Visualization of Graphs

Lecture 11:
The Crossing Lemma
and its Applications
\section*{Part I:}
Definition and Hanani-Tutte

Jonathan Klawitter

Crossing Number and Topological Graphs

For a graph G, the crossing number $\operatorname{cr}(G)$ is the smallest number of crossings in a drawing of G (in the plane).

Example. $\operatorname{cr}\left(K_{3,3}\right)=1$

In a crossing-minimal drawing of G
■ no edge is self-intersecting,
■ edges with common endpoints do not intersect,

■ two edges intersect at most once,
\square and wlog, at most two edges intersect at the same point.

Such a drawing is called a topological drawing of G.
so terminates

Hanani-Tutte Theorem

Theorem.

[Hanani'43, Tutte'70]

A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

Proof Sketch.

Hanani showed that every drawing of K_{5} and $K_{3,3}$ must have a pair of edges that crosses an odd number of times.
Every non-planar graph has K_{5} or $K_{3,3}$ as minor, so there are two paths that cross an odd number of times.
Hence, there must be two edges on these paths that cross an odd number of times.

Hanani-Tutte Theorem

Theorem.

[Hanani'43, Tutte'70]

A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number $\operatorname{ocr}(G)$ of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $\quad \operatorname{ocr}(G)=0 \Rightarrow \operatorname{cr}(G)=0$
Is $\operatorname{ocr}(G)=\operatorname{cr}(G) ? \quad$ No!
Theorem.
[Pelsmajer, Schaefer \& Š̌efankovič '08, Tóth '08]
There is a graph G with $\operatorname{ocr}(G)<\operatorname{cr}(G) \leq 10$

Theorem.

[Pach \& Tóth '00]
If Γ is a drawing of G and E_{0} is the set of edges with only even numbers of crossings in Γ, then G can be drawn such that no edge in E_{0} is involved in any crossings and no new :

Hanani-Tutte Theorem

Theorem.

[Hanani'43, Tutte'70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number $\operatorname{ocr}(G)$ of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $\quad \operatorname{ocr}(G)=0 \Rightarrow \operatorname{cr}(G)=0$
Is $\operatorname{ocr}(G)=\operatorname{cr}(G) ? \quad$ No!
Theorem.
[Pelsmajer, Schaefer \& Š̌efankovič '08, Tóth '08]
There is a graph G with $\operatorname{ocr}(G)<\operatorname{cr}(G) \leq 10$

Theorem. [Pelsmajer, Schaefer \& Š̌efankovič '08] [Pach \& Tóth '00]

If Γ is a drawing of G and E_{0} is the set of edges with only even numbers of crossings in Γ, then G can be drawn such that no edge in E_{0} is involved in any crossings and no new pairs of edges cross.

Hanani-Tutte Theorem

Theorem.

[Hanani'43, Tutte'70]

A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number $\operatorname{ocr}(G)$ of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $\quad \operatorname{ocr}(G)=0 \Rightarrow \operatorname{cr}(G)=0$
Is $\operatorname{ocr}(G)=\operatorname{cr}(G) ? \quad$ No!

Theorem.
 [Pelsmajer, Schaefer \& Š̌efankovič '08, Tóth '08]

There is a graph G with $\operatorname{ocr}(G)<\operatorname{cr}(G) \leq 10$
The pairwise crossing number $\operatorname{pcr}(G)$ of G is the smallest number of pairs of edges that cross in a drawing of G.
By definition ocr $(G) \leq \operatorname{pcr}(G) \leq \operatorname{cr}(G)$
Is $\operatorname{pcr}(G)=\operatorname{cr}(G) ? \quad$ Open!

