Visualization of Graphs

Lecture 5:
Orthogonal Layouts
Part I:

Topolgy - Shape - Metric

Jonathan Klawitter

Orthogonal Layout - Applications

Orthogonal Layout - Applications

Organigram of HS Limburg
Circuit diagram by Jeff Atwood

Orthogonal Layout - Definition

Observations.
■ Edges lie on grid \Rightarrow bends lie on grid points

- Max degree of each vertex is at most 4
■ Otherwise

Definition.

A drawing Γ of a graph $G=(V, E)$ is called orthogonal if

- vertices are drawn as points on a grid,

■ each edge is represented as a sequence of alternating horizontal and vertical segments, and

■ pairs of edges are disjoint or cross orthogonally.

Planarization.

- Fix embedding
- Crossings become vertices

Orthogonal Layout - Definition

Observations.
■ Edges lie on grid \Rightarrow bends lie on grid points

■ Max degree of each vertex is at most 4
■ Otherwise

Definition.

A drawing Γ of a graph $G=(V, E)$ is called orthogonal if

- vertices are drawn as points on a grid,

■ each edge is represented as a sequence of alternating horizontal and vertical segments, and

- pairs of edges are disjoint or cross orthogonally.

Planarization.

- Fix embedding
- Crossings become vertices

Aesthetic criteria.

■ Number of bends
■ Length of edges

- Width, height, area

■ Monotonicity of edges

Topology - Shape - Metrics

Three-step approach:

$$
\begin{aligned}
& V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \\
& E=\left\{v_{1} v_{2}, v_{1} v_{3}, v_{1} v_{4}, v_{2} v_{3}, v_{2} v_{4}\right\}
\end{aligned}
$$

Topology
[Tamassia 1987]

- ShAPE
planar orthogonal drawing

Metrics

Topology - Shape - Metrics

Three-step approach:
$V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$
$E=\left\{v_{1} v_{2}, v_{1} v_{3}, v_{1} v_{4}, v_{2} v_{3}, v_{2} v_{4}\right\}$

Visualization of Graphs

Lecture 5:
Orthogonal Layouts

Part II:

Orthogonal Representation

Jonathan Klawitter

Orthogonal Representation

Idea.

Describe orthogonal drawing combinatorically.

Definitions.

Let $G=(V, E)$ be a plane graph with faces F and outer face f_{0}.
\square Let e be an edge with the face f to the right. An edge description of e wrt f is a triple (e, δ, α) where $\square \delta$ is a sequence of $\{0,1\}^{*}(0=$ right bend, $1=$ left bend $)$ $\square \alpha$ is angle $\in\left\{\frac{\pi}{2}, \pi, \frac{3 \pi}{2}, 2 \pi\right\}$ between e and next edge e^{\prime}

$(e, 100, \pi)$

■ A face representation $H(f)$ of f is a clockwise ordered sequence of edge descriptions (e, δ, α).

■ An orthogonal representation $H(G)$ of G is defined as

$$
H(G)=\{H(f) \mid f \in F\} .
$$

Orthogonal Representation - Example

$$
\begin{aligned}
& H\left(f_{0}\right)=\left(\left(e_{1}, 11, \frac{\pi}{2}\right),\left(e_{5}, 111, \frac{3 \pi}{2}\right),\left(e_{4}, \emptyset, \pi\right),\left(e_{3}, \emptyset, \pi\right),\left(e_{2}, \emptyset, \frac{\pi}{2}\right)\right) \\
& H\left(f_{1}\right)=\left(\left(e_{1}, 00, \frac{3 \pi}{2}\right),\left(e_{2}, \emptyset, \frac{\pi}{2}\right),\left(e_{6}, 00, \pi\right)\right) \\
& H\left(f_{2}\right)=\left(\left(e_{5}, 000, \frac{\pi}{2}\right),\left(e_{6}, 11, \frac{\pi}{2}\right),\left(e_{3}, \emptyset, \pi\right),\left(e_{4}, \emptyset, \frac{\pi}{2}\right)\right)
\end{aligned}
$$

Concrete coordinates are not fixed yet!

