

Visualization of Graphs

Hierarchical Layouts: Sugiyama Framework

Part I:
The Framework

Jonathan Klawitter

Hierarchical Drawings – Motivation

Hierarchical Drawing

Problem Statement.

Input: digraph G = (V, E)

lacksquare Output: drawing of G that "closely"

reproduces the

hierarchical properties of G

Desirable Properties.

- vertices occur on (few) horizontal lines
- edges directed upwards
- edge crossings minimized
- edges as short as possible
- vertices evenly spaced

Criteria can be contradictory!

Hierarchical Drawing – Applications

yEd Gallery: Java profiler JProfiler using yFiles MYTHOLOGICAL FIGURES (A) Star Wars (Original Trilogy) **(B)** LUKE'S ENTIRE JEDI TRAINING Source: "Design Considerations for Optimizing Storyline Visualizations" Tanahashi et al. Source: Visualization that won jects 쳵 References the Graph Drawing Contest 2016. Klawitter & Mchedlidze_

Classical Approach – Sugiyama Framework

[Sugiyama, Tagawa, Toda '81]

Visualization of Graphs

Hierarchical Layouts: Sugiyama Framework

Part II: Cycle Breaking

Jonathan Klawitter

Step 1: Cycle breaking

Step 1: Cycle breaking

Approach.

- \blacksquare Find minimum set E^* of edges which are not upwards.
- \blacksquare Remove E^* and insert reversed edges.

Problem MINIMUM FEEDBACK ARC SET (FAS).

- Input: directed graph G = (V, E)
- Output: min. set $E^\star \subseteq E$, so that $G = E^\star$ acyclic $G = E^\star + E_\pi^\star$

Heuristic 1

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph G = (V, E))

$$E' \leftarrow \emptyset$$

foreach $v \in V$ do

if
$$|N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)|$$
 then $|E' \leftarrow E' \cup N^{\rightarrow}(v)|$

else

$$E' \leftarrow E' \cup N^{\leftarrow}(v)$$

remove v and N(v) from G.

return (V, E')

 $lackbox{\blacksquare} E \setminus E'$ is a feedback set

$$N^{\rightarrow}(v)$$
 := $\{(v,u)|(v,u) \in E\}$
 $N^{\leftarrow}(v)$:= $\{(u,v)|(u,v) \in E\}$
 $N(v)$:= $N^{\rightarrow}(v) \cup N^{\leftarrow}(v)$

- Time: $\mathcal{O}(n+m)$
- Quality guarantee: $|E'| \ge |E|/2$

Heuristic 2

[Eades, Lin, Smyth '93]

$$E' \leftarrow \emptyset$$

while $V \neq \emptyset$ do

while in V exists a sink v do

$$E' \leftarrow E' \cup N^{\leftarrow}(v)$$

remove v and $N^{\leftarrow}(v)$

Remove all isolated vertices from V

while in V exists a source v do

$$E' \leftarrow E' \cup N^{\rightarrow}(v)$$

remove v and $N^{\rightarrow}(v)$

if $V \neq \emptyset$ then

let
$$v \in V$$
 such that $|N^{\rightarrow}(v)| - |N^{\leftarrow}(v)|$ maximal

$$E' \leftarrow E' \cup N^{\rightarrow}(v)$$

remove v and N(v)

- Time: $\mathcal{O}(n+m)$
- Quality guarantee: $|E'| \ge |E|/2 + |V|/6$

Visualization of Graphs

Hierarchical Layouts: Sugiyama Framework

Part III: Leveling

Jonathan Klawitter

Step 2: Leveling

Step 2: Leveling

Problem.

Input: acyclic digraph G = (V, E)

Output: Mapping $y \colon V \to \{1, \dots n\}$,

so that for every $uv \in E$, y(u) < y(v).

Objective is to minimize . . .

- \blacksquare number of layers, i.e. |y(V)|
- length of the longest edge, i.e. $\max_{uv \in E} y(v) y(u)$
- width, i.e. $\max\{|L_i| \mid 1 \leq i \leq h\}$
- total edge length, i.e. number of dummy vertices

Min Number of Layers

Algorithm.

- for each source q set y(q) := 1
- for each non-source vset $y(v) := \max \{y(u) \mid uv \in E\} + 1$

Observation.

- y(v) is length of the longest path from a source to v plus 1. ... which is optimal!
- Can be implemented in linear time with recursive algorithm.