Visualization of Graphs

Lecture 11:
The Crossing Lemma and its Applications
Part II:
Computation \& Variations

Jonathan Klawitter

Computing the Crossing Number

- Computing $\operatorname{cr}(G)$ is NP-hard. ... even if G is a planar graph plus one edge!
[Garey \& Johnson '83] [Cabello \& Mohar '08]

■ $\operatorname{cr}(G)$ often unknown, only conjectures exist
■ for K_{n} it is only known for up to ~ 12 vertices

- In practice, $\operatorname{cr}(G)$ is often not computed directly but rather drawings of G are optimized with
■ force-based methods,
■ multidimensional scaling,
■ heuristics, ...

> For exact computations, check out http://crossings.uos.de!

■ $\operatorname{cr}(G)$ is a measure of how far G is from being planar

- Planarization, where we replace crossings with dummy vertices, also uses only heuristics

Other Crossing Numbers

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)

■ One-sided crossing minimization ...

- Fixed Linear Crossing Number

■ In book embeddings

- Crossings of edge bundles

■ On other surfaces, like on donuts

- Weighted crossings

- Crossing minimization is NP-hard for most of the variants

Rectilinear Crossing Number

Definition.

For a graph G, the rectilinear (straight-line) crossing number $\overline{\operatorname{cr}}(G)$ is the smallest number of crossings in a straight-line drawing of G.

Even more ...

Lemma 1. [Bienstock, Dean '93]

For $k \geq 4$, there exists a graph G_{k} with $\operatorname{cr}\left(G_{k}\right)=4$ and $\overline{\operatorname{cr}}\left(G_{k}\right) \geq k$.

■ Each straight-line drawing of G_{1} has at least one crossing of the following types:

■ From G_{1} to G_{k} do

Separation.
$\operatorname{cr}\left(K_{8}\right)=18$, but $\overline{\operatorname{cr}}\left(K_{8}\right)=19$.

Visualization of Graphs

Lecture 11:
The Crossing Lemma
and its Applications
Part III:
First Bounds

Jonathan Klawitter

Bounds for Complete Graphs

Theorem. Conjecture.
[Guy '60]
$\operatorname{cr}\left(K_{n}\right) \ll \frac{1}{4}\left\lceil\frac{n}{2}\right\rceil\left\lceil\frac{n-1}{2}\right\rceil\left\lceil\frac{n-2}{2}\right\rceil\left\lceil\frac{n-3}{2}\right\rceil=\frac{3}{8}\binom{n}{4}+O\left(n^{3}\right)$
Bound is sharp for $n \leq 12$.
Theorem. Conjecture. [Zarankiewicz '54, Urbaník '55]
$\operatorname{cr}\left(K_{m, n}\right) \ll \frac{1}{4}\left\lceil\frac{n}{2}\right\rceil\left\lceil\frac{n-1}{2}\right\rceil\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{m-1}{2}\right\rceil$
Turán's brick factory problem (1944)

Bounds for Complete Graphs

Theorem. Conjecture.
$\operatorname{cr}\left(K_{n}\right) \ll \frac{1}{4}\left\lceil\frac{n}{2}\right\rceil\left\lceil\frac{n-1}{2}\right\rceil\left\lceil\frac{n-2}{2}\right\rceil\left\lceil\frac{n-3}{2}\right\rceil=\frac{3}{8}\binom{n}{4}+O\left(n^{3}\right)$
Bound is sharp for $n \leq 12$.

[Zarankiewicz '54, Urbaník '55]

Theorem. Conjecture.

$\operatorname{cr}\left(K_{m, n}\right) \ll \frac{1}{4}\left\lceil\frac{n}{2}\right\rceil\left\lceil\frac{n-1}{2}\right\rceil\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{m-1}{2}\right\rceil$

Theorem.

[Lovász et al. '04, Aichholzer et al. '06]
$\left(\frac{3}{8}+\varepsilon\right)\binom{n}{4}+O\left(n^{3}\right)<\overline{\operatorname{cr}}\left(K_{n}\right)<0.3807\binom{n}{4}+O\left(n^{3}\right)$
Exact numbers are known for $n \leq 27$.
Check out http://www.ist.tugraz.at/staff/aichholzer/crossings.html!

First Lower Bounds on $\operatorname{cr}(G)$

Lemma 2.

