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Intersection Representation

In an intersection representation of a graph each
vertex Is represented as a set such that two sets
intersect if and only if the corresponding vertices are
adjacent.

For a collection S of sets Sq,...,.5,,
the intersection graph G(S) of S has
vertex set & and edge set

{SiSjZ 1,9 € {1,,%},2#], and SiﬂSj #@}
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Let G be a graph. <>—0 Let S be a set of geometric objects

Represent each vertex v by a geometric object S(v) €S

v —p © )

In an & contact representation of GG, S(u) and S(v) touch iff uv € E

= @
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(~ : :
A contact representation IS an

Contact RepresentatiOn of Gra phS intersection representation with

interior-disjoint sets.
.
Let G be a graph. <>—0 Let S be a set of geometric objects

Represent each vertex v by a geometric object S(v) €S

% o) %? @ \ rectangular cuboids

In an & contact representation of GG, S(u) and S(v) touch iff uv € E

< @ B

G is planar Koehe 1936] » disks » polygons
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Contact Representation of Planar Graphs

Is the intersection graph of a contact representation
always planar?
B No, not even for connected object types.

Some object types are used to represent special classes
of planar graphs:

bipartite graphs max. triangle-free graphs planar triangulations
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General Approach
How to compute a contact representation of a given graph G?7

m Consider only inner triangulations

(or maximally bipartite graphs, etc)
B Triangulate by adding vertices, O > %@

not by adding edges

B Describe contact representation combinatorically.
® Which objects contact each other in which way?

B Compute combinatorical description.

B Show that combinatorical description can be used to
construct drawing.
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Representations with right-triangles and corner contact
B Use Schnyder realizer to describe contacts between triangles

B Use canonical order to calculate drawing

Representation with dissection of a rectangle, called rectangular dual
B Find similar description like Schnyder realizer for rectangles

B Construct drawing via st-digraphs, duals, and topological sorting
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Triangle Corner Contact Representation

Idea.
Use canonical order and Schnyder realizer to find
coordinates for triangles.

Observation.

B Can set base of triangle at height equal to
position in canonical order.

B Triangle tip is precisely at base of triangle
corresponding to cover neighbor.

B Outgoing edges in Schnyder forest indicate corner
contacts.
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A rectangular dual of a graph G is a contact
representation with axis aligned rectangles s.t.

B no four rectangles share a point, and

B the union of all rectangles is a rectangle

[Theorem. [Kozminski, Kinnen ’85]]

A graph G has a rectangular dual R if and only if G is a PTP graph.
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A rectangular dual of a graph G is a contact
representation with axis aligned rectangles s.t.

B no four rectangles share a point, and

B the union of all rectangles is a rectangle

[Theorem. [Kozmiriski, Kinnen ’85]]

A graph GG has a rectangular dual ‘R if and only if G is a PTP graph.
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A rectangular dual of a graph G is a contact
representation with axis aligned rectangles s.t.

B no four rectangles share a point, and
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[Theorem. [Kozmiriski, Kinnen ’85]]

A graph GG has a rectangular dual ‘R if and only if G is a PTP graph.
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A rectangular dual of a graph G is a contact
representation with axis aligned rectangles s.t.
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[Theorem. [Kozmiriski, Kinnen ’85]]

A graph GG has a rectangular dual ‘R if and only if G is a PTP graph.
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A rectangular dual of a graph G is a contact
representation with axis aligned rectangles s.t.

B no four rectangles share a point, and

B the union of all rectangles is a rectangle

[Theorem. [Kozmiriski, Kinnen ’85]]

A graph GG has a rectangular dual ‘R if and only if G is a PTP graph.
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A rectangular dual of a graph G is a contact
representation with axis aligned rectangles s.t.

B no four rectangles share a point, and

B the union of all rectangles is a rectangle

[Theorem. [Kozmiriski, Kinnen ’85]]

A graph GG has a rectangular dual ‘R if and only if G is a PTP graph.
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A rectangular dual of a graph G is a contact
representation with axis aligned rectangles s.t.

