

Visualization of Graphs

Lecture 11:

The Crossing Lemma and its Applications

Part I:
Definition and Hanani–Tutte

Ontaining Chamber of the Control of

Jonathan Klawitter

For a graph G, the **crossing number** cr(G) is the smallest number of crossings in a drawing of G (in the plane).

For a graph G, the **crossing number** cr(G) is the smallest number of crossings in a drawing of G (in the plane).

Example. $cr(K_{3,3}) = 1$

For a graph G, the **crossing number** cr(G) is the smallest number of crossings in a drawing of G (in the plane).

Example. $\operatorname{cr}(K_{3,3}) = 1$

For a graph G, the **crossing number** cr(G) is the smallest number of crossings in a drawing of G (in the plane).

Example. $cr(K_{3,3}) = 1$

In a crossing-minimal drawing of G

no edge is self-intersecting,

For a graph G, the **crossing number** cr(G) is the smallest number of crossings in a drawing of G (in the plane).

Example. $cr(K_{3,3}) = 1$

In a crossing-minimal drawing of G

no edge is self-intersecting,

For a graph G, the **crossing number** cr(G) is the smallest number of crossings in a drawing of G (in the plane).

Example. $cr(K_{3,3}) = 1$

In a crossing-minimal drawing of G

no edge is self-intersecting,

For a graph G, the **crossing number** cr(G) is the smallest number of crossings in a drawing of G (in the plane).

Example. $cr(K_{3,3}) = 1$

- no edge is self-intersecting,
- edges with common endpoints do not intersect,

For a graph G, the **crossing number** cr(G) is the smallest number of crossings in a drawing of G (in the plane).

Example. $cr(K_{3,3}) = 1$

- no edge is self-intersecting,
- edges with common endpoints do not intersect,

For a graph G, the **crossing number** cr(G) is the smallest number of crossings in a drawing of G (in the plane).

Example. $cr(K_{3,3}) = 1$

- no edge is self-intersecting,
- edges with common endpoints do not intersect,

For a graph G, the **crossing number** cr(G) is the smallest number of crossings in a drawing of G (in the plane).

Example. $cr(K_{3,3}) = 1$

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,

For a graph G, the **crossing number** cr(G) is the smallest number of crossings in a drawing of G (in the plane).

Example. $cr(K_{3,3}) = 1$

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,

For a graph G, the **crossing number** cr(G) is the smallest number of crossings in a drawing of G (in the plane).

Example. $cr(K_{3,3}) = 1$

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,

For a graph G, the **crossing number** cr(G) is the smallest number of crossings in a drawing of G (in the plane).

Example. $cr(K_{3,3}) = 1$

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,
- and wlog, at most two edges intersect at the same point.

For a graph G, the **crossing number** cr(G) is the smallest number of crossings in a drawing of G (in the plane).

Example. $cr(K_{3,3}) = 1$

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,
- and wlog, at most two edges intersect at the same point.

For a graph G, the **crossing number** cr(G) is the smallest number of crossings in a drawing of G (in the plane).

Example. $cr(K_{3,3}) = 1$

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,
- and wlog, at most two edges intersect at the same point.

For a graph G, the **crossing number** cr(G) is the smallest number of crossings in a drawing of G (in the plane).

Example. $cr(K_{3,3}) = 1$

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,
- and wlog, at most two edges intersect at the same point.

For a graph G, the **crossing number** cr(G) is the smallest number of crossings in a drawing of G (in the plane).

Example. $cr(K_{3,3}) = 1$

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,
- and wlog, at most two edges intersect at the same point.

For a graph G, the **crossing number** cr(G) is the smallest number of crossings in a drawing of G (in the plane).

Example. $cr(K_{3,3}) = 1$

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,
- and wlog, at most two edges intersect at the same point.

Theorem.

[Hanani'43, Tutte'70]

A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

Theorem.

[Hanani'43, Tutte'70]

A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

Proof Sketch.

Hanani showed that every drawing of K_5 and $K_{3,3}$ must have a pair of edges that crosses an odd number of times.

Theorem.

[Hanani'43, Tutte'70]

A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

Proof Sketch.

Hanani showed that every drawing of K_5 and $K_{3,3}$ must have a pair of edges that crosses an odd number of times.

Every non-planar graph has K_5 or $K_{3,3}$ as minor, so there are two paths that cross an odd number of times.

Theorem.

[Hanani'43, Tutte'70]

A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

Proof Sketch.

Hanani showed that every drawing of K_5 and $K_{3,3}$ must have a pair of edges that crosses an odd number of times.

Every non-planar graph has K_5 or $K_{3,3}$ as minor, so there are two paths that cross an odd number of times.

Hence, there must be two edges on these paths that cross an odd number of times.

Theorem.

[Hanani'43, Tutte'70]

A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number ocr(G) of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Theorem.

[Hanani'43, Tutte'70]

A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The **odd crossing number** ocr(G) of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary.
$$ocr(G) = 0 \Rightarrow cr(G) = 0$$

Theorem.

[Hanani'43, Tutte'70]

A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number ocr(G) of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary.
$$ocr(G) = 0 \Rightarrow cr(G) = 0$$

Is
$$\operatorname{ocr}(G) = \operatorname{cr}(G)$$
?

Theorem.

[Hanani'43, Tutte'70]

A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number ocr(G) of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary.
$$ocr(G) = 0 \Rightarrow cr(G) = 0$$

Is ocr(G) = cr(G)? No

Theorem.

[Hanani'43, Tutte'70]

A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number ocr(G) of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary.
$$ocr(G) = 0 \Rightarrow cr(G) = 0$$

Is ocr(G) = cr(G)? No!

Theorem.

[Pelsmajer, Schaefer & Stefankovič '08, Toth '08]

There is a graph G with $ocr(G) < cr(G) \le 10$

Theorem.

[Hanani'43, Tutte'70]

A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number ocr(G) of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary.
$$ocr(G) = 0 \Rightarrow cr(G) = 0$$

Is ocr(G) = cr(G)? No!

Theorem.

[Pelsmajer, Schaefer & Stefankovič '08, Toth '08]

There is a graph G with $ocr(G) < cr(G) \le 10$

Theorem.

[Pach & Tóth '00]

If Γ is a drawing of G and E_0 is the set of edges with only even numbers of crossings in Γ , then G can be drawn such that no edge in E_0 is involved in any crossings and no new Γ

Theorem.

[Hanani'43, Tutte'70]

A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number ocr(G) of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary.
$$ocr(G) = 0 \Rightarrow cr(G) = 0$$

Is ocr(G) = cr(G)? No!

Theorem.

[Pelsmajer, Schaefer & Stefankovič '08, Tóth '08]

There is a graph G with $ocr(G) < cr(G) \le 10$

Theorem. [Pelsmajer, Schaefer & Stefankovič '08] [Pach & Tóth '00]

If Γ is a drawing of G and E_0 is the set of edges with only even numbers of crossings in Γ , then G can be drawn such that no edge in E_0 is involved in any crossings and no new pairs of edges cross.

Theorem.

[Hanani'43, Tutte'70]

A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number ocr(G) of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary.
$$ocr(G) = 0 \Rightarrow cr(G) = 0$$

Is ocr(G) = cr(G)? No!

Theorem.

[Pelsmajer, Schaefer & Stefankovič '08, Toth '08]

There is a graph G with $ocr(G) < cr(G) \le 10$

The pairwise crossing number pcr(G) of G is the smallest number of pairs of edges that cross in a drawing of G.