For a graph G with n vertices and m edges,

$$
\operatorname{cr}(G) \geq m-3 n+6
$$

Proof.

- Consider a drawing of G with $\operatorname{cr}(G)$ crossings.

■ Obtain a graph H by turning crossings into dummy vertices.

- H has $n+\operatorname{cr}(G)$ vertices and $m+2 \operatorname{cr}(G)$ edges.

■ H is planar, so

$$
m+2 \operatorname{cr}(G) \leq 3(n+\operatorname{cr}(G))-6
$$

First Lower Bounds on $\operatorname{cr}(G)$

Lemma 3.

For a graph G with n vertices and m edges,

$$
\operatorname{cr}(G) \geq r\binom{\lfloor m / r\rfloor}{ 2} \in \Omega\left(\frac{m^{2}}{n}\right)
$$

Consider this bound for graphs with $\Theta(n)$ and $\Theta\left(n^{2}\right)$ many edges.
where $r \leq 3 n-6$ is the maximum number of edges in a planar subgraph of G.

Proof.

■ Take $\lfloor m / r\rfloor$ edge-disjoint subgraphs of G with r edges.
■ In the best case, they are all planar.
■ For each pair G_{i}, G_{j}, any edge of G_{j} induces at least one crossings with G_{i}. (If not, swap edges to reduce $\operatorname{cr}\left(G_{i}\right)$.)

Visualization of Graphs

Lecture 11:
The Crossing Lemma and its Applications

Part IV:

The Crossing Lemma

Jonathan Klawitter

The Crossing Lemma

- 1973 Erdős and Guy conjectured that $\operatorname{cr}(G) \in \Omega\left(\frac{m^{3}}{n^{2}}\right)$.

■ In 1982 Leighton and, indepedently, Ajtai, Chávtal, Newborn and Szemerédi showed that

$$
\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^{3}}{n^{2}}
$$

■ Bound is asymptotically sharp.

- Result stayed hardly known until Székely in 1997 demonstrated its usefulness.
■ We look at a proof "from THE BOOK" by Chazelle, Sharir and Welz.
\square Factor $\frac{1}{64}$ was later (with intermediate steps) improved to $\frac{1}{29}$ by Ackerman in 2013.

The Crossing Lemma

Crossing Lemma.

For a graph G with n vertices and m edges, $m \geq 4 n$,

$$
\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^{3}}{n^{2}}
$$

Proof.

- Consider a minimal embedding of G.
- Let p be a number in $(0,1)$.
- Keep every vertex of G independently with probability p.
$\square \mathbb{E}\left(n_{p}\right)=p n$ and $\mathbb{E}\left(m_{p}\right)=p^{2} m$

Let G_{p} be the remaining graph.
\square Let n_{p}, m_{p}, X_{p} be the random variables counting the number of verti-

■ $\mathbb{E}\left(X_{p}\right)=p^{4} \operatorname{cr}(G)$
■ $0 \leq \mathbb{E}\left(X_{p}\right)-\mathbb{E}\left(m_{p}\right)+3 \mathbb{E}\left(n_{p}\right)$ $=p^{4} \operatorname{cr}(G)-p^{2} m+3 p n$
$\square \operatorname{cr}(G) \geq \frac{p^{2} m-3 p n}{p^{4}}=\frac{m}{p^{2}}-\frac{3 n}{p^{3}}$ ces/edges/crossings of G_{p}.
■ By Lem 2, $\mathbb{E}\left(X_{p}-m_{p}+3 n_{p}\right) \geq 0$.
\square Set $p=\frac{4 n}{m}$.
$\square \operatorname{cr}(G) \geq \frac{m^{3}}{16 n^{2}}-\frac{3 m^{3}}{64 n^{2}}=\frac{1}{64} \frac{m^{3}}{n^{2}}$

Visualization of Graphs

Lecture 11:
The Crossing Lemma and its Applications

Part V:
Applications

Jonathan Klawitter

Application 1: Point-Line Incidences

\square For points $P \subset \mathbb{R}^{2}$ and lines \mathcal{L}, $I(P, \mathcal{L})=$ number of point-line incidences in (P, \mathcal{L}).

