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B What may the direction of edges in a digraph represent?
m Time

m Flow
®m Hierarchy

H ...
B Would be nice to have general direction preserved in drawing. min b ostps
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Upward Planarity — Necessary Conditions

B For a digraph GG to be upward planar, it has to be:
m planar

B acyclic
B bimodal

B ...but these conditions are not sufficient.

z bimodal vertex not bimodal
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‘Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988] ) :
For a digraph G the following statements are equivalent:
1. GG is upward planar.

2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

L J
R/_/\q/_/
o N0 Crossings

Additionally:

Embedded such that l

and t are on the < acyclic digraph with

outerface fp. a single and single sink ¢

\

or:
Edge (s,1) exists.
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The Problem

'Fixed Embedding Upward Planarity Testing.
Let G = (V, E) be a plane digraph with set of faces F' and outer

face fj.
Test whether G is upward planar (wrt to F', fy).

N\

Idea.

B Find property that any upward planar drawing of G satisfies.
B Formalise property.

B Find algorithm to test property.
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Definitions.

B A vertex v is a local source wrt to a face f if v has two
outgoing edges on Jf.

B A vertex v is a local sink wrt to a face f if v has two
iIncoming edges on Jf.

B An angle « at a local source / sink is large when o > 7 and
small otherwise.
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Proof.
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<: ldea:
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Let f be a face. Consider the clockwise angle sequence o¢ of
L/S on local and sinks of f.
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Let f be a face. Consider the clockwise angle sequence o¢ of
L/S on local and sinks of f.

B Goal: Add edges to break large angles ( and sinks).
For f # fo with |o¢| > 2 containing (L, S, S) at vertices

T = insert edge (2, x)

x sink = insert edge (x, 2).

Refine outer face fj.

B Refine all faces. = G is contained in a planar st-digraph.

B Planarity, acyclicity, bimodality are invariants under construction.
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(Theorem 2. [Bertolazzi et al., 1994] )
For a combinatorially embedded planar digraph G it can be
tested in O(n?) time whether it is upward planar.

\. J

Proof.
B Test for bimodality.

Test for a consistent assignment ® (via flow network).
f G bimodal and ¢ exists, refine G to plane st-digraph H.

[]
[]
B Draw H upward planar.
[]

Deleted edges added in refinement step.
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Idea.
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Finding a Consistent Assignment

Idea.
Flow (v, f) = 1 from global source / sink v to the incident
face f its large angle gets assigned to.

Flow network. Example.
Nr 1, (G) = (W, E'); b; 4; u)
BW={velV|v source or smk} JF
<

mE ={(v,f)|v |nC|dent to f} —
B /e)=0VeeF
B ule)=1Vee F

1 YVweWVNnV
B bw) = { —(A(0) = 1) Ve P\ {fo)

“(A(0) 1) w=f




Discussion
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® Finding assignment in Theorem 2 can be sped up to O(n + 1)
where r = # / sinks.
[Abbasi, Healy, Rextin 2010]

B Many related concepts have been studied: quasi-planarity, upward
drawings of mixed graphs, upward planarity on cyclinder/torus,
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| iterature

m [GD Ch. 6] for detailed explanation
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