Example

Total Edge Length – ILP

Can be formulated as an integer linear program:

$$\begin{array}{ll} \min & \sum_{(u,v)\in E}(y(v)-y(u)) \\ \text{subject to} & y(v)-y(u)\geq 1 & \forall (u,v)\in E \\ & y(v)\geq 1 & \forall v\in V \\ & y(v)\in \mathbb{Z} & \forall v\in V \end{array}$$

One can show that:

- Constraint-matrix is totally unimodular
 - ⇒ Solution of the relaxed linear program is integer
- The total edge length can be minimized in polynomial time

Width

Drawings can be very wide.

Narrower Layer Assignment

Problem: Leveling With a Given Width.

- Input: acyclic, digraph G = (V, E), width W > 0
- Output: Partition the vertex set into a minimum number of layers such

that each layer contains at most W elements.

Problem: Precedence-Constrained Multi-Processor Scheduling

- Input: n jobs with unit (1) processing time, W identical
 - machines, and a partial ordering < on the jobs.
- Output: Schedule respecting < and having minimum</p>
 - processing time.
- NP-hard, $(2-\frac{1}{W})$ -Approx., no $(\frac{4}{3}-\varepsilon)$ -Approx. $(W \ge 3)$.

Approximating PCMPS

- lacktriangleright jobs stored in a list L (in any order, e.g., topologically sorted)
- for each time $t = 1, 2, \ldots$ schedule $\leq W$ available jobs
- lacksquare a job in L is *available* when all its predecessors have been scheduled
- as long as there are free machines and available jobs, take the first available job and assign it to a free machine

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is W = 2.

Output: Schedule

$$M_1$$
 1 2 4 5 6 8 A C E G M_2 - 3 - 7 9 B D F - t 1 2 3 4 5 6 7 8 9 10

Question: Good approximation factor?

Approximating PCMPS - Analysis for W=2

"The art of the lower bound"

$$\mathsf{OPT} \geq \lceil n/2 \rceil$$
 and $\mathsf{OPT} \geq \ell := \mathsf{Number} \ \mathsf{of} \ \mathsf{layers} \ \mathsf{of} \ G_<$

Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG
$$\leq \lceil \frac{n+\ell}{2} \rceil \approx \lceil n/2 \rceil + \ell/2 \leq 3/2 \cdot \mathsf{OPT}$$
 insertion of pauses (-) in the schedule (except the last) maps to layers of $G_{<}$

Visualization of Graphs

Hierarchical Layouts: Sugiyama Framework

Step 3: Crossing Minimization

Step 3: Crossing Minimization

Problem.

- Input: Graph G, layering $y \colon V \to \{1, \dots, n\}$
- Output: (Re-)ordering of vertices in each layer so that the number of crossings in minimized.
- NP-hard, even for 2 layers [Garey & Johnson '83]
- hardly any approaches optimize over multiple layers :(

Iterative Crossing Reduction – Idea

Observation.

The number of crossings only depends on permutations of adjacent layers.

- Add dummy-vertices for edges connecting "far" layers.
- Consider adjacent layers $(L_1, L_2), (L_2, L_3), \ldots$ bottom-to-top.
- Minimize crossings by permuting L_{i+1} while keeping L_i fixed.

Iterative Crossing Reduction – Algorithm

(1) choose a random permutation of L_1

- one-sided crossing minimization
- (2) iteratively consider adjacent layers L_i and L_{i+1}
- (3) minimize crossings by permuting L_{i+1} and keeping L_i fixed
- (4) repeat steps (2)–(3) in the reverse order (starting from L_h)
- (5) repeat steps (2)–(4) until no further improvement is achieved
- (6) repeat steps (1)–(5) with different starting permutations

One-Sided Crossing Minimization

Problem.

Input: bipartite graph $G = (L_1 \cup L_2, E)$,

permutation π_1 on L_1

Output: permutation π_2 of L_2 minimizing the number of

edge crossings.

One-sided crossing minimization is NP-hard.

[Eades & Whitesides '94]

Algorithms.

- barycenter heuristic
- median heuristic
- Greedy-Switch
- ILP
- . . .

Barycenter Heuristic

[Sugiyama et al. '81]

- Intuition: few intersections occur when vertices are close to their neighbors
- The barycentre of u is the mean x-coordinate of the neighbours of u in layer L_1 $[x_1 \equiv \pi_1]$

$$x_2(u) := \mathsf{bary}(u) := \frac{1}{\mathsf{deg}(u)} \sum_{v \in N(u)} x_1(v)$$

- lacksquare Vertices with the same barycentre are offset by a small δ .
- linear runtime
- relatively good results
- $O(\sqrt{n})$ -approximation factor

Worst case?