Theorem.

[Hanani'43, Tutte'70]

A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number ocr(G) of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary.
$$ocr(G) = 0 \Rightarrow cr(G) = 0$$

Is ocr(G) = cr(G)? No!

Theorem.

[Pelsmajer, Schaefer & Stefankovič '08, Toth '08]

There is a graph G with $ocr(G) < cr(G) \le 10$

The pairwise crossing number pcr(G) of G is the smallest number of pairs of edges that cross in a drawing of G.

By definition $ocr(G) \le pcr(G) \le cr(G)$

Theorem.

[Hanani'43, Tutte'70]

A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number ocr(G) of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary.
$$ocr(G) = 0 \Rightarrow cr(G) = 0$$

Is ocr(G) = cr(G)? No!

Theorem.

[Pelsmajer, Schaefer & Stefankovič '08, Toth '08]

There is a graph G with $ocr(G) < cr(G) \le 10$

The pairwise crossing number pcr(G) of G is the smallest number of pairs of edges that cross in a drawing of G.

By definition $ocr(G) \le pcr(G) \le cr(G)$ Is pcr(G) = cr(G)?

Theorem.

[Hanani'43, Tutte'70]

A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number ocr(G) of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary.
$$ocr(G) = 0 \Rightarrow cr(G) = 0$$

Is ocr(G) = cr(G)? No!

Theorem.

[Pelsmajer, Schaefer & Stefankovič '08, Tóth '08]

There is a graph G with $ocr(G) < cr(G) \le 10$

The pairwise crossing number pcr(G) of G is the smallest number of pairs of edges that cross in a drawing of G.

By definition $ocr(G) \le pcr(G) \le cr(G)$ Is pcr(G) = cr(G)? Open!

Visualization of Graphs

Lecture 11:

The Crossing Lemma and its Applications

Part II: Computation & Variations

Onti

Jonathan Klawitter

Computing the Crossing Number

lacktriangle Computing cr(G) is NP-hard.

[Garey & Johnson '83]

Computing cr(G) is NP-hard. ... even if G is a planar graph plus one edge!

- Computing cr(G) is NP-hard. ... even if G is a planar graph plus one edge!
- ightharpoonup cr(G) often unknown, only conjectures exist
 - for K_n it is only known for up to ~ 12 vertices

Computing cr(G) is NP-hard. ... even if G is a planar graph plus one edge!

- ightharpoonup cr(G) often unknown, only conjectures exist
 - for K_n it is only known for up to ~ 12 vertices
- In practice, cr(G) is often not computed directly but rather drawings of G are optimized with

Computing cr(G) is NP-hard. ... even if G is a planar graph plus one edge!

- ightharpoonup cr(G) often unknown, only conjectures exist
 - for K_n it is only known for up to ~ 12 vertices
- In practice, cr(G) is often not computed directly but rather drawings of G are optimized with
 - force-based methods,

Computing cr(G) is NP-hard. ... even if G is a planar graph plus one edge!

- ightharpoonup cr(G) often unknown, only conjectures exist
 - for K_n it is only known for up to ~ 12 vertices
- In practice, cr(G) is often not computed directly but rather drawings of G are optimized with
 - force-based methods,
 - multidimensional scaling,

Computing cr(G) is NP-hard. ... even if G is a planar graph plus one edge!

- ightharpoonup cr(G) often unknown, only conjectures exist
 - for K_n it is only known for up to ~ 12 vertices
- In practice, cr(G) is often not computed directly but rather drawings of G are optimized with
 - force-based methods,
 - multidimensional scaling,
 - heuristics, . . .

Computing cr(G) is NP-hard. ... even if G is a planar graph plus one edge!

- ightharpoonup cr(G) often unknown, only conjectures exist
 - for K_n it is only known for up to ~ 12 vertices
- In practice, cr(G) is often not computed directly but rather drawings of G are optimized with
 - force-based methods,
 - multidimensional scaling,
 - heuristics, . . .

```
For exact computations, check out http://crossings.uos.de!
```

Computing cr(G) is NP-hard. ... even if G is a planar graph plus one edge! [Garey & Johnson '83] [Cabello & Mohar '08]

- ightharpoonup cr(G) often unknown, only conjectures exist
 - for K_n it is only known for up to ~ 12 vertices
- In practice, cr(G) is often not computed directly but rather drawings of G are optimized with
 - force-based methods,
 - multidimensional scaling,
 - heuristics, . . .

For exact computations, check out http://crossings.uos.de!

ightharpoonup cr(G) is a measure of how far G is from being planar

Computing cr(G) is NP-hard. ... even if G is a planar graph plus one edge! [Garey & Johnson '83] [Cabello & Mohar '08]

- ightharpoonup cr(G) often unknown, only conjectures exist
 - for K_n it is only known for up to ~ 12 vertices
- In practice, cr(G) is often not computed directly but rather drawings of G are optimized with
 - force-based methods,
 - multidimensional scaling,
 - heuristics, . . .

For exact computations, check out http://crossings.uos.de!

- ightharpoonup cr(G) is a measure of how far G is from being planar
- Planarization, where we replace crossings with dummy vertices, also uses only heuristics

Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization . . .

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization . . .
- Fixed Linear Crossing Number

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization . . .
- Fixed Linear Crossing Number

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization . . .
- Fixed Linear Crossing Number

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization . . .
- Fixed Linear Crossing Number
- In book embeddings

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization . . .
- Fixed Linear Crossing Number
- In book embeddings
- Crossings of edge bundles

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization . . .
- Fixed Linear Crossing Number
- In book embeddings
- Crossings of edge bundles
- On other surfaces, like on donuts

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization . . .
- Fixed Linear Crossing Number
- In book embeddings
- Crossings of edge bundles
- On other surfaces, like on donuts
- Weighted crossings

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization . . .
- Fixed Linear Crossing Number
- In book embeddings
- Crossings of edge bundles
- On other surfaces, like on donuts
- Weighted crossings
- Crossing minimization is NP-hard for most of the variants

Definition.

For a graph G, the rectilinear (straight-line) crossing number $\overline{\operatorname{cr}}(G)$ is the smallest number of crossings in a straight-line drawing of G.

Definition.

For a graph G, the rectilinear (straight-line) crossing number $\overline{\operatorname{cr}}(G)$ is the smallest number of crossings in a straight-line drawing of G.

Separation.

$$\operatorname{cr}(K_8)=18$$
, but $\overline{\operatorname{cr}}(K_8)=19$.

Definition.

For a graph G, the rectilinear (straight-line) crossing number $\overline{\operatorname{cr}}(G)$ is the smallest number of crossings in a straight-line drawing of G.

Separation.

 $\operatorname{cr}(K_8)=18$, but $\overline{\operatorname{cr}}(K_8)=19$.

Even more ...

Lemma 1. [Bienstock, Dean '93]

For $k \geq 4$, there exists a graph G_k with $cr(G_k) = 4$ and $\overline{cr}(G_k) \geq k$.

Definition.

For a graph G, the rectilinear (straight-line) crossing number $\overline{\operatorname{cr}}(G)$ is the smallest number of crossings in a straight-line drawing of G.

Even more . . .

Lemma 1. [Bienstock, Dean '93]

For $k \geq 4$, there exists a graph G_k with $cr(G_k) = 4$ and $\overline{cr}(G_k) \geq k$.