B no four rectangles share a point, and

B the union of all rectangles is a rectangle

[Theorem. [Kozmiriski, Kinnen ’85]]

A graph GG has a rectangular dual ‘R if and only if G is a PTP graph.
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Refined Canonical Order

‘Theorem. )
Let G be a PTP graph. There exists a labeling
V1 = Vg, U = Uy ,V3,...,U, = Uy Of the vertices of G such that
for every 4 < k < n:
m The subgraph Gj_1 induced by vq,...,v;_1 Is biconnected o

and boundary Cj_; of G_1 contains the edge (vg, vy ).

B v Is in exterior face of Gi_1, and its neighbors in Gj_1 form
a (at least 2-element) subinterval of the path Ci_1 \ (vs, v ).
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m The subgraph Gj_1 induced by vq,...,v;_1 Is biconnected

and boundary Cj_; of G_1 contains the edge (vg, vy ).

B v Is in exterior face of Gi_1, and its neighbors in Gj_1 form
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We construct a REL as follows:

B For i < j, orient (v;,v;) from v; to v;;

B v; has incoming edges from v, ,..., v, , we say that IS
of v and IS of vg.

B Base edge of vy is (v, ,vi), where t, < k is minimal.

B If vg,..., v, are higher numbered neighbors of vy, we call
(vg, vk, ) left edge and (v, vi. ) right edge.
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We construct a REL as follows:

B For i < j, orient (v;,v;) from v; to v;; Vky
B v; has incoming edges from v, ,..., v, , we say that IS
of v and IS of vg. Vi

B Base edge of vy is (v, ,vi), where t, < k is minimal.

B If vg,..., v, are higher numbered neighbors of vy, we call o
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We construct a REL as follows:

B For i < j, orient (v;,v;) from v; to v;; Uk, Uk,
B v; has incoming edges from v, ,..., v, , we say that IS
of v and IS of vg. Vi

B Base edge of vy is (v, ,vi), where t, < k is minimal.

B If vg,..., v, are higher numbered neighbors of vy, we call o

(vg, vk, ) left edge and (v, vi. ) right edge. / a \
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We construct a REL as follows:

B For i < j, orient (v;,v;) from v; to v;; Uk, Uk,
B v; has incoming edges from v, ,..., v, , we say that IS
of v and IS of vg. Vi

B Base edge of vy is (v, ,vi), where t, < k is minimal.

B If vg,..., v, are higher numbered neighbors of vy, we call o

(vg, vk, ) left edge and (v, vi. ) right edge. / : \

Lemma 1.
A left edge or right edge cannot be a base edge.
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Refined Canonical Order — REL

We construct a REL as follows:

B For i < j, orient (v;,v;) from v; to v;;

B vy has incoming edges from v, ,...,v;,, we say that v, is left
point of vi and v, is right point of vg.

B Base edge of vy is (v, ,vi), where t, < k is minimal.

B If vg,..., v, are higher numbered neighbors of vy, we call
(vg, vk, ) left edge and (v, vi. ) right edge.

Lemma 1.
A left edge or right edge cannot be a base edge.

Proof. Suppose left edge (v, vy, ) is base edge of vy, .
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We construct a REL as follows:

B For i < j, orient (v;,v;) from v; to v;; Uk Uk,
B v; has incoming edges from v, ,..., v, , we say that IS
of v and IS of vg. Vi

B Base edge of vy is (v, ,vi), where t, < k is minimal.

B If vg,..., v, are higher numbered neighbors of vy, we call | o

(vg, vk, ) left edge and (v, vi. ) right edge. / : \

Lemma 1.
A left edge or right edge cannot be a base edge.

Proof. Suppose left edge (v, vy, ) is base edge of vy, .
Since G triangulated, (v;,, v, ) € E(G).
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We construct a REL as follows:

B For i < j, orient (v;,v;) from v; to v;; Uk Uk,
B v; has incoming edges from v, ,..., v, , we say that IS
of v and IS of vg. Vi

B Base edge of vy is (v, ,vi), where t, < k is minimal.

B If vg,..., v, are higher numbered neighbors of vy, we call | o

(vg, vk, ) left edge and (v, vi. ) right edge. / : \

Lemma 1.
A left edge or right edge cannot be a base edge.

Proof. Suppose left edge (v, vy, ) is base edge of vy, .
Since G triangulated, (v;,, v, ) € E(G).
Contradiction since vy >
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Refined Canonical Order — REL

Lemma 2.
An edge is either a left edge, a right edge or a base edge.

