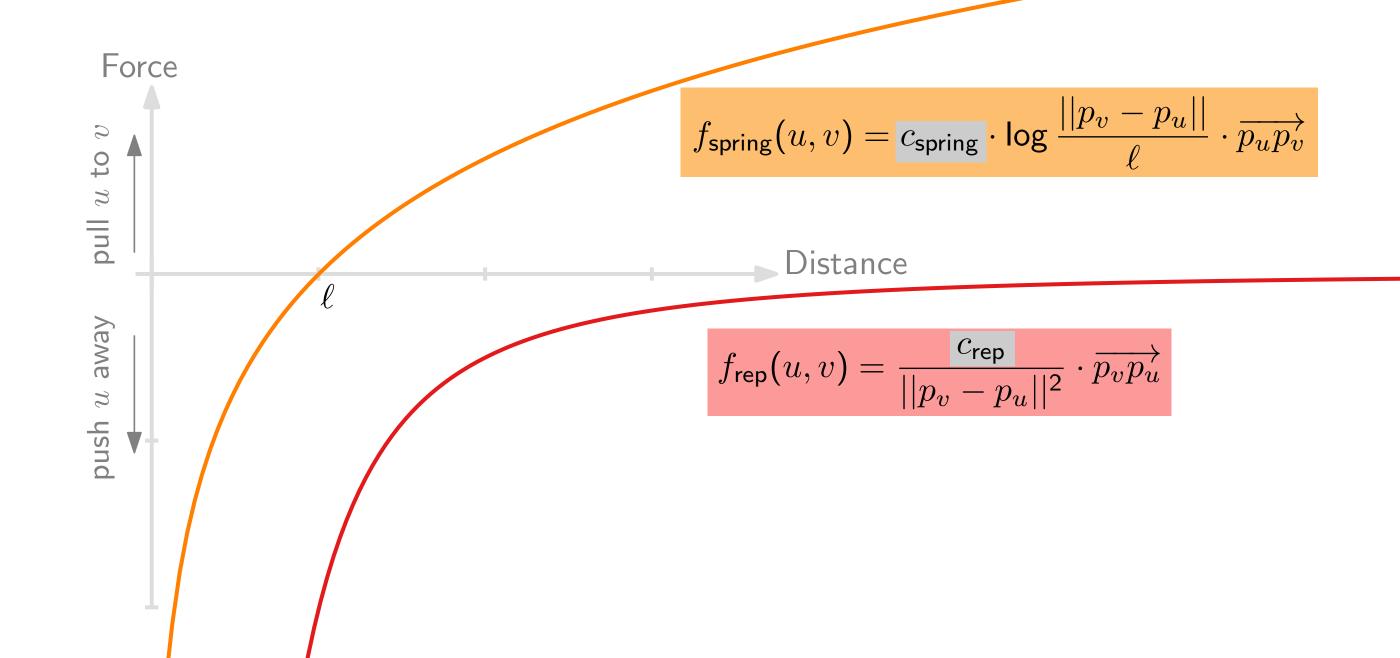
Resulting displacement vector

$$F_u = \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{uv \in E} f_{\mathsf{attr}}(u, v)$$

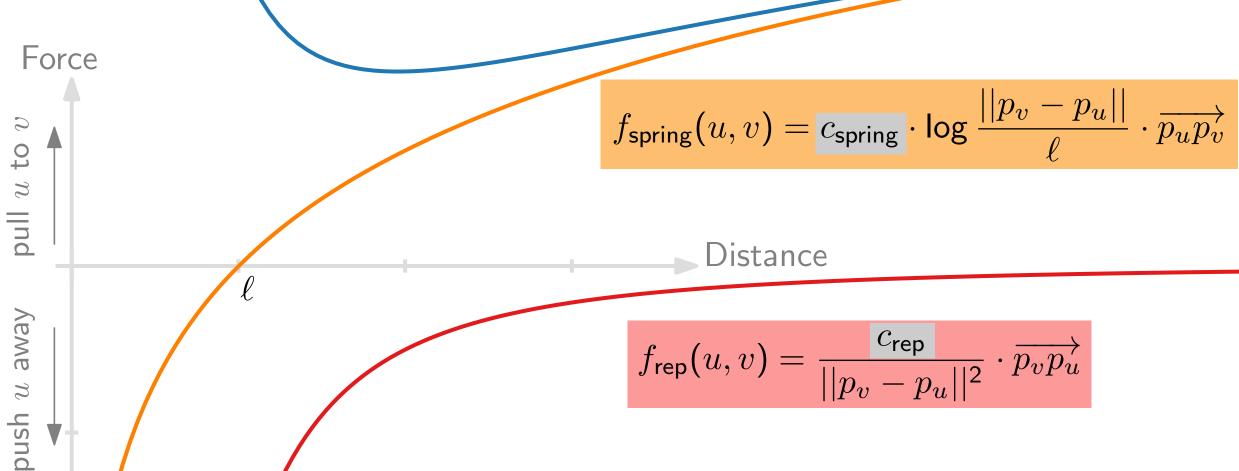
- $\overrightarrow{p_up_v} = \text{unit vector}$ pointing from u to v
- $||p_u p_v|| =$ Euclidean distance between u and v
- $\ell=$ ideal spring length for edges





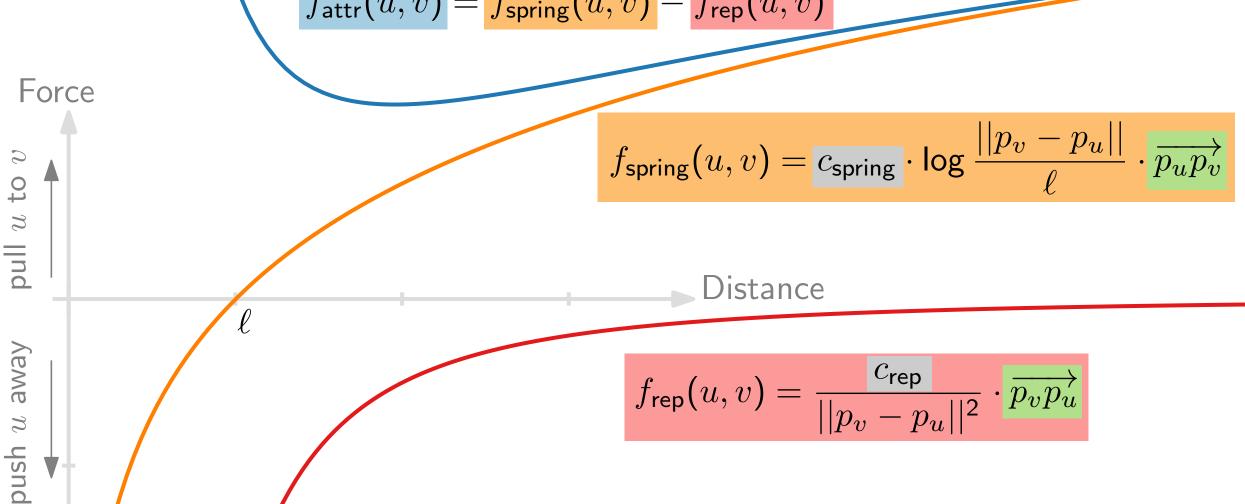


$$f_{\mathsf{attr}}(u,v) = f_{\mathsf{spring}}(u,v) - f_{\mathsf{rep}}(u,v)$$



$$f_{\text{rep}}(u,v) = \frac{c_{\text{rep}}}{||p_v - p_u||^2} \cdot \overrightarrow{p_v p_u}$$

$$f_{\mathsf{attr}}(u,v) = f_{\mathsf{spring}}(u,v) - f_{\mathsf{rep}}(u,v)$$



Advantages.

Advantages.

very simple algorithm

Advantages.

- very simple algorithm
- good results for small and medium-sized graphs

Advantages.

- very simple algorithm
- good results for small and medium-sized graphs
- empirically good representation of symmetry and structure

Advantages.

- very simple algorithm
- good results for small and medium-sized graphs
- empirically good representation of symmetry and structure

Disadvantages.

Advantages.

- very simple algorithm
- good results for small and medium-sized graphs
- empirically good representation of symmetry and structure

Disadvantages.

system is not stable at the end

Advantages.

- very simple algorithm
- good results for small and medium-sized graphs
- empirically good representation of symmetry and structure

Disadvantages.

- system is not stable at the end
- converging to local minima

Advantages.

- very simple algorithm
- good results for small and medium-sized graphs
- empirically good representation of symmetry and structure

Disadvantages.

- system is not stable at the end
- converging to local minima
- lacksquare timewise $f_{\sf spring}$ in $\mathcal{O}(|E|)$ and $f_{\sf rep}$ in $\mathcal{O}(|V|^2)$

Advantages.

- very simple algorithm
- good results for small and medium-sized graphs
- empirically good representation of symmetry and structure

Disadvantages.

- system is not stable at the end
- converging to local minima
- lacksquare timewise $f_{\sf spring}$ in $\mathcal{O}(|E|)$ and $f_{\sf rep}$ in $\mathcal{O}(|V|^2)$

Influence.

Spring Embedder by Eades – Discussion

Advantages.

- very simple algorithm
- good results for small and medium-sized graphs
- empirically good representation of symmetry and structure

Disadvantages.

- system is not stable at the end
- converging to local minima
- lacksquare timewise $f_{\sf spring}$ in $\mathcal{O}(|E|)$ and $f_{\sf rep}$ in $\mathcal{O}(|V|^2)$

Influence.

lacktriangle original paper by Peter Eades [Eades '84] got \sim 2000 citations

Spring Embedder by Eades – Discussion

Advantages.

- very simple algorithm
- good results for small and medium-sized graphs
- empirically good representation of symmetry and structure

Disadvantages.

- system is not stable at the end
- converging to local minima
- lacksquare timewise $f_{\sf spring}$ in $\mathcal{O}(|E|)$ and $f_{\sf rep}$ in $\mathcal{O}(|V|^2)$

Influence.

- lacksquare original paper by Peter Eades [Eades '84] got \sim 2000 citations
- basis for many further ideas

Variant by Fruchterman & Reingold

Repulsive forces

$$f_{\text{rep}}(u,v) = \frac{c_{\text{rep}}}{||p_v - p_u||^2} \cdot \overrightarrow{p_v p_u}$$

Attractive forces

$$f_{\mathsf{spring}}(u,v) = c_{\mathsf{spring}} \cdot \log \frac{||p_v - p_u||}{\ell} \cdot \overrightarrow{p_u p_v}$$

$$f_{\mathsf{attr}}(u,v) = f_{\mathsf{spring}}(u,v) - f_{\mathsf{rep}}(u,v)$$

Resulting displacement vector

$$F_u = \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{uv \in E} f_{\mathsf{attr}}(u, v)$$

Notation.

- $||p_u p_v|| =$ Euclidean distance between u and v
- $\overrightarrow{p_u p_v} = \text{unit vector}$ pointing from u to v
- ℓ = ideal spring length for edges

Variant by Fruchterman & Reingold

Repulsive forces

$$f_{\text{rep}}(u,v) = \frac{\ell^2}{||p_v - p_u||} \cdot \overrightarrow{p_v p_u}$$

Attractive forces spring constant (e.g. 1.0)

$$f_{\mathsf{spring}}(u,v) = c_{\mathsf{spring}} \cdot \log \frac{||p_v - p_u||}{\ell} \cdot \overrightarrow{p_u p_v}$$

$$f_{\mathsf{attr}}(u,v) = f_{\mathsf{spring}}(u,v) - f_{\mathsf{rep}}(u,v)$$

Resulting displacement vector

$$F_u = \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{uv \in E} f_{\mathsf{attr}}(u, v)$$

10 - 2

Notation.

- $||p_u p_v|| =$ Euclidean distance between u and v
- $\overrightarrow{p_up_v} = \text{unit vector}$ pointing from u to v
- $\ell=$ ideal spring length for edges

Variant by Fruchterman & Reingold

Repulsive forces

$$f_{\mathsf{rep}}(u,v) = \frac{\ell^2}{||p_v - p_u||} \cdot \overrightarrow{p_v p_u}$$

Attractive forces

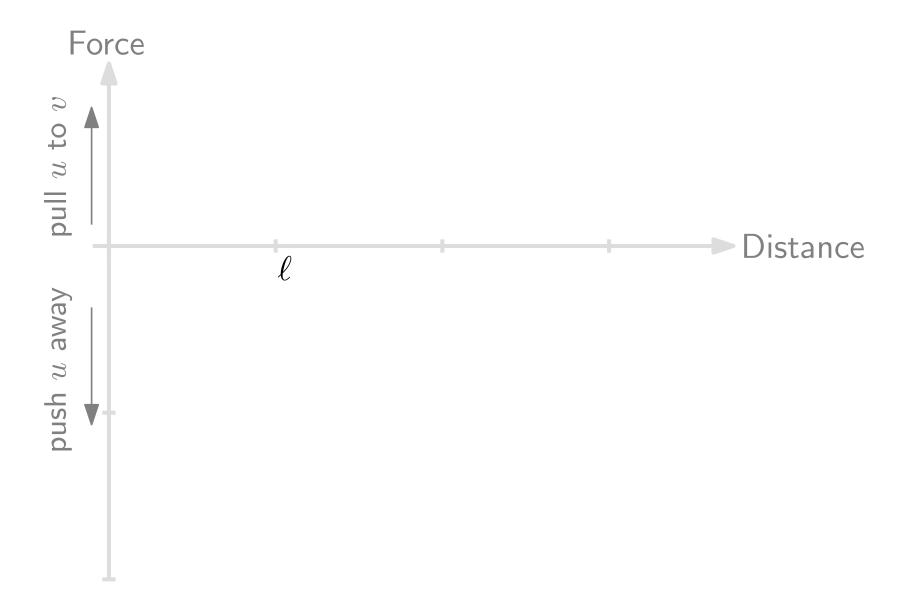
$$f_{\mathsf{attr}}(u,v) = \frac{||p_v - p_u||^2}{\ell} \cdot \overrightarrow{p_u p_v}$$

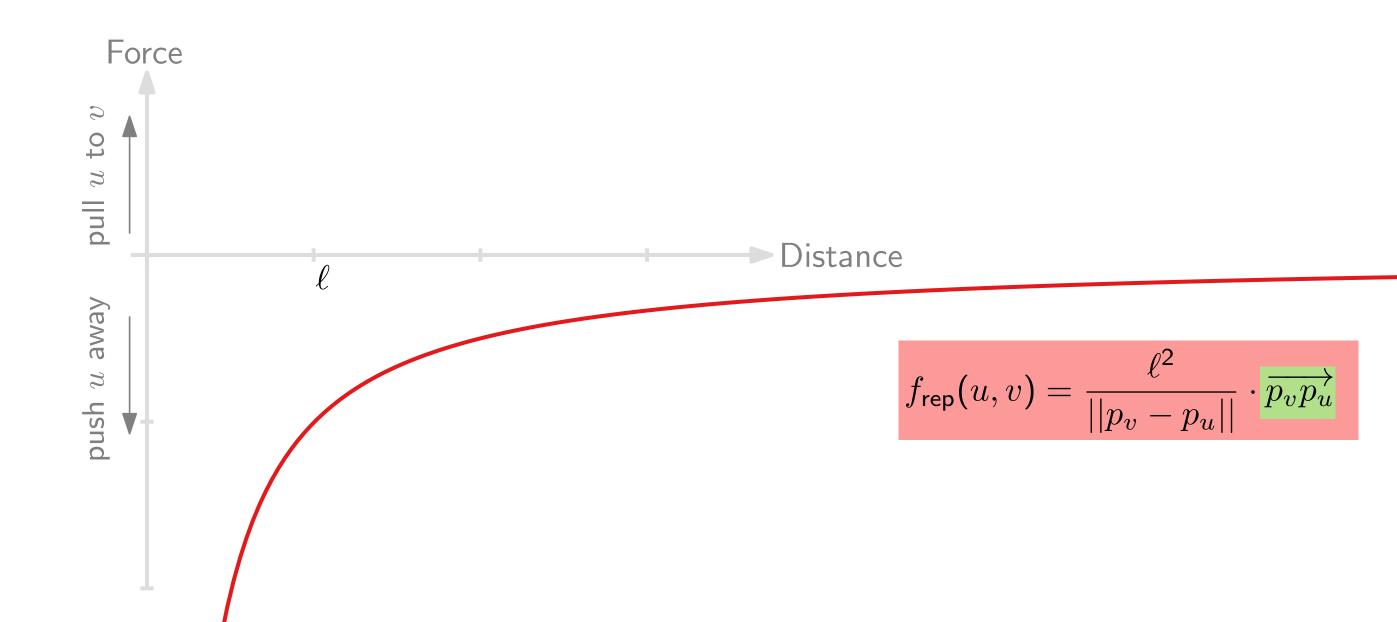
Resulting displacement vector

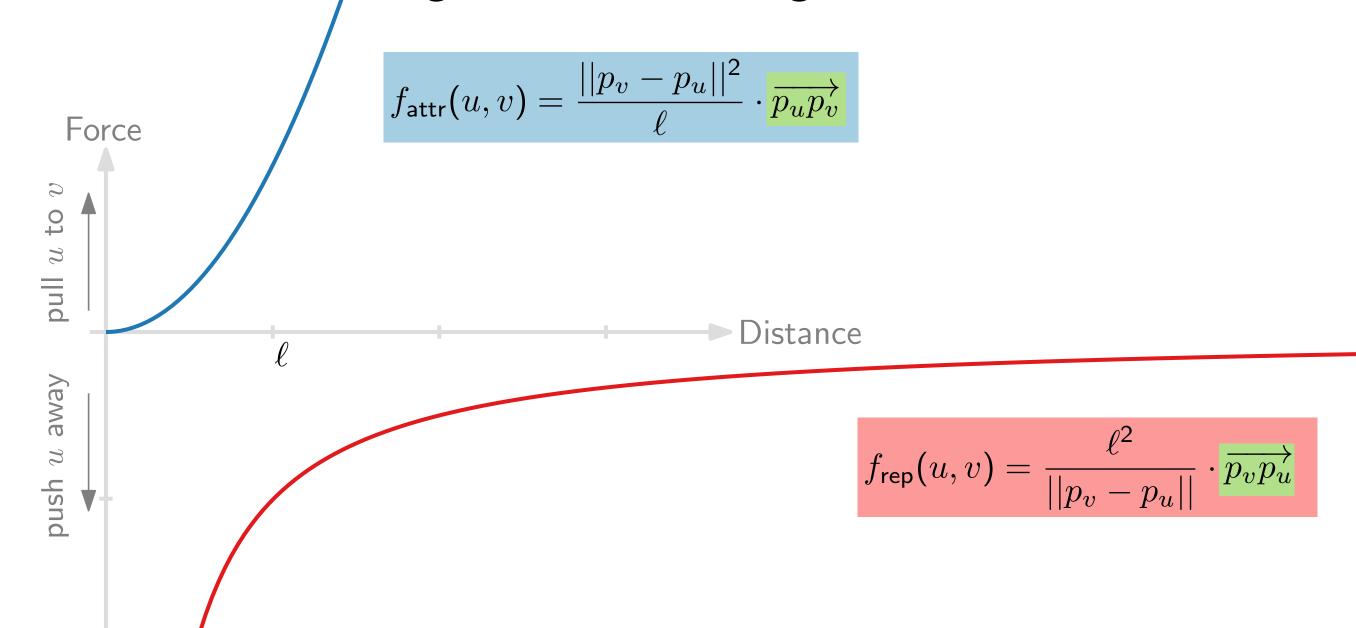
$$F_u = \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{uv \in E} f_{\mathsf{attr}}(u, v)$$

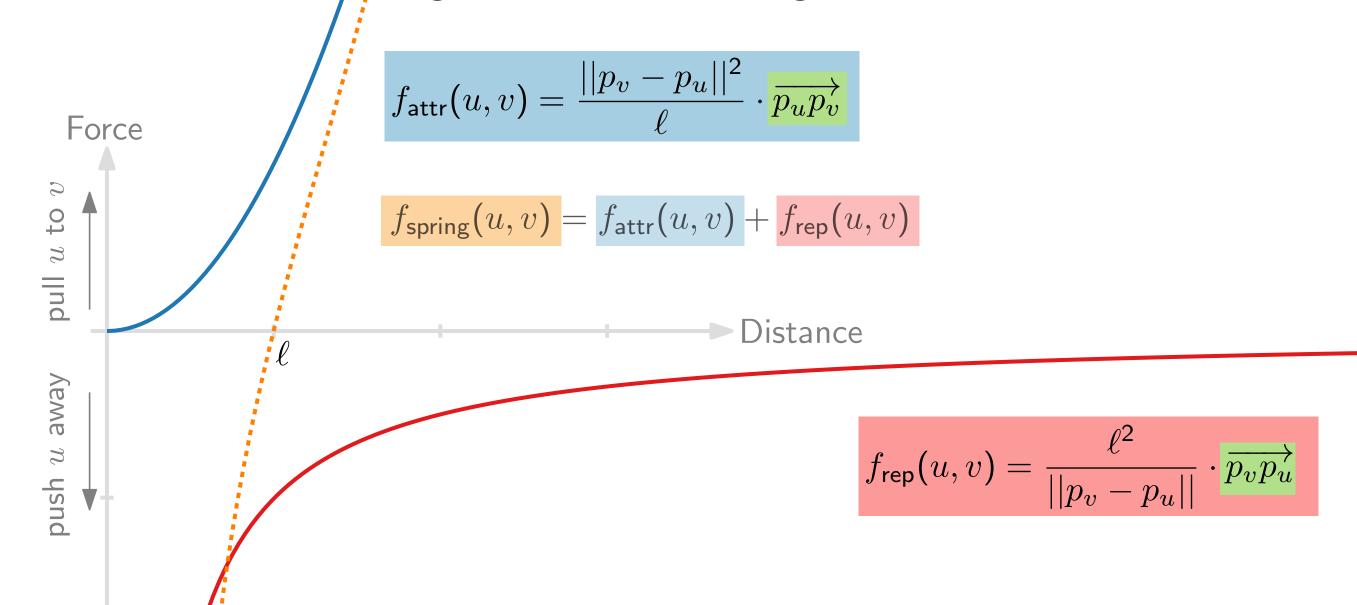
Notation.

- $||p_u p_v|| =$ Euclidean distance between u and v
- $\overrightarrow{p_u p_v} = \text{unit vector}$ pointing from u to v
- $\ell=$ ideal spring length for edges





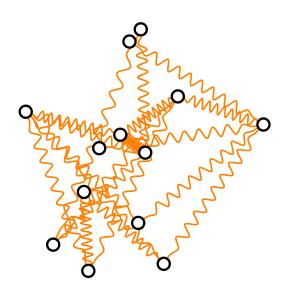




Visualization of Graphs

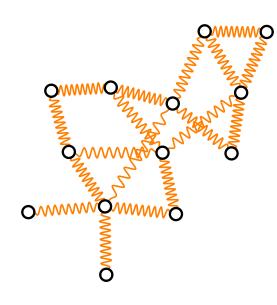
Lecture 2:

Force-Directed Drawing Algorithms



Part III: Variants & Improvements

Jonathan Klawitter



Inertia.

- Define vertex mass $\Phi(v) = 1 + \deg(v)/2$
- Set $f_{\mathsf{attr}}(p_u, p_v) \leftarrow f_{\mathsf{attr}}(p_u, p_v) \cdot 1/\Phi(v)$

Inertia.

- Define vertex mass $\Phi(v) = 1 + \deg(v)/2$
- Set $f_{\mathsf{attr}}(p_u, p_v) \leftarrow f_{\mathsf{attr}}(p_u, p_v) \cdot 1/\Phi(v)$

Gravitation.

- Define centroid $p_{\mathsf{bary}} = 1/|V| \cdot \sum_{v \in V} p_v$
- lacktriangle Add force $f_{\mathsf{grav}}(p_v) = c_{\mathsf{grav}} \cdot \Phi(v) \cdot \overrightarrow{p_v p_{\mathsf{bary}}}$

Inertia.

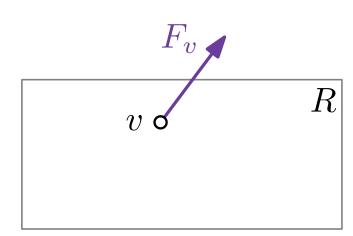
- Define vertex mass $\Phi(v) = 1 + \deg(v)/2$
- Set $f_{\mathsf{attr}}(p_u, p_v) \leftarrow f_{\mathsf{attr}}(p_u, p_v) \cdot 1/\Phi(v)$

Gravitation.

- Define centroid $p_{\mathsf{bary}} = 1/|V| \cdot \sum_{v \in V} p_v$
- lacktriangle Add force $f_{\mathsf{grav}}(p_v) = c_{\mathsf{grav}} \cdot \Phi(v) \cdot \overrightarrow{p_v p_{\mathsf{bary}}}$

Restricted drawing area.

If F_v points beyond area R, clip vector appropriately at the border of R.



Inertia.

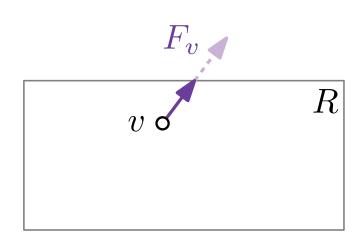
- Define vertex mass $\Phi(v) = 1 + \deg(v)/2$
- Set $f_{\mathsf{attr}}(p_u, p_v) \leftarrow f_{\mathsf{attr}}(p_u, p_v) \cdot 1/\Phi(v)$

Gravitation.

- Define centroid $p_{\mathsf{bary}} = 1/|V| \cdot \sum_{v \in V} p_v$
- lacksquare Add force $f_{\mathsf{grav}}(p_v) = c_{\mathsf{grav}} \cdot \Phi(v) \cdot \overrightarrow{p_v p_{\mathsf{bary}}}$

Restricted drawing area.

If F_v points beyond area R, clip vector appropriately at the border of R.



Inertia.

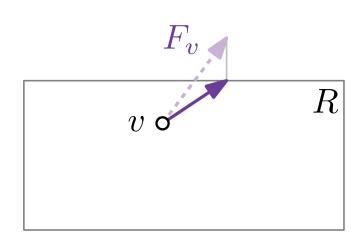
- Define vertex mass $\Phi(v) = 1 + \deg(v)/2$
- Set $f_{\mathsf{attr}}(p_u, p_v) \leftarrow f_{\mathsf{attr}}(p_u, p_v) \cdot 1/\Phi(v)$

Gravitation.

- Define centroid $p_{\mathsf{bary}} = 1/|V| \cdot \sum_{v \in V} p_v$
- lacksquare Add force $f_{\mathsf{grav}}(p_v) = c_{\mathsf{grav}} \cdot \Phi(v) \cdot \overrightarrow{p_v p_{\mathsf{bary}}}$

Restricted drawing area.

If F_v points beyond area R, clip vector appropriately at the border of R.



Inertia.