Separation.

$$\operatorname{cr}(K_8)=18$$
, but $\overline{\operatorname{cr}}(K_8)=19$.

Definition.

For a graph G, the rectilinear (straight-line) crossing number $\overline{\operatorname{cr}}(G)$ is the smallest number of crossings in a straight-line drawing of G.

Even more . . .

Lemma 1. [Bienstock, Dean '93]

For $k \geq 4$, there exists a graph G_k with $cr(G_k) = 4$ and $\overline{cr}(G_k) \geq k$.

■ Each straight-line drawing of G_1 has at least one crossing of the following types:

Separation.

 $\operatorname{cr}(K_8) = 18$, but $\overline{\operatorname{cr}}(K_8) = 19$.

Definition.

For a graph G, the rectilinear (straight-line) crossing number $\overline{\operatorname{cr}}(G)$ is the smallest number of crossings in a straight-line drawing of G.

Even more . . .

Lemma 1. [Bienstock, Dean '93]

For $k \geq 4$, there exists a graph G_k with $cr(G_k) = 4$ and $\overline{cr}(G_k) \geq k$.

- Each straight-line drawing of G_1 has at least one crossing of the following types:
- From G_1 to G_k do

Separation.

 $\operatorname{cr}(K_8)=18$, but $\overline{\operatorname{cr}}(K_8)=19$.

Visualization of Graphs

Lecture 11:

The Crossing Lemma and its Applications

Part III: First Bounds

Jonathan Klawitter

Theorem. [Guy '60]
$$\operatorname{cr}(K_n) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)$$

Theorem. [Guy '60]
$$\operatorname{cr}(K_n) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)$$

$$\circ$$

Theorem. [Guy '60]
$$\operatorname{cr}(K_n) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)$$

Theorem. [Guy '60]
$$\operatorname{cr}(K_n) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)$$

Theorem. [Guy '60]
$$\operatorname{cr}(K_n) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)$$

Theorem. [Guy '60]
$$\operatorname{cr}(K_n) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)$$

Theorem. Conjecture. [Guy '60] $\operatorname{cr}(K_n) \not \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)$

Theorem. Conjecture. [Guy '60] $\operatorname{cr}(K_n) \not \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)$

Bound is sharp for $n \leq 12$.

Theorem. Conjecture.

[Guy '60]

$$\operatorname{cr}(K_n) \not \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)$$

Sylvester's four-point problem

Bound is sharp for $n \leq 12$.

Theorem.

[Zarankiewicz '54, Urbaník '55]

$$\operatorname{cr}(K_{m,n}) \leq rac{1}{4} \left\lceil rac{n}{2}
ight
ceil \left\lceil rac{n-1}{2}
ight
ceil \left\lceil rac{m}{2}
ight
ceil \left\lceil rac{m-1}{2}
ight
ceil$$

Theorem. Conjecture. [Guy '60]
$$\operatorname{cr}(K_n) \not \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)$$

Bound is sharp for $n \leq 12$.

Theorem.

[Zarankiewicz '54, Urbaník '55]

$$\operatorname{cr}(K_{m,n}) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{m}{2} \right\rceil \left\lceil \frac{m-1}{2} \right\rceil$$

Turán's brick factory problem (1944)

Pál Turán *1910 - 1976 Budapest, Hungary

© TruckinTim

Theorem. Conjecture. [Guy '60]
$$\operatorname{cr}(K_n) \not \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)$$

Bound is sharp for $n \leq 12$.

Theorem. Conjecture.

[Zarankiewicz '54, Urbaník '55]

$$\operatorname{cr}(K_{m,n}) \not \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{m}{2} \right\rceil \left\lceil \frac{m-1}{2} \right\rceil$$

Turán's brick factory problem (1944)

*1910 - 1976 Budapest, Hungary

© TruckinTim

Theorem. Conjecture.

[Guy '60]

$$\operatorname{cr}(K_n) \not \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)$$

Bound is sharp for $n \leq 12$.

Theorem. Conjecture.

[Zarankiewicz '54, Urbaník '55]

$$\operatorname{cr}(K_{m,n}) \not \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{m}{2} \right\rceil \left\lceil \frac{m-1}{2} \right\rceil$$

Theorem.

[Lovász et al. '04, Aichholzer et al. '06]

$$\left(\frac{3}{8} + \varepsilon\right) \binom{n}{4} + O(n^3) < \overline{\operatorname{cr}}(K_n) < 0.3807 \binom{n}{4} + O(n^3)$$

Theorem. Conjecture.

[Guy '60]

$$\operatorname{cr}(K_n) \not \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)$$

Bound is sharp for $n \leq 12$.

Theorem. Conjecture.

[Zarankiewicz '54, Urbaník '55]

$$\operatorname{cr}(K_{m,n}) \not \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{m}{2} \right\rceil \left\lceil \frac{m-1}{2} \right\rceil$$

Theorem.

[Lovász et al. '04, Aichholzer et al. '06]

$$\left(\frac{3}{8} + \varepsilon\right) \binom{n}{4} + O(n^3) < \overline{\operatorname{cr}}(K_n) < 0.3807 \binom{n}{4} + O(n^3)$$

Exact numbers are known for n < 27.

Theorem. Conjecture.

[Guy '60]

$$\operatorname{cr}(K_n) \not \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)$$

Bound is sharp for $n \leq 12$.

Theorem. Conjecture.

[Zarankiewicz '54, Urbaník '55]

$$\operatorname{cr}(K_{m,n}) \not \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{m}{2} \right\rceil \left\lceil \frac{m-1}{2} \right\rceil$$

Theorem.

[Lovász et al. '04, Aichholzer et al. '06]

$$\left(\frac{3}{8} + \varepsilon\right) \binom{n}{4} + O(n^3) < \overline{\operatorname{cr}}(K_n) < 0.3807 \binom{n}{4} + O(n^3)$$

Exact numbers are known for $n \leq 27$.

Check out http://www.ist.tugraz.at/staff/aichholzer/crossings.html!

Lemma 2.

For a graph G with n vertices and m edges,

$$\operatorname{cr}(G) \ge m - 3n + 6.$$

Lemma 2.

For a graph G with n vertices and m edges,

$$\operatorname{cr}(G) \ge m - 3n + 6.$$

Proof.

lacktriangle Consider a drawing of G with cr(G) crossings.

Lemma 2.

For a graph G with n vertices and m edges,

$$cr(G) \ge m - 3n + 6.$$

- lacksquare Consider a drawing of G with cr(G) crossings.
- lacksquare Obtain a graph H by turning crossings into dummy vertices.

Lemma 2.

For a graph G with n vertices and m edges,

$$\operatorname{cr}(G) \ge m - 3n + 6.$$

- lacksquare Consider a drawing of G with cr(G) crossings.
- lacksquare Obtain a graph H by turning crossings into dummy vertices.
- H has $n + \operatorname{cr}(G)$ vertices and $m + 2\operatorname{cr}(G)$ edges.

Lemma 2.

For a graph G with n vertices and m edges,

$$\operatorname{cr}(G) \ge m - 3n + 6.$$

Proof.

- \blacksquare Consider a drawing of G with cr(G) crossings.
- Obtain a graph H by turning crossings into dummy vertices.
- H has $n + \operatorname{cr}(G)$ vertices and $m + 2\operatorname{cr}(G)$ edges.