Proof.
B Exclusive “or’ follows from Lemma 1.
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Refined Canonical Order — REL

Lemma 2.
An edge is either a left edge, a right edge or a base edge.

Proof.
B Exclusive “or’ follows from Lemma 1.

B Let (v;,,v;) be base edge of vy.
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Lemma 2.
An edge is either a left edge, a right edge or a base edge.

Proof.
B Exclusive “or’ follows from Lemma 1.

B Let (v;,,v;) be base edge of vy.

B v, isright point of vy, _,; vy,

<. 15 right point of vy, ;:
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Lemma 2.
An edge is either a left edge, a right edge or a base edge. Uk Uk,

Proof.
B Exclusive “or’ follows from Lemma 1.

Vg

B Let (v;,,v;) be base edge of vy.
Ut

m o, s of vy, ,; v¢,_, Is right point of v, : / a
B v has at least two higher-numbered neighbors.
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Lemma 2.
An edge is either a left edge, a right edge or a base edge. Uk Uk,

Proof.
B Exclusive “or’ follows from Lemma 1.

Vg

B Let (v; ,v;) be base edge of vy.
Ut

m o, s of vy, ,; v¢,_, Is right point of v, : / a
B v has at least two higher-numbered neighbors.

B One of them is vy; the other one is either v,

or V¢

1 141"
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[Lemma 2. ]

An edge is either a left edge, a right edge or a base edge. Uk Uk,

Proof.

B Exclusive “or” follows from Lemma 1. ¢

B Let (v; ,v;) be base edge of vy.

m oy, IS of vy, ,; v¢,_, Is right point of v, : / o \
B v has at least two higher-numbered neighbors.

B One of them is vy; the other one is either v, _, or vy

1 1+1°

BForl<i<a—11tisvy, ;.
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[Lemma 2. ]

An edge is either a left edge, a right edge or a base edge. Uk Uk,

Proof.

B Exclusive “or” follows from Lemma 1. ¢

B Let (v; ,v;) be base edge of vy.

m oy, IS of vy, ,; v¢,_, Is right point of v, : / o \
B v has at least two higher-numbered neighbors.

B One of them is vy; the other one is either v, _, or vy

1 1+1°

BForl<i<a—11tisvy, ;.

B Analogously, v, is of vy, .,
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[Lemma 2. ]

An edge is either a left edge, a right edge or a base edge. Uk Uk,

Proof.

B Exclusive “or” follows from Lemma 1. ¢

B Let (v; ,v;) be base edge of vy.

m oy, IS of vy, ,; v¢,_, Is right point of v, : / o \
B v has at least two higher-numbered neighbors.

B One of them is vy; the other one is either vy, | or vy, ;.
BForl<i<a—11tisvy, ;.
B Analogously, v, is of vy, .,

B Edges (v¢,,vx), 1 <@ < a—1, are right edges.
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[Lemma 2. ]

An edge is either a left edge, a right edge or a base edge. Uk Uk,

Proof.

B Exclusive “or” follows from Lemma 1. o

B Let (v; ,v;) be base edge of vy.

m oy, IS of vy, ,; v¢,_, Is right point of v, : / o \
B v has at least two higher-numbered neighbors.

B One of them is vy; the other one is either v, _, or vy

1 1+1°

BForl<i<a-—1itisuv, ..
m Analogously, vy, is of vy, .,
B Edges (v¢,,vx), 1 <@ < a—1, are right edges.
B Similarly, (v¢,,v), for a +1 <1 <[, are left edges.
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Vg
right left
edges edges
base
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Coloring. right left
m Color right (left) edges in red (blue). edgemdges

base
edge



Refined Canonical Order — REL

Coloring. right left
m Color right (left) edges in red (blue). edgemdges

B Color a base edge (v, , vy ) red if ¢ =1 and base
blue if ¢ = [ and otherwise arbitrarily. edge

18 - 30



Refined Canonical Order — REL

Coloring. right left
m Color right (left) edges in red (blue). edgemdges

B Color a base edge (vy,, v ) red if ¢ =1 and base Vi

blue if 2 = [ and otherwise arbitrarily. edge left
edges
base

edge
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Refined Canonical Order — REL

Coloring. rijht loft ;iggécs
B Color right (left) edges in red (blue). =Iee edges )A