- Define vertex mass $\Phi(v) = 1 + \deg(v)/2$
- Set $f_{\mathsf{attr}}(p_u, p_v) \leftarrow f_{\mathsf{attr}}(p_u, p_v) \cdot 1/\Phi(v)$

Gravitation.

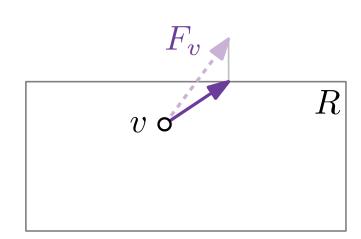
- Define centroid $p_{\mathsf{bary}} = 1/|V| \cdot \sum_{v \in V} p_v$
- lacksquare Add force $f_{\mathsf{grav}}(p_v) = c_{\mathsf{grav}} \cdot \Phi(v) \cdot \overrightarrow{p_v p_{\mathsf{bary}}}$

Restricted drawing area.

If F_v points beyond area R, clip vector appropriately at the border of R.

And many more...

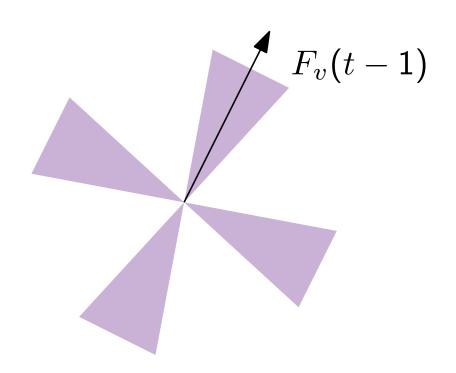
- magnetic orientation of edges [GD Ch. 10.4]
- other energy models
- planarity preserving
- speedups



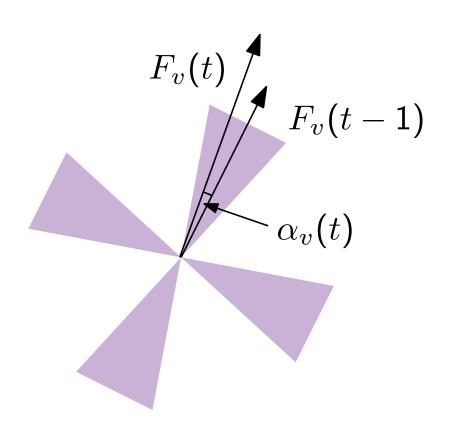
```
ForceDirected(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})
   t \leftarrow 1
   while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
        foreach u \in V do
         F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{uv \in E} f_{\mathsf{attr}}(u, v)
        foreach u \in V do
         p_u \leftarrow p_u + \delta(t) \cdot F_u(t)
        t \leftarrow t + 1
   return p
```

```
ForceDirected(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})
  t \leftarrow 1
  while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
       foreach u \in V do
        F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{uv \in E} f_{\mathsf{attr}}(u, v)
      foreach u \in V do
      return p
```

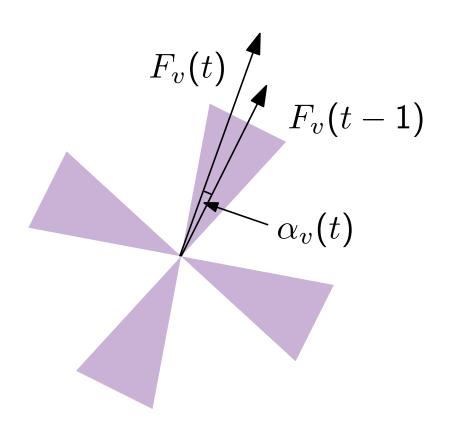
[Frick, Ludwig, Mehldau '95]



[Frick, Ludwig, Mehldau '95]



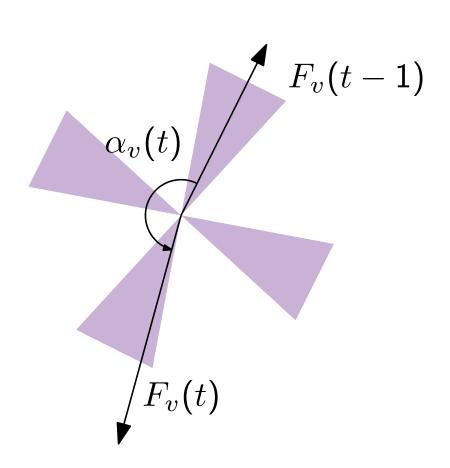
[Frick, Ludwig, Mehldau '95]



Same direction.

 \rightarrow increase temperature $\delta_v(t)$

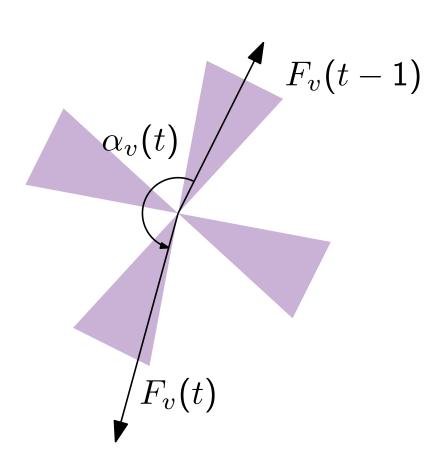
[Frick, Ludwig, Mehldau '95]



Same direction.

 \rightarrow increase temperature $\delta_v(t)$

[Frick, Ludwig, Mehldau '95]



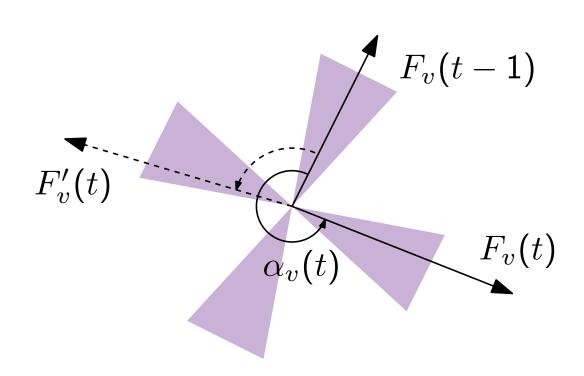
Same direction.

 \rightarrow increase temperature $\delta_v(t)$

Oszillation.

 \rightarrow decrease temperature $\delta_v(t)$

[Frick, Ludwig, Mehldau '95]



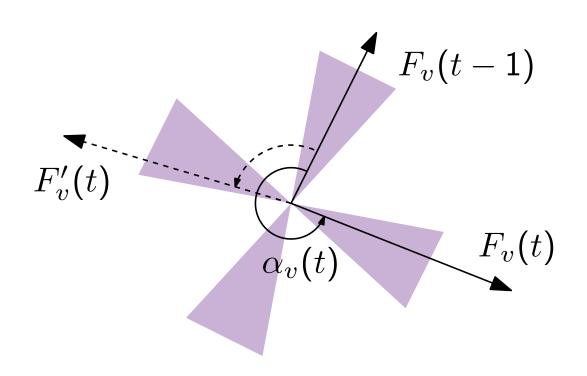
Same direction.

 \rightarrow increase temperature $\delta_v(t)$

Oszillation.

 \rightarrow decrease temperature $\delta_v(t)$

[Frick, Ludwig, Mehldau '95]



Same direction.

 \rightarrow increase temperature $\delta_v(t)$

Oszillation.

 \rightarrow decrease temperature $\delta_v(t)$

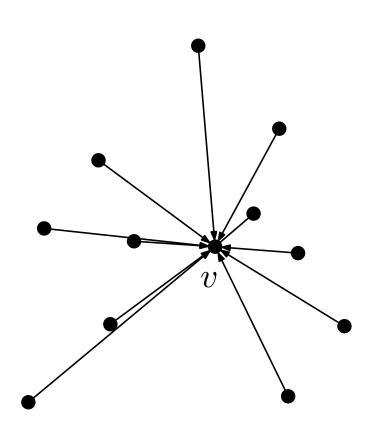
Rotation.

- count rotations
- if applicable
- \rightarrow decrease temperature $\delta_v(t)$

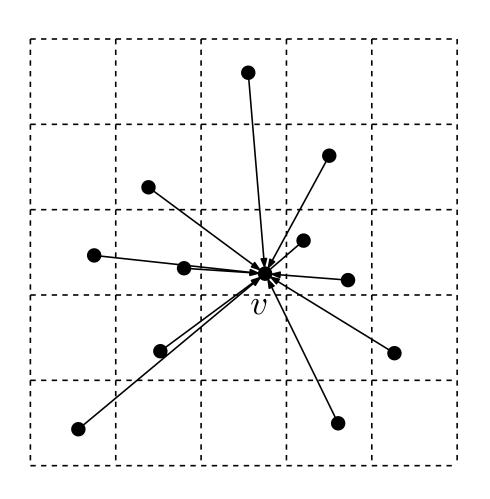
[Fruchterman & Reingold '91]



[Fruchterman & Reingold '91]

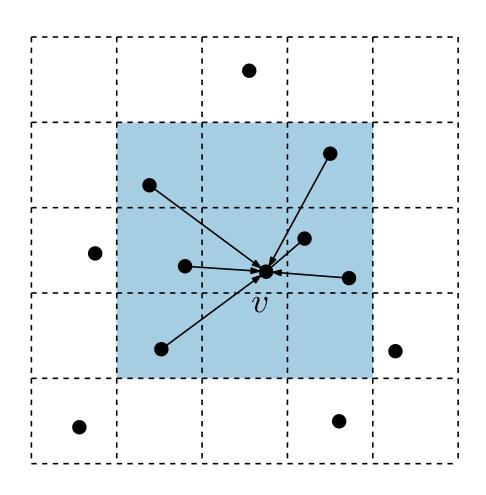


[Fruchterman & Reingold '91]



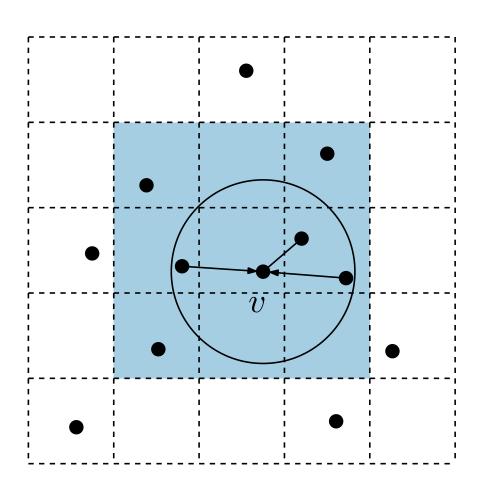
divide plane into grid

[Fruchterman & Reingold '91]



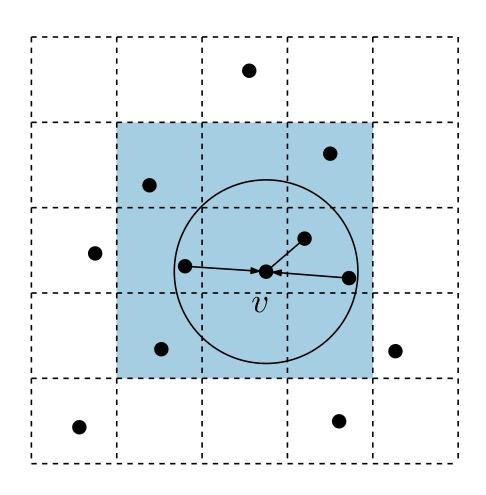
- divide plane into grid
- consider repelling forces only to vertices in neighboring cells

[Fruchterman & Reingold '91]



- divide plane into grid
- consider repelling forces only to vertices in neighboring cells
- and only if distance is less than some max distance

[Fruchterman & Reingold '91]

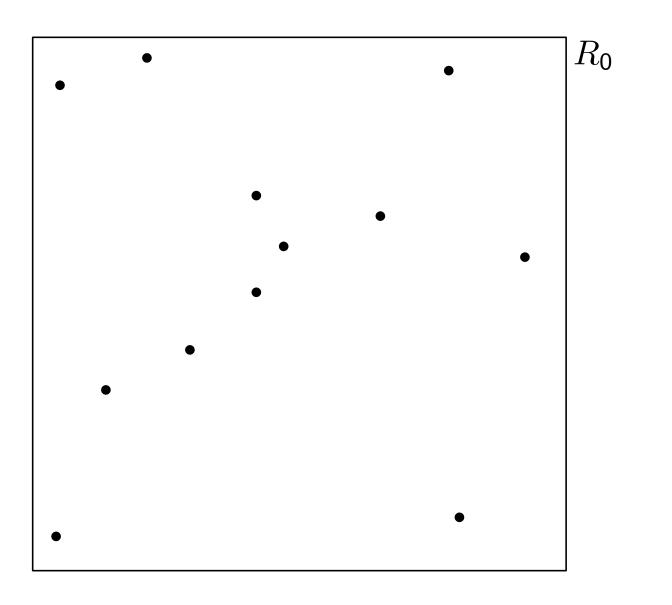


- divide plane into grid
- consider repelling forces only to vertices in neighboring cells
- and only if distance is less than some max distance

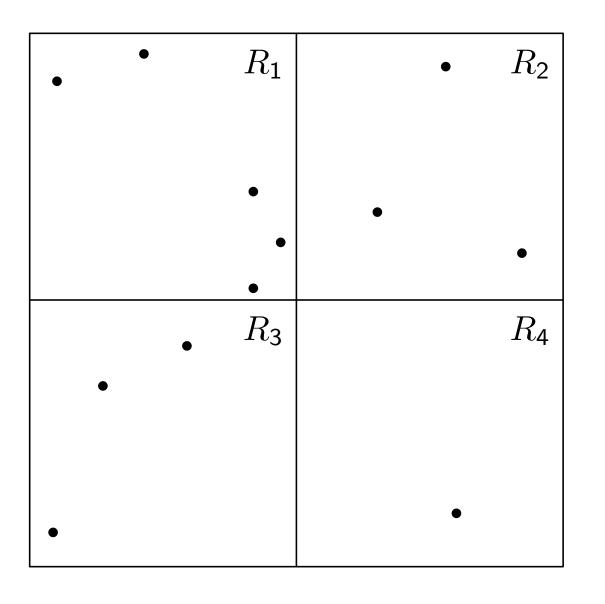
Discussion.

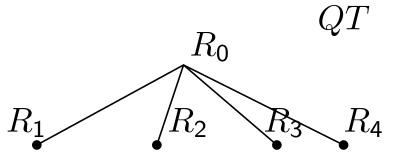
- good idea to improve runtime
- worst-case has not improved
- might introduce oszillation and thus a quality loss

[Barnes, Hut '86]

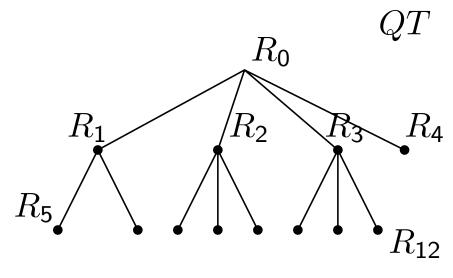


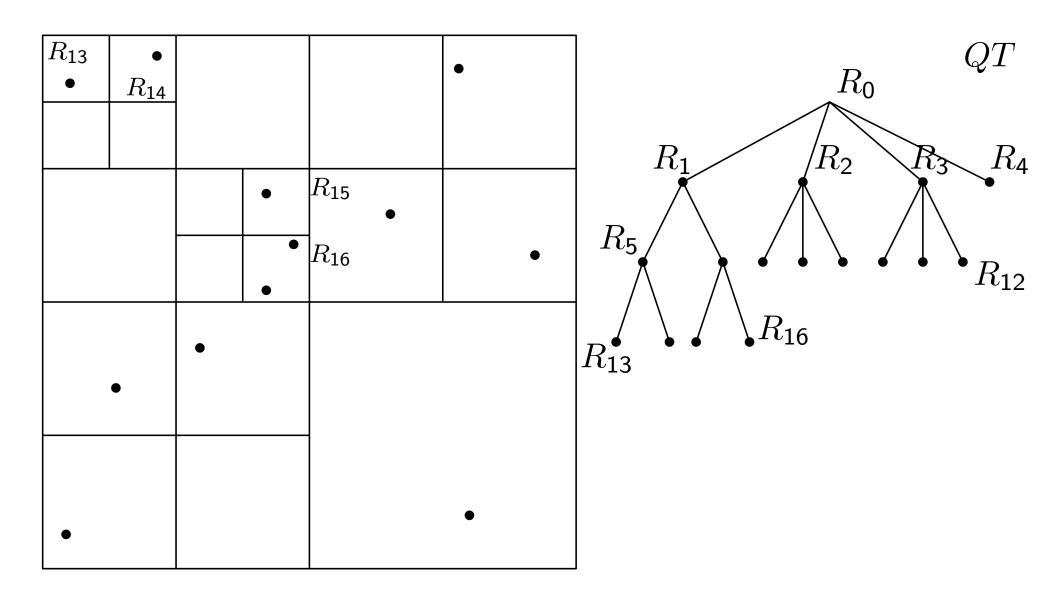
 R_0 QT

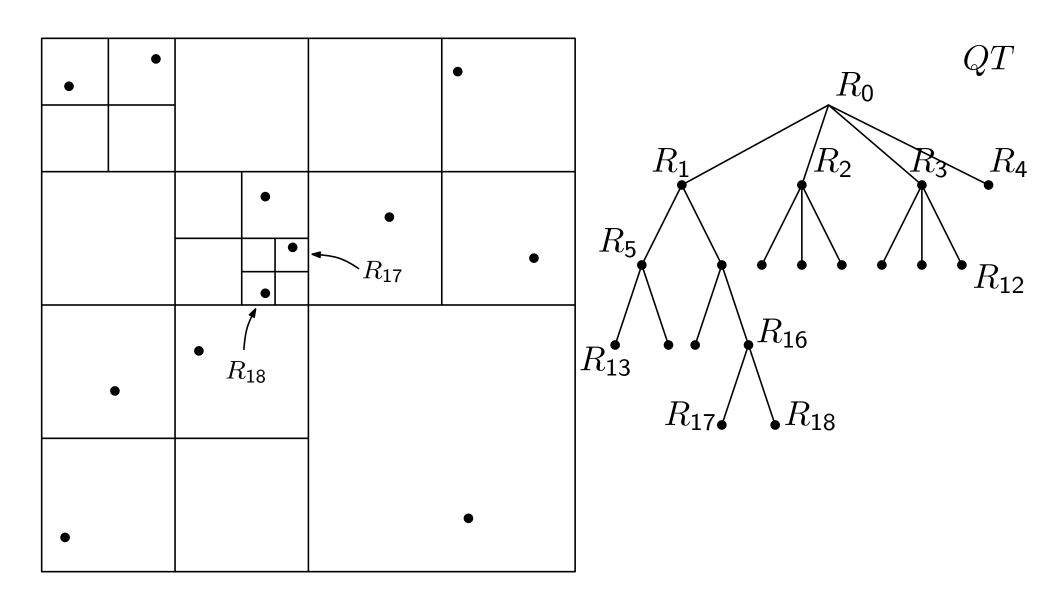


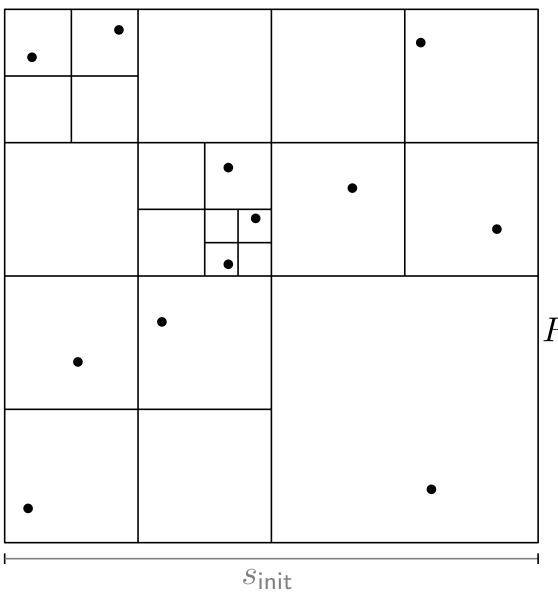


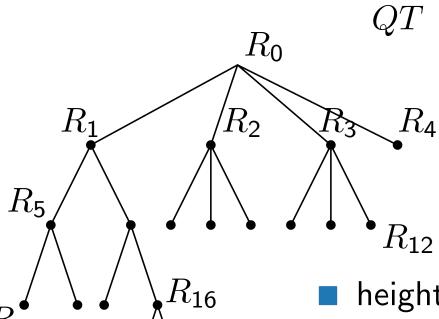
•				lacksquare
R_{5}				
		•	R_8	R_9
	R_{6}	•		•
R_{10}	100	R_{11}		
•				
R_{12}				
_ ~12				•
•				



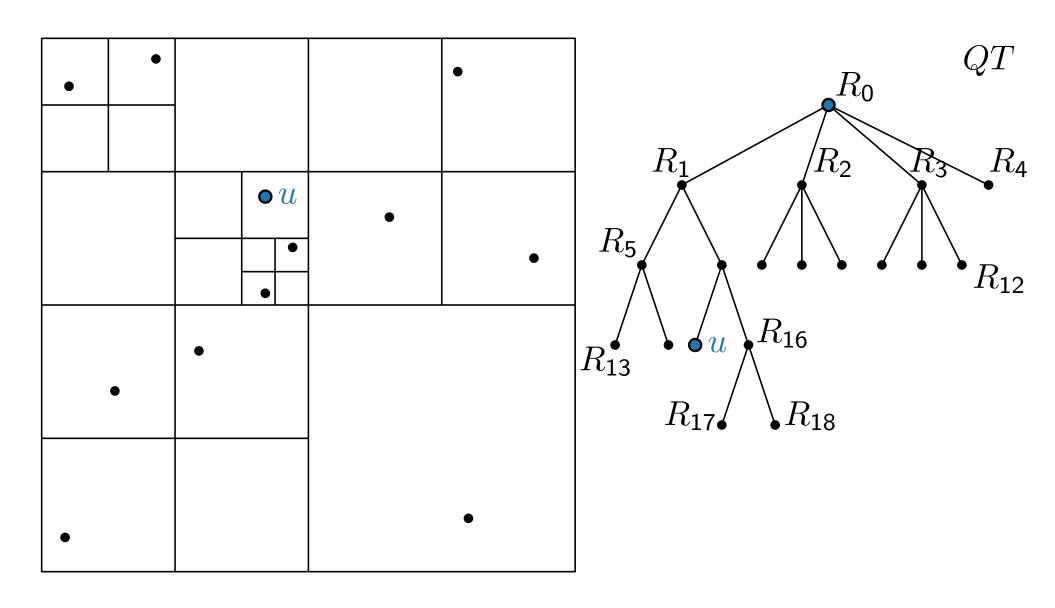


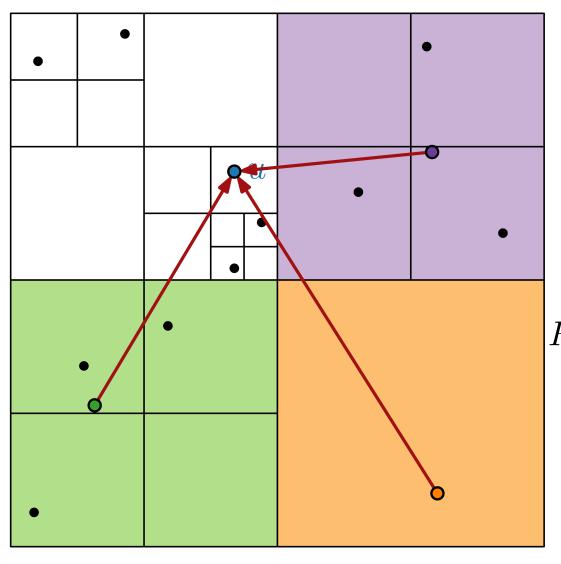


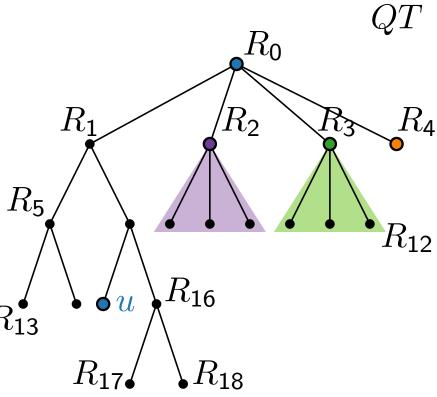




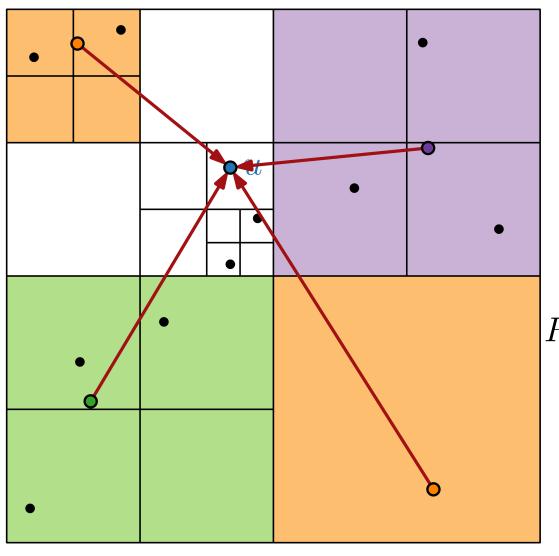
- lacktriangle time/space in $\mathcal{O}(hn)$
- compressed quad tree can be computed in $\mathcal{O}(n \log n)$ time
- $h \in \mathcal{O}(\log n)$ if vertices evenly distriputed

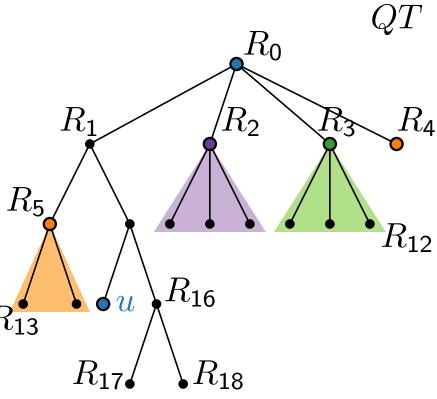




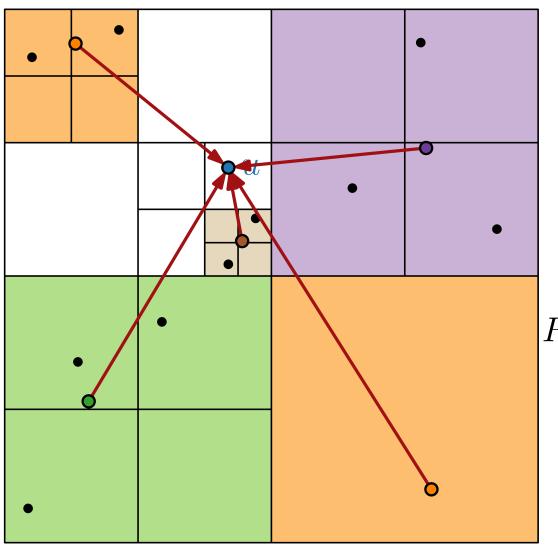


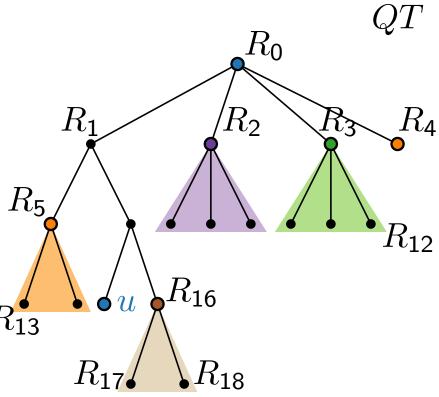
$$f_{\mathsf{rep}}(R_i, p_u) = |R_i| \cdot f_{\mathsf{rep}}(\sigma_{R_i}, p_u)$$