Correctness of an Orthogonal Representation

(H1) $H(G)$ corresponds to F, f_{0}.
(H2) For each edge $\{u, v\}$ shared by faces f and g with $\left((u, v), \delta_{1}, \alpha_{1}\right) \in H(f)$ and $\left((v, u), \delta_{2}, \alpha_{2}\right) \in H(g)$ sequence δ_{1} is reversed and inverted δ_{2}.
(H3) Let $|\delta|_{0}$ (resp. $|\delta|_{1}$) be the number of zeros (resp. ones) in δ and $r=(e, \delta, \alpha)$. Let $C(r):=|\delta|_{0}-|\delta|_{1}+2-\alpha \cdot 2 / \pi$. For each face f it holds that:

$$
\sum_{r \in H(f)} C(r)= \begin{cases}-4 & \text { if } f=f_{0} \\ +4 & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
& C\left(e_{3}\right)=0-0+2-\pi \cdot \frac{2}{\pi}=0 \\
& C\left(e_{4}\right)=0-0+2-\frac{\pi}{2} \cdot \frac{2}{\pi}=1 \\
& C\left(e_{5}\right)=3-0+2-\frac{\pi}{2} \cdot \frac{2}{\pi}=4 \\
& C\left(e_{6}\right)=0-2+2-\frac{\pi}{2} \cdot \frac{2}{\pi}=-1
\end{aligned}
$$

$(\mathrm{H} 4)$ For each vertex v the sum of incident angles is 2π.

Visualization of Graphs

Lecture 5:
Orthogonal Layouts
Part III:

Bend Minimization

Jonathan Klawitter

Reminder: $s-t$-Flow Networks

Flow network ($G=(V, E) ; S, T ; u)$ with

- directed graph $G=(V, E)$

■ sources $S \subseteq V$, sinks $T \subseteq V$
■ edge capacity $u: E \rightarrow \mathbb{R}_{0}^{+}$
A function $X: E \rightarrow \mathbb{R}_{0}^{+}$is called S - T-flow, if:

$$
\begin{aligned}
0 \leq X(i, j) \leq u(i, j) & \forall(i, j) \in E \\
\sum_{(i, j) \in E} X(i, j)-\sum_{(j, i) \in E} X(j, i)=0 & \forall i \in V \backslash(S \cup T)
\end{aligned}
$$

A maximum S - T-flow is an S - T-flow where $\sum X(i, j)$ is maximized.

$$
(i, j) \in E, i \in S
$$

Reminder: s - t-Flow Networks

Flow network $(G=(V, E) ; s, t ; u)$ with
■ directed graph $G=(V, E)$
■ source $s \in V$, sink $t \in V$
■ edge capacity $u: E \rightarrow \mathbb{R}_{0}^{+}$
A function $X: E \rightarrow \mathbb{R}_{0}^{+}$is called s - t-flow, if:

$$
\begin{aligned}
0 \leq X(i, j) \leq u(i, j) & \forall(i, j) \in E \\
\sum_{(i, j) \in E} X(i, j)-\sum_{(j, i) \in E} X(j, i)=0 & \forall i \in V \backslash\{s, t\}
\end{aligned}
$$

A maximum s-t-flow is an s-t-flow where $\sum_{(s, j) \in E} X(s, j)$ is maximized.

General Flow Network

Flow network $(G=(V, E) ; b ; \ell ; u)$ with

- directed graph $G=(V, E)$
- node production/consumption b: $V \rightarrow \mathbb{R}$ with \sum_{i}
\square edge lower bound $\ell: E \rightarrow \mathbb{R}_{0}^{+}$
■ edge capacity $u: E \rightarrow \mathbb{R}_{0}^{+}$
A function $X: E \rightarrow \mathbb{R}_{0}^{+}$is called valid flow, if:

$$
\begin{aligned}
\ell(i, j) \leq X(i, j) \leq u(i, j) & \forall(i, j) \in E \\
\sum_{(i, j) \in E} X(i, j)-\sum_{(j, i) \in E} X(j, i)=b(i) & \forall i \in V
\end{aligned}
$$

■ Cost function cost: $E \rightarrow \mathbb{R}_{0}^{+}$and $\operatorname{cost}(X):=\sum_{(i, j) \in E} \operatorname{cost}(i, j) \cdot X(i, j)$
A minimum cost flow is a valid flow where $\operatorname{cost}(X)$ is minimized.