 \blacksquare H is planar, so

$$m + 2\operatorname{cr}(G) \le 3(n + \operatorname{cr}(G)) - 6.$$

Lemma 3.

For a graph G with n vertices and m edges,

$$\operatorname{cr}(G) \ge r \binom{\lfloor m/r \rfloor}{2} \in \Omega \left(\frac{m^2}{n}\right)$$

where $r \leq 3n - 6$ is the maximum number of edges in a planar subgraph of G.

Lemma 3.

For a graph G with n vertices and m edges,

$$\operatorname{cr}(G) \ge r \binom{\lfloor m/r \rfloor}{2} \in \Omega \left(\frac{m^2}{n}\right)$$

where $r \leq 3n - 6$ is the maximum number of edges in a planar subgraph of G.

Proof.

■ Take $\lfloor m/r \rfloor$ edge-disjoint subgraphs of G with r edges.

Lemma 3.

For a graph G with n vertices and m edges,

$$\operatorname{cr}(G) \ge r \binom{\lfloor m/r \rfloor}{2} \in \Omega \left(\frac{m^2}{n}\right)$$

where $r \leq 3n - 6$ is the maximum number of edges in a planar subgraph of G.

- Take $\lfloor m/r \rfloor$ edge-disjoint subgraphs of G with r edges.
- In the best case, they are all planar.

Lemma 3.

For a graph G with n vertices and m edges,

$$\operatorname{cr}(G) \ge r \binom{\lfloor m/r \rfloor}{2} \in \Omega \left(\frac{m^2}{n}\right)$$

where $r \leq 3n - 6$ is the maximum number of edges in a planar subgraph of G.

- Take $\lfloor m/r \rfloor$ edge-disjoint subgraphs of G with r edges.
- In the best case, they are all planar.
- For each pair G_i, G_j , any edge of G_j induces at least one crossings with G_i . (If not, swap edges to reduce $cr(G_i)$.)

Lemma 3.

For a graph G with n vertices and m edges,

$$\operatorname{cr}(G) \ge r \binom{\lfloor m/r \rfloor}{2} \in \Omega \left(\frac{m^2}{n}\right)$$

where $r \leq 3n - 6$ is the maximum number of edges in a planar subgraph of G.

Consider this bound for graphs with $\Theta(n)$ and $\Theta(n^2)$ many edges.

- Take $\lfloor m/r \rfloor$ edge-disjoint subgraphs of G with r edges.
- In the best case, they are all planar.
- For each pair G_i, G_j , any edge of G_j induces at least one crossings with G_i . (If not, swap edges to reduce $cr(G_i)$.)

Visualization of Graphs

Lecture 11:

The Crossing Lemma and its Applications

Part IV:
The Crossing Lemma

Jonathan Klawitter

■ 1973 Erdős and Guy conjectured that $cr(G) \in \Omega(\frac{m^3}{n^2})$.

- 1973 Erdős and Guy conjectured that $\operatorname{cr}(G) \in \Omega(\frac{m^3}{n^2})$.
- In 1982 Leighton and, indepedently, Ajtai, Chávtal, Newborn and Szemerédi showed that

$$\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.$$

- 1973 Erdős and Guy conjectured that $\operatorname{cr}(G) \in \Omega(\frac{m^3}{n^2})$.
- In 1982 Leighton and, indepedently, Ajtai, Chávtal, Newborn and Szemerédi showed that

$$\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.$$

Bound is asymptotically sharp.

- 1973 Erdős and Guy conjectured that $\operatorname{cr}(G) \in \Omega(\frac{m^3}{n^2})$.
- In 1982 Leighton and, indepedently, Ajtai, Chávtal, Newborn and Szemerédi showed that

$$\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.$$

- Bound is asymptotically sharp.
- Result stayed hardly known until Székely in 1997 demonstrated its usefulness.

- 1973 Erdős and Guy conjectured that $\operatorname{cr}(G) \in \Omega(\frac{m^3}{n^2})$.
- In 1982 Leighton and, indepedently, Ajtai, Chávtal, Newborn and Szemerédi showed that

$$\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.$$

- Bound is asymptotically sharp.
- Result stayed hardly known until Székely in 1997 demonstrated its usefulness.
- We look at a proof "from THE BOOK" by Chazelle, Sharir and Welz.

- 1973 Erdős and Guy conjectured that $\operatorname{cr}(G) \in \Omega(\frac{m^3}{n^2})$.
- In 1982 Leighton and, indepedently, Ajtai, Chávtal, Newborn and Szemerédi showed that

$$\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.$$

- Bound is asymptotically sharp.
- Result stayed hardly known until Székely in 1997 demonstrated its usefulness.
- We look at a proof "from THE BOOK" by Chazelle, Sharir and Welz.
- Factor $\frac{1}{64}$ was later (with intermediate steps) improved to $\frac{1}{29}$ by Ackerman in 2013.

Crossing Lemma.

For a graph G with n vertices and m edges, $m \geq 4n$, $\operatorname{cr}(G) \geq \tfrac{1}{64} \tfrac{m^3}{n^2}.$

Crossing Lemma.

For a graph G with n vertices and m edges, $m \geq 4n$, $\operatorname{cr}(G) \geq \tfrac{1}{64} \tfrac{m^3}{n^2}.$

Proof.

 \blacksquare Consider a minimal embedding of G.

Crossing Lemma.

For a graph G with n vertices and m edges, $m \geq 4n$, $\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}$.

- \blacksquare Consider a minimal embedding of G.
- Let p be a number in (0,1).

Crossing Lemma.

For a graph G with n vertices and m edges, $m \ge 4n$, $\operatorname{cr}(G) \ge \frac{1}{64} \frac{m^3}{n^2}$.

- \blacksquare Consider a minimal embedding of G.
- Let p be a number in (0,1).
- Keep every vertex of G independently with probability p.

Crossing Lemma.

For a graph G with n vertices and m edges, $m \ge 4n$, $\operatorname{cr}(G) \ge \frac{1}{64} \frac{m^3}{n^2}$.

- \blacksquare Consider a minimal embedding of G.
- Let p be a number in (0,1).
- Keep every vertex of G independently with probability p.
- \blacksquare Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p .

Crossing Lemma.

For a graph G with n vertices and m edges, $m \ge 4n$, $\operatorname{cr}(G) \ge \frac{1}{64} \frac{m^3}{n^2}$.

- \blacksquare Consider a minimal embedding of G.
- Let p be a number in (0,1).
- Keep every vertex of G independently with probability p.
- \blacksquare Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p .
- By Lem 2, $\mathbb{E}(X_p m_p + 3n_p) \ge 0$.

Crossing Lemma.

For a graph G with n vertices and m edges, $m \ge 4n$, $\operatorname{cr}(G) \ge \frac{1}{64} \frac{m^3}{n^2}$.

- \blacksquare Consider a minimal embedding of G.
- Let p be a number in (0,1).
- Keep every vertex of G independently with probability p.
- \blacksquare Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p .
- By Lem 2, $\mathbb{E}(X_p m_p + 3n_p) \ge 0$.

$$\blacksquare$$
 $\mathbb{E}(n_p) =$ and $\mathbb{E}(m_p) =$

Crossing Lemma.

For a graph G with n vertices and m edges, $m \geq 4n$, $\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}$.

Proof.