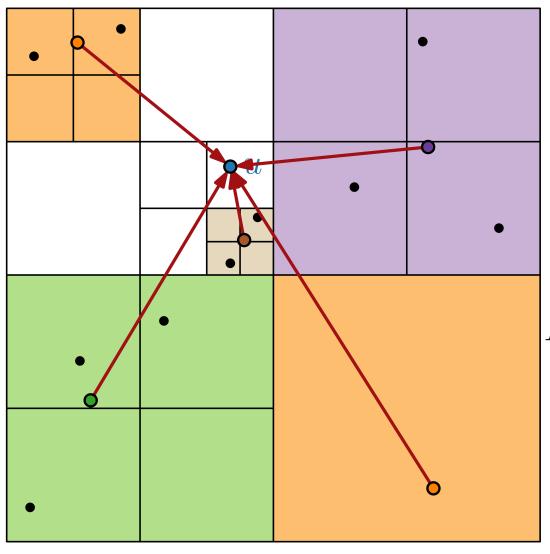
$$f_{\mathsf{rep}}(R_i, p_u) = |R_i| \cdot f_{\mathsf{rep}}(\sigma_{R_i}, p_u)$$

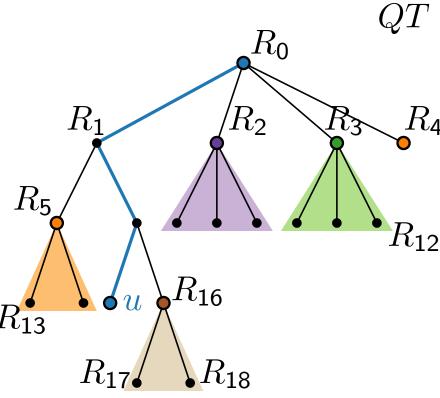




$$f_{\mathsf{rep}}(R_i, p_u) = |R_i| \cdot f_{\mathsf{rep}}(\sigma_{R_i}, p_u)$$

[Barnes, Hut '86]





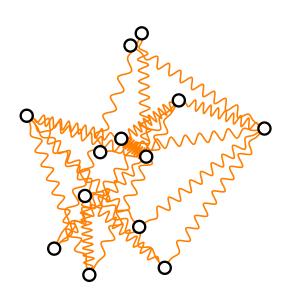
$$f_{\mathsf{rep}}(R_i, p_u) = |R_i| \cdot f_{\mathsf{rep}}(\sigma_{R_i}, p_u)$$

for each child R_i of a vertex on path from u to R_0

Visualization of Graphs

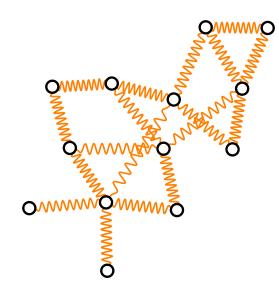
Lecture 2:

Force-Directed Drawing Algorithms



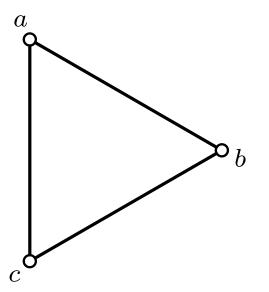
Part IV:
Tutte Embedding

Jonathan Klawitter



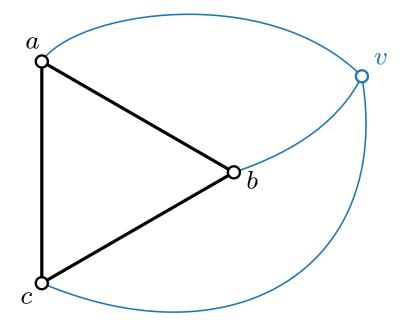
William T. Tutte 1917 – 2002

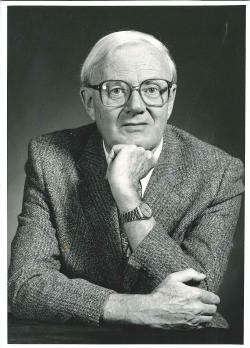
Consider a fixed triangle (a, b, c)



William T. Tutte 1917 – 2002

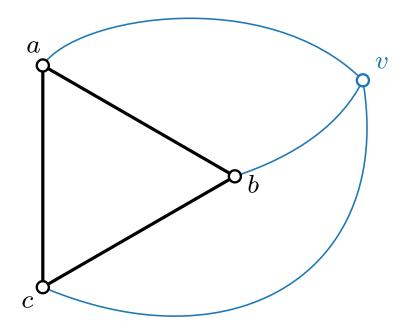
Consider a fixed triangle (a, b, c) with one common neighbor v

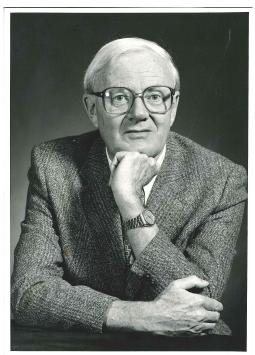




William T. Tutte 1917 – 2002

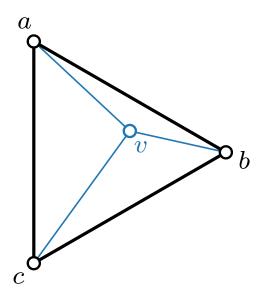
Consider a fixed triangle (a, b, c) with one common neighbor v





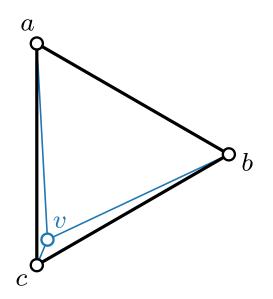
William T. Tutte 1917 – 2002

Consider a fixed triangle (a, b, c) with one common neighbor v



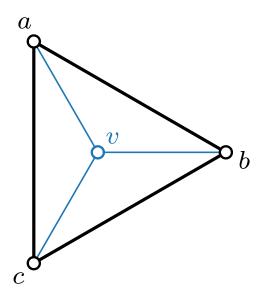
William T. Tutte 1917 – 2002

Consider a fixed triangle (a,b,c) with one common neighbor \boldsymbol{v}



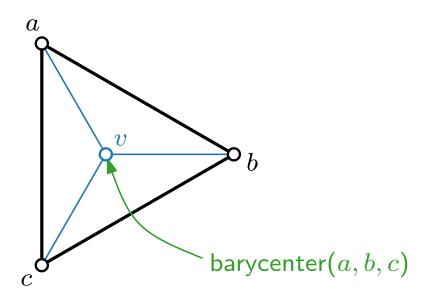
William T. Tutte 1917 – 2002

Consider a fixed triangle (a, b, c) with one common neighbor v



William T. Tutte 1917 – 2002

Consider a fixed triangle (a, b, c) with one common neighbor v

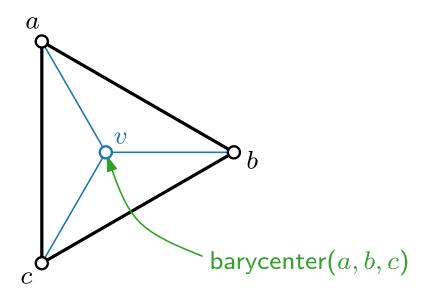


William T. Tutte 1917 – 2002

Consider a fixed triangle (a, b, c) with one common neighbor v

Where would you place v?

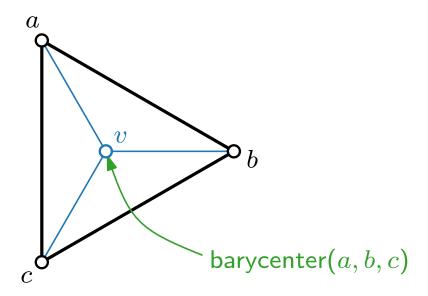
 $\mathsf{barycenter}(x_1,\ldots,x_k) =$



William T. Tutte 1917 – 2002

Consider a fixed triangle (a, b, c) with one common neighbor v

barycenter
$$(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$$

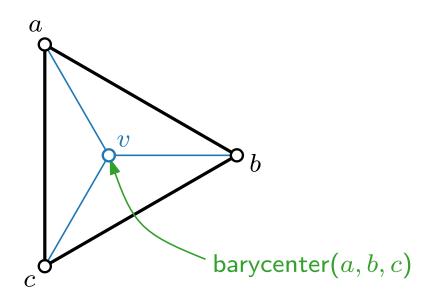




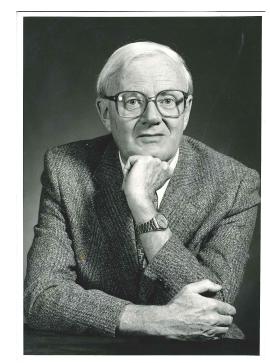
William T. Tutte 1917 – 2002

Consider a fixed triangle (a, b, c) with one common neighbor v

Where would you place v?



barycenter
$$(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$$



William T. Tutte 1917 – 2002

Idea.

Repeatedly place every vertex at barycenter of neighbors.

```
ForceDirected(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})
 t \leftarrow 1
 while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
     foreach u \in V do
     foreach u \in V do
    return p
```

```
ForceDirected(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})
 t \leftarrow 1
 while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
     foreach u \in V do
     foreach u \in V do
    return p
```

$$p_u = \mathsf{barycenter}(\bigcup_{uv \in E} v)$$

```
ForceDirected(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})
  t \leftarrow 1
  while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
       foreach u \in V do
        F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{uv \in E} f_{\mathsf{attr}}(u, v)
       foreach u \in V do
       barycenter(x_1,\ldots,x_k)=\sum_{i=1}^k x_i/k
   return p
```

$$p_u = \text{barycenter}(\bigcup_{uv \in E} v)$$

= $\sum_{uv \in E} p_v /$

```
ForceDirected(G=(V,E), p=(p_v)_{v\in V}, \varepsilon>0, K\in\mathbb{N})
  t \leftarrow 1
  while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
       foreach u \in V do
        F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{uv \in E} f_{\mathsf{attr}}(u, v)
       foreach u \in V do
       barycenter(x_1,\ldots,x_k)=\sum_{i=1}^k x_i/k
  return p
```

$$p_u = \text{barycenter}(\bigcup_{uv \in E} v)$$

= $\sum_{uv \in E} p_v / \text{deg}(u)$

```
ForceDirected(G=(V,E), p=(p_v)_{v\in V}, \varepsilon>0, K\in\mathbb{N})
   t \leftarrow 1
   while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
        foreach u \in V do
         F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{uv \in E} f_{\mathsf{attr}}(u, v)
        foreach u \in V do
        p_u \leftarrow p_u + \delta(t) \cdot F_u(t)
                           barycenter(x_1,\ldots,x_k)=\sum_{i=1}^k x_i/k
   return p
```

$$p_u = \text{barycenter}(\bigcup_{uv \in E} v)$$

= $\sum_{uv \in E} p_v / \deg(u)$

$$F_u(t) = \sum_{uv \in E} p_v / \deg(u) - p_u$$

```
ForceDirected(G=(V,E), p=(p_v)_{v\in V}, \varepsilon>0, K\in\mathbb{N})
   t \leftarrow 1
   while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
        foreach u \in V do
         F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{uv \in E} f_{\mathsf{attr}}(u, v)
        foreach u \in V do
       p_u \leftarrow p_u + \delta(t) \cdot F_u(t)
                            barycenter(x_1,\ldots,x_k)=\sum_{i=1}^k x_i/k
   return p
```

$$p_u = \text{barycenter}(\bigcup_{uv \in E} v)$$

= $\sum_{uv \in E} p_v / \text{deg}(u)$

$$F_u(t) = \sum_{uv \in E} p_v / \deg(u) - p_u$$
$$= \sum_{uv \in E} (p_v - p_u) / \deg(u)$$

```
ForceDirected(G=(V,E), p=(p_v)_{v\in V}, \varepsilon>0, K\in\mathbb{N})
   t \leftarrow 1
   while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
        foreach u \in V do
          F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{uv \in E} f_{\mathsf{attr}}(u, v)
        foreach u \in V do
        p_u \leftarrow p_u + \delta(t) \cdot I \cdot F_u(t)
       t \leftarrow t + 1
                             barycenter(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k
   return p
```

$$p_u = \text{barycenter}(\bigcup_{uv \in E} v)$$

= $\sum_{uv \in E} p_v / \deg(u)$

$$F_u(t) = \sum_{uv \in E} p_v / \deg(u) - p_u$$

$$= \sum_{uv \in E} (p_v - p_u) / \deg(u)$$

$$= \sum_{uv \in E} ||p_u - p_v|| / \deg(u)$$

```
ForceDirected(G=(V,E), p=(p_v)_{v\in V}, \varepsilon>0, K\in\mathbb{N})
   t \leftarrow 1
   while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
        foreach u \in V do
         F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{uv \in E} f_{\mathsf{attr}}(u, v)
        foreach u \in V do
        p_u \leftarrow p_u + \delta(t) \cdot F_u(t)
      t \leftarrow t + 1
                            barycenter(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k
   return p
```

$$p_u = \text{barycenter}(\bigcup_{uv \in E} v)$$

= $\sum_{uv \in E} p_v / \deg(u)$

$$F_u(t) = \sum_{uv \in E} p_v / \deg(u) - p_u$$

$$= \sum_{uv \in E} (p_v - p_u) / \deg(u)$$

$$= \sum_{uv \in E} ||p_u - p_v|| / \deg(u)$$

```
ForceDirected(G=(V,E), p=(p_v)_{v\in V}, \varepsilon>0, K\in\mathbb{N})
   t \leftarrow 1
   while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
        foreach u \in V do
         F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{uv \in E} f_{\mathsf{attr}}(u, v)
        foreach u \in V do
        p_u \leftarrow p_u + \delta(t) \cdot F_u(t)
      t \leftarrow t + 1
                            barycenter(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k
   return p
```

Goal.

$$p_u = \text{barycenter}(\bigcup_{uv \in E} v)$$

= $\sum_{uv \in E} p_v / \deg(u)$

$$F_u(t) = \sum_{uv \in E} p_v / \deg(u) - p_u$$

$$= \sum_{uv \in E} (p_v - p_u) / \deg(u)$$

$$= \sum_{uv \in E} ||p_u - p_v|| / \deg(u)$$

ForceDirected $(G=(V,E), p=(p_v)_{v\in V}, \varepsilon>0, K\in\mathbb{N})$ $t \leftarrow 1$ while t < K and $\max_{v \in V} \|F_v(t)\| > \varepsilon$ do foreach $u \in V$ do $F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{uv \in E} f_{\mathsf{attr}}(u, v)$ foreach $u \in V$ do $p_u \leftarrow p_u + \delta(t) \cdot F_u(t)$ $t \leftarrow t + 1$ barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$ return p

Repulsive forces

$$f_{\mathsf{rep}}(u,v) = 0$$

Goal.

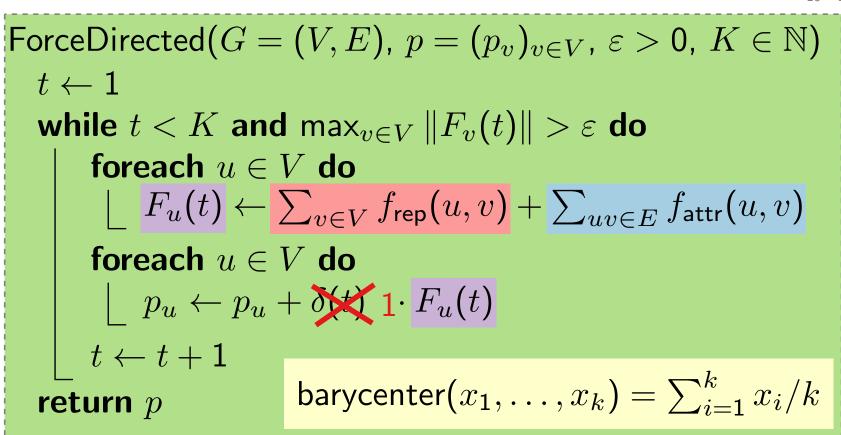
$$p_u = \text{barycenter}(\bigcup_{uv \in E} v)$$

= $\sum_{uv \in E} p_v / \text{deg}(u)$

$$F_u(t) = \sum_{uv \in E} p_v / \deg(u) - p_u$$

$$= \sum_{uv \in E} (p_v - p_u) / \deg(u)$$

$$= \sum_{uv \in E} ||p_u - p_v|| / \deg(u)$$



Repulsive forces

$$f_{\mathsf{rep}}(u,v) = 0$$

Attractive forces

$$f_{\mathsf{attr}}(u,v) = \frac{1}{\mathsf{deg}(u)} \cdot ||p_u - p_v||$$

Goal.

$$p_u = \text{barycenter}(\bigcup_{uv \in E} v)$$

= $\sum_{uv \in E} p_v / \text{deg}(u)$

$$F_u(t) = \sum_{uv \in E} p_v / \deg(u) - p_u$$

$$= \sum_{uv \in E} (p_v - p_u) / \deg(u)$$

$$= \sum_{uv \in E} ||p_u - p_v|| / \deg(u)$$

ForceDirected $(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})$ $t \leftarrow 1$ while t < K and $\max_{v \in V} ||F_v(t)|| > \varepsilon$ do foreach $u \in V$ do $F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{uv \in E} f_{\mathsf{attr}}(u, v)$ foreach $u \in V$ do $p_u \leftarrow p_u + \delta(t) \cdot I \cdot F_u(t)$ $t \leftarrow t + 1$ barycenter $(x_1,\ldots,x_k)=\sum_{i=1}^k x_i/k$ return p

Repulsive forces

$$f_{\mathsf{rep}}(u,v) = 0$$

Attractive forces

$$f_{\mathsf{attr}}(u,v) = \frac{1}{\mathsf{deg}(u)} \cdot ||p_u - p_v||$$

Solution: $p_u = (0,0) \ \forall u \in V$

Goal.

$$p_u = \text{barycenter}(\bigcup_{uv \in E} v)$$

= $\sum_{uv \in E} p_v / \text{deg}(u)$

$$F_u(t) = \sum_{uv \in E} p_v / \deg(u) - p_u$$

$$= \sum_{uv \in E} (p_v - p_u) / \deg(u)$$

$$= \sum_{uv \in E} ||p_u - p_v|| / \deg(u)$$

ForceDirected $(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})$ $t \leftarrow 1$ while t < K and $\max_{v \in V} ||F_v(t)|| > \varepsilon$ do foreach $u \in V$ do $F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{uv \in E} f_{\mathsf{attr}}(u, v)$ foreach $u \in V$ do $p_u \leftarrow p_u + \delta(t) \cdot I \cdot F_u(t)$ $t \leftarrow t + 1$ barycenter $(x_1,\ldots,x_k)=\sum_{i=1}^k x_i/k$ return p

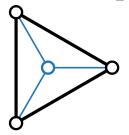
Repulsive forces

$$f_{\mathsf{rep}}(u,v) = 0$$

Attractive forces

$$f_{\mathsf{attr}}(u,v) = \frac{1}{\mathsf{deg}(u)} \cdot ||p_u - p_v||$$

Solution: $p_u = (0,0) \ \forall u \in V$



Goal.

$$p_u = \text{barycenter}(\bigcup_{uv \in E} v)$$

= $\sum_{uv \in E} p_v / \text{deg}(u)$

$$F_u(t) = \sum_{uv \in E} p_v / \deg(u) - p_u$$

$$= \sum_{uv \in E} (p_v - p_u) / \deg(u)$$

$$= \sum_{uv \in E} ||p_u - p_v|| / \deg(u)$$

ForceDirected $(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})$ $t \leftarrow 1$ while t < K and $\max_{v \in V} ||F_v(t)|| > \varepsilon$ do foreach $u \in V$ do $F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{uv \in E} f_{\mathsf{attr}}(u, v)$ foreach $u \in V$ do $p_u \leftarrow p_u + \delta(t) \cdot F_u(t)$ $t \leftarrow t + 1$ barycenter $(x_1,\ldots,x_k)=\sum_{i=1}^k x_i/k$ return p

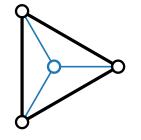
Repulsive forces

$$f_{\mathsf{rep}}(u,v) = 0$$

Attractive forces

$$f_{\mathsf{attr}}(u,v) = \frac{1}{\mathsf{deg}(u)} \cdot ||p_u - p_v||$$

Solution: $p_u = (0,0) \ \forall u \in V$



Fix coordinates of outer face!

Goal.

$$p_u = \text{barycenter}(\bigcup_{uv \in E} v)$$

= $\sum_{uv \in E} p_v / \text{deg}(u)$

$$F_u(t) = \sum_{uv \in E} p_v / \deg(u) - p_u$$

$$= \sum_{uv \in E} (p_v - p_u) / \deg(u)$$

$$= \sum_{uv \in E} ||p_u - p_v|| / \deg(u)$$

ForceDirected $(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})$ $t \leftarrow 1$ while t < K and $\max_{v \in V} ||F_v(t)|| > \varepsilon$ do foreach $u \in V$ do $F_u(t) \leftarrow \sum_{v \in V} f_{\mathsf{rep}}(u, v) + \sum_{uv \in E} f_{\mathsf{attr}}(u, v)$ foreach $u \in V$ do $p_u \leftarrow p_u + \delta(t) \cdot F_u(t)$ $t \leftarrow t + 1$ barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$ return p

Repulsive forces

$$f_{\mathsf{rep}}(u,v) = 0$$

Attractive forces

Solution: $p_u = (0,0) \ \forall u \in V$ Fix coordinates

of outer face!

$$f_{\mathsf{attr}}(u,v) = \begin{cases} 0 & u \text{ fixed} \\ \frac{1}{\mathsf{deg}(u)} \cdot ||p_u - p_v|| & \mathsf{else} \end{cases}$$

Linear System of Equations

$$p_u = \mathsf{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \mathsf{deg}(u)$$

Linear System of Equations

```
Goal. p_u = (x_u, y_u)

p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \text{deg}(u)
```

Linear System of Equations

```
Goal. p_u = (x_u, y_u)

p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \deg(u)

x_u = \sum_{uv \in E} x_v / \deg(u)

y_u = \sum_{uv \in E} y_v / \deg(u)
```

```
Goal. p_u = (x_u, y_u)

p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \deg(u)

x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v

y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v
```

Goal.
$$p_u = (x_u, y_u)$$

 $p_u = \operatorname{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \operatorname{deg}(u)$
 $x_u = \sum_{uv \in E} x_v / \operatorname{deg}(u) \Leftrightarrow \operatorname{deg}(u) \cdot x_u = \sum_{uv \in E} x_v \Leftrightarrow \operatorname{deg}(u) \cdot x_u - \sum_{uv \in E} x_v = 0$
 $y_u = \sum_{uv \in E} y_v / \operatorname{deg}(u) \Leftrightarrow \operatorname{deg}(u) \cdot y_u = \sum_{uv \in E} y_v \Leftrightarrow \operatorname{deg}(u) \cdot y_u - \sum_{uv \in E} y_v = 0$

Goal.
$$p_u = (x_u, y_u)$$

 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \deg(u)$
 $x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v$
 $y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v$

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$

Goal.
$$p_u = (x_u, y_u)$$

 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \deg(u)$
 $x_u = \sum_{uv \in E} x_v / \deg(u) \Leftrightarrow \deg(u) \cdot x_u = \sum_{uv \in E} x_v$
 $y_u = \sum_{uv \in E} y_v / \deg(u) \Leftrightarrow \deg(u) \cdot y_u = \sum_{uv \in E} y_v$

$$Ax = b$$

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$

Goal.
$$p_u = (x_u, y_u)$$

 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \deg(u)$
 $x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v$
 $y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v$

$$Ax = b$$
 $Ay = b$

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$

Goal.
$$p_u = (x_u, y_u)$$

 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \deg(u)$
 $x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v$
 $y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v$

$$Ax = b \qquad Ay = b \qquad b = (0)_n$$

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$

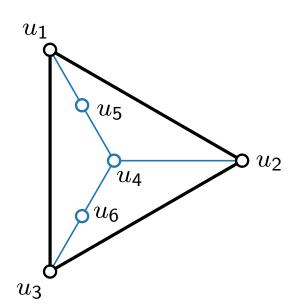
Goal.
$$p_u = (x_u, y_u)$$

 $p_u = \mathsf{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \mathsf{deg}(u)$
 $x_u = \sum_{uv \in E} x_v / \mathsf{deg}(u) \Leftrightarrow \mathsf{deg}(u) \cdot x_u = \sum_{uv \in E} x_v$
 $y_u = \sum_{uv \in E} y_v / \mathsf{deg}(u) \Leftrightarrow \mathsf{deg}(u) \cdot y_u = \sum_{uv \in E} y_v$

$$Ax = b \qquad Ay = b \qquad b = (0)_n$$

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



Goal.
$$p_u = (x_u, y_u)$$

 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \deg(u)$
 $x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v$
 $y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

2 Systems of linear equations

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$

A



Goal.
$$p_u = (x_u, y_u)$$

 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \deg(u)$
 $x_u = \sum_{uv \in E} x_v / \deg(u) \Leftrightarrow \deg(u) \cdot x_u = \sum_{uv \in E} x_v$
 $y_u = \sum_{uv \in E} y_v / \deg(u) \Leftrightarrow \deg(u) \cdot y_u = \sum_{uv \in E} y_v$