B Color a base edge (vy,, v ) red if ¢ =1 and base Vi base

blue if 2 = [ and otherwise arbitrarily. edge oft edge
edges
base

edge
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Coloring. rijht loft ;ijgf;cs
B Color right (left) edges in red (blue). =Iee edges )A

B Color a base edge (vy,, v ) red if ¢ =1 and base Vk base

blue if 2 = [ and otherwise arbitrarily. edge oft edge
Let I be the red edges and 7} the blue edges. edges
base

edge
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Coloring. rijht loft ;iggécs
B Color right (left) edges in red (blue). =Iee edges )A

B Color a base edge (vy,, v ) red if ¢ =1 and base Vi base

blue if 2 = [ and otherwise arbitrarily. edge oft edge
Let I be the red edges and 7} the blue edges. edges
base

Lemma 3. ] edge

{T.,T,} is a regular edge labeling.




18 - 35

Refined Canonical Order — REL

Coloring. rijht loft ;iggécs
B Color right (left) edges in red (blue). =Iee edges )A

B Color a base edge (vy,, v ) red if ¢ =1 and base Vi base
blue if 2 = [ and otherwise arbitrarily. edge oft edge
Let I be the red edges and 7} the blue edges. edges
base
Lemma 3. edge
{T..,'T,} is a regular edge labeling.
Proof.
ko > 2

kak
(0}

Uk
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Coloring. rijht loft ;iggécs
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blue if 2 = [ and otherwise arbitrarily. edge oft edge
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Lemma 3. edge
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Proof.
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(N Vk.,
left edge right edge

of vy Vi of vy
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Coloring. rijht loft ;iggécs
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blue if 2 = [ and otherwise arbitrarily. edge oft edge
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Lemma 3. edge
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Proof.
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(N Vi, Vky ++ - Uk
left edge right edge

of vy Vi of vy
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Coloring. rijht loft ;iggécs
B Color right (left) edges in red (blue). =Iee edges )A}

B Color a base edge (vy,, v ) red if ¢ =1 and base Vi base
blue if 2 = [ and otherwise arbitrarily. edge oft edge
Let I be the red edges and 7} the blue edges. edges
base
Lemma 3. edge
{T..,'T,} is a regular edge labeling.

kqa = max{vg, ...vk,}

Proof.
/

ko > 2 base edges of
de

Vky - - - Uk

Ukl

Uko o—1

left edge right edge
of vy Vi of vy
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Coloring. rijht loft ;iggécs
B Color right (left) edges in red (blue). =Iee edges )A}

B Color a base edge (vy,, v ) red if ¢ =1 and base Vk base
blue if + = [ and otherwise arbitrarily. edge oft edge
Let I be the red edges and 7} the blue edges. edges
base
Lemma 3. edge
{T.,T,} is a regular edge labeling.
Proof. /. kq = max{vg, ... vk, } Bk <ky<...<kgand
ko > 2 o base edges of kqa > kgy1 > ... >k,
(N d ke, Viy «+ + Uk,
left edge right edge

of vy Vi of vy
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Refined Canonical Order — REL
right

Coloring. right loft
_ edges € edges
m Color right (left) edges in red (blue). edges

B Color a base edge (vy,, v ) red if ¢ =1 and base Vi base
blue if 2 = [ and otherwise arbitrarily. edge oft edge
Let I be the red edges and 7} the blue edges. edges
base
Lemma 3. edge
{T..,'T,} is a regular edge labeling.
Proof. /. kq = max{vg, ... vk, } Bk <ky<...<kgand
ko > 2 o base edges of kqa > kgy1 > ... >k,
Uk ¢ .
1 Uk, k2t Uko—a B (vg,v,), 2<1t<d—1 are blue
left edge right edge

of vy Vi of vy
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right

Coloring. right loft
_ edges € edges
m Color right (left) edges in red (blue). edges

B Color a base edge (vy,, v ) red if ¢ =1 and base Vi base

blue if 2 = [ and otherwise arbitrarily. edge oft edge
Let I be the red edges and 7} the blue edges. edges

base
Lemma 3. edge
{T..,'T,} is a regular edge labeling.
Proof. /. kq = max{vg, ... vk, } Bk <ky<...<kgand
ko > 2 o base edges of kqa > kgy1 > ... >k,
Uk ¢ .
1 Uk, k2t Uko—a B (vg,v,), 2<1t<d—1 are blue

left edge right edge B (vp, vk, ), d+1<i<o-—1 arered

of vg VL of vz
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Refined Canonical Order — REL
right