General Flow Network - Algorithms

Polynomial Algorithms				
	Due to		Year	Running Time
	Edmonds	and Karp	1972	$\mathrm{O}\left(\mathrm{n}+\mathrm{m}^{\prime}\right) \log U S(\mathrm{n}, \mathrm{m}, \mathrm{nC})$)
	Rock		1980	$O\left(\left(n+m^{\prime}\right) \log U S(n, m, n C)\right)$
	Rock		1980	$O(n \log C M(n, m, U))$
	Bland an	d Jensen	1985	$O(m \log C M(n, m, U))$
	Goldberg	and Tarjan	1987	$\mathrm{O}\left(\mathrm{nm} \log \left(\mathrm{n}^{2} / \mathrm{m}\right) \log (\mathrm{nC})\right)$
6	Goldberg	and Tarjan	1988	$\mathrm{O}(\mathrm{nm} \log \mathrm{n} \log (\mathrm{nC})$)
7	Ahuja, G	oldberg, Orl	1988	$\mathrm{O}(\mathrm{nm} \log \log \mathrm{U} \log (\mathrm{nC})$)
Strongly Polynomial Algorithms				
\#	Due to		Year	Running Time
	Tardos		1985	$\mathrm{O}\left(\mathrm{m}^{4}\right)$
	Orlin		1984	$O\left((n+m)^{2} \log n S(n, m)\right)$
	Fujishige		1986	$O\left((n+m)^{2} \log n S(n, m)\right)$
	Galil and	Tardos	1986	$\mathrm{O}\left(\mathrm{n}^{2} \log \mathrm{nS}(\mathrm{n}, \mathrm{m})\right.$)
	Goldberg	and Tarjan	1987	$O\left(n m^{2} \log n \log \left(n^{2} / m\right)\right)$
	Goldber	and Tarjan	1988	$\mathrm{O}\left(\mathrm{nm}^{2} \log ^{2} \mathrm{n}\right)$
7 Orlin (this paper)			1988	$O\left(\left(n+m^{\prime}\right) \log n S(n, m)\right)$
	(n, m)	$=O(m+n \log n)$		Fredman and Tarjan [1984]
$\mathrm{S}(\mathrm{n}, \mathrm{m}, \mathrm{C})$		$\begin{aligned} = & O(\operatorname{Min}(m+n \sqrt{\log C}), \\ & (m \log \log C)) \end{aligned}$		Ahuja, Mehlhorn, Orlin and Tarjan [1990] Van Emde Boas, Kaas and Zijlstra[1977]
$\mathrm{M}(\mathrm{n}, \mathrm{m})$		$=\underset{\text { where } \varepsilon \text { is any fixed constant. }}{O\left(\min \left(n m+n^{2}+\varepsilon, n m \log n\right)\right.}$		King, Rao, and Tarjan [1991]
	$(\mathrm{n}, \mathrm{m}, \mathrm{U})$	$=O\left(\mathrm{~nm} \log \left(\frac{n}{\mathrm{~m}} \sqrt{\log \mathrm{U}}+2\right)\right)$		Ahuja, Orlin and Tarjan [1989]

[^0]
Theorem.

The minimum cost flow problem can be solved in $O\left(n^{2} \log ^{2} n+m^{2} \log n\right)$ time.

Theorem.

[Cornelsen \& Karrenbauer 2011]
The minimum cost flow problem for planar graphs with bounded costs and faze sizes can be solved in $O\left(n^{3 / 2}\right)$ time.

Topology - Shape - Metrics

Three-step approach:
$V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$
$E=\left\{v_{1} v_{2}, v_{1} v_{3}, v_{1} v_{4}, v_{2} v_{3}, v_{2} v_{4}\right\}$

Bend Minimization with Given Embedding

Geometric bend minimization.

Given: Plane graph $G=(V, E)$ with maximum degree 4

- Combinatorial embedding F and outer face f_{0}

Find: Orthogonal drawing with minimum number of bends that preserves the embedding.

Compare with the following variation.
Combinatorial bend minimization.
Given: \quad Plane graph $G=(V, E)$ with maximum degree 4

- Combinatorial embedding F and outer face f_{0}

Find: Orthogonal representation $H(G)$ with minimum number of bends that preserves the embedding.

Combinatorial Bend Minimization

Combinatorial bend minimization.

Given: Plane graph $G=(V, E)$ with maximum degree