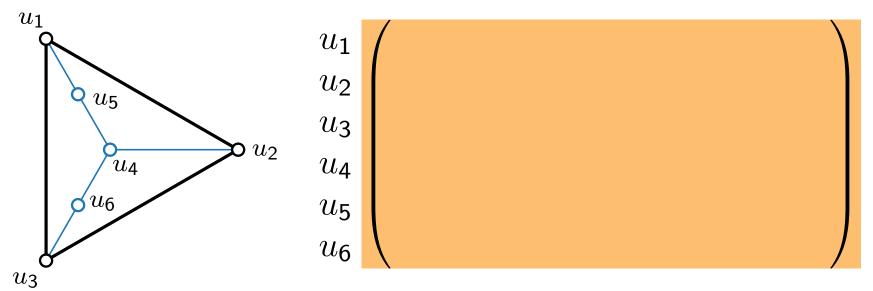
$$Ax = b$$
 $Ay = b$ $b = (0)_n$

2 Systems of linear equations

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$

A



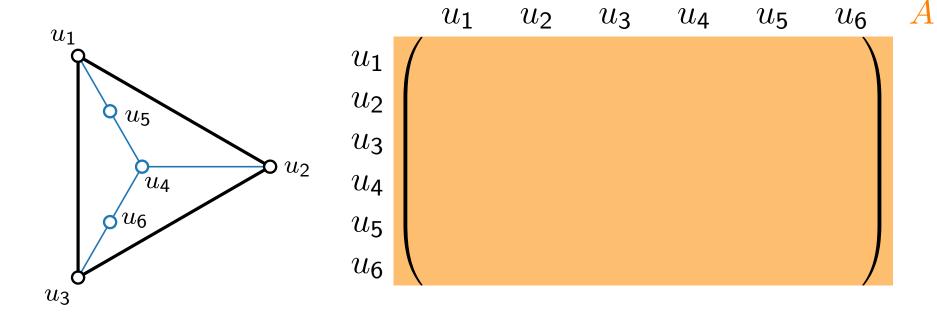
Goal.
$$p_u = (x_u, y_u)$$

 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \deg(u)$
 $x_u = \sum_{uv \in E} x_v / \deg(u) \Leftrightarrow \deg(u) \cdot x_u = \sum_{uv \in E} x_v$
 $y_u = \sum_{uv \in E} y_v / \deg(u) \Leftrightarrow \deg(u) \cdot y_u = \sum_{uv \in E} y_v$
 $Ax = b$ $Ay = b$ $b = (0)_v$
2 Systems of linear equations
 $Ax = b$ $Ay = b$ $b = (0)_v$
2 Systems of linear equations
 $Ax = b$ $Ay = b$ $b = (0)_v$
2 Systems of linear equations
 $Ax = b$ $Ay = b$ $b = (0)_v$
2 Systems of linear equations

$$Ax = b$$
 $Ay = b$ $b = (0)_n$
2 Systems of linear equations

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



Goal.
$$p_u = (x_u, y_u)$$

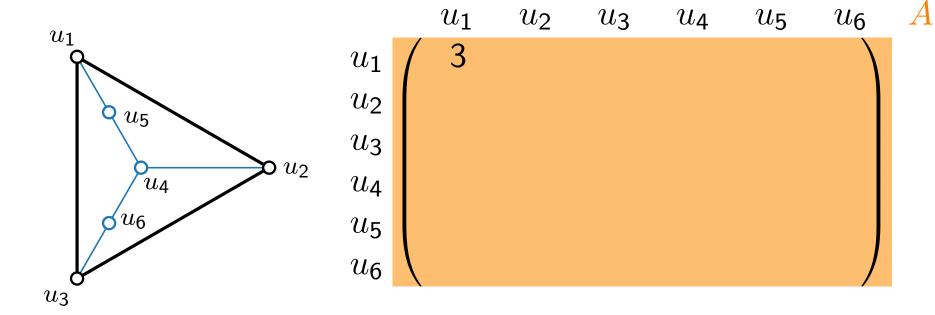
 $p_u = \mathsf{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \mathsf{deg}(u)$
 $x_u = \sum_{uv \in E} x_v / \mathsf{deg}(u) \iff \mathsf{deg}(u) \cdot x_u = \sum_{uv \in E} x_v / \mathsf{deg}(u)$

$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v \iff \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$
$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v \iff \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



Goal.
$$p_u = (x_u, y_u)$$

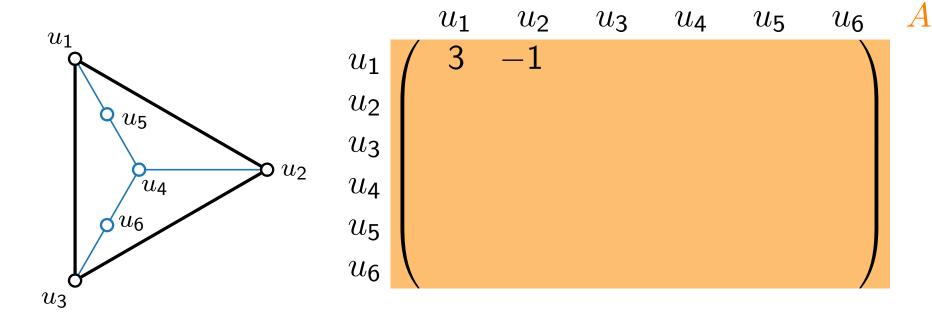
 $p_u = \mathsf{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \mathsf{deg}(u)$
 $x_u = \sum_{uv \in E} x_u / \mathsf{deg}(u) \Leftrightarrow \mathsf{deg}(u) \cdot x_u = \sum_{uv \in E} x_u / \mathsf{deg}(u)$

$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v \iff \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$
$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v \iff \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



Goal.
$$p_u = (x_u, y_u)$$

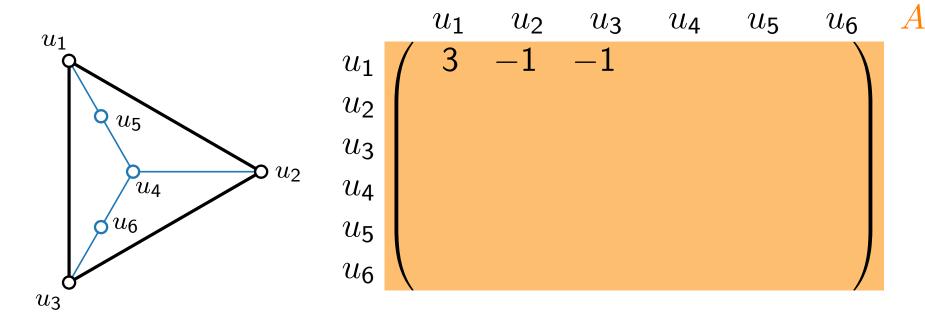
 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \text{deg}(u)$

$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v \iff \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$
$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v \iff \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$
2 Systems of linear equations

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



Goal.
$$p_u = (x_u, y_u)$$

 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \text{deg}(u)$

$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v \iff \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$
$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v \iff \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



Goal.
$$p_u = (x_u, y_u)$$

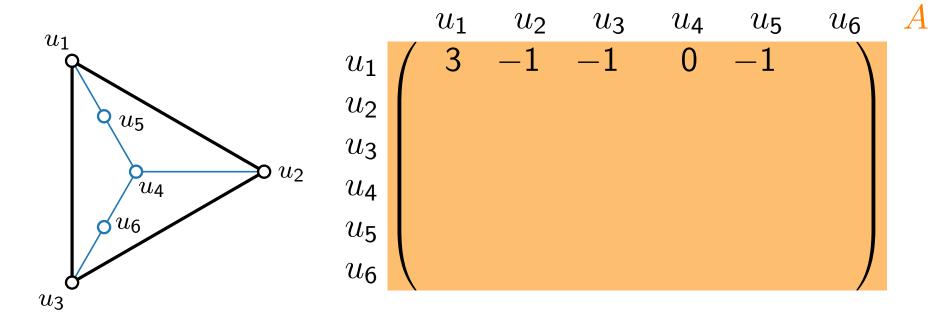
 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \text{deg}(u)$

$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v \iff \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$
$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v \iff \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$

$$Ax = b \qquad Ay = b \qquad b = (0)_n$$

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



Goal.
$$p_u = (x_u, y_u)$$

 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \text{deg}(u)$

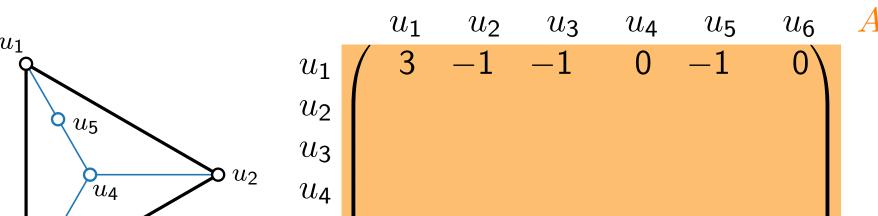
 $u_{\mathbf{6}}$

$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v \iff \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$
$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v \iff \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$
2 Systems of linear equations

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot u - \sum_{uv \in E} x_v = 0$$



Goal.
$$p_u = (x_u, y_u)$$

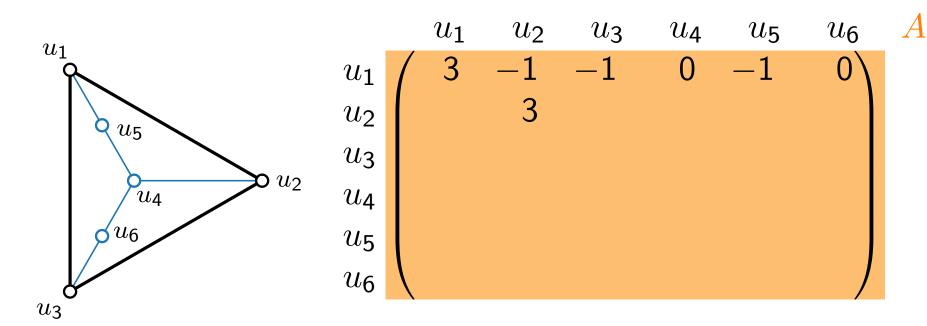
 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \text{deg}(u)$

$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v \iff \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$
$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v \iff \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$
2 Systems of linear equations

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



Goal.
$$p_u = (x_u, y_u)$$

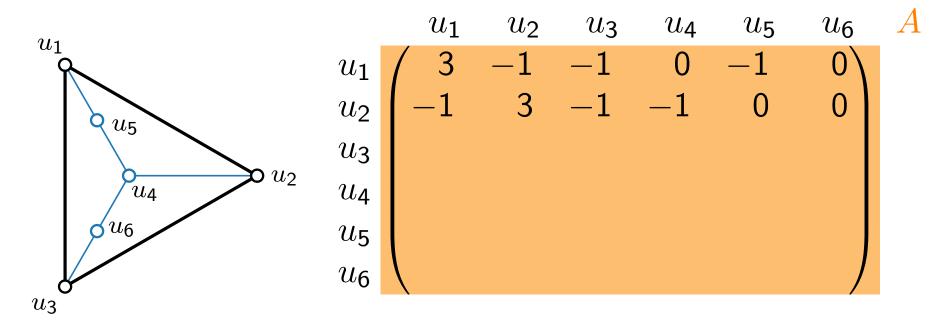
 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \text{deg}(u)$

$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v \iff \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$
$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v \iff \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$
2 Systems of linear equations

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



Goal.
$$p_u = (x_u, y_u)$$

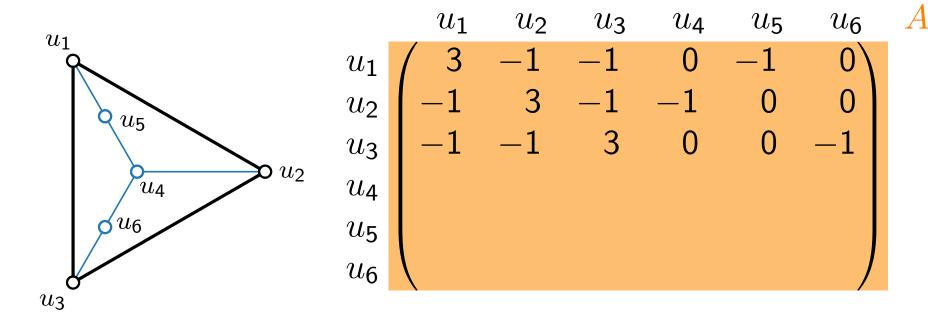
 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \text{deg}(u)$

$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v \iff \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$
$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v \iff \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$
2 Systems of linear equations

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



Goal.
$$p_u = (x_u, y_u)$$

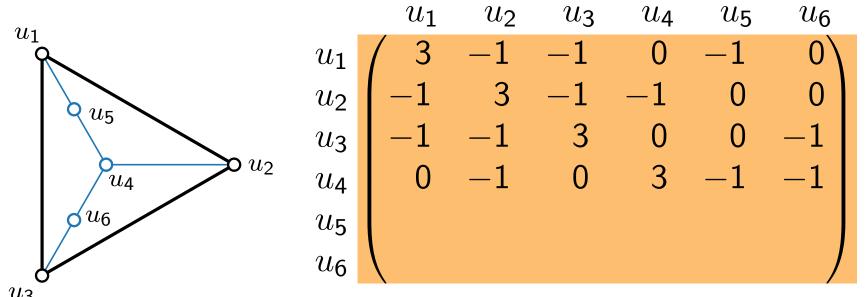
 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \deg(u)$

$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v \iff \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$
$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v \iff \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$
2 Systems of linear equations

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



Goal.
$$p_u = (x_u, y_u)$$

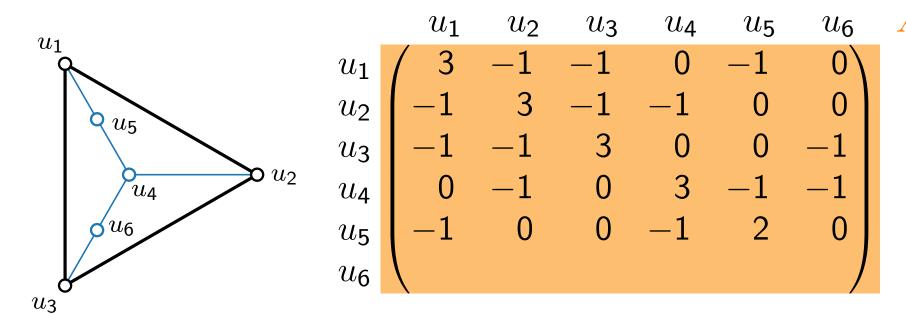
 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \text{deg}(u)$

$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v \iff \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$
$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v \iff \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$
2 Systems of linear equations

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



Goal.
$$p_u = (x_u, y_u)$$

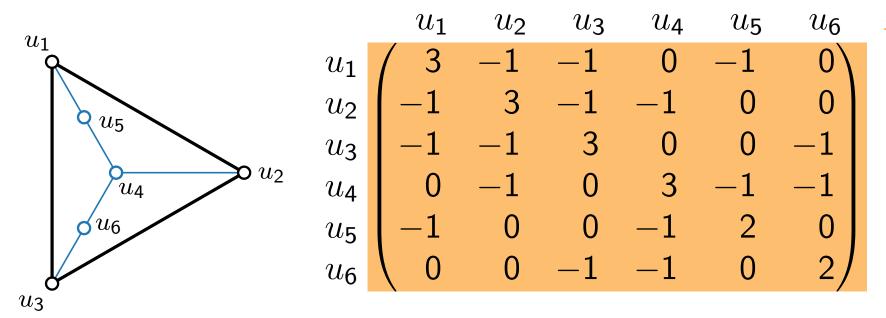
 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \text{deg}(u)$

$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v \iff \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$
$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v \iff \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$
2 Systems of linear equations

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



Goal.
$$p_u = (x_u, y_u)$$

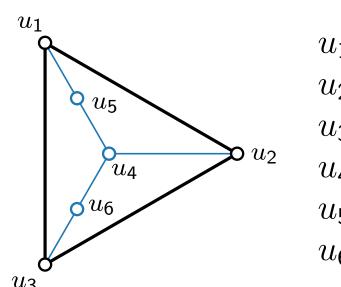
 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \text{deg}(u)$

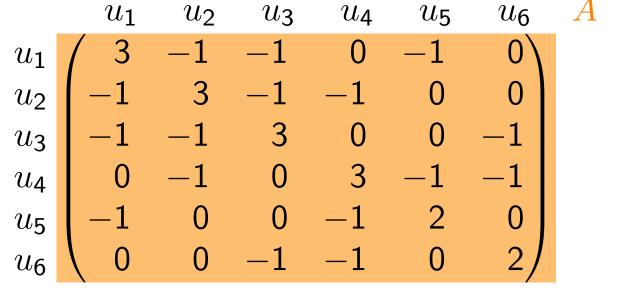
$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v \iff \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$
$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v \iff \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$
2 Systems of linear equations

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$





$$A_{ii} = \deg(u_i)$$

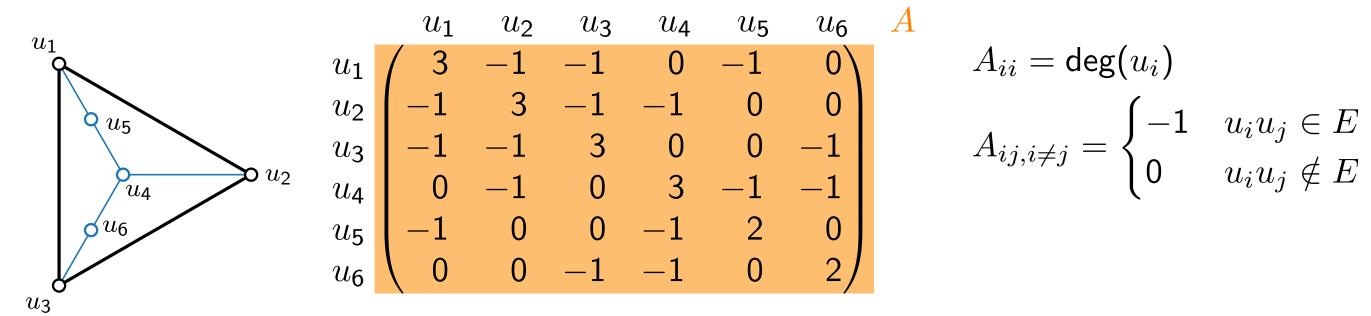
Goal.
$$p_u = (x_u, y_u)$$

 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \text{deg}(u)$

$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v$$
$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$
2 Systems of linear equations

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$
$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



$$A_{ii} = \deg(u_i)$$

$$A_{ij,i\neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_j \notin E \end{cases}$$

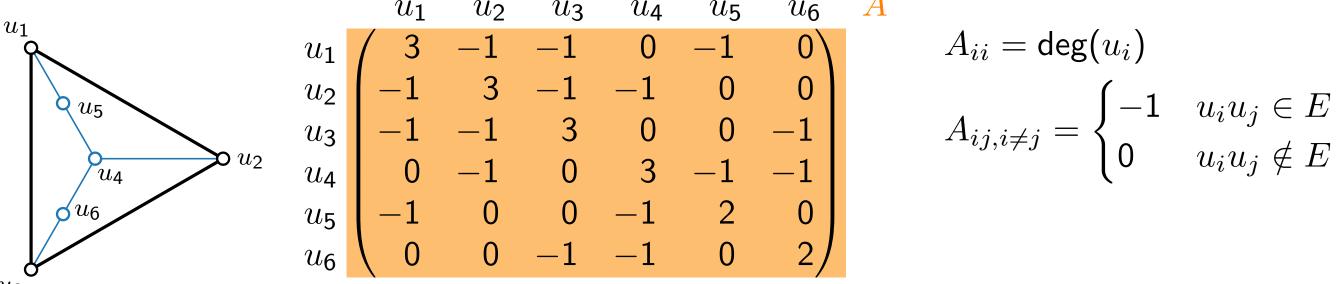
Goal.
$$p_u = (x_u, y_u)$$

 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \text{deg}(u)$

$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v$$
$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$
2 Systems of linear equations

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$
$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



Laplacian matrix of
$$G$$

$$A_{ii} = \deg(u_i)$$

$$A_{ij,i \neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_j \notin E \end{cases}$$

Goal.
$$p_u = (x_u, y_u)$$

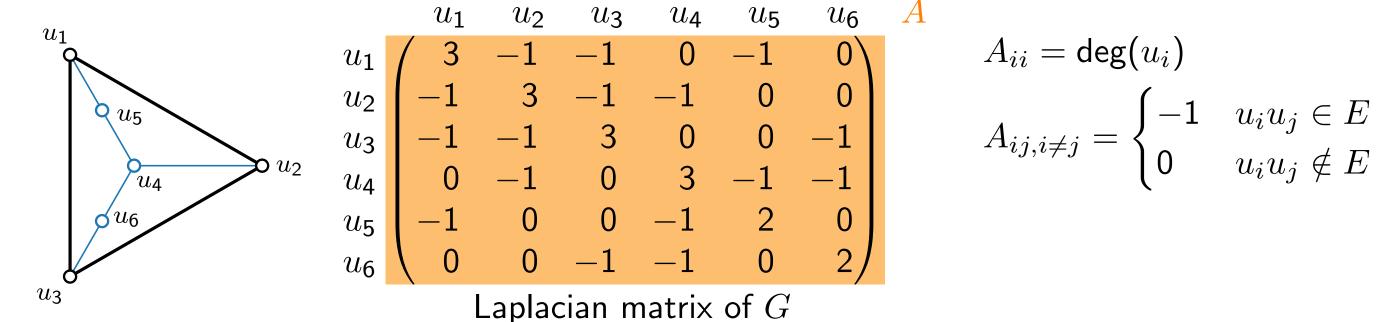
 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \text{deg}(u)$

$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v$$
$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$
2 Systems of linear equations

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



$$A_{ii} = \deg(u_i)$$

$$A_{ij,i\neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_j \notin E \end{cases}$$

unique solution

Goal.
$$p_u = (x_u, y_u)$$

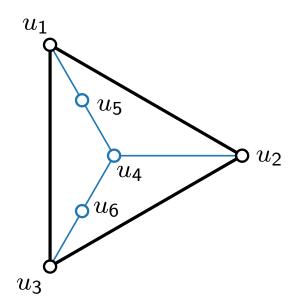
 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \text{deg}(u)$

$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v$$
$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$
2 Systems of linear equations

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



Laplacian matrix of Gvariables, constraints, det(A) =unique solution

$$A_{ii} = \deg(u_i)$$

$$A_{ij,i \neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_i \notin E \end{cases}$$

Goal.
$$p_u = (x_u, y_u)$$

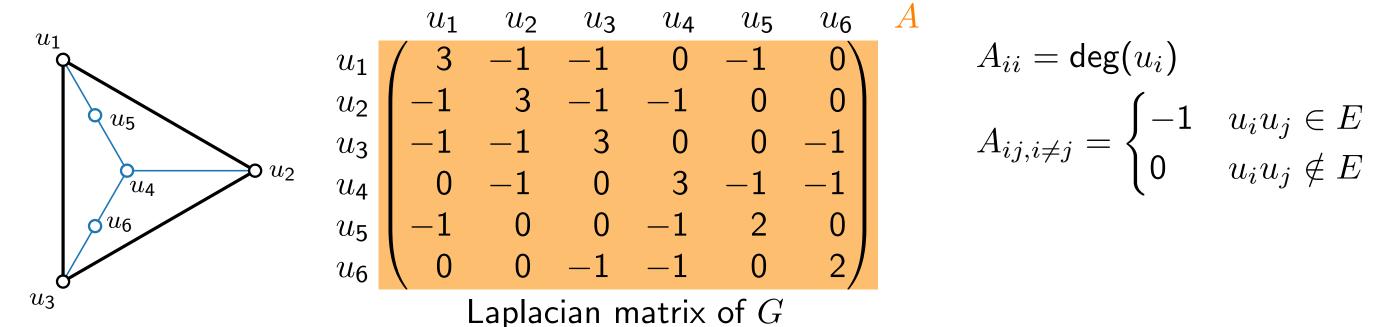
 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \text{deg}(u)$

$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v$$
$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$
2 Systems of linear equations

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



$$A_{ii} = \deg(u_i)$$

$$A_{ij,i \neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_j \notin E \end{cases}$$

n variables, constraints, det(A) =unique solution

Goal.
$$p_u = (x_u, y_u)$$

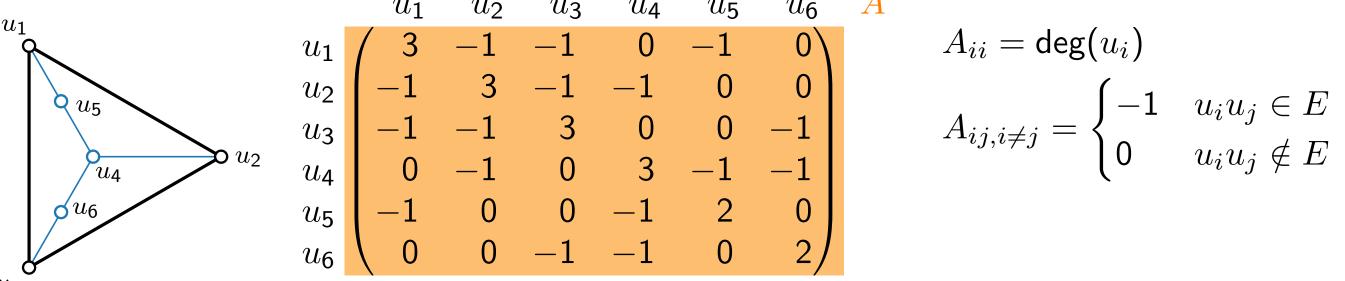
 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \text{deg}(u)$

$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v$$
$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$
2 Systems of linear equations

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



Laplacian matrix of
$$G$$

$$n$$
 variables, n constraints, $\det(A) =$ unique solution

$$A_{ii} = \deg(u_i)$$

$$A_{ij,i \neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_j \notin E \end{cases}$$

Goal.
$$p_u = (x_u, y_u)$$

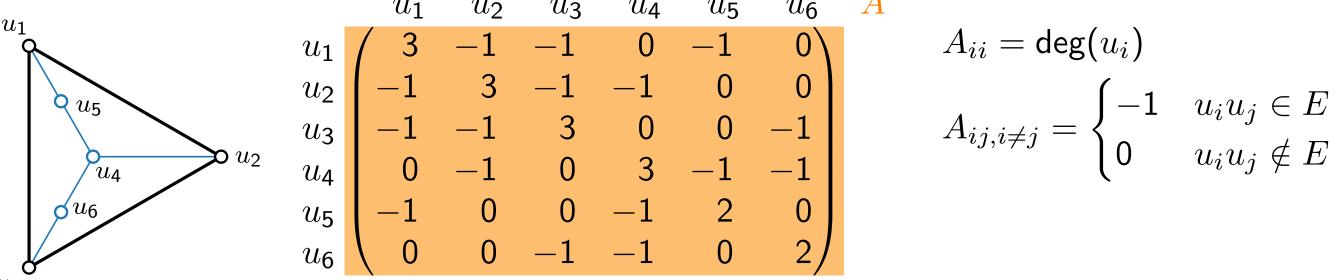
 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \text{deg}(u)$

$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v$$
$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$
2 Systems of linear equations

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



Laplacian matrix of G

n variables, n constraints, det(A) = 0unique solution

$$A_{ii} = \deg(u_i)$$

$$A_{ij,i \neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_j \notin E \end{cases}$$