- \blacksquare Consider a minimal embedding of G.
- Let p be a number in (0,1).
- Keep every vertex of G independently with probability p.
- \blacksquare Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p .
- By Lem 2, $\mathbb{E}(X_p m_p + 3n_p) \ge 0$.

 \blacksquare $\mathbb{E}(n_p) = pn$ and $\mathbb{E}(m_p) =$

Crossing Lemma.

For a graph G with n vertices and m edges, $m \geq 4n$, $\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}$.

Proof.

- \blacksquare Consider a minimal embedding of G.
- Let p be a number in (0,1).
- Keep every vertex of G independently with probability p.
- \blacksquare Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p .
- By Lem 2, $\mathbb{E}(X_p m_p + 3n_p) \ge 0$.

 \blacksquare $\mathbb{E}(n_p)=pn$ and $\mathbb{E}(m_p)=p^2m$

Crossing Lemma.

For a graph G with n vertices and m edges, $m \geq 4n$, $\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}$.

- \blacksquare Consider a minimal embedding of G.
- Let p be a number in (0,1).
- Keep every vertex of G independently with probability p.
- \blacksquare Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p .
- By Lem 2, $\mathbb{E}(X_p m_p + 3n_p) \ge 0$.

- \blacksquare $\mathbb{E}(n_p)=pn$ and $\mathbb{E}(m_p)=p^2m$
- \blacksquare $\mathbb{E}(X_p) =$

Crossing Lemma.

For a graph G with n vertices and m edges, $m \geq 4n$, $\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}$.

- \blacksquare Consider a minimal embedding of G.
- Let p be a number in (0,1).
- Keep every vertex of G independently with probability p.
- \blacksquare Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p .
- By Lem 2, $\mathbb{E}(X_p m_p + 3n_p) \ge 0$.

- \blacksquare $\mathbb{E}(n_p)=pn$ and $\mathbb{E}(m_p)=p^2m$
- $\blacksquare \mathbb{E}(X_p) = p^4 \mathrm{cr}(G)$

Crossing Lemma.

For a graph G with n vertices and m edges, $m \ge 4n$, $\operatorname{cr}(G) \ge \frac{1}{64} \frac{m^3}{n^2}$.

- \blacksquare Consider a minimal embedding of G.
- Let p be a number in (0,1).
- Keep every vertex of G independently with probability p.
- \blacksquare Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p .
- By Lem 2, $\mathbb{E}(X_p m_p + 3n_p) \ge 0$.

- \blacksquare $\mathbb{E}(n_p)=pn$ and $\mathbb{E}(m_p)=p^2m$
- $\blacksquare \mathbb{E}(X_p) = p^4 \mathrm{cr}(G)$
- $lacksquare 0 \leq \mathbb{E}(X_p) \mathbb{E}(m_p) + 3\mathbb{E}(n_p)$

Crossing Lemma.

For a graph G with n vertices and m edges, $m \ge 4n$, $\operatorname{cr}(G) \ge \frac{1}{64} \frac{m^3}{n^2}$.

- \blacksquare Consider a minimal embedding of G.
- Let p be a number in (0,1).
- Keep every vertex of G independently with probability p.
- \blacksquare Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p .
- By Lem 2, $\mathbb{E}(X_p m_p + 3n_p) \ge 0$.

- \blacksquare $\mathbb{E}(n_p)=pn$ and $\mathbb{E}(m_p)=p^2m$
- $\blacksquare \mathbb{E}(X_p) = p^4 \mathrm{cr}(G)$
- $0 \le \mathbb{E}(X_p) \mathbb{E}(m_p) + 3\mathbb{E}(n_p)$ $= p^4 \operatorname{cr}(G) p^2 m + 3pn$

Crossing Lemma.

For a graph G with n vertices and m edges, $m \geq 4n$, $\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}$.

- \blacksquare Consider a minimal embedding of G.
- Let p be a number in (0,1).
- Keep every vertex of G independently with probability p.
- \blacksquare Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p .
- By Lem 2, $\mathbb{E}(X_p m_p + 3n_p) \ge 0$.

- \blacksquare $\mathbb{E}(n_p)=pn$ and $\mathbb{E}(m_p)=p^2m$
- $\blacksquare \mathbb{E}(X_p) = p^4 \mathrm{cr}(G)$
- $0 \le \mathbb{E}(X_p) \mathbb{E}(m_p) + 3\mathbb{E}(n_p)$ $= p^4 \operatorname{cr}(G) p^2 m + 3pn$
- $cr(G) \ge \frac{p^2m 3pn}{p^4}$

Crossing Lemma.

For a graph G with n vertices and m edges, $m \geq 4n$, $\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}$.

- \blacksquare Consider a minimal embedding of G.
- Let p be a number in (0,1).
- Keep every vertex of G independently with probability p.
- \blacksquare Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p .
- By Lem 2, $\mathbb{E}(X_p m_p + 3n_p) \ge 0$.

- \blacksquare $\mathbb{E}(n_p)=pn$ and $\mathbb{E}(m_p)=p^2m$
- $\blacksquare \mathbb{E}(X_p) = p^4 \mathrm{cr}(G)$
- $0 \le \mathbb{E}(X_p) \mathbb{E}(m_p) + 3\mathbb{E}(n_p)$ $= p^4 \operatorname{cr}(G) p^2 m + 3pn$
- $\operatorname{cr}(G) \ge \frac{p^2 m 3pn}{p^4} = \frac{m}{p^2} \frac{3n}{p^3}$

Crossing Lemma.

For a graph G with n vertices and m edges, $m \geq 4n$, $\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}$.

- \blacksquare Consider a minimal embedding of G.
- Let p be a number in (0,1).
- Keep every vertex of G independently with probability p.
- \blacksquare Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p .
- By Lem 2, $\mathbb{E}(X_p m_p + 3n_p) \ge 0$.

- \blacksquare $\mathbb{E}(n_p)=pn$ and $\mathbb{E}(m_p)=p^2m$
- $\blacksquare \mathbb{E}(X_p) = p^4 \mathrm{cr}(G)$
- $0 \le \mathbb{E}(X_p) \mathbb{E}(m_p) + 3\mathbb{E}(n_p)$ $= p^4 \operatorname{cr}(G) p^2 m + 3pn$
- $\operatorname{cr}(G) \ge \frac{p^2 m 3pn}{p^4} = \frac{m}{p^2} \frac{3n}{p^3}$
- $\blacksquare \text{ Set } p = \frac{4n}{m}.$

Crossing Lemma.

For a graph G with n vertices and m edges, $m \ge 4n$, $\operatorname{cr}(G) \ge \frac{1}{64} \frac{m^3}{n^2}$.

- \blacksquare Consider a minimal embedding of G.
- Let p be a number in (0,1).
- Keep every vertex of G independently with probability p.
- \blacksquare Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p .
- By Lem 2, $\mathbb{E}(X_p m_p + 3n_p) \ge 0$.

- \blacksquare $\mathbb{E}(n_p)=pn$ and $\mathbb{E}(m_p)=p^2m$
- $\blacksquare \mathbb{E}(X_p) = p^4 \mathrm{cr}(G)$
- $0 \le \mathbb{E}(X_p) \mathbb{E}(m_p) + 3\mathbb{E}(n_p)$ $= p^4 \operatorname{cr}(G) p^2 m + 3pn$
- $\operatorname{cr}(G) \ge \frac{p^2 m 3pn}{p^4} = \frac{m}{p^2} \frac{3n}{p^3}$
- $\blacksquare \text{ Set } p = \frac{4n}{m}.$
- ightharpoonup cr $(G) \geq$

Crossing Lemma.