Coloring. right loft
_ edges € edges
m Color right (left) edges in red (blue). edges

B Color a base edge (vy,, v ) red if ¢ =1 and base Vi base

blue if 2 = [ and otherwise arbitrarily. edge oft edge
Let I be the red edges and 7} the blue edges. edges

base
Lemma 3. edge
{T..,'T,} is a regular edge labeling.
Proof. /. kq = max{vg, ... vk, } Bk <ky<...<kgand
ko > 2 o base edges of kqa > kgy1 > ... >k,
Uk ¢ .
1 Uk, k2t Uko—a B (vg,v,), 2<1t<d—1 are blue

left edge right edge B (vp, vk, ), d+1<i<o-—1 arered

of v, Uk of vy, B (vg,vg,) is either red or blue
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Coloring. rijht loft ;iggécs
B Color right (left) edges in red (blue). =Iee edges )A

B Color a base edge (vy,, v ) red if ¢ =1 and base Vk base

blue if + = [ and otherwise arbitrarily. edge oft edge
Let I be the red edges and 7} the blue edges. edges

base
Lemma 3. edge
{T.,T,} is a regular edge labeling.
Proof. /. kq = max{vg, ... vk, } Bk <ky<...<kgand
ko > 2 o base edges of ka > kqy1 > ... > ko
Vk d .
1 Uk, k27 Vko B (vg, vk, ), 2<i<d—1 are blue
left edge right edge B (Ve U,), d+1<i<o—1arered
of v, Uk of vy, B (vg,vg,) is either red or blue

= circular order of outgoing edges at v, correct
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Rectangular Dual Algorithm

For a PTP graph G = (V, E):

Find a REL {T’.,7}} of G,
Construct a SN network GG\ of G (consists of 7} plus outer edges)

Construct the dual G, of GG\, and compute a topological ordering

Jver of Gler

For each vertex v € V/, let g and /» be the face on the left and face
on the right of v. Set z1(v) = fier(9) and x2(v) = frer().

Define x1(vy) = 1, 21(vs) = 2 and
r2(vn) = max fuer — 1, 22(vs) = max fier

Analogously compute y1 and y» with Gy.

For each v € V, assign a rectangle R(v) bounded by x-coordinates
x1(v), x2(v) and y-coordinates y1(v), y2(v) .
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le(vw) — O,mz(vw) =1
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Reading off Coordinates to get Rectangular Dual

5131(?}]\]) — 1, CEQ(UN) — 15
x1(vs) =2, x2(vs) = 16
le(vw) — O,mz(vw) =1
xl(’UE) — 15, CIJQ(”UE) — 16
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Reading off Coordinates to get Rectangular Dual

5131(?}]\]) — 1, CEQ(UN) — 15
x1(vs) =2, x2(vs) = 16
le(vw) — O,afz(vw) =1
xl(’vE) — 15, CIJQ(”UE) — 16
zri(a) =1, z2(a) =3
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Reading off Coordinates to get Rectangular Dual

5131(?}]\]) — 1, CEQ(UN) — 15
x1(vs) =2, x2(vs) = 16
le(vw) — O,afz(vw) =1
xl(’vE) — 15, CIJQ(”UE) — 16
zri(a) =1, z2(a) =3
CUl(b) = 3, aﬁz(b) =5
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Reading off Coordinates to get Rectangular Dual

5131(?}]\]) — 1, CEQ(UN) — 15
x1(vs) =2, x2(vs) = 16
le(vw) — O,afz(vw) =1
xl(’vE) — 15, CIJQ(”UE) — 16
zri(a) =1, z2(a) =3
CUl(b) = 3, aﬁz(b) =5
r1(c) =5, x2(c) =14

22 -



Reading off Coordinates to get Rectangular Dual

xl(UN) — 1, CEQ(UN) — 15
x1(vs) =2, x2(vs) = 16
le(vw) — O,afz(vw) =1
acl(vE) — 15, CIZQ(’UE) — 16
zri(a) =1, z2(a) =3
CUl(b) = 3, aﬁz(b) =5
r1(c) =5, x2(c) =14
xl(d) — 14, xz(d) = 15