Median Heuristic

[Eades & Wormald '94]

- $\{v_1,\ldots,v_k\}:=N(u) \text{ with } \pi_1(v_1)<\pi_1(v_2)<\cdots<\pi_1(v_k)$
- $x_2(u) := \operatorname{med}(u) := \begin{cases} 0 & \text{when } N(u) = \emptyset \\ \pi_1(v_{\lceil k/2 \rceil}) & \text{otherwise} \end{cases}$
- Move vertices u und v by small δ , when $x_2(u) = x_2(v)$
- Linear runtime
- Relatively good results
- Optimal if no crossings are required
- 3-Approximation factor

Proof in [GD Ch 11]

$$2k(k+1)+k^2$$
 vs. $(k+1)^2$

Greedy-Switch Heuristic

- Iteratively swap adjacent nodes as long as crossings decrease
- Runtime $O(L_2)$ per iteration; at most $|L_2|$ iterations
- Suitable as post-processing for other heuristics

Worst case?

$$\approx k^2/4$$

$$\approx 2k$$

Integer Linear Program

[Jünger & Mutzel, '97]

- Constant $c_{ij} := \#$ crossings between edges incident to v_i or v_j when $\pi_2(v_i) < \pi_2(v_j)$
- Variable x_{ij} for each $1 \le i < j \le n_2 := |L_2|$

$$x_{ij} = \left\{ egin{array}{ll} 1 & \mbox{when } \pi_2(v_i) < \pi_2(v_j) \\ 0 & \mbox{otherwise} \end{array}
ight.$$

lacksquare The number of crossings of a permutations π_2

$$\operatorname{cross}(\pi_2) = \sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji}) x_{ij} + \underbrace{\sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} c_{ji}}_{\text{constant}}$$

Integer Linear Program

Minimize the number of crossings:

minimize
$$\sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji}) x_{ij}$$

Transitivity constraints:

$$0 \leq x_{ij} + x_{jk} - x_{ik} \leq 1 \qquad \text{for } 1 \leq i < j < k \leq n_2$$
 i.e., if $x_{ij} = 1$ and $x_{jk} = 1$, then $x_{ik} = 1$

Properties.

- Branch-and-cut technique for DAGs of limited size
- Useful for graphs of small to medium size
- Finds optimal solution
- Solution in polynomial time is not guaranteed

Visualization of Graphs

Part V: Vertex Positioning & Drawing Edges

Jonathan Klawitter

Step 4: Vertex Positioning

Step 4: Vertex Positioning

Goal.

Paths should be close to straight, vertices evenly spaced

- **Exact:** Quadratic Program (QP)
- **Heuristic:** Iterative approach

Quadratic Program

- Consider the path $p_e = (v_1, \dots, v_k)$ of an edge $e = v_1 v_k$ with dummy vertices: v_2, \dots, v_{k-1}
- x-coordinate of v_i according to the line $\overline{v_1v_k}$ (with equal spacing):

$$\overline{x(v_i)} = x(v_1) + \frac{i-1}{k-1} \left(x(v_k) - x(v_1) \right)$$

Define the deviation from the line

$$\mathsf{dev}(p_e) := \sum_{i=2}^{k-1} \left(x(v_i) - \overline{x(v_i)} \right)^2$$

- Objective function: $\min \sum_{e \in E} \operatorname{dev}(p_e)$
- Constraints for all vertices v, w in the same layer with w right of v: $x(w) x(v) \ge \rho(w, v)$ min. horizontal distance

- QP is time-expensive
- width can be exponential

Iterative Heuristic

- Compute an initial layout
- Apply the following steps as long as improvements can be made:
 - 1. Vertex positioning,
 - 2. edge straightening,
 - 3. Compactifying the layout width.

Step 5: Drawing Edges

Step 5: Drawing Edges

Possibility.

Substitute polylines by Bézier curves

Classical Approach – Sugiyama Framework

[Sugiyama, Tagawa, Toda '81]

Literature

Detailed explanations of steps and proofs in

■ [GD Ch. 11] and [DG Ch. 5]

based on

 [Sugiyama, Tagawa, Toda '81] Methods for visual understanding of hierarchical system structures

and refined with results from

- [Berger, Shor '90] Approximation alogorithms for the maximum acyclic subgraph problem
- [Eades, Lin, Smith '93] A fast and effective heuristic for the feedback arc set problem
- [Garey, Johnson '83] Crossing number is NP-complete
- [Eades, Whiteside '94] Drawing graphs in two layers
- [Eades, Wormland '94] Edge crossings in drawings of bipartite graphs
- [Jünger, Mutzel '97] 2-Layer Straightline Crossing Minimization: Performance of Exact and Heuristic Algorithms