For a graph G with n vertices and m edges, $m \geq 4n$, $\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}$.

- \blacksquare Consider a minimal embedding of G.
- Let p be a number in (0,1).
- Keep every vertex of G independently with probability p.
- \blacksquare Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p .
- By Lem 2, $\mathbb{E}(X_p m_p + 3n_p) \ge 0$.

- \blacksquare $\mathbb{E}(n_p)=pn$ and $\mathbb{E}(m_p)=p^2m$
- $\blacksquare \mathbb{E}(X_p) = p^4 \mathrm{cr}(G)$
- $0 \le \mathbb{E}(X_p) \mathbb{E}(m_p) + 3\mathbb{E}(n_p)$ $= p^4 \operatorname{cr}(G) p^2 m + 3pn$
- $\operatorname{cr}(G) \ge \frac{p^2 m 3pn}{p^4} = \frac{m}{p^2} \frac{3n}{p^3}$
- $\blacksquare \text{ Set } p = \frac{4n}{m}.$
- $\operatorname{cr}(G) \ge \frac{m^3}{16n^2} \frac{3m^3}{64n^2}$

Crossing Lemma.

For a graph G with n vertices and m edges, $m \geq 4n$, $\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}$.

- \blacksquare Consider a minimal embedding of G.
- Let p be a number in (0,1).
- Keep every vertex of G independently with probability p.
- \blacksquare Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p .
- By Lem 2, $\mathbb{E}(X_p m_p + 3n_p) \ge 0$.

- \blacksquare $\mathbb{E}(n_p)=pn$ and $\mathbb{E}(m_p)=p^2m$
- $\blacksquare \mathbb{E}(X_p) = p^4 \mathrm{cr}(G)$
- $0 \le \mathbb{E}(X_p) \mathbb{E}(m_p) + 3\mathbb{E}(n_p)$ $= p^4 \operatorname{cr}(G) p^2 m + 3pn$
- $\operatorname{cr}(G) \ge \frac{p^2 m 3pn}{p^4} = \frac{m}{p^2} \frac{3n}{p^3}$
- $\blacksquare \text{ Set } p = \frac{4n}{m}.$
- $\operatorname{cr}(G) \ge \frac{m^3}{16n^2} \frac{3m^3}{64n^2} = \frac{1}{64} \frac{m^3}{n^2}$

Visualization of Graphs

Lecture 11:

The Crossing Lemma and its Applications

Part V: Applications

Jonathan Klawitter

For points $P \subset \mathbb{R}^2$ and lines \mathcal{L} , $I(P,\mathcal{L}) = \text{number of point-line incidences in } (P,\mathcal{L}).$

Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L})$.

- Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L})$.
- For example: I(4,4) =

- Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L})$.
- For example: I(4,4) =

- Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L})$.
- For example: I(4,4) =

- Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L})$.
- For example: I(4,4) =

- Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L})$.
- For example: I(4,4) = 9

For points $P \subset \mathbb{R}^2$ and lines \mathcal{L} , $I(P,\mathcal{L}) = \text{number of point-line incidences in } (P,\mathcal{L}).$

- Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L})$.
- For example: I(4,4) = 9

Theorem 1.

[Szemerédi, Trotter '83, Székely '97] $I(n,k) \le 2.7n^{2/3}k^{2/3} + 6n + 2k$.

For points $P \subset \mathbb{R}^2$ and lines \mathcal{L} , $I(P,\mathcal{L}) = \text{number of point-line incidences in } (P,\mathcal{L}).$

- Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L})$.
- For example: I(4,4) = 9

Theorem 1.

[Szemerédi, Trotter '83, Székely '97] $I(n,k) \le c(n^{2/3}k^{2/3} + n + k).$

For points $P \subset \mathbb{R}^2$ and lines \mathcal{L} , $I(P,\mathcal{L}) = \text{number of point-line incidences in } (P,\mathcal{L}).$

- Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L})$.
- For example: I(4,4) = 9

Theorem 1.

[Szemerédi, Trotter '83, Székely '97] $I(n,k) \leq c(n^{2/3}k^{2/3} + n + k)$.

For points $P \subset \mathbb{R}^2$ and lines \mathcal{L} , $I(P,\mathcal{L}) = \text{number of point-line incidences in } (P,\mathcal{L}).$

- Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L})$.
- For example: I(4,4) = 9

Theorem 1.

[Szemerédi, Trotter '83, Székely '97] $I(n,k) \leq c(n^{2/3}k^{2/3} + n + k).$

For points $P \subset \mathbb{R}^2$ and lines \mathcal{L} , $I(P,\mathcal{L}) = \text{number of point-line incidences in } (P,\mathcal{L}).$

- Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L})$.
- For example: I(4,4) = 9

Theorem 1.

[Szemerédi, Trotter '83, Székely '97] $I(n,k) \leq c(n^{2/3}k^{2/3} + n + k).$

For points $P \subset \mathbb{R}^2$ and lines \mathcal{L} , $I(P,\mathcal{L}) = \text{number of point-line incidences in } (P,\mathcal{L}).$

- Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L})$.
- For example: I(4,4) = 9

Theorem 1.

[Szemerédi, Trotter '83, Székely '97] $I(n,k) \le c(n^{2/3}k^{2/3} + n + k).$

Proof.

 \blacksquare # points on l=1+ # edges on l

For points $P \subset \mathbb{R}^2$ and lines \mathcal{L} , $I(P,\mathcal{L}) = \text{number of point-line incidences in } (P,\mathcal{L}).$

- Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L})$.
- For example: I(4,4) = 9

Theorem 1.

[Szemerédi, Trotter '83, Székely '97] $I(n,k) \le c(n^{2/3}k^{2/3} + n + k).$

- \blacksquare # points on l=1+ # edges on l
- $I(n,k)-k \leq m$

For points $P \subset \mathbb{R}^2$ and lines \mathcal{L} , $I(P,\mathcal{L}) = \text{number of point-line incidences in } (P,\mathcal{L}).$

- Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L})$.
- For example: I(4,4) = 9

Theorem 1.

[Szemerédi, Trotter '83, Székely '97] $I(n,k) \le c(n^{2/3}k^{2/3} + n + k).$

- \blacksquare # points on l=1+ # edges on l
- $I(n,k)-k \leq m$
- Crossing Lemma: $\frac{1}{64} \frac{m^3}{n^2} \le cr(G)$

For points $P \subset \mathbb{R}^2$ and lines \mathcal{L} , $I(P,\mathcal{L}) = \text{number of point-line incidences in } (P,\mathcal{L}).$

- Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L})$.
- For example: I(4,4) = 9

Theorem 1.

[Szemerédi, Trotter '83, Székely '97] $I(n,k) \le c(n^{2/3}k^{2/3} + n + k).$

- \blacksquare # points on l=1+ # edges on l
- $I(n,k)-k \leq m$
- Crossing Lemma: $\frac{1}{64} \frac{m^3}{n^2} \le cr(G)$
- $c'(I(n,k)-k)^3/n^2 \le cr(G)$

For points $P \subset \mathbb{R}^2$ and lines \mathcal{L} , $I(P,\mathcal{L}) = \text{number of point-line incidences in } (P,\mathcal{L}).$

- Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L})$.
- For example: I(4,4) = 9

Theorem 1.