22 -



22 - 10

Reading off Coordinates to get Rectangular Dual

CI?1(UN) — 1, CBQ(UN) — 15
x1(vs) =2, x2(vs) = 16
le(vw) — O,afz(vw) =1
:El(vE) — 15, CIZQ(’UE) — 16
zri(a) =1, z2(a) =3
CUl(b) = 3, wz(b) =5
r1(c) =5, x2(c) =14
xl(d) — 14, xz(d) = 15
z1(e) = 13, x2(e) = 15




22 - 11

Reading off Coordinates to get Rectangular Dual

CI?1(UN) — 1, CBQ(UN) — 15
x1(vs) =2, x2(vs) = 16
le(vw) — O,afz(vw) =1
:El(vE) — 15, CIZQ(’UE) — 16
zri(a) =1, z2(a) =3
CUl(b) = 3, wz(b) =5
r1(c) =5, x2(c) =14
xl(d) — 14, xz(d) = 15
z1(e) = 13, x2(e) = 15




22 - 12

Reading off Coordinates to get Rectangular Dual

5131(?)]\]) — 1, CBQ(’UN) — 15
x1(vs) =2, x2(vs) = 16
le(vw) — O,wz(vw) =1
xl(vE) — 15, CIZQ(’UE) — 16
zri(a) =1, z2(a) =3
CUl(b) = 3, wz(b) =5
r1(c) =5, x2(c) =14
xl(d) — 14, CIZQ(d) = 15
z1(e) = 13, x2(e) = 15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, y2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) =1, 12(b) =2




22 - 13

Reading off Coordinates to get Rectangular Dual

10

. L0, . . .

15 .

wl(vN) — 1, CBQ(UN) — 15
x1(vs) =2, x2(vs) = 16
a:l(vw) = O,aiz(vw) =1
a;l(vE) — 15, QZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) = 3, 2132([)) =5
r1(c) =5, x2(c) =14
xl(d) — 14, CIZQ(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2
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Reading off Coordinates to get Rectangular Dual

. L0, . . .

15 .

wl(vN) — 1, CBQ(UN) — 15
x1(vs) =2, x2(vs) = 16
a:l(vw) = O,aiz(vw) =1
a;l(vE) — 15, QZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) = 3, CEz(b) =5
r1(c) =5, x2(c) =14
xl(d) — 14, xz(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2
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Reading off Coordinates to get Rectangular Dual

L0

. L0, . . .

15 .

CCl(UN) — 1, CBQ(UN) — 15
x1(vs) =2, x2(vs) = 16
a:l(vw) = O,aiz(vw) =1
a;l(vE) — 15, QZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) = 3, CEz(b) =5
r1(c) =5, x2(c) =14
xl(d) — 14, CIZQ(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2
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Reading off Coordinates to get Rectangular Dual

L0

CCl(UN) — 1, CBQ(’UN) — 15
x1(vs) =2, x2(vs) = 16
a:l(vw) = O,xz(vw) =1
a;l(vE) — 15, CIZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) = 3, CEz(b) =5
r1(c) =5, x2(c) =14
xl(d) — 14, CIZQ(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2



22 - 17

Reading off Coordinates to get Rectangular Dual

L0

CCl(UN) — 1, CBQ(’UN) — 15
x1(vs) =2, x2(vs) = 16
a:l(vw) = O,:Bz(?)vv) =1
a;l(vE) — 15, CIZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) = 3, 5132([)) =5
r1(c) =5, x2(c) =14
xl(d) — 14, xz(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2



22 - 18

Reading off Coordinates to get Rectangular Dual

L0

CCl(UN) — 1, CBQ(’UN) — 15
x1(vs) =2, x2(vs) = 16
a:l(vw) = O,:Bz(?)vv) =1
a;l(vE) — 15, CIZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) = 3, 5132([)) =5
r1(c) =5, x2(c) =14
xl(d) — 14, xz(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2