Goal.
$$p_u = (x_u, y_u)$$

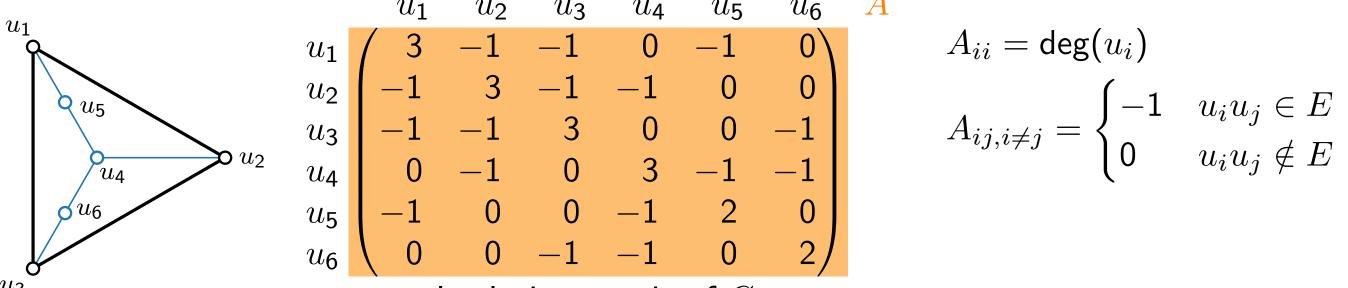
 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \text{deg}(u)$

$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v$$
$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$
2 Systems of linear equations

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



$$A_{ii} = \deg(u_i)$$

$$A_{ij,i \neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_i \notin E \end{cases}$$

Laplacian matrix of G

n variables, n constraints, det(A) = 0 \Rightarrow no unique solution

Goal.
$$p_u = (x_u, y_u)$$

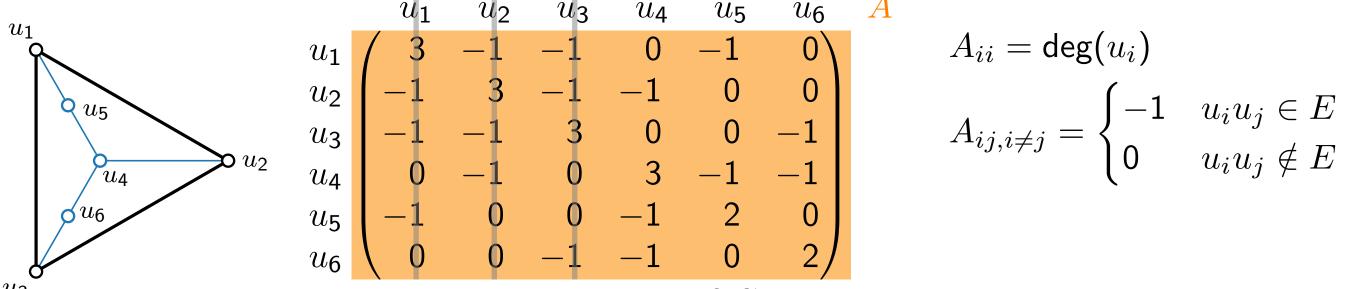
 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \deg(u)$

$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v$$
$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$
2 Systems of linear equations

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



$$A_{ii} = \deg(u_i)$$

$$A_{ij,i \neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_i \notin E \end{cases}$$

Laplacian matrix of G

n variables, n constraints, det(A) = 0 \Rightarrow no unique solution

Goal.
$$p_u = (x_u, y_u)$$

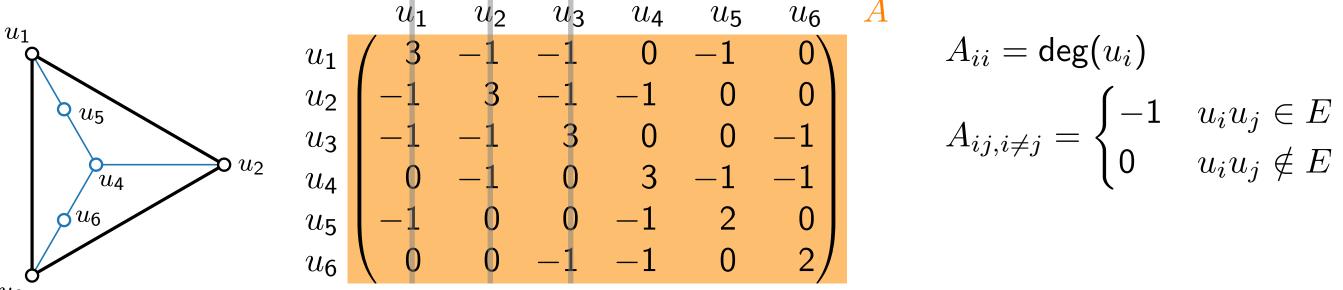
 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \deg(u)$

$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v$$
$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$
2 Systems of linear equations

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



$$A_{ij,i\neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_j \notin E \end{cases}$$

Laplacian matrix of G

n variables, k constraints, det(A) = 0

$$k = \#$$
free vertices

 \Rightarrow no unique solution

Goal.
$$p_u = (x_u, y_u)$$

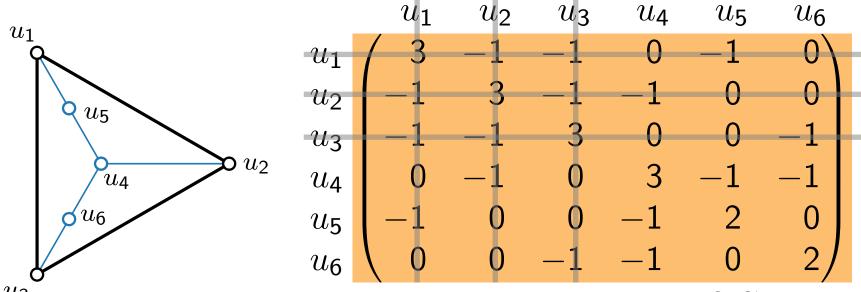
 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \text{deg}(u)$

$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v$$
$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$
2 Systems of linear equations

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



$$A_{ii} = \deg(u_i)$$

$$A_{ij,i \neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_i \notin E \end{cases}$$

Laplacian matrix of G

n variables, k constraints, det(A) = 0

$$k = \#$$
free vertices

 \Rightarrow no unique solution

Goal.
$$p_u = (x_u, y_u)$$

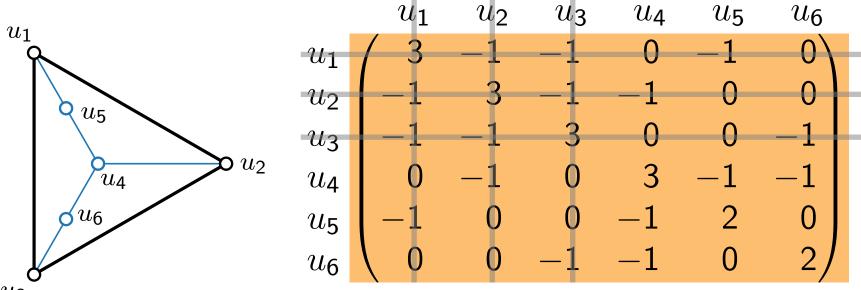
 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \text{deg}(u)$

$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v$$
$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$
2 Systems of linear equations

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



$$A_{ii} = \deg(u_i)$$

$$A_{ij,i\neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_i \notin E \end{cases}$$

Laplacian matrix of G

k variables, k constraints, det(A) = 0

$$k = \#$$
free vertices

 \Rightarrow no unique solution

Goal.
$$p_u = (x_u, y_u)$$

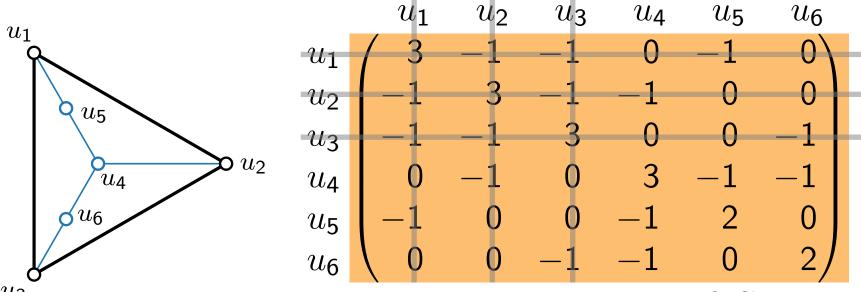
 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \text{deg}(u)$

$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v$$
$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$
2 Systems of linear equations

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



$$A_{ii} = \deg(u_i)$$

$$A_{ij,i\neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_j \notin E \end{cases}$$

Laplacian matrix of G

k variables, k constraints, det(A) > 0

$$k = \#$$
free vertices

$$\Rightarrow$$
 no unique solution

Linear System of Equations

Goal.
$$p_u = (x_u, y_u)$$

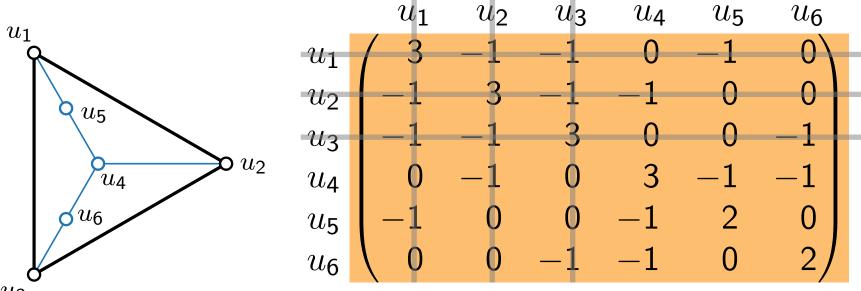
 $p_u = \text{barycenter}(\bigcup_{uv \in E} v) = \sum_{uv \in E} p_v / \deg(u)$

$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v$$
$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v$$

$$Ax = b$$
 $Ay = b$ $b = (0)_n$
2 Systems of linear equations

$$\Leftrightarrow \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$\Leftrightarrow \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



$$A_{ii} = \deg(u_i)$$

$$A_{ij,i \neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_j \notin E \end{cases}$$

Laplacian matrix of G

k variables, k constraints, det(A) > 0

$$k = \#$$
free vertices

$$\Rightarrow$$
 unique solution

Linear System of Equations

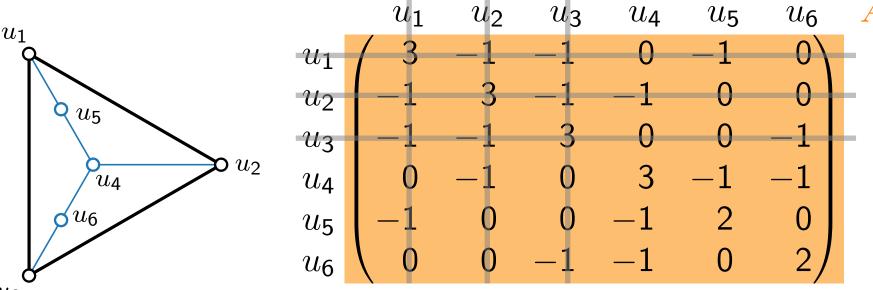
Goal.
$$p_u = (x_u, y_u)$$

 $p_u = \text{barycenter}(\bigcup_{uv \in E} v)$

Theorem.

Tutte's barycentric algorithm admits a unique solution. It can be computed in polynomial time.

$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v \iff \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$
$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v \iff \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



$$A_{ii} = \deg(u_i)$$

$$A_{ij,i\neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_j \notin E \end{cases}$$

Laplacian matrix of G

k variables, k constraints, det(A) > 0

$$k = \#$$
free vertices

 \Rightarrow unique solution

Linear System of Equations

Goal. $p_u = (x_u, y_u)$ $p_u = \text{barycenter}(\bigcup_{uv \in E} v)$

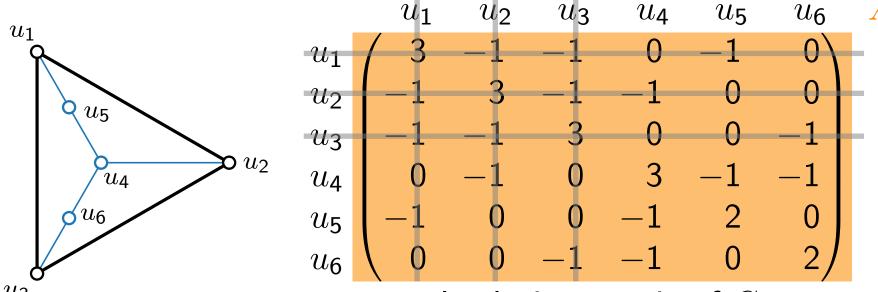
Theorem.

Tutte drawing

Tutte's barycentric algorithm admits a unique solution. It can be computed in polynomial time.

$$x_u = \sum_{uv \in E} x_v / \deg(u) \iff \deg(u) \cdot x_u = \sum_{uv \in E} x_v \iff \deg(u) \cdot x_u - \sum_{uv \in E} x_v = 0$$

$$y_u = \sum_{uv \in E} y_v / \deg(u) \iff \deg(u) \cdot y_u = \sum_{uv \in E} y_v \iff \deg(u) \cdot y_u - \sum_{uv \in E} y_v = 0$$



$$A_{ii} = \deg(u_i)$$

$$A_{ij,i\neq j} = \begin{cases} -1 & u_i u_j \in E \\ 0 & u_i u_j \notin E \end{cases}$$

Laplacian matrix of G

k variables, k constraints, det(A) > 0

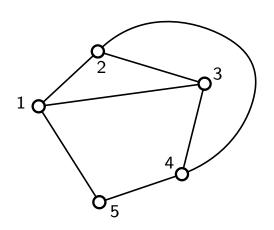
$$k = \#$$
free vertices

$$\Rightarrow$$
 unique solution

planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

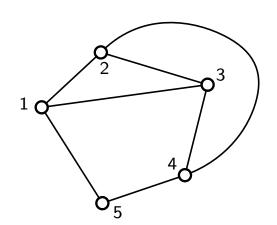


planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected:

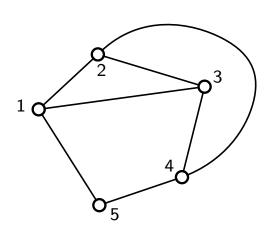


planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

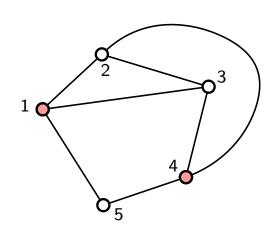


planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

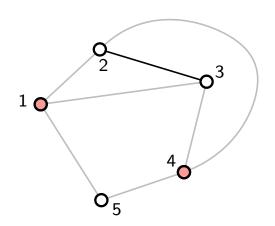


planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \ldots, v_{k-1}\}$ is connected

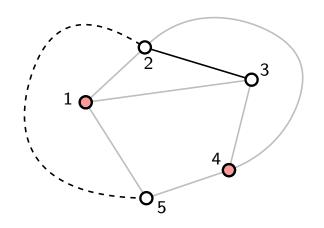


planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

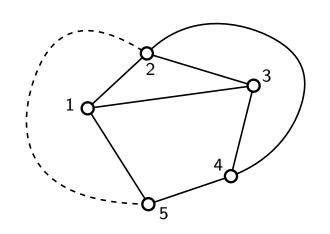


planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected



planar: G can be drawn in such a way

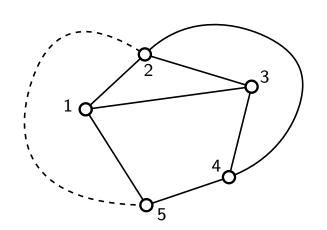
that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \ldots, v_{k-1}\}$ is connected

for any $v_1 \ldots, v_{k-1} \in V$

or (equivalently)



planar: G can be drawn in such a way

that no edges cross each other

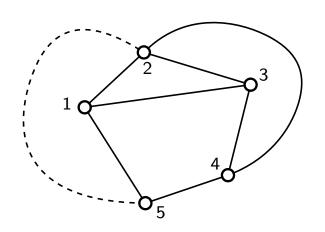
connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any $v_1, \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint



planar: G can be drawn in such a way

that no edges cross each other

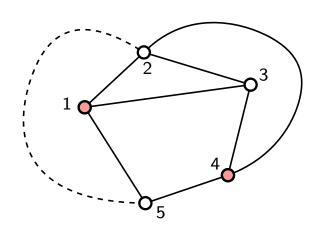
connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \ldots, v_{k-1}\}$ is connected

for any $v_1 \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint



planar: G can be drawn in such a way

that no edges cross each other

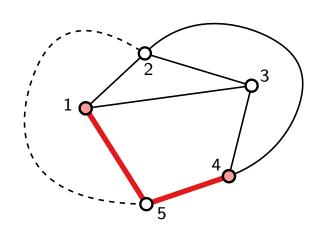
connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any $v_1 \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint



planar: G can be drawn in such a way

that no edges cross each other

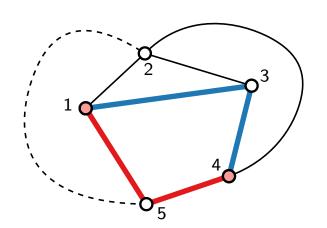
connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any $v_1 \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint



planar: G can be drawn in such a way

that no edges cross each other

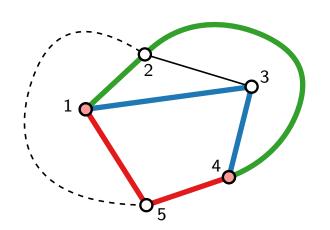
connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any $v_1, \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint



planar: G can be drawn in such a way

that no edges cross each other

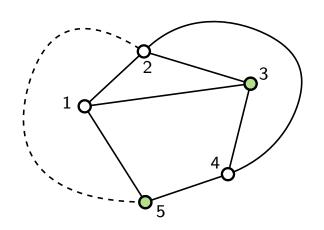
connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \ldots, v_{k-1}\}$ is connected

for any $v_1, \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint



planar: G can be drawn in such a way

that no edges cross each other

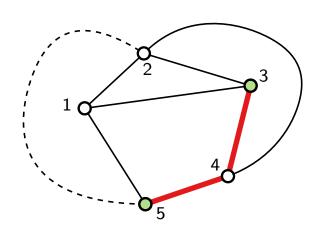
connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any $v_1 \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint



planar: G can be drawn in such a way

that no edges cross each other

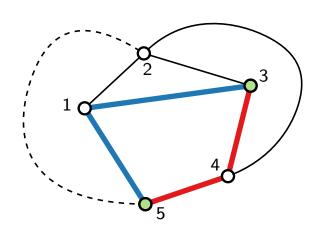
connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any $v_1, \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint



planar: G can be drawn in such a way

that no edges cross each other

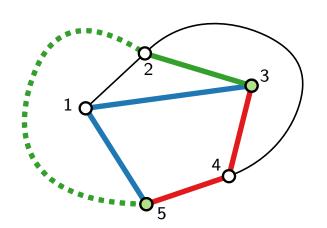
connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \ldots, v_{k-1}\}$ is connected

for any $v_1 \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint



planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any $v_1 \ldots, v_{k-1} \in V$

or (equivalently)

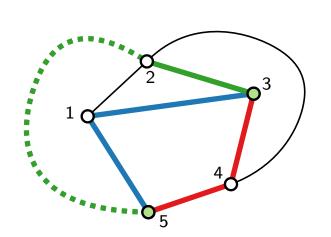
There are at least k vertex-disjoint

u-v-paths for every $u, v \in V$

Theorem.

[Whitney 1933]

Every 3-connected planar graph has a unique planar embedding.



planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any $v_1 \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint

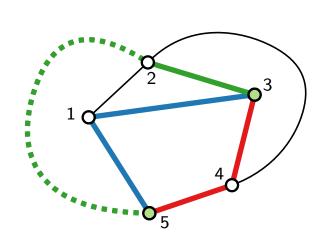
u-v-paths for every $u, v \in V$

Theorem.

[Whitney 1933]

Every 3-connected planar graph has a unique planar embedding.

Proof sketch.



planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any $v_1 \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint

u-v-paths for every $u, v \in V$

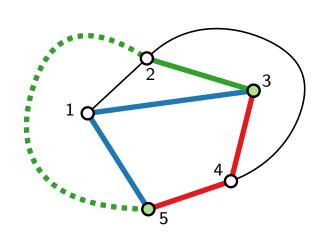
Theorem.

[Whitney 1933]

Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G



planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any $v_1 \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint

u-v-paths for every $u, v \in V$

Theorem.

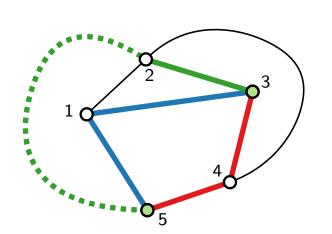
[Whitney 1933]

Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G

C face of Γ_2 , but not Γ_1



planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any $v_1 \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint

u-v-paths for every $u, v \in V$

Theorem.

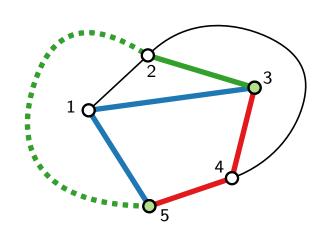
[Whitney 1933]

Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G

C face of Γ_2 , but not Γ_1



 Γ_1

planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any $v_1 \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint

u-v-paths for every $u, v \in V$

Theorem.

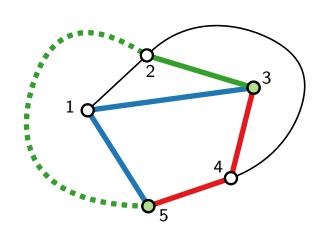
[Whitney 1933]

Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G

C face of Γ_2 , but not Γ_1



planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any $v_1 \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint

u-v-paths for every $u, v \in V$

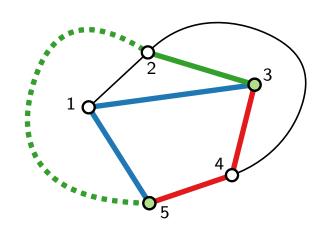
Theorem.

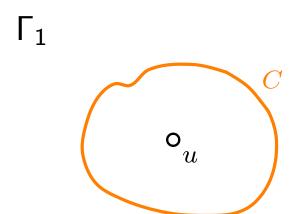
[Whitney 1933]

Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G C face of Γ_2 , but not Γ_1 u inside C in Γ_1





planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any $v_1 \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint

u-v-paths for every $u, v \in V$

Theorem.

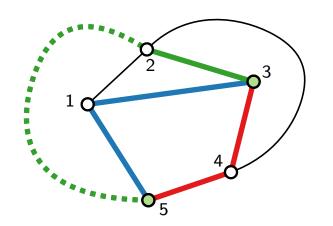
[Whitney 1933]

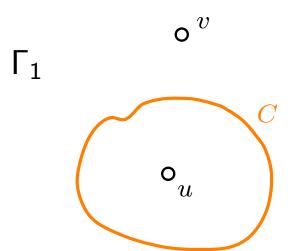
Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G

C face of Γ_2 , but not Γ_1





planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any $v_1 \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint

u-v-paths for every $u, v \in V$

Theorem.

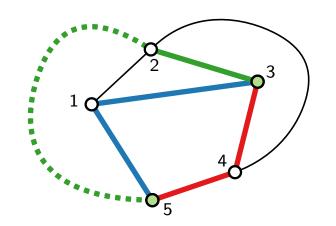
[Whitney 1933]

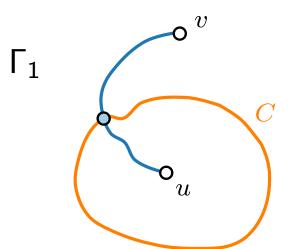
Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G

C face of Γ_2 , but not Γ_1





planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any $v_1 \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint

u-v-paths for every $u, v \in V$

Theorem.

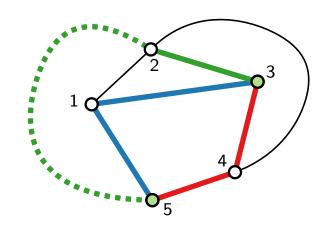
[Whitney 1933]

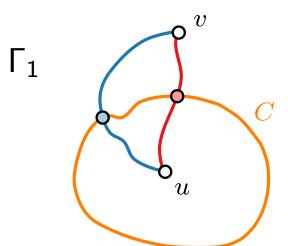
Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G

C face of Γ_2 , but not Γ_1





planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any $v_1 \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint

u-v-paths for every $u, v \in V$

Theorem.

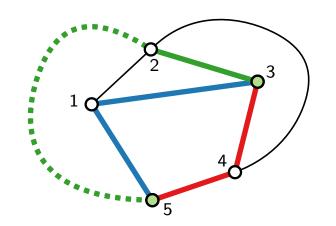
[Whitney 1933]

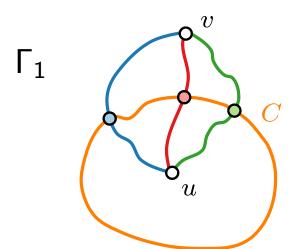
Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G

C face of Γ_2 , but not Γ_1





planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any $v_1 \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint

u-v-paths for every $u, v \in V$

Theorem.

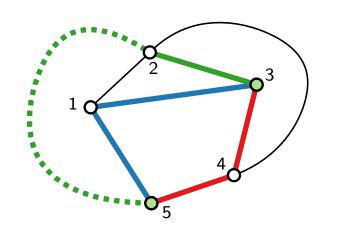
[Whitney 1933]

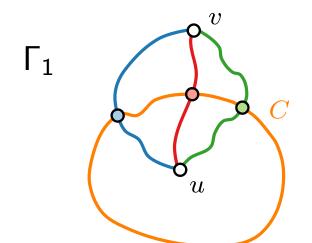
Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G

C face of Γ_2 , but not Γ_1





planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any $v_1 \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint

u-v-paths for every $u, v \in V$

Theorem.

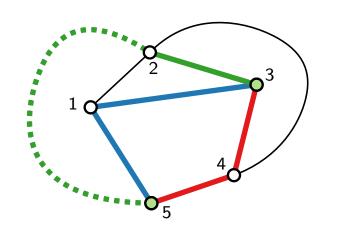
[Whitney 1933]

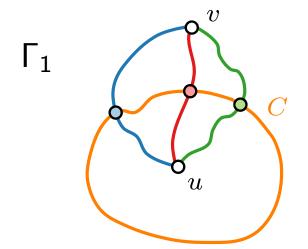
Every 3-connected planar graph has a unique planar embedding.

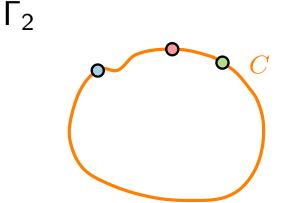
Proof sketch.

 Γ_1, Γ_2 embeddings of G

C face of Γ_2 , but not Γ_1







planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any $v_1 \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint

u-v-paths for every $u, v \in V$

Theorem.

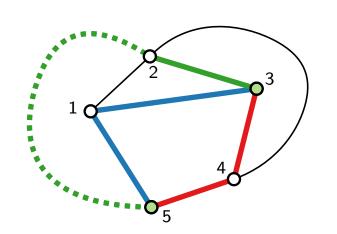
[Whitney 1933]

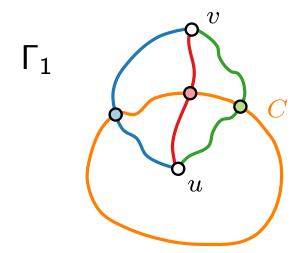
Every 3-connected planar graph has a unique planar embedding.