[Szemerédi, Trotter '83, Székely '97] $I(n,k) \le c(n^{2/3}k^{2/3} + n + k).$

- \blacksquare # points on l=1+ # edges on l
- $I(n,k)-k \leq m$
- Crossing Lemma: $\frac{1}{64} \frac{m^3}{n^2} \le \operatorname{cr}(G)$
- $c'(I(n,k)-k)^3/n^2 \le cr(G) \le k^2$

For points $P \subset \mathbb{R}^2$ and lines \mathcal{L} , $I(P,\mathcal{L}) = \text{number of point-line incidences in } (P,\mathcal{L}).$

- Define $I(n,k) = \max_{|P|=n, |\mathcal{L}|=k} I(P,\mathcal{L})$.
- For example: I(4,4) = 9

Theorem 1.

[Szemerédi, Trotter '83, Székely '97] $I(n,k) \le c(n^{2/3}k^{2/3} + n + k).$

- \blacksquare # points on l=1+ # edges on l
- $I(n,k)-k \leq m$
- Crossing Lemma: $\frac{1}{64} \frac{m^3}{n^2} \le cr(G)$
- $c'(I(n,k)-k)^3/n^2 \le cr(G) \le k^2$
- \blacksquare if $m \not\geq 4n$, then $I(n,k) k \leq 4n$

For points $P \subset \mathbb{R}^2$ define

- $lackbox{U}(P) = \text{number of pairs in } P \text{ at unit distance and}$
- $U(n) = \max_{|P|=n} U(P).$

For points $P \subset \mathbb{R}^2$ define

- $lackbox{U}(P) = \text{number of pairs in } P \text{ at unit distance and}$
- $U(n) = \max_{|P|=n} U(P).$

Theorem 2.

[Spencer, Szemerédi, Trotter '84, Székely '97] $U(n) < 6.7n^{4/3}$

For points $P \subset \mathbb{R}^2$ define

- $lackbox{U}(P) = \text{number of pairs in } P \text{ at unit distance and}$
- $U(n) = \max_{|P|=n} U(P).$

Theorem 2.

[Spencer, Szemerédi, Trotter '84, Székely '97] $U(n) < 6.7n^{4/3}$

For points $P \subset \mathbb{R}^2$ define

- $lackbox{U}(P) = \text{number of pairs in } P \text{ at unit distance and}$
- $U(n) = \max_{|P|=n} U(P).$

Theorem 2.

[Spencer, Szemerédi, Trotter '84, Székely '97] $U(n) < 6.7n^{4/3}$

Proof.

P

For points $P \subset \mathbb{R}^2$ define

- $lackbox{U}(P) = \text{number of pairs in } P \text{ at unit distance and}$
- $U(n) = \max_{|P|=n} U(P).$

Theorem 2.

[Spencer, Szemerédi, Trotter '84, Székely '97] $U(n) < 6.7n^{4/3}$

For points $P \subset \mathbb{R}^2$ define

- $lackbox{U}(P) = \text{number of pairs in } P \text{ at unit distance and}$
- $U(n) = \max_{|P|=n} U(P).$

Theorem 2.

[Spencer, Szemerédi, Trotter '84, Székely '97] $U(n) < 6.7n^{4/3}$

For points $P \subset \mathbb{R}^2$ define

- $lackbox{U}(P) = \text{number of pairs in } P \text{ at unit distance and}$
- $U(n) = \max_{|P|=n} U(P).$

Theorem 2.

[Spencer, Szemerédi, Trotter '84, Székely '97] $U(n) < 6.7n^{4/3}$

For points $P \subset \mathbb{R}^2$ define

- $lackbox{U}(P) = \text{number of pairs in } P \text{ at unit distance and}$
- $U(n) = \max_{|P|=n} U(P).$

Theorem 2.

[Spencer, Szemerédi, Trotter '84, Székely '97] $U(n) < 6.7n^{4/3}$

Proof.

For points $P \subset \mathbb{R}^2$ define

- $lackbox{U}(P) = \text{number of pairs in } P \text{ at unit distance and}$
- $U(n) = \max_{|P|=n} U(P).$

Theorem 2.

[Spencer, Szemerédi, Trotter '84, Székely '97] $U(n) < 6.7n^{4/3}$

Proof. G $U(P) \leq c'm$

For points $P \subset \mathbb{R}^2$ define

- $lackbox{U}(P) = \text{number of pairs in } P \text{ at unit distance and}$
- $U(n) = \max_{|P|=n} U(P).$

Theorem 2.

[Spencer, Szemerédi, Trotter '84, Székely '97] $U(n) < 6.7n^{4/3}$

Proof.

- $U(P) \le c'm$
- $\operatorname{cr}(G) \leq 2n^2$

For points $P \subset \mathbb{R}^2$ define

- $lackbox{U}(P) = \text{number of pairs in } P \text{ at unit distance and}$
- $U(n) = \max_{|P|=n} U(P).$

Theorem 2.

[Spencer, Szemerédi, Trotter '84, Székely '97] $U(n) < 6.7n^{4/3}$

Proof.

- $U(P) \leq c'm$
- $\operatorname{cr}(G) \leq 2n^2$
- $c\frac{U(P)^3}{n^2} \le \operatorname{cr}(G) \le 2n^2$

0

Application 3: Max. Num. of Crossings in Matchings

Given point set of n points

0

0

0

0

Application 3: Max. Num. of Crossings in Matchings

Given point set of n points \circ What is the max. number of crossings in any matching? \circ

Given point set of n points What is the max. number of crossings in any matching?

Given point set of n points What is the max. number of crossings in any matching?

Given point set of n points What is the max. number of crossings in any matching? Point set spans drawing Γ of K_n

Given point set of n points

What is the max. number of crossings in any matching?

Point set spans drawing Γ of K_n

We will analyze the number of crossings in a **random** matching in Γ !

Given point set of n points

What is the max. number of crossings in any matching?

Point set spans drawing Γ of K_n

We will analyze the number of crossings in a random matching in Γ !

Number of crossings in $\Gamma \geq \overline{\operatorname{cr}}(K_n)$

Given point set of n points

What is the max. number of crossings in any matching?

Point set spans drawing Γ of K_n

We will analyze the number of crossings in a **random** matching in Γ!

Number of crossings in $\Gamma \geq \overline{\operatorname{cr}}(K_n) > \frac{3}{8} \binom{n}{4}$

Given point set of n points

What is the max. number of crossings in any matching?

Point set spans drawing Γ of K_n

We will analyze the number of crossings in a **random** matching in Γ!

Number of edges in K_n : $\binom{n}{2}$

Given point set of n points

What is the max. number of crossings in any matching?

Point set spans drawing Γ of K_n

We will analyze the number of crossings in a **random** matching in Γ!

Number of edges in K_n : $\binom{n}{2}$

Number of potential crossings (all pairs of edges): $pot(K_n) =$

Given point set of n points

What is the max. number of crossings in any matching?

Point set spans drawing Γ of K_n

We will analyze the number of crossings in a **random** matching in Γ !

Number of edges in K_n : $\binom{n}{2}$

Number of potential crossings (all pairs of edges): $pot(K_n) = \binom{\binom{n}{2}}{2}$

Given point set of n points

What is the max. number of crossings in any matching?

Point set spans drawing Γ of K_n

We will analyze the number of crossings in a **random** matching in Γ !