22 -19

Reading off Coordinates to get Rectangular Dual

L0

CCl(UN) — 1, CBQ(’UN) — 15
x1(vs) =2, x2(vs) = 16
a:l(vw) = O,xz(vw) =1
a;l(vE) — 15, CIZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) = 3, CEz(b) =5
r1(c) =5, x2(c) =14
xl(d) — 14, CIZQ(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2
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Reading off Coordinates to get Rectangular Dual

L0

CCl(UN) — 1, CBQ(UN) — 15
x1(vs) =2, x2(vs) = 16
a:l(vw) = O,aiz(vw) =1
a;l(vE) — 15, QZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) = 3, CEz(b) =5
r1(c) =5, x2(c) =14
xl(d) — 14, CIZQ(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2
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Reading off Coordinates to get Rectangular Dual

L0

CCl(UN) — 1, CBQ(UN) — 15
x1(vs) =2, x2(vs) = 16
a:l(vw) = O,aiz(vw) =1
a;l(vE) — 15, QZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) = 3, CEz(b) =5
r1(c) =5, x2(c) =14
xl(d) — 14, CIZQ(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2



22 - 22

Reading off Coordinates to get Rectangular Dual

L0

CCl(UN) — 1, CBQ(UN) — 15
x1(vs) =2, x2(vs) = 16
a:l(vw) = O,aiz(vw) =1
a;l(vE) — 15, QZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) = 3, CEz(b) =5
r1(c) =5, x2(c) =14
xl(d) — 14, CIZQ(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2



22 - 23

Reading off Coordinates to get Rectangular Dual

L0

CCl(UN) — 1, CBQ(UN) — 15
x1(vs) =2, x2(vs) = 16
a:l(vw) = O,aiz(vw) =1
a;l(vE) — 15, QZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) = 3, CEz(b) =5
r1(c) =5, x2(c) =14
xl(d) — 14, CIZQ(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2



22 - 24

Reading off Coordinates to get Rectangular Dual

L0

wl(vN) — 1, CBQ(UN) — 15
x1(vs) =2, x2(vs) = 16
a:l(vw) = O,aiz(vw) =1
a;l(vE) — 15, QZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) = 3, CEz(b) =5
r1(c) =5, x2(c) =14
xl(d) — 14, xz(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2



22 - 25

Reading off Coordinates to get Rectangular Dual

L0

wl(vN) — 1, CBQ(UN) — 15
x1(vs) =2, x2(vs) = 16
a:l(vw) = O,aiz(vw) =1
a;l(vE) — 15, QZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) = 3, 2132([)) =5
r1(c) =5, x2(c) =14
xl(d) — 14, CIZQ(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2



22 - 26

Reading off Coordinates to get Rectangular Dual

L0

xl(vN) — 1, CBQ(UN) — 15
x1(vs) =2, x2(vs) = 16
xl(?}w) = O,aiz(vw) =1
a;l(vE) — 15, QZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) _— 3, 2132([)) =5
r1(c) =5, x2(c) =14
wl(d) — 14, CIZQ(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2



22 - 27

Reading off Coordinates to get Rectangular Dual

L0

xl(vN) — 1, CBQ(UN) — 15
x1(vs) =2, x2(vs) = 16
xl(?}w) = O,aiz(vw) =1
a;l(vE) — 15, QZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) _— 3, 2132([)) =5
r1(c) =5, x2(c) =14
wl(d) — 14, CIZQ(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2



22 - 28

Reading off Coordinates to get Rectangular Dual

L0

xl(vN) — 1, CBQ(UN) — 15
x1(vs) =2, x2(vs) = 16
xl(?}w) = O,aiz(vw) =1
a;l(vE) — 15, QZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) _— 3, 2132([)) =5
r1(c) =5, x2(c) =14
wl(d) — 14, CIZQ(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2



Correctness of Algorithm (Sketch)

B If edge (u,v) exists, then xo(u) = z1(v)
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B If edge (u,v) exists, then xo(u) = z1(v)

B and the vertical segments of their rectangles overlap
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Correctness of Algorithm (Sketch)

B If edge (u,v) exists, then xo(u) = z1(v)

yl(v) — fhor(a) S yl(u) — fhor(b)
< yz(?}) — fhor(c)
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Correctness of Algorithm (Sketch)

B If edge (u,v) exists, then xo(u) = z1(v)

yl(v) — fhor(a) S yl(u) — fhor(b)
< yz(?}) — fhor(c) S y2(u) — fhor(d)