■ Define $I(n, k)=\max _{|P|=n,|\mathcal{L}|=k} I(P, \mathcal{L})$.

- For example: $I(4,4)=9$

Theorem 1.
[Szemerédi, Trotter '83, Székely '97]
$I(n, k) \leq c\left(n^{2 / 3} k^{2 / 3}+n+k\right)$.

Proof.

G

- $\operatorname{cr}(G) \leq k^{2}$

■ points on $l=1+$ \# edges on l
■ $I(n, k)-k \leq m$
■ Crossing Lemma: $\frac{1}{64} \frac{m^{3}}{n^{2}} \leq \operatorname{cr}(G)$
■ $c^{\prime}(I(n, k)-k)^{3} / n^{2} \leq \operatorname{cr}(G) \leq k^{2}$
■ if $m \nsupseteq 4 n$, then $I(n, k)-k \leq 4 n$

Application 2: Unit Distances

For points $P \subset \mathbb{R}^{2}$ define
■ $U(P)=$ number of pairs in P at unit distance and
■ $U(n)=\max _{|P|=n} U(P)$.

Theorem 2.

[Spencer, Szemerédi, Trotter '84, Székely '97] $U(n)<6.7 n^{4 / 3}$

Proof.

Application 2: Unit Distances

For points $P \subset \mathbb{R}^{2}$ define
■ $U(P)=$ number of pairs in P at unit distance and
$\square U(n)=\max _{|P|=n} U(P)$.

Theorem 2.

[Spencer, Szemerédi, Trotter '84, Székely '97]
$U(n)<6.7 n^{4 / 3}$
Proof.

- $U(P) \leq c^{\prime} m$
- $\operatorname{cr}(G) \leq 2 n^{2}$
- $c \frac{U(P)^{3}}{n^{2}} \leq \operatorname{cr}(G) \leq 2 n^{2}$

Application 3: Max. Num. of Crossings in Matchings

Given point set of n points
What is the max. number of crossings in any matching?
Point set spans drawing Γ of K_{n}
We will analyze the number of crossings in a random matching in Γ !
6 crossings

Number of crossings in $\Gamma \geq \overline{\operatorname{cr}}\left(K_{n}\right)>\frac{3}{8}\binom{n}{4}$
Number of edges in $K_{n}:\binom{n}{2}$
Number of potential crossings (all pairs of edges): $\operatorname{pot}\left(K_{n}\right)=\left(\begin{array}{c}n \\ 2 \\ 2\end{array}\right) \approx 3\binom{n}{4}$
Pick two random edges e_{1}, e_{2}

$$
\operatorname{Pr}\left[e_{1} \text { and } e_{2} \operatorname{cross}\right] \geq \overline{\operatorname{cr}}\left(K_{n}\right) / \operatorname{pot}\left(K_{n}\right)>\frac{1}{8}
$$

Fix matching M; it has $\leq n / 2$ edges, so $\binom{n / 2}{2}=\frac{1}{8} n(n-2)$ pairs of edges
By linearity of expectations,
exp. number of crossings in M is $>\frac{1}{8}\binom{n / 2}{2}=\frac{1}{64} n(n-2)$

Literature

- [Aigner, Ziegler] Proofs from THE BOOK
- [Schaefer '20] The Graph Crossing Number and its Variants: A Survey

■ Terrence Tao blog post "The crossing number inequality" from 2007

- [Garey, Johnson '83] Crossing number is NP-complete
- [Bienstock, Dean '93] Bounds for rectilinear crossing numbers

■ [Székely '97] Crossing Numbers and Hard Erdös Problems in Discrete Geometry
■ Documentary/Biography "N Is a Number: A Portrait of Paul Erdös"
■ Exact computations of crossing numbers: http://crossings.uos.de