Number of edges in K_n : $\binom{n}{2}$

Number of potential crossings (all pairs of edges): $pot(K_n) = \binom{\binom{n}{2}}{2} \approx 3\binom{n}{4}$

Given point set of n points

What is the max. number of crossings in any matching?

Point set spans drawing Γ of K_n

We will analyze the number of crossings in a **random** matching in Γ !

Number of edges in K_n : $\binom{n}{2}$

Number of potential crossings (all pairs of edges): $pot(K_n) = \binom{\binom{n}{2}}{2} \approx 3\binom{n}{4}$

Pick two random edges e_1, e_2

Given point set of n points

What is the max. number of crossings in any matching?

Point set spans drawing Γ of K_n

We will analyze the number of crossings in a **random** matching in Γ!

Number of edges in K_n : $\binom{n}{2}$

Number of potential crossings (all pairs of edges): $pot(K_n) = \binom{\binom{n}{2}}{2} \approx 3\binom{n}{4}$

Pick two random edges e_1, e_2

 $\Pr[e_1 \text{ and } e_2 \text{ cross}] \geq$

Given point set of n points

What is the max. number of crossings in any matching?

Point set spans drawing Γ of K_n

We will analyze the number of crossings in a **random** matching in Γ !

Number of edges in K_n : $\binom{n}{2}$

Number of potential crossings (all pairs of edges): $pot(K_n) = \binom{\binom{n}{2}}{2} \approx 3\binom{n}{4}$

Pick two random edges e_1, e_2

 $\Pr[e_1 \text{ and } e_2 \text{ cross}] \ge \overline{\operatorname{cr}}(K_n)/\operatorname{pot}(K_n)$

Given point set of n points

What is the max. number of crossings in any matching?

Point set spans drawing Γ of K_n

We will analyze the number of crossings in a **random** matching in Γ !

Number of edges in K_n : $\binom{n}{2}$

Number of potential crossings (all pairs of edges): $pot(K_n) = \binom{\binom{n}{2}}{2} \approx 3\binom{n}{4}$

Pick two random edges e_1, e_2

$$\Pr[e_1 \text{ and } e_2 \text{ cross}] \ge \overline{\operatorname{cr}}(K_n)/\operatorname{pot}(K_n) > \frac{1}{8}$$

crossings

Application 3: Max. Num. of Crossings in Matchings

Given point set of n points

What is the max. number of crossings in any matching?

Point set spans drawing Γ of K_n

Number of edges in K_n : $\binom{n}{2}$

Number of potential crossings (all pairs of edges): $pot(K_n) = \binom{\binom{n}{2}}{2} \approx 3\binom{n}{4}$

Pick two random edges e_1, e_2

$$\Pr[e_1 \text{ and } e_2 \text{ cross}] \ge \overline{\operatorname{cr}}(K_n)/\operatorname{pot}(K_n) > \frac{1}{8}$$

Fix matching M; it has $\leq n/2$ edges, so

pairs of edges

crossings

Application 3: Max. Num. of Crossings in Matchings

Given point set of n points

What is the max. number of crossings in any matching?

Point set spans drawing Γ of K_n

We will analyze the number of crossings in a **random** matching in Γ !

Number of edges in K_n : $\binom{n}{2}$

Number of potential crossings (all pairs of edges): $pot(K_n) = \binom{\binom{n}{2}}{2} \approx 3\binom{n}{4}$

Pick two random edges e_1, e_2

$$\Pr[e_1 \text{ and } e_2 \text{ cross}] \ge \overline{\operatorname{cr}}(K_n)/\operatorname{pot}(K_n) > \frac{1}{8}$$

Fix matching M; it has $\leq n/2$ edges, so $\binom{n/2}{2}$

pairs of edges

Given point set of n points

What is the max. number of crossings in any matching?

Point set spans drawing Γ of K_n

We will analyze the number of crossings in a **random** matching in Γ !

Number of edges in K_n : $\binom{n}{2}$

Number of potential crossings (all pairs of edges): $pot(K_n) = \binom{\binom{n}{2}}{2} \approx 3\binom{n}{4}$

Pick two random edges e_1, e_2

$$\Pr[e_1 \text{ and } e_2 \text{ cross}] \ge \overline{\operatorname{cr}}(K_n)/\operatorname{pot}(K_n) > \frac{1}{8}$$

Fix matching M; it has $\leq n/2$ edges, so $\binom{n/2}{2} = \frac{1}{8}n(n-2)$ pairs of edges

crossings

Application 3: Max. Num. of Crossings in Matchings

Given point set of n points

What is the max. number of crossings in any matching?

Point set spans drawing Γ of K_n

Number of edges in K_n : $\binom{n}{2}$

Number of potential crossings (all pairs of edges): $pot(K_n) = \binom{\binom{n}{2}}{2} \approx 3\binom{n}{4}$

Pick two random edges e_1, e_2

$$\Pr[e_1 \text{ and } e_2 \text{ cross}] \ge \overline{\operatorname{cr}}(K_n)/\operatorname{pot}(K_n) > \frac{1}{8}$$

Fix matching M; it has $\leq n/2$ edges, so $\binom{n/2}{2} = \frac{1}{8}n(n-2)$ pairs of edges

By linearity of expectations, exp. number of crossings in M is >

Given point set of n points

What is the max. number of crossings in any matching?

Point set spans drawing Γ of K_n

Number of edges in K_n : $\binom{n}{2}$

Number of potential crossings (all pairs of edges): $pot(K_n) = \binom{\binom{n}{2}}{2} \approx 3\binom{n}{4}$

Pick two random edges e_1, e_2

$$\Pr[e_1 \text{ and } e_2 \text{ cross}] \ge \overline{\operatorname{cr}}(K_n)/\operatorname{pot}(K_n) > \frac{1}{8}$$

Fix matching M; it has $\leq n/2$ edges, so $\binom{n/2}{2} = \frac{1}{8}n(n-2)$ pairs of edges

By linearity of expectations,

exp. number of crossings in M is $> \frac{1}{8} \binom{n/2}{2}$

Given point set of n points

What is the max. number of crossings in any matching?

Point set spans drawing Γ of K_n

Number of edges in K_n : $\binom{n}{2}$

Number of potential crossings (all pairs of edges): $pot(K_n) = \binom{\binom{n}{2}}{2} \approx 3\binom{n}{4}$

Pick two random edges e_1, e_2

$$\Pr[e_1 \text{ and } e_2 \text{ cross}] \ge \overline{\operatorname{cr}}(K_n)/\operatorname{pot}(K_n) > \frac{1}{8}$$

Fix matching M; it has $\leq n/2$ edges, so $\binom{n/2}{2} = \frac{1}{8}n(n-2)$ pairs of edges

By linearity of expectations,

exp. number of crossings in M is $> \frac{1}{8} \binom{n/2}{2} = \frac{1}{64} n(n-2)$

Literature

- [Aigner, Ziegler] Proofs from THE BOOK
- [Schaefer '20] The Graph Crossing Number and its Variants: A Survey
- Terrence Tao blog post "The crossing number inequality" from 2007
- [Garey, Johnson '83] Crossing number is NP-complete
- [Bienstock, Dean '93] Bounds for rectilinear crossing numbers
- [Székely '97] Crossing Numbers and Hard Erdös Problems in Discrete Geometry
- Documentary/Biography "N Is a Number: A Portrait of Paul Erdös"
- Exact computations of crossing numbers: http://crossings.uos.de