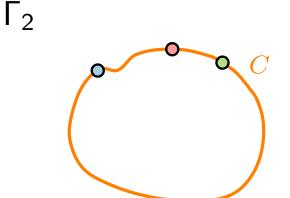
Proof sketch.

 Γ_1, Γ_2 embeddings of GC face of Γ_2 , but not Γ_1

u inside C in Γ_1 , v outside C in Γ_1 both on same side in Γ_2







planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any $v_1 \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint

u-v-paths for every $u, v \in V$

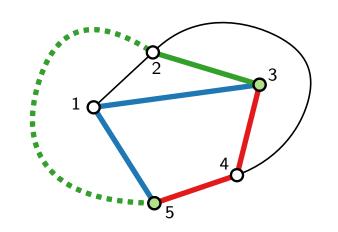
Theorem.

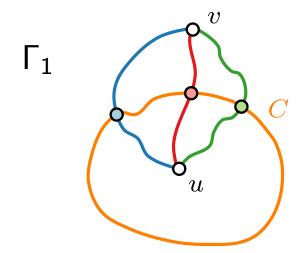
[Whitney 1933]

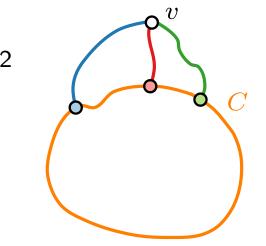
Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G C face of Γ_2 , but not Γ_1 u inside C in Γ_1 , v outside C in Γ_1 both on same side in Γ_2







planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any $v_1 \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint

u-v-paths for every $u, v \in V$

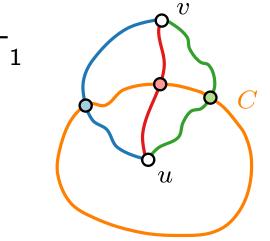
Theorem.

[Whitney 1933]

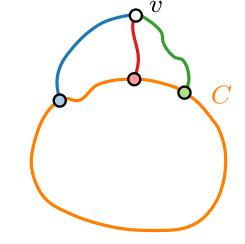
Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G C face of Γ_2 , but not Γ_1 u inside C in Γ_1 , v outside C in Γ_1 both on same side in Γ_2



 Γ_2



planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any $v_1 \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint

u-v-paths for every $u, v \in V$

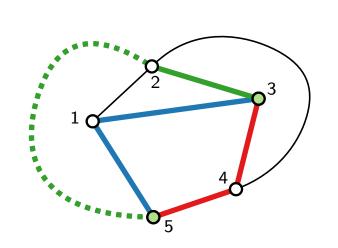
Theorem.

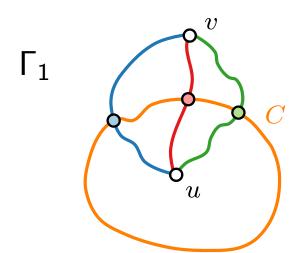
[Whitney 1933]

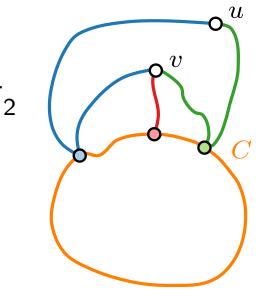
Every 3-connected planar graph has a unique planar embedding.

Proof sketch.

 Γ_1, Γ_2 embeddings of G C face of Γ_2 , but not Γ_1 u inside C in Γ_1 , v outside C in Γ_1







both on same side in Γ_2

planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any $v_1 \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint

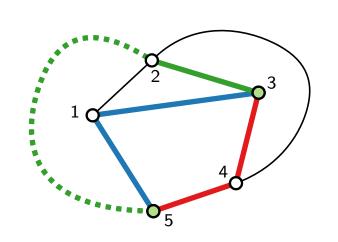
u-v-paths for every $u, v \in V$

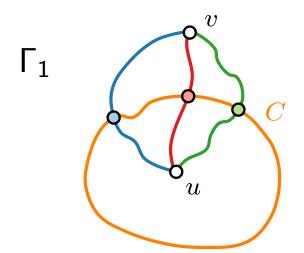
Theorem.

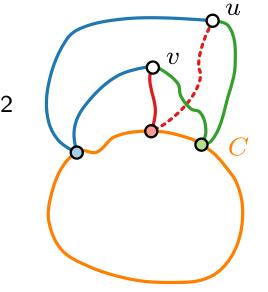
[Whitney 1933]

Every 3-connected planar graph has a unique planar embedding.

Proof sketch.







planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any $v_1 \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint

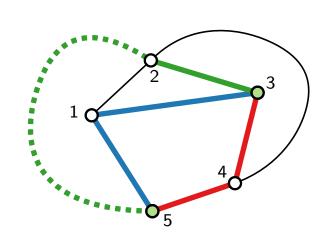
u-v-paths for every $u, v \in V$

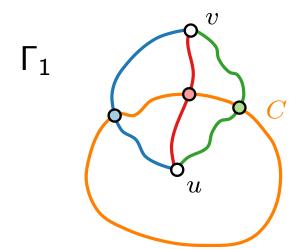
Theorem.

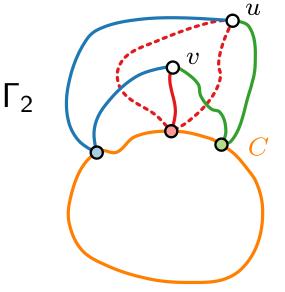
[Whitney 1933]

Every 3-connected planar graph has a unique planar embedding.

Proof sketch.







planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any $v_1 \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint

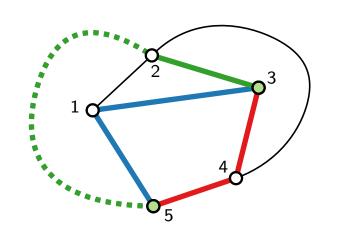
u-v-paths for every $u, v \in V$

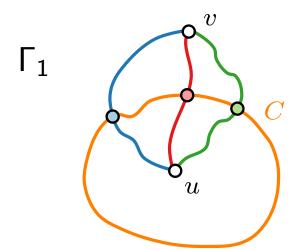
Theorem.

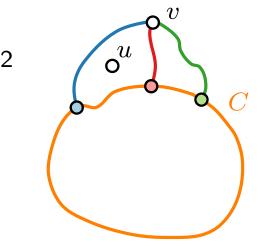
[Whitney 1933]

Every 3-connected planar graph has a unique planar embedding.

Proof sketch.







planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any $v_1 \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint

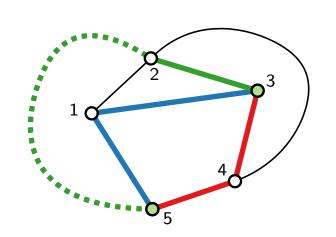
u-v-paths for every $u, v \in V$

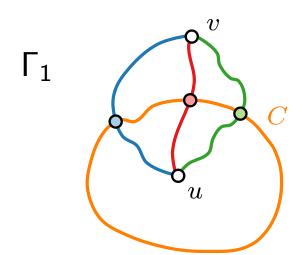
Theorem.

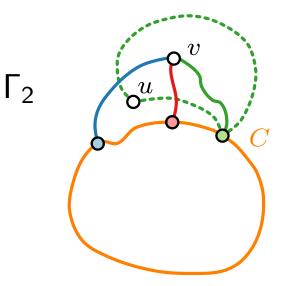
[Whitney 1933]

Every 3-connected planar graph has a unique planar embedding.

Proof sketch.







planar: G can be drawn in such a way

that no edges cross each other

connected: There is a u-v-path for every $u, v \in V$

k-connected: $G - \{v_1, \dots, v_{k-1}\}$ is connected

for any $v_1 \ldots, v_{k-1} \in V$

or (equivalently)

There are at least k vertex-disjoint

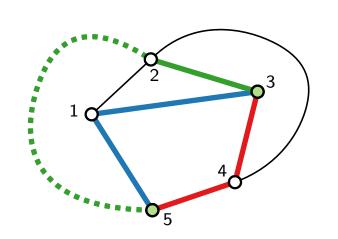
u-v-paths for every $u, v \in V$

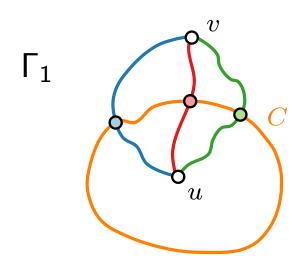
Theorem.

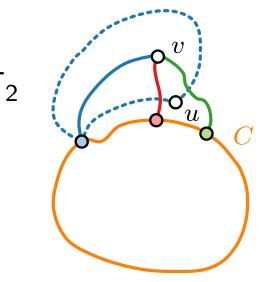
[Whitney 1933]

Every 3-connected planar graph has a unique planar embedding.

Proof sketch.



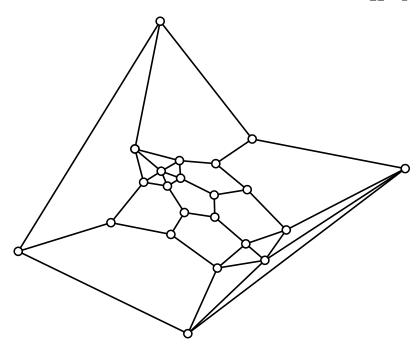




Theorem.

Let G be a 3-connected planar graph,

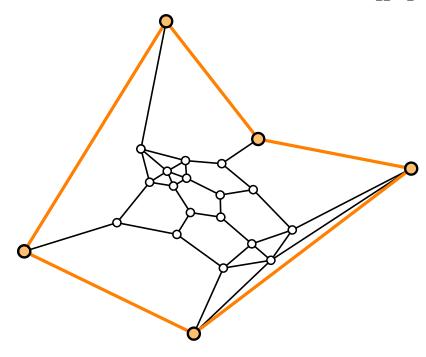
[Tutte 1963]



Theorem.

Let G be a 3-connected planar graph, and let C be a face of its unique embedding.

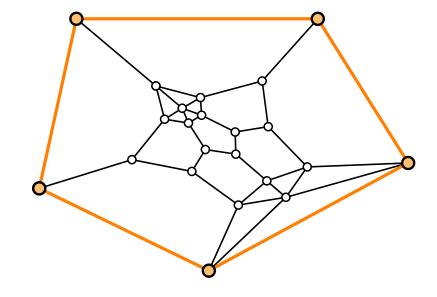
[Tutte 1963]



Theorem.

Let G be a 3-connected planar graph, and let G be a face of its unique embedding. If we fix G on a strictly convex polygon,

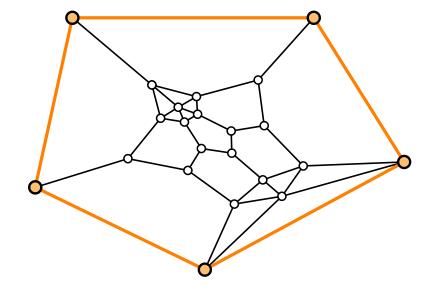
[Tutte 1963]



Theorem.

[Tutte 1963]

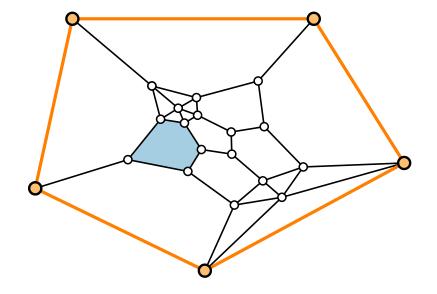
Let G be a 3-connected planar graph, and let G be a face of its unique embedding. If we fix G on a strictly convex polygon, then the Tutte drawing of G is planar



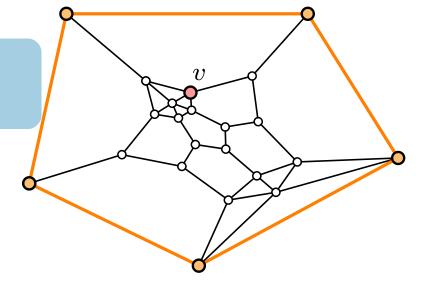
Theorem.

[Tutte 1963]

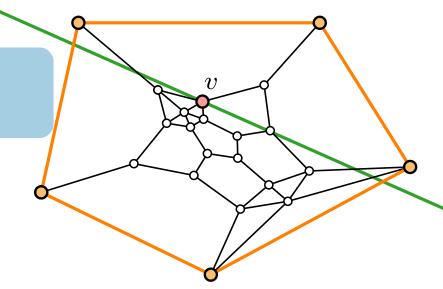
Let G be a 3-connected planar graph, and let G be a face of its unique embedding. If we fix G on a strictly convex polygon, then the Tutte drawing of G is planar and all its faces are strictly convex.



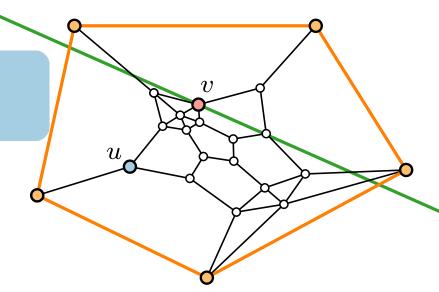
Property 1. Let $v \in V$ free,



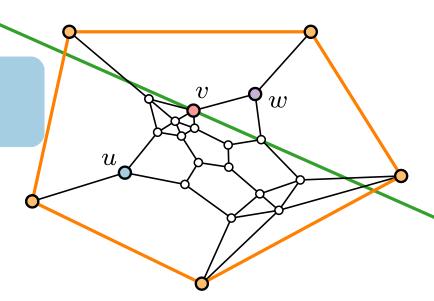
Property 1. Let $v \in V$ free, ℓ line through v.



Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of ℓ =



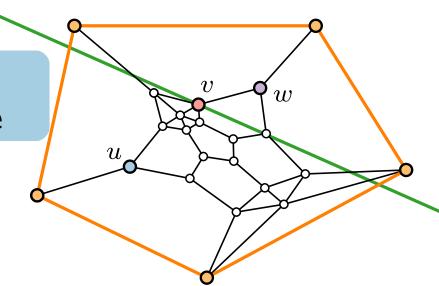
Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side



Property 1. Let $v \in V$ free, ℓ line through v.

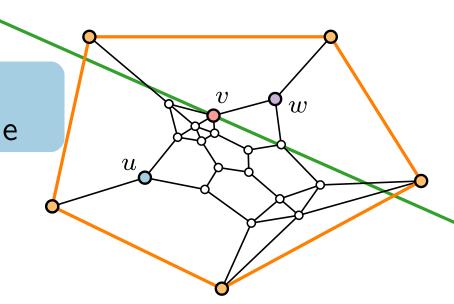
 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .



Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

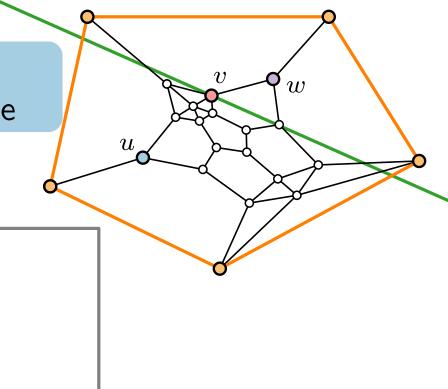
Otherwise, all forces to same side . . .



Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

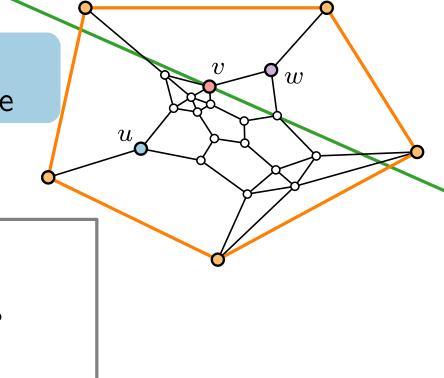
Otherwise, all forces to same side . . .



Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

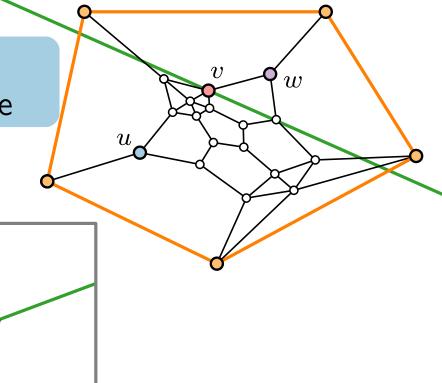
Otherwise, all forces to same side . . .



Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

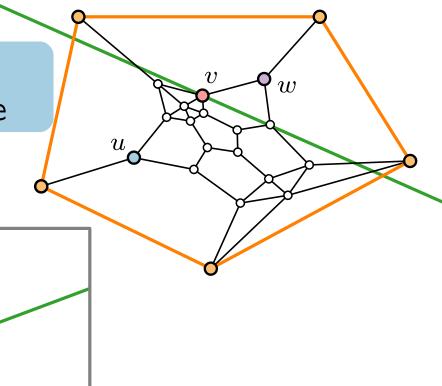
Otherwise, all forces to same side . . .



Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

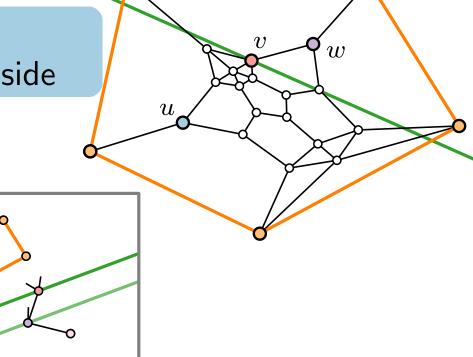
Otherwise, all forces to same side . . .



Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

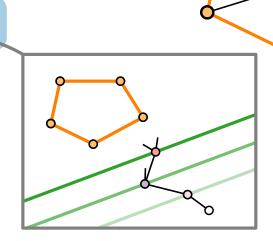
Otherwise, all forces to same side . . .



Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

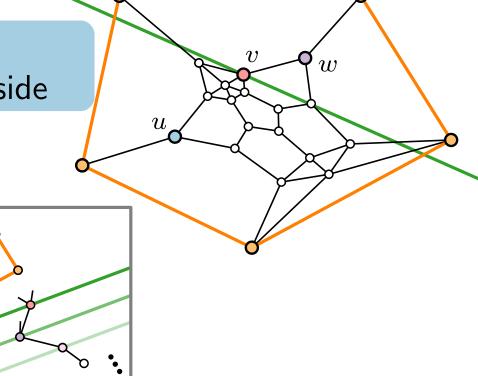
Otherwise, all forces to same side . . .



Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .



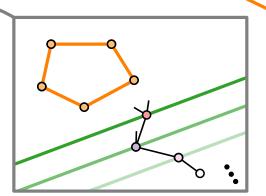
Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

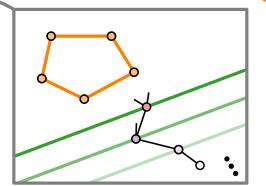
Property 3. Let ℓ be any line.



Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

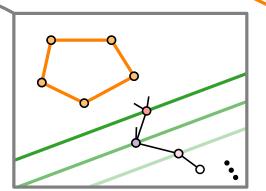
Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ .



Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

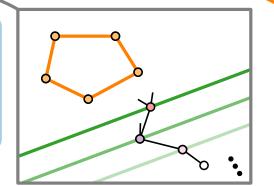
Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ .



Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side Otherwise, all forces to same side ...

Property 2. All free vertices lie inside *C*.

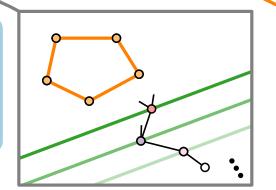
Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.



Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.



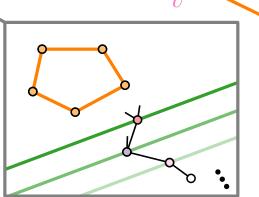
Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

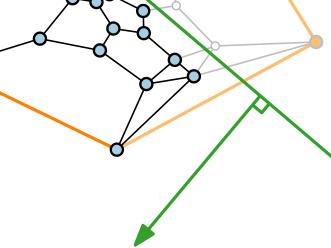
Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

v furthest away from ℓ





Property 1. Let $v \in V$ free, ℓ line through v.

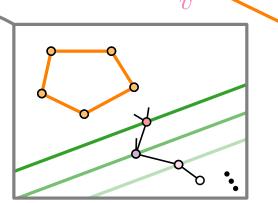
 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

v furthest away from ℓ Pick any vertex u



Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

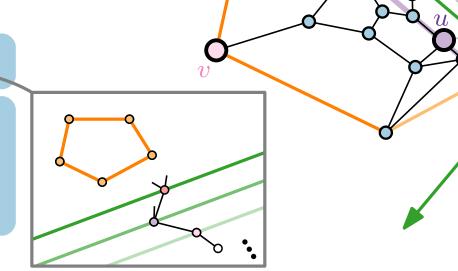
Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ .

Then $G[V_\ell]$ is connected.

 ${\it v}$ furthest away from ℓ Pick any vertex u, ℓ' parallel to ℓ throught u



Property 1. Let $v \in V$ free, ℓ line through v.

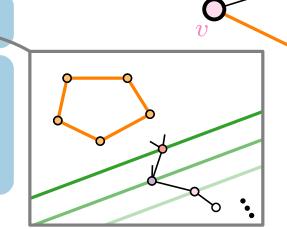
 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

> v furthest away from ℓ Pick any vertex u, ℓ' parallel to ℓ throught uG connected, v not on ℓ'



Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

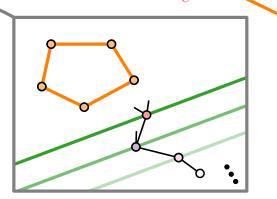
Property 3. Let ℓ be any line.

Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

v furthest away from ℓ

Pick any vertex u, ℓ' parallel to ℓ throught u

G connected, v not on $\ell'\Rightarrow\exists w$ on ℓ' with neighbor further away from ℓ



Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

Property 3. Let ℓ be any line.

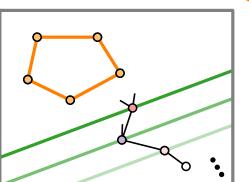
Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

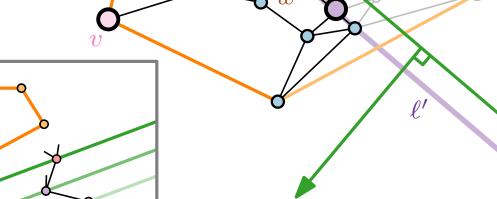
v furthest away from ℓ

Pick any vertex u, ℓ' parallel to ℓ throught u

G connected, v not on $\ell' \Rightarrow \exists w$ on ℓ' with neighbor further away from ℓ

 $\Rightarrow \exists$ path from u to v





Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

Property 3. Let ℓ be any line.

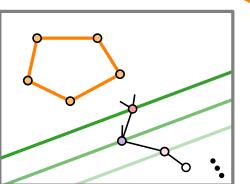
Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

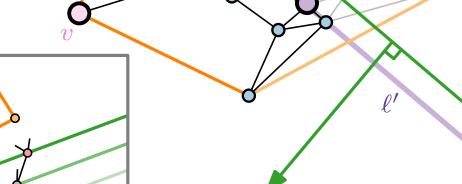
v furthest away from ℓ

Pick any vertex u, ℓ' parallel to ℓ throught u

G connected, v not on $\ell'\Rightarrow \exists w$ on ℓ' with neighbor further away from ℓ

 $\Rightarrow \exists$ path from u to v





Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

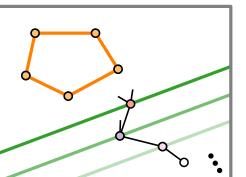
Property 3. Let ℓ be any line.

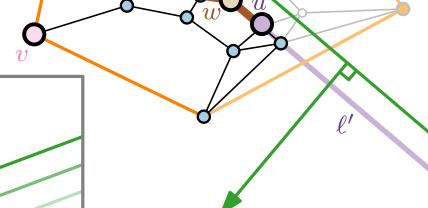
Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

 ${\color{red} v}$ furthest away from ℓ

Pick any vertex u, ℓ' parallel to ℓ throught u

G connected, v not on $\ell' \Rightarrow \exists w$ on ℓ' with neighbor further away from $\ell \Rightarrow \exists$ path from u to v





Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside C.

Property 3. Let ℓ be any line.

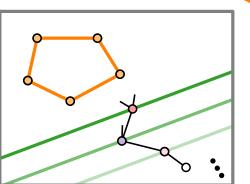
Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

v furthest away from ℓ

Pick any vertex u, ℓ' parallel to ℓ throught u

G connected, v not on $\ell' \Rightarrow \exists w$ on ℓ' with neighbor further away from ℓ

 $\Rightarrow \exists$ path from u to v



Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside C.

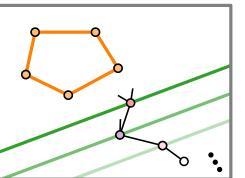
Property 3. Let ℓ be any line.

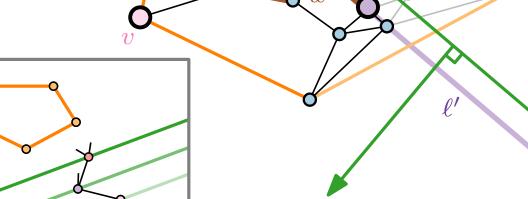
Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

v furthest away from ℓ

Pick any vertex u, ℓ' parallel to ℓ throught u

G connected, v not on $\ell' \Rightarrow \exists w$ on ℓ' with neighbor further away from ℓ $\Rightarrow \exists$ path from u to v





Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside C.

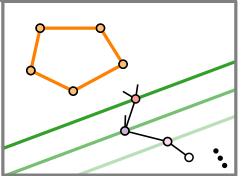
Property 3. Let ℓ be any line.

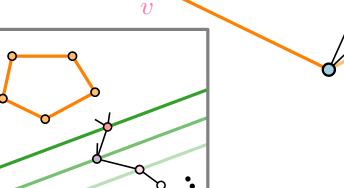
Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

v furthest away from ℓ

Pick any vertex u, ℓ' parallel to ℓ throught u

G connected, v not on $\ell' \Rightarrow \exists w$ on ℓ' with neighbor further away from ℓ $\Rightarrow \exists$ path from u to v





Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

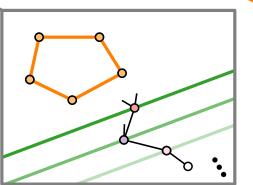
Property 3. Let ℓ be any line.

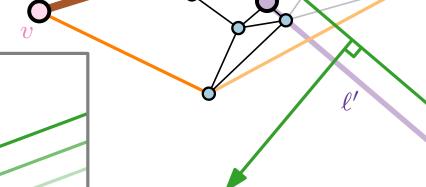
Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

 ${\color{red} v}$ furthest away from ℓ

Pick any vertex u, ℓ' parallel to ℓ throught u

G connected, v not on $\ell'\Rightarrow \exists w$ on ℓ' with neighbor further away from $\ell\Rightarrow \exists$ path from u to v





Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

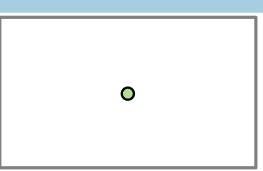
Property 3. Let ℓ be any line.

