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Upward Planar Drawings — Motivation

B What may the direction of edges in a digraph represent?
m Time

m Flow
®m Hierarchy

H ...
B Would be nice to have general direction preserved in drawing. min b ostps

PERT diagram Petri net Phylogenetic network



Upward Planar Drawings — Detinition

A directed graph G = (V, E) is upward planar when it admits a
drawing ' that is

B planar and

B where each edge is drawn as an upward, y-monotone curve.



Upward Planarity — Necessary Conditions

B For a digraph GG to be upward planar, it has to be:
m planar

B acyclic
B bimodal

B ...but these conditions are not sufficient.

z bimodal vertex not bimodal



Upward Planarity — Characterization

‘Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988] ) :
For a digraph G the following statements are equivalent:
1. GG is upward planar.

2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

L J
R/_/\q/_/
o N0 Crossings

Additionally:

Embedded such that l

and t are on the < acyclic digraph with

outerface fp. a single and single sink ¢

\

or:
Edge (s,1) exists.



Upward Planarity — Characterization

‘Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988] )
For a digraph G the following statements are equivalent: !
1. GG is upward planar.

2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

. J

Proof.

(2) = (1) By definition. (1) < (3) Example:
(3) = (2) Triangulate & construct drawing:

Claim. Case 1: ! Case 2: !
Can draw in chord no chord
prespecified

triangle.

Induction on n.




E&'&iﬁ“&*ﬁ"ﬁ?
WURZBURG
Visualization of Graphs

Lecture 6:
Upward Planar Drawings

Part Il
Assignment Problem

Jonathan Klawitter



Upward Planarity — Complexity

(Theorem. [Garg, Tamassia, 1995] N
For a planar acyclic digraph it is in general NP-hard to decide

whether it is upward planar.
\. .

Theorem. [Bertolazzi et al., 1994]
For a combinatorially embedded planar digraph it can be tested

in O(n?) time whether it is upward planar.

é )
Corollary.

For a triconnected planar digraph it can be tested in O(n?) time
whether it is upward planar.
\.

‘Theorem. Hutton, Libow, 1996] |
For a single-source acyclic digraph it can be tested in O(n) time

whether it is upward planar.
. .




The Problem

'Fixed Embedding Upward Planarity Testing.
Let G = (V, E) be a plane digraph with set of faces F' and outer

face fj.
Test whether G is upward planar (wrt to F', fy).

N\

Idea.

B Find property that any upward planar drawing of G satisfies.
B Formalise property.

B Find algorithm to test property.




Angles, Local Sources & Sinks

Definitions.

B A vertex v is a local source wrt to a face f if v has two
outgoing edges on Jf.

B A vertex v is a local sink wrt to a face f if v has two
iIncoming edges on Jf.

B An angle « at a local source / sink is large when o > 7 and
small otherwise.

L(v) = # large angles at v

L(f) = # large angles in f

S(v) & S(f) for # small angles
) = # local sources wrt to f

A(f
= # local sinks wrt to f

|

Lemma 1.
L(f) + S(f) = 2A(/)

- 26



Assignment Problem

B Vertex v is a global source at faces f; and f5.

B Does v have a large angle in f; or f»?

10 -
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Angle Relations

‘Lemma 2.

L(f) - 5(f) = {_2’

+2,

J 7 Jo
J = Jo

mL(f)>1

] Proof by induction.

m L(f)=0 @ ~ S(f) =2

Split f with edge from a large angle at a “low” sink u to

B sink v with small/large angle:

-2 -2

L(f) = S(f) =L(f1) +L(f2) + 1

—(S(f1) +S(f2) — 1)
—

12-15



Angle Relations

'Lemma 2. ] Proof by induction.

. . _27 f # fO o o
L(f) = S(f) = {H, P = L(f)=0 @ = S(f) =2
mL(f)>1

Split f with edge from a large angle at a “low” sink u to

B sink v with small/large angle:

-2 -2

L(f) = S(f) =L(f1) +'L(f2) + 2

— (S(f1) +5(f2))
— 9

12 - 17
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Angle Relations

'Lemma 2. ] Proof by induction.

. . _27 f # fO o o
L(f) = S(f) = {H, P = L(f)=0 @ = S(f) =2
mL(f)>1

Split f with edge from a large angle at a “low” sink u to

B source v withsmratt/large angle:

U




Angle Relations

‘Lemma 2. | Proof by induction.

. . _27 f # fO o o
L(f) = S(f) = {H, P = L(f)=0 @ = S(f) =2
mL(f)>1

Split f with edge from a large angle at a “low” sink u to

B source v withsmratt/large angle:
-2 -2

L(f) = S(f) =L(f1) +'L(f2) + 2

— (S(f1) +5(f2))
— 9

12 - 27



Angle Relations

'Lemma 2. ] Proof by induction.