23 - 11

Correctness of Algorithm (Sketch)

B If edge (u,v) exists, then xo(u) = z1(v)

ZCQ(’LL) — fver(g) — $1(U)

yl(v) — fhor(a) S yl(u) — fhor(b)
< y2(v) = fror(c) < ya(u) = fror(d)

B If path from u to v in red at least two edges long, then xo(u) < x1(v).
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Correctness of Algorithm (Sketch)

B If edge (u,v) exists, then xo(u) = z1(v)

ZCQ(’LL) — fver(g) — $1(U)

yl(v) — fhor(a) S yl(u) — fhor(b)
< y2(v) = fror(c) < ya(u) = fror(d)

B If path from u to v in red at least two edges long, then xo(u) < x1(v).

B No two boxes overlap.



23 - 13

Correctness of Algorithm (Sketch)

B If edge (u,v) exists, then xo(u) = z1(v)

ZCQ(’LL) — fver(g) — $1(U)

yl(v) — fhor(a) S yl(u) — fhor(b)
< y2(v) = fror(c) < ya(u) = fror(d)

B If path from u to v in red at least two edges long, then xo(u) < x1(v).

B No two boxes overlap.

B for details see He's paper [He 93]



Rectangular Dual Result

\.

p
Theorem.

~\

Every PTP graph G has a rectangular dual, which can

be computed in linear time.

J

24 -



Rectangular Dual Result

p
Theorem.

be computed in linear time.
.

~\

Every PTP graph G has a rectangular dual, which can

J

Proof.
B Compute a planar embedding of G.

24 -



Rectangular Dual Result

p
Theorem.

be computed in linear time.
.

~\

Every PTP graph G has a rectangular dual, which can

J

Proof.
B Compute a planar embedding of G.

B Compute a refined canonical ordering of G.

24 -



Rectangular Dual Result

(Theorem.
Every PTP graph G has a rectangular dual, which can

be computed in linear time.
.

~\

J

Proof.
B Compute a planar embedding of G.

B Compute a refined canonical ordering of G.

B Traverse the graph and color the edges.

24 -



Rectangular Dual Result

p
Theorem.

be computed in linear time.
.

~\

Every PTP graph G has a rectangular dual, which can

J

Proof.
B Compute a planar embedding of G.

B Compute a refined canonical ordering of G.
B Traverse the graph and color the edges.
B Construct GG, and G-

24 -



Rectangular Dual Result

(. )
Theorem.

Every PTP graph G has a rectangular dual, which can

be computed in linear time.
. J

Proof.

B Compute a planar embedding of G.
Compute a refined canonical ordering of G.
Traverse the graph and color the edges.
Construct GG, and G-

Construct their duals G

VEer

and G}

hor "



Rectangular Dual Result

.

p
Theorem.

~\

Every PTP graph G has a rectangular dual, which can

be computed in linear time.

J

Proof.
B Compute a planar embedding of G.

B Compute a refined canonical ordering of G.
B Traverse the graph and color the edges.

B Construct GG, and G-

O and G}
]

hor "

Construct their duals G*

VEer

Compute a topological ordering for vertices of ¢

*
VEer

and ¢

*
hor*

24 -



Rectangular Dual Result

( . N\
Theorem.

Every PTP graph G has a rectangular dual, which can

be computed in linear time.
. J

Proof.

B Compute a planar embedding of G.
Compute a refined canonical ordering of G.
Traverse the graph and color the edges.
Construct GG, and G-

Construct their duals GG

VEer

and G}

hor "

Compute a topological ordering for vertices of G and G

VEer

Assing coordinates to the rectangles representing vertices.

*
hor*

24 -



Discussion

B A layout is area-universal if any assignment of areas to rectangles can
be realized by a combinatorially equivalent rectangular layout.
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| iterature

Construction of triangle contact representations based on
B [de Fraysseix, de Mendez, Rosenstiehl '94] On Triangle Contact Graphs

Construction of rectangular dual based on
B [He '93] On Finding the Rectangular Duals of Planar Triangulated Graphs

B [Kant, He '94] Two algorithms for finding rectangular duals of planar graphs

and originally from
B [Kozminski, Kinnen '85] Rectangular Duals of Planar Graphs

26
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