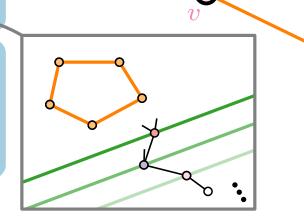
Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

v furthest away from ℓ

Pick any vertex u, ℓ' parallel to ℓ throught u

G connected, v not on $\ell'\Rightarrow \exists w$ on ℓ' with neighbor further away from $\ell\Rightarrow \exists$ path from u to v





Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

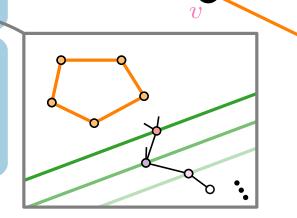
Property 3. Let ℓ be any line.

Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

v furthest away from ℓ

Pick any vertex u, ℓ' parallel to ℓ throught u

G connected, v not on $\ell'\Rightarrow \exists w$ on ℓ' with neighbor further away from $\ell \Rightarrow \exists$ path from u to v



Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

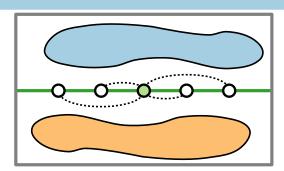
Property 3. Let ℓ be any line.

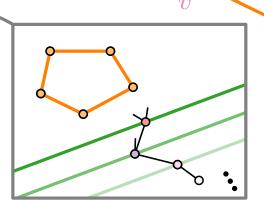
Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

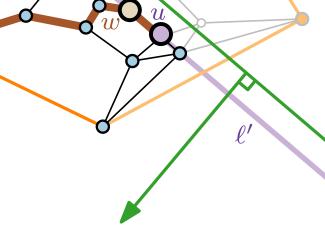
v furthest away from ℓ

Pick any vertex u, ℓ' parallel to ℓ throught u

G connected, v not on $\ell'\Rightarrow \exists w$ on ℓ' with neighbor further away from $\ell\Rightarrow \exists$ path from u to v







Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

Property 3. Let ℓ be any line.

Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

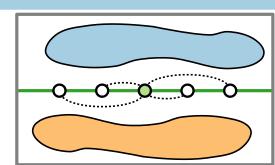
v furthest away from ℓ

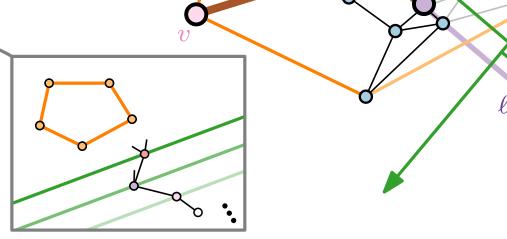
Pick any vertex u, ℓ' parallel to ℓ throught u

G connected, v not on $\ell'\Rightarrow \exists w$ on ℓ' with neighbor further away from $\ell\Rightarrow \exists$ path from u to v

Property 4. No vertex is collinear with all of its neighbors.

Not all vertices collinear





Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

Property 3. Let ℓ be any line.

Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

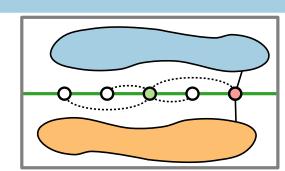
v furthest away from ℓ

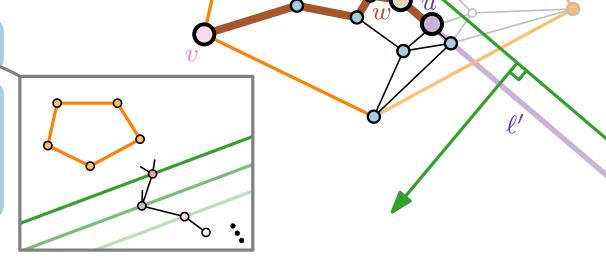
Pick any vertex u, ℓ' parallel to ℓ throught u

G connected, v not on $\ell' \Rightarrow \exists w$ on ℓ' with neighbor further away from $\ell \Rightarrow \exists$ path from u to v

Property 4. No vertex is collinear with all of its neighbors.

Not all vertices collinear





Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

Property 3. Let ℓ be any line.

Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

v furthest away from ℓ

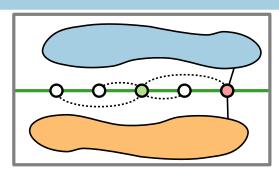
Pick any vertex u, ℓ' parallel to ℓ throught u

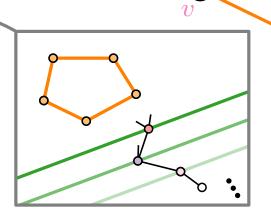
G connected, v not on $\ell' \Rightarrow \exists w$ on ℓ' with neighbor further away from ℓ

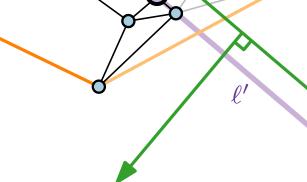
 $\Rightarrow \exists$ path from u to v

Property 4. No vertex is collinear with all of its neighbors.

Not all vertices collinear G 3-connected







Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

Property 3. Let ℓ be any line.

Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

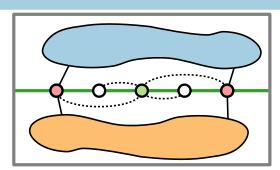
v furthest away from ℓ

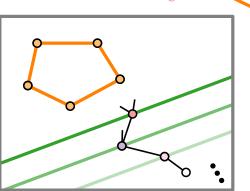
Pick any vertex u, ℓ' parallel to ℓ throught u

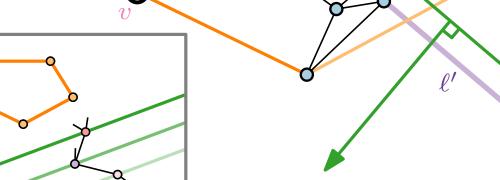
G connected, v not on $\ell' \Rightarrow \exists w$ on ℓ' with neighbor further away from ℓ $\Rightarrow \exists$ path from u to v

Property 4. No vertex is collinear with all of its neighbors.

Not all vertices collinear G 3-connected







Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

Property 3. Let ℓ be any line.

Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

v furthest away from ℓ

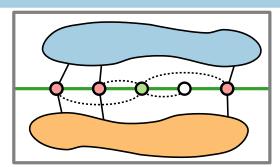
Pick any vertex u, ℓ' parallel to ℓ throught u

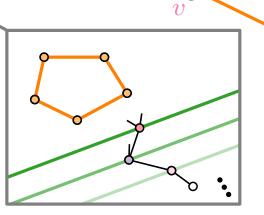
G connected, v not on $\ell' \Rightarrow \exists w$ on ℓ' with neighbor further away from ℓ

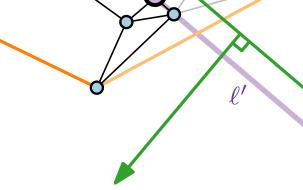
 $\Rightarrow \exists$ path from u to v

Property 4. No vertex is collinear with all of its neighbors.

Not all vertices collinear G 3-connected







Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

Property 3. Let ℓ be any line.

Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

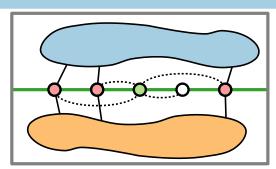
v furthest away from ℓ

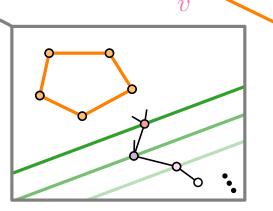
Pick any vertex u, ℓ' parallel to ℓ throught u

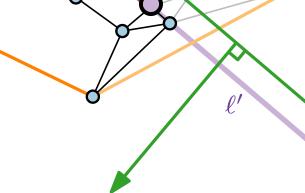
G connected, v not on $\ell' \Rightarrow \exists w$ on ℓ' with neighbor further away from ℓ

 $\Rightarrow \exists$ path from u to v

Property 4. No vertex is collinear with all of its neighbors.







Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

Property 3. Let ℓ be any line.

Let V_{ℓ} be all vertices on one side of ℓ .

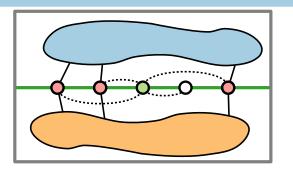
Then $G[V_{\ell}]$ is connected.

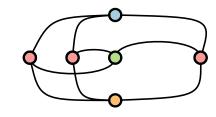
 ${\color{red} v}$ furthest away from ℓ

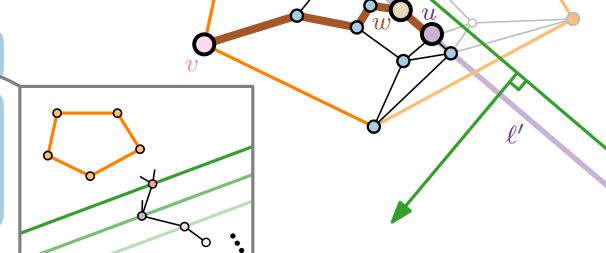
Pick any vertex u, ℓ' parallel to ℓ throught u

G connected, v not on $\ell'\Rightarrow \exists w$ on ℓ' with neighbor further away from $\ell \Rightarrow \exists$ path from u to v

Property 4. No vertex is collinear with all of its neighbors.







Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

Property 3. Let ℓ be any line.

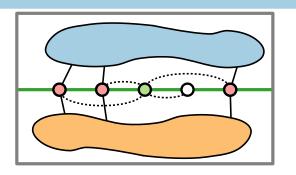
Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

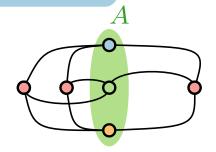
v furthest away from ℓ

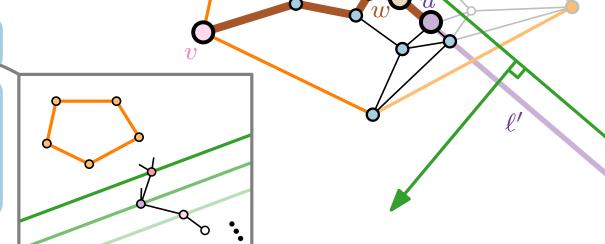
Pick any vertex u, ℓ' parallel to ℓ throught u

G connected, v not on $\ell'\Rightarrow \exists w$ on ℓ' with neighbor further away from $\ell\Rightarrow \exists$ path from u to v

Property 4. No vertex is collinear with all of its neighbors.







Property 1. Let $v \in V$ free, ℓ line through v.

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Otherwise, all forces to same side . . .

Property 2. All free vertices lie inside *C*.

Property 3. Let ℓ be any line.

Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

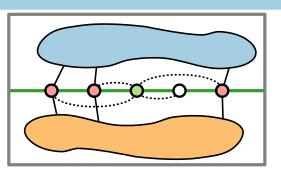
v furthest away from ℓ

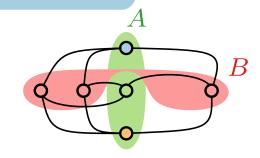
Pick any vertex u, ℓ' parallel to ℓ throught u

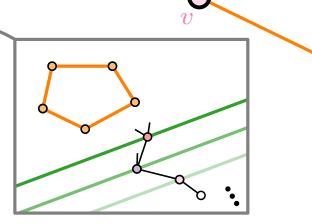
G connected, v not on $\ell'\Rightarrow \exists w$ on ℓ' with neighbor further away from ℓ

 $\Rightarrow \exists$ path from u to v

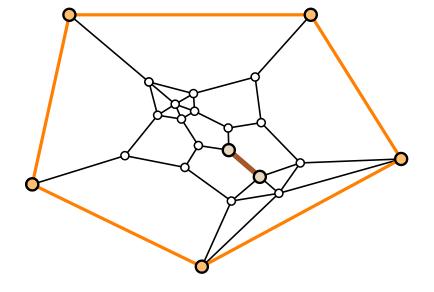
Property 4. No vertex is collinear with all of its neighbors.



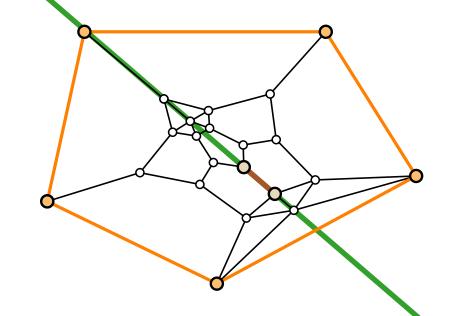




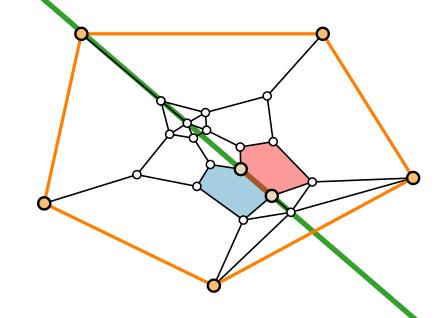
Lemma. Let $uv \in E$ be a non-boundary edge,



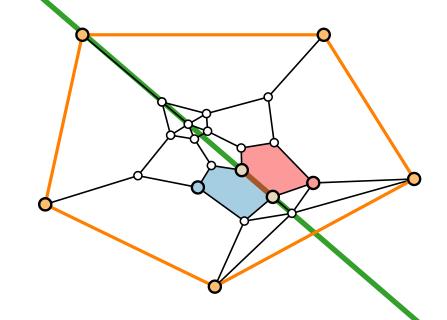
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv.



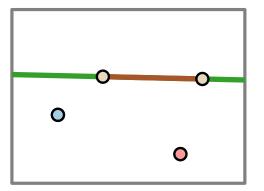
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

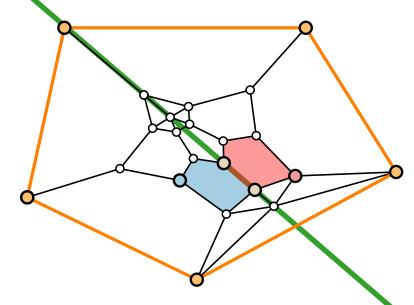


Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

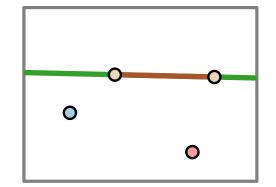


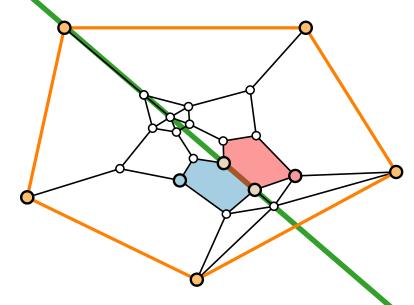
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .



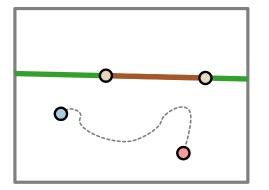


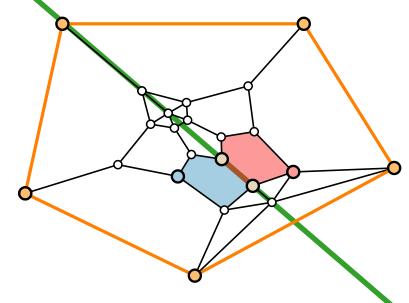
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .





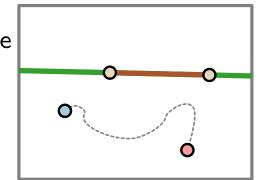
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

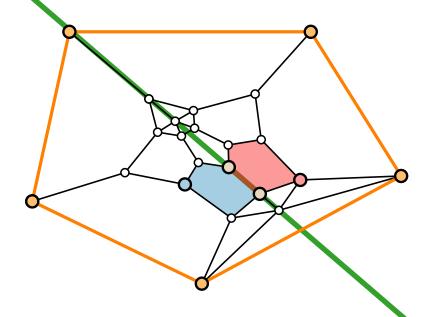




Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

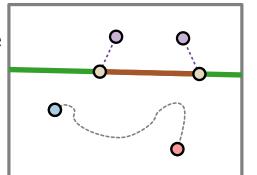
Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

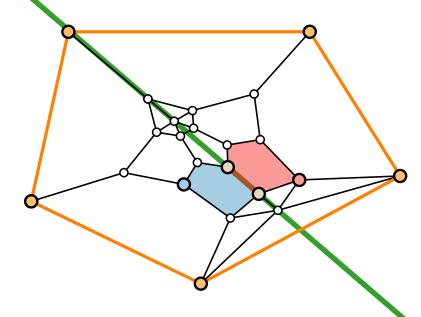




Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

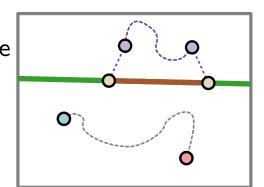
Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

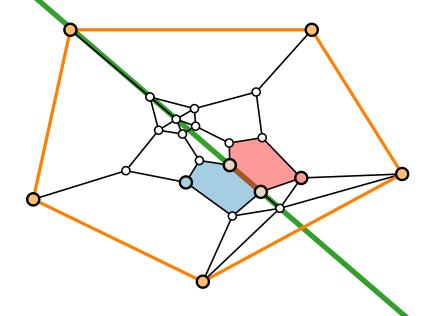




Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

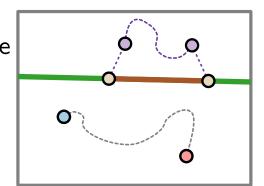
Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

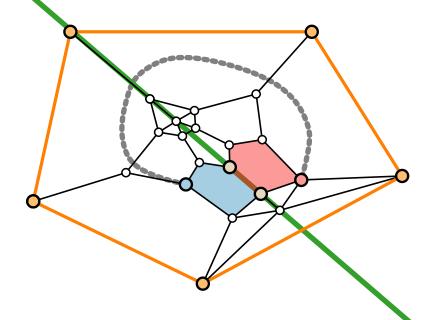




Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

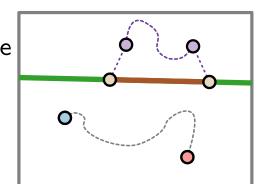
Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

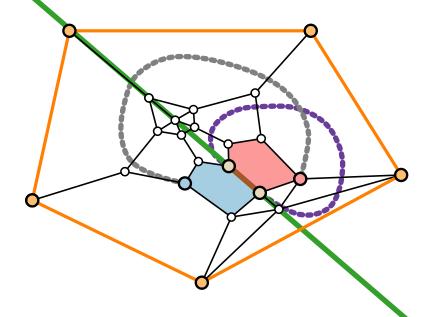




Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

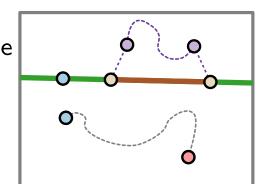
Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

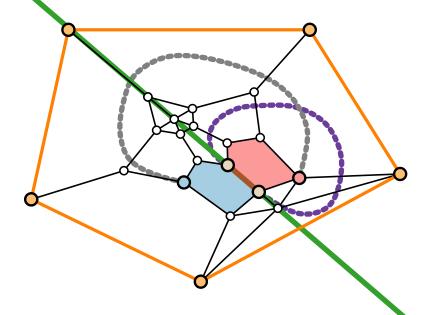




Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

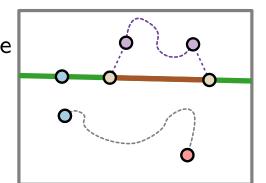


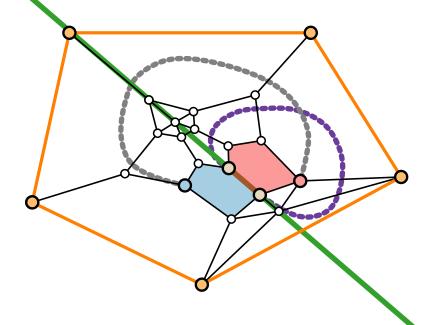


Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

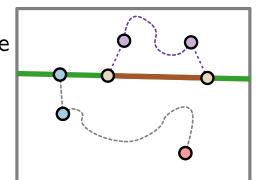


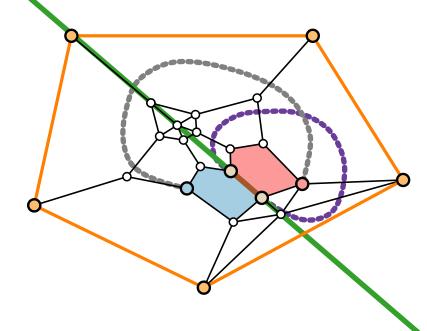


Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.



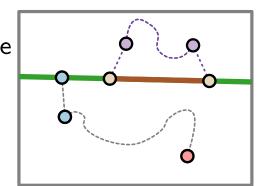


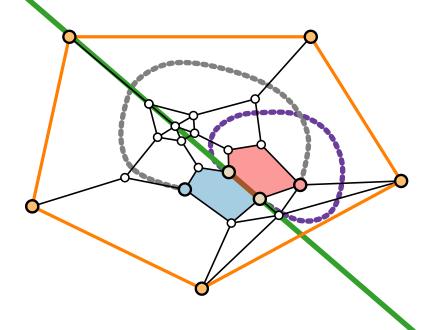
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

Property 4. No vertex is collinear with all of its neighbors.



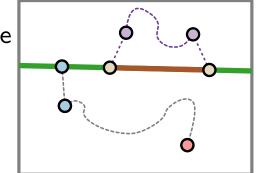


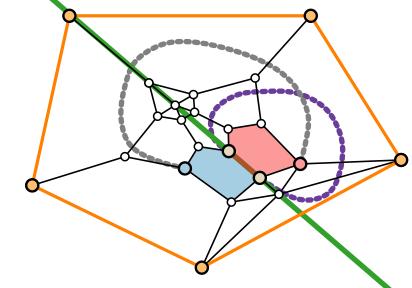
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

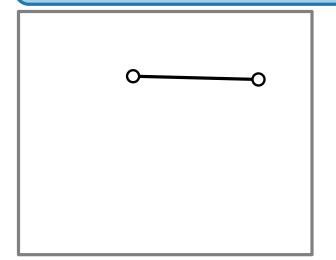
Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

Property 4. No vertex is collinear with all of its neighbors.





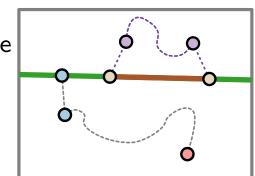


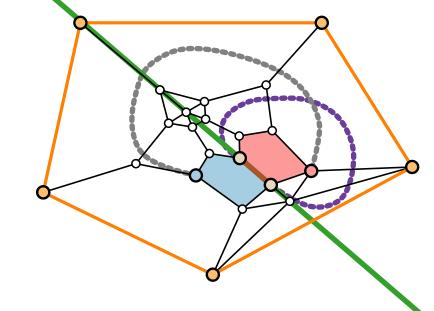
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

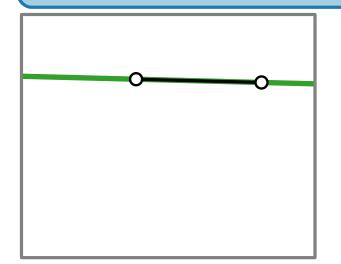
Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

Property 4. No vertex is collinear with all of its neighbors.





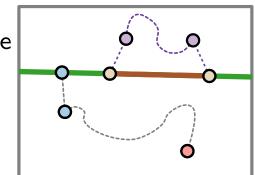


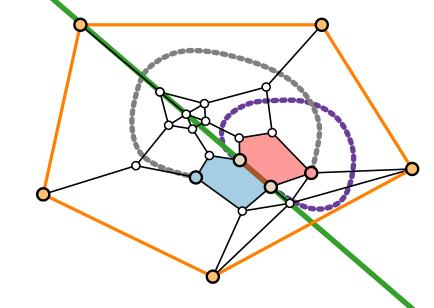
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

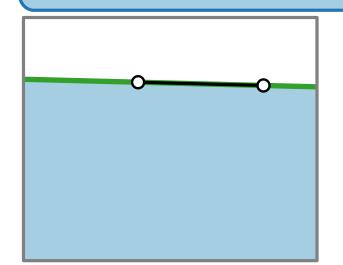
Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

Property 4. No vertex is collinear with all of its neighbors.





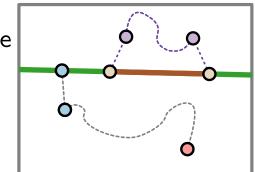


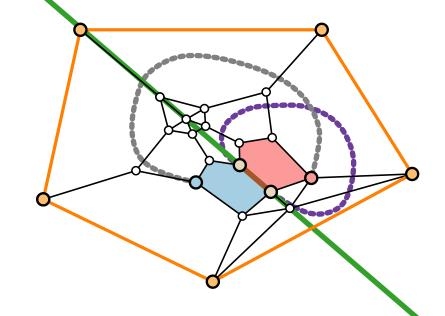
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

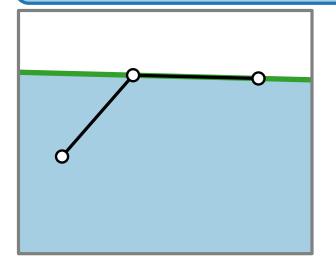
Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

Property 4. No vertex is collinear with all of its neighbors.





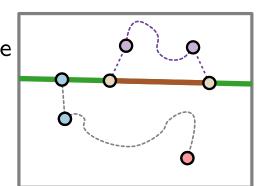


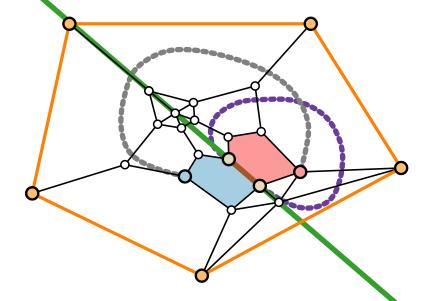
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

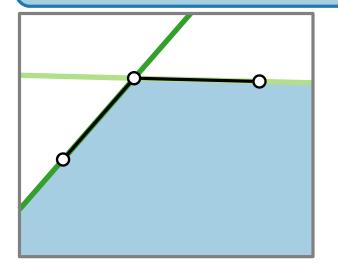
Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

Property 4. No vertex is collinear with all of its neighbors.





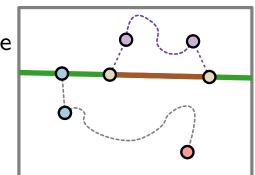


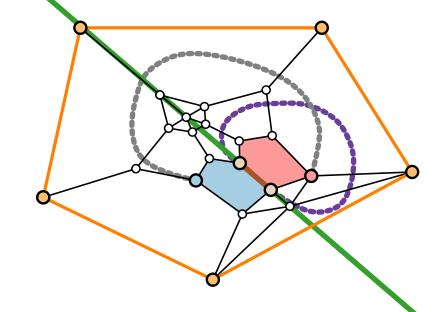
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

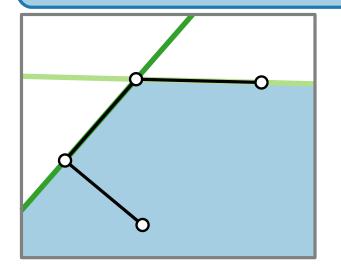
Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

Property 4. No vertex is collinear with all of its neighbors.