. . _27 f # fO o o
L(f) = S(f) = {H, P = L(f)=0 @ = S(f) =2
mL(f)>1

Split f with edge from a large angle at a “low” sink u to

B vertex v that is neither source nor sink:

-2 -2

L(f) = S5(f) =L(f1) +L(f2) + 1
—(S(f1) +S(f2) — 1)
—

B Otherwise “high” source u exists.

12- 35
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Number of Large Angles

Proof. Lemma 1: L(f)+ S(f) =2A([)
Lemma 2: L(f) — S(f) = £2.

= 2L(f) = 2A(f) £2.

/N N



Assignment of Large Angles to Faces

Let S and 7" be the sets of and sinks, respectively.

Definition.
A consistent assignment &: SUT — F'is a mapping where

®: v — incident face, where v forms large angle

such that

—1 if [ # fo,

<l>1(f)|—L(f)—{ A,

14 -



Example of Angle to Face Assignment

o global & sinks

# / sinks of f
L(f) # large angles of f

assignment

™ b:5UT — F

15 -
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Result Characterization

(Theorem 3.

Let G = (V, E) be an acyclic plane digraph with embedding given
by F, fo.

Then G is upward planar (respecting F', fo) if and only if G is
\bimodal and there exists consistent assignment ®.

Proof.
=: As constructed before.

<: ldea:
B Construct planar st-digraph that is supergraph of G.

B Apply equivalence from Theorem 1.

17 -



Refinement Algorithm — &, F f; — st-digraph

Let f be a face. Consider the clockwise angle sequence o¢ of
L/S on local and sinks of f.

B Goal: Add edges to break large angles ( and sinks).
B For f # fo with |o¢| > 2 containing (L, S, S) at vertices

m = insert edge (2, x)

18 -
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Refinement Algorithm — &, F f; — st-digraph

Let f be a face. Consider the clockwise angle sequence o¢ of
L/S on local and sinks of f.

B Goal: Add edges to break large angles ( and sinks).
B For f # fo with |o¢| > 2 containing (L, S, S) at vertices

m = insert edge (2, x)

B x sink = insert edge (z, 2).




18 - 17

Refinement Algorithm — &, F f; — st-digraph

Let f be a face. Consider the clockwise angle sequence o¢ of
L/S on local and sinks of f.

B Goal: Add edges to break large angles ( and sinks).
For f # fo with |o¢| > 2 containing (L, S, S) at vertices

T = insert edge (2, x)

x sink = insert edge (x, 2).

Refine outer face fj.

B Refine all faces. = G is contained in a planar st-digraph.

B Planarity, acyclicity, bimodality are invariants under construction.



Refinement Example




Refinement Example







Result Upward Planarity Test

(Theorem 2. [Bertolazzi et al., 1994] )
For a combinatorially embedded planar digraph G it can be
tested in O(n?) time whether it is upward planar.

\. J

Proof.
B Test for bimodality.

Test for a consistent assignment ® (via flow network).
f G bimodal and ¢ exists, refine G to plane st-digraph H.

[]
[]
B Draw H upward planar.
[]

Deleted edges added in refinement step.

20 -
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Finding a Consistent Assignment

Idea.
Flow (v, f) = 1 from global source / sink v to the incident
face f its large angle gets assigned to.

Flow network. Example.
Nr 1, (G) = (W, E'); b; 4; u)
BW={velV|v source or smk} JF
<

mE ={(v,f)|v |nC|dent to f} —
B /e)=0VeeF
B ule)=1Vee F

1 YVweWVNnV
B bw) = { —(A(0) = 1) Ve P\ {fo)

“(A(0) 1) w=f




Discussion

B There exist fixed-parameter tractable algorithms to test upward
planarity of general digraphs with the parameter being the num-
ber of triconnected components.

[Healy, Lynch 2005, Didimo et al. 2009]

® Finding assignment in Theorem 2 can be sped up to O(n + 1)
where r = # / sinks.
[Abbasi, Healy, Rextin 2010]

B Many related concepts have been studied: quasi-planarity, upward
drawings of mixed graphs, upward planarity on cyclinder/torus,

23 -
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| iterature

m [GD Ch. 6] for detailed explanation

Orginal papers referenced:
B [Kelly '87] Fundamentals of Planar Ordered Sets

m [Di Battista, Tamassia '88] Algorithms for Plane Representations of Acyclic Digraphs

B [Garg, Tamassia '95] On the Computational Complexity of Upward and Rectilinear
Planarity Testing

B [Hutton, Lubiw '96] Upward Planar Drawing of Single-Source Acyclic Digraphs

B [Bertolazzi, Di Battista, Mannino, Tamassia '94] Upward Drawings of Triconnected
Digraphs

B [Healy, Lynch '05] Building Blocks of Upward Planar Digraphs
B [Didimo, Giardano, Liotta '09] Upward Spirality and Upward Planarity Testing

B [Abbasi, Healy, Rextin '10] Improving the running time of embedded upward planarity
testing
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