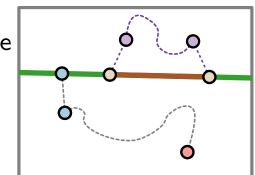


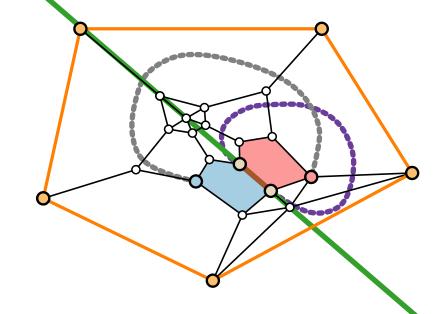
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

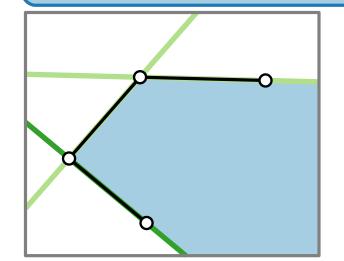
Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

Property 4. No vertex is collinear with all of its neighbors.





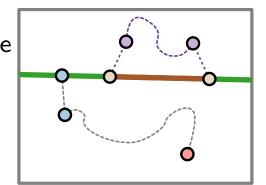


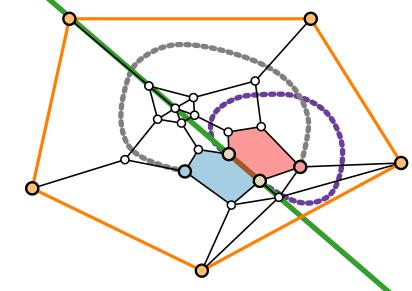
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

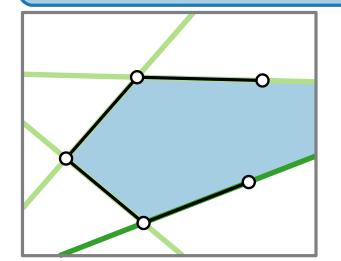
Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

Property 4. No vertex is collinear with all of its neighbors.





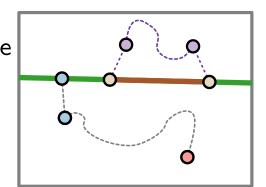


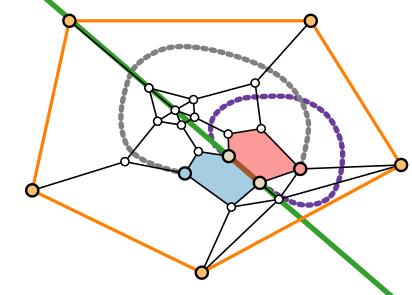
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

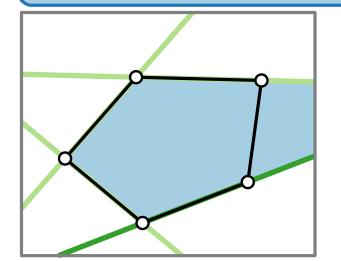
Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

Property 4. No vertex is collinear with all of its neighbors.





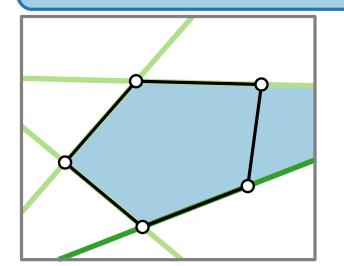


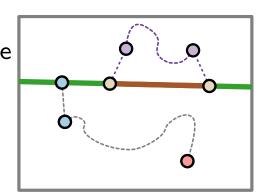
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

Property 4. No vertex is collinear with all of its neighbors.





Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v.

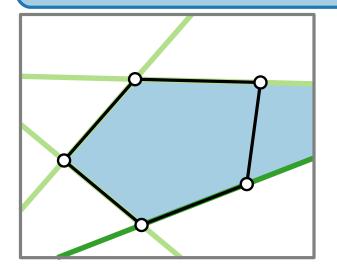
 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

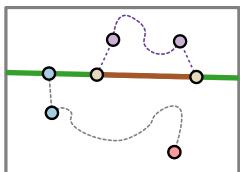
Property 3. Let ℓ be any line.

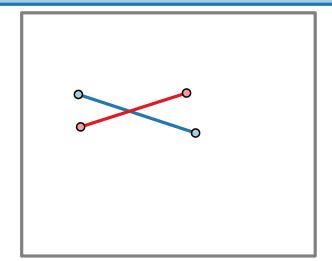
Let V_{ℓ} be all vertices on one side of ℓ .

Then $G[V_{\ell}]$ is connected.

Property 4. No vertex is collinear with all of its neighbors.







Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $\mathbf{v} \in V$ free, ℓ line through \mathbf{v} .

 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

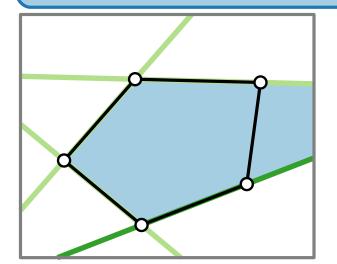
Property 3. Let ℓ be any line.

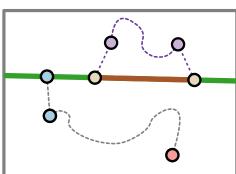
Let V_{ℓ} be all vertices on one side of ℓ .

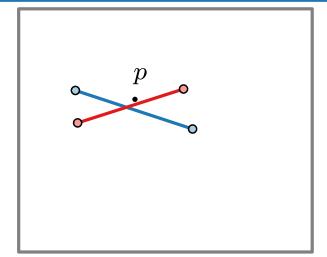
Then $G[V_{\ell}]$ is connected.

Property 4. No vertex is collinear with all of its neighbors.

Lemma. All faces are strictly convex.







Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

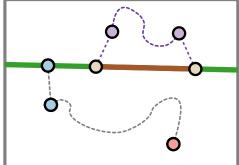
Property 1. Let $v \in V$ free, ℓ line through v.

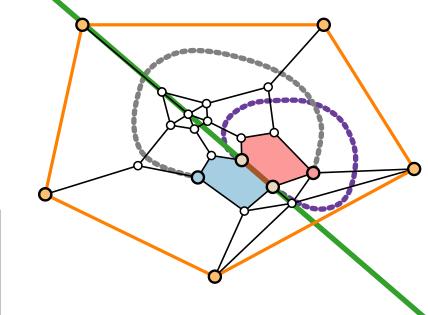
 $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ .

Then $G[V_\ell]$ is connected.

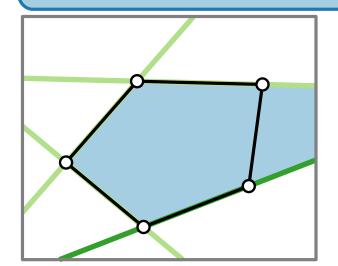
Property 4. No vertex is collinear with all of its neighbors.

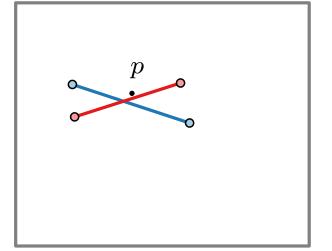




Lemma. All faces are strictly convex.

Lemma. The drawing is planar.



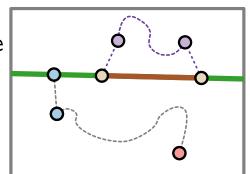


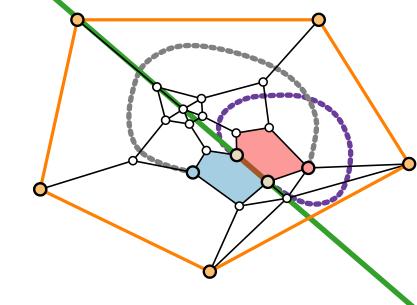
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

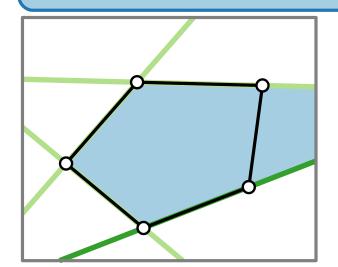
Property 4. No vertex is collinear with all of its neighbors.

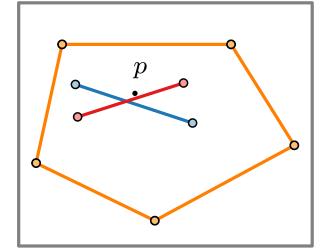




Lemma. All faces are strictly convex.

Lemma. The drawing is planar.



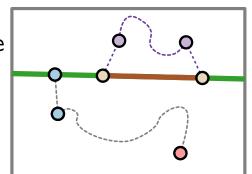


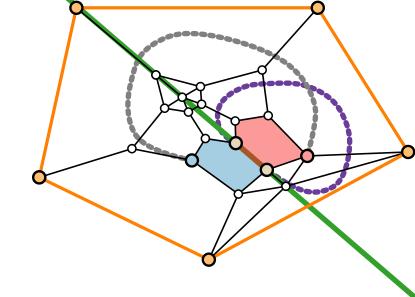
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

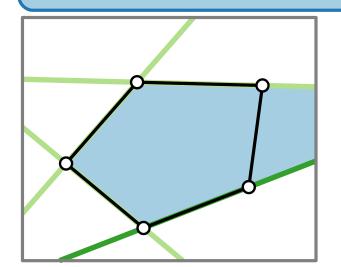
Property 4. No vertex is collinear with all of its neighbors.

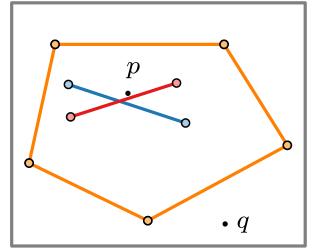




Lemma. All faces are strictly convex.

Lemma. The drawing is planar.



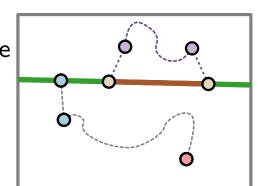


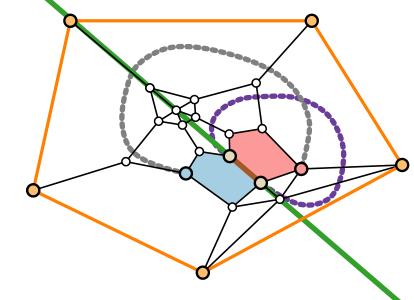
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

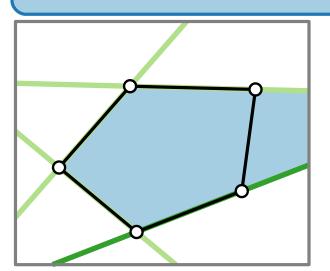
Property 4. No vertex is collinear with all of its neighbors.



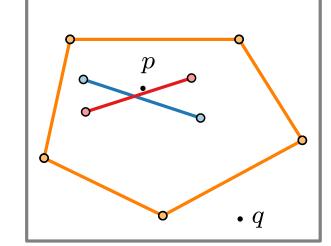


Lemma. All faces are strictly convex.

Lemma. The drawing is planar.



p inside two faces **Property 2.** All free vertices lie inside C.

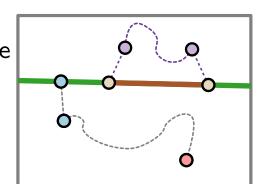


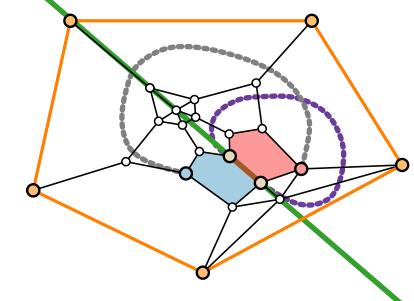
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

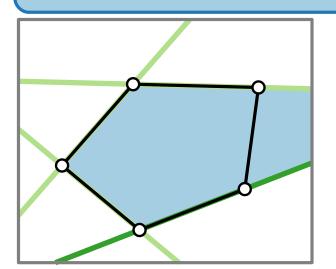
Property 4. No vertex is collinear with all of its neighbors.



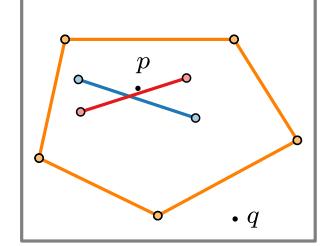


Lemma. All faces are strictly convex.

Lemma. The drawing is planar.



p inside two faces **Property 2.** All free vertices lie inside C. $\Rightarrow q$ in one face

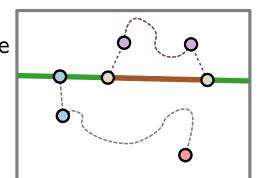


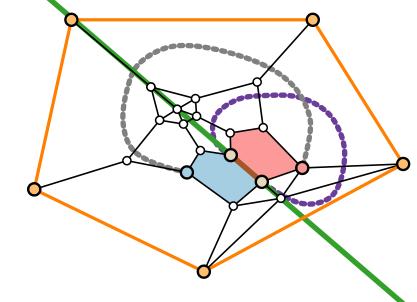
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

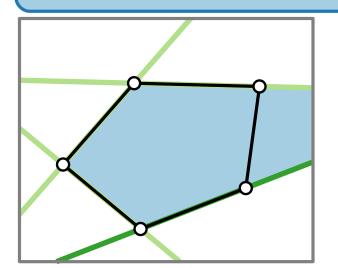
Property 4. No vertex is collinear with all of its neighbors.



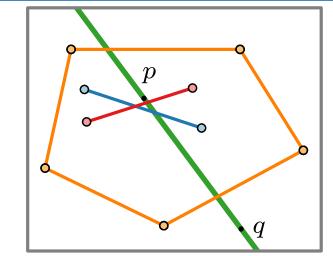


Lemma. All faces are strictly convex.

Lemma. The drawing is planar.



p inside two faces **Property 2.** All free vertices lie inside C. $\Rightarrow q$ in one face

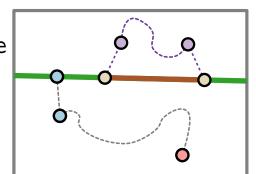


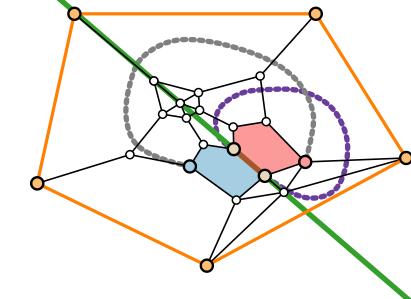
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

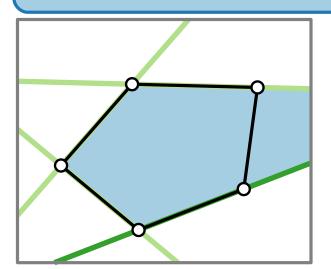
Property 4. No vertex is collinear with all of its neighbors.



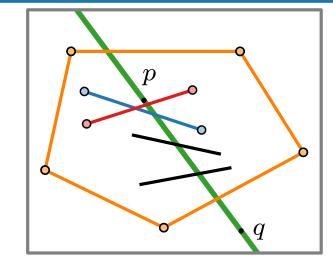


Lemma. All faces are strictly convex.

Lemma. The drawing is planar.



p inside two faces **Property 2.** All free vertices lie inside C. $\Rightarrow q$ in one face

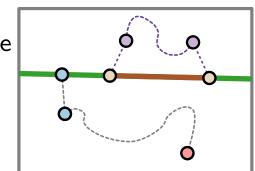


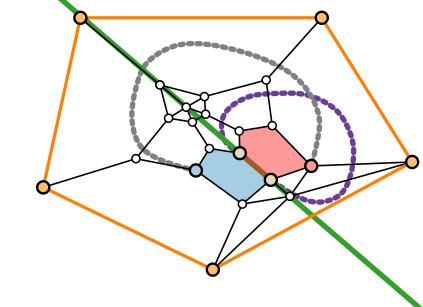
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

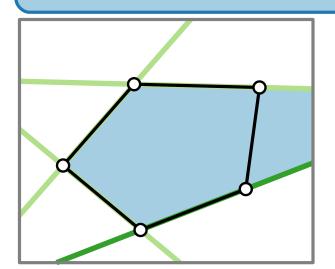
Property 4. No vertex is collinear with all of its neighbors.



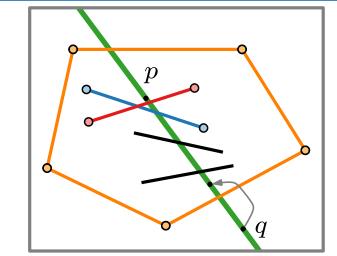


Lemma. All faces are strictly convex.

Lemma. The drawing is planar.



Property 2. All free vertices lie inside C. $\Rightarrow q$ in one face



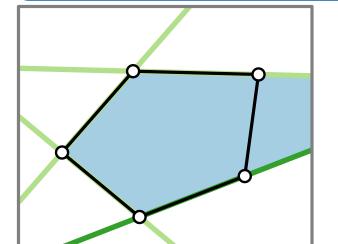
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

Property 4. No vertex is collinear with all of its neighbors.

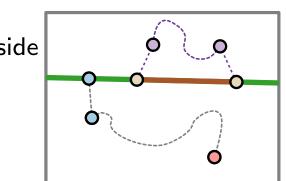
Lemma. All faces are strictly convex.

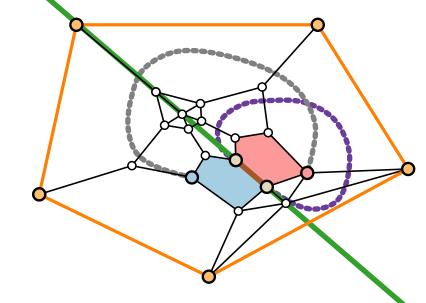


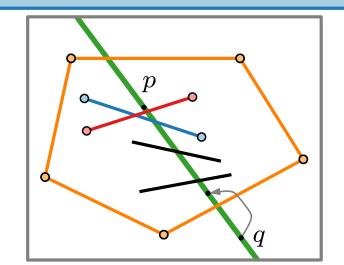
Property 2. All free vertices lie inside C. $\Rightarrow q$ in one face

jumping over edge \rightarrow #faces the same

p inside two faces







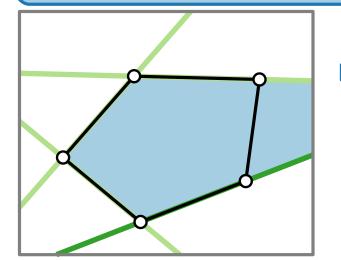
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

Property 4. No vertex is collinear with all of its neighbors.

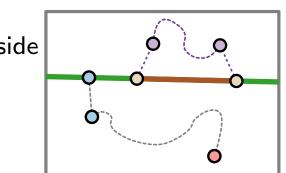
Lemma. All faces are strictly convex.

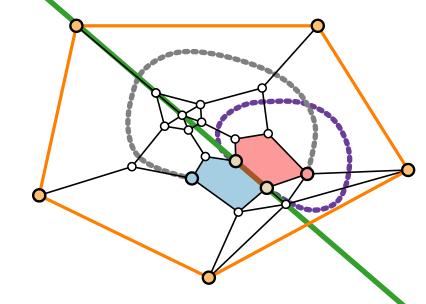


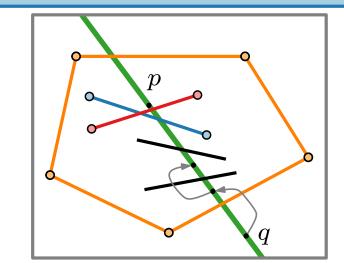
Property 2. All free vertices lie inside C. $\Rightarrow q$ in one face

 $\Rightarrow q$ in one race jumping over edge \Rightarrow #faces the same

p inside two faces







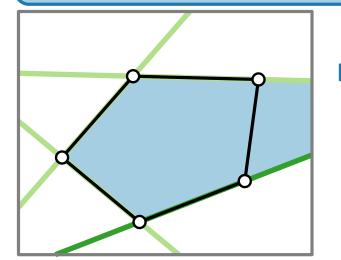
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

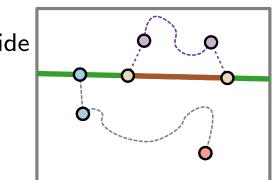
Property 4. No vertex is collinear with all of its neighbors.

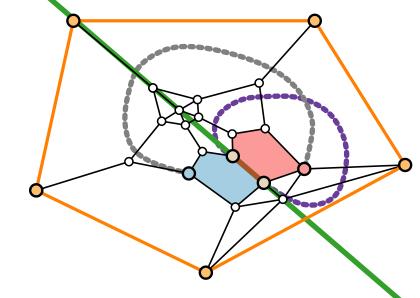
Lemma. All faces are strictly convex.

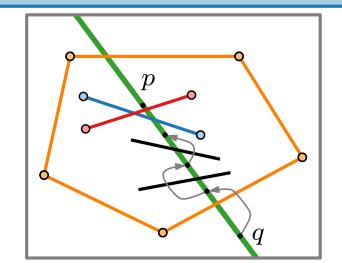


Property 2. All free vertices lie inside *C*. $\Rightarrow q$ in one face

p inside two faces jumping over edge \rightarrow #faces the same







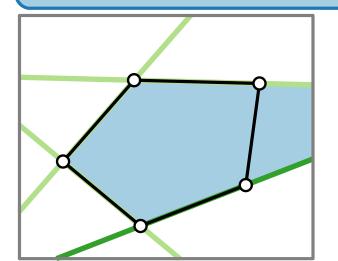
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

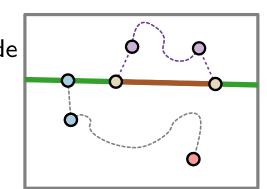
Property 4. No vertex is collinear with all of its neighbors.

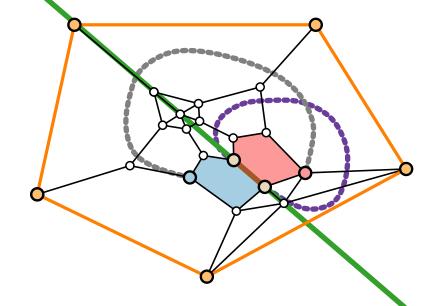
Lemma. All faces are strictly convex.

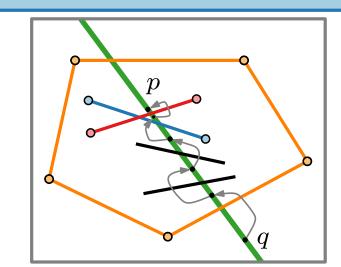


Property 2. All free vertices lie inside *C*. $\Rightarrow q$ in one face

p inside two faces jumping over edge \rightarrow #faces the same







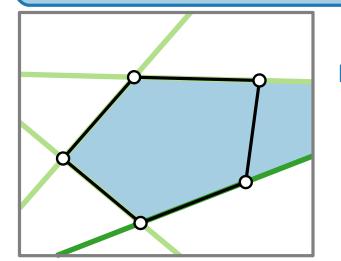
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

Property 4. No vertex is collinear with all of its neighbors.

Lemma. All faces are strictly convex.



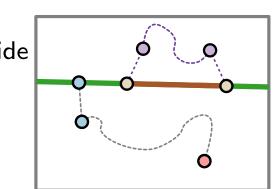
Property 2. All free vertices lie inside C.

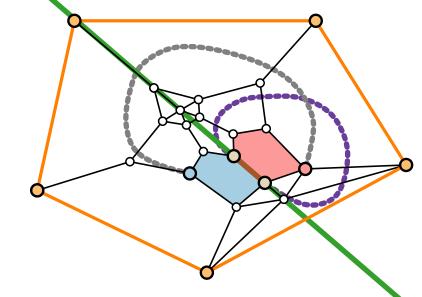
 $\Rightarrow q$ in one face jumping over edge

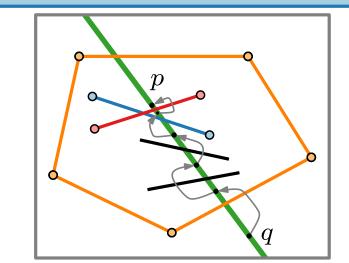
p inside two faces

 \rightarrow #faces the same

 $\Rightarrow p$ inside one face







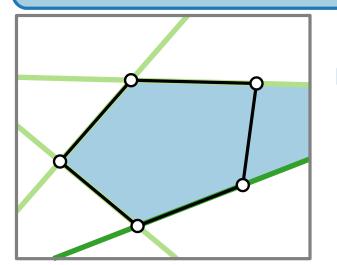
Lemma. Let $uv \in E$ be a non-boundary edge, ℓ line through uv. Then the two faces f_1, f_2 incident to uv lie completely on opposite sides of ℓ .

Property 1. Let $v \in V$ free, ℓ line through v. $\exists uv \in E$ on one side of $\ell \Rightarrow \exists vw \in E$ on other side

Property 3. Let ℓ be any line. Let V_{ℓ} be all vertices on one side of ℓ . Then $G[V_{\ell}]$ is connected.

Property 4. No vertex is collinear with all of its neighbors.

Lemma. All faces are strictly convex.



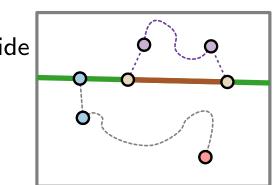
Property 2. All free vertices lie inside C.

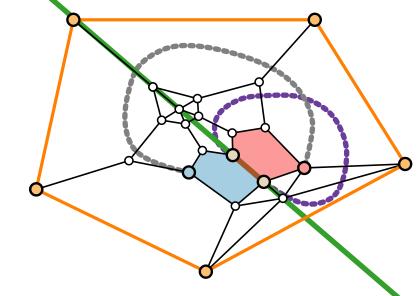
 $\Rightarrow q$ in one face jumping over edge

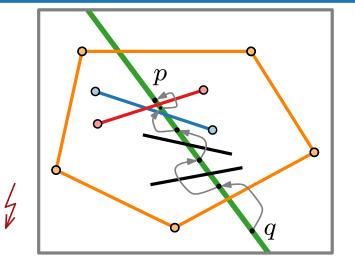
p inside two faces

 \rightarrow #faces the same

 $\Rightarrow p$ inside one face







Literature

Main sources:

- [GD Ch. 10] Force-Directed Methods
- [DG Ch. 4] Drawing on Physical Analogies

Original papers:

- [Eades 1984] A heuristic for graph drawing
- [Fruchterman, Reingold 1991] Graph drawing by force-directed placement
- [Tutte 1963] How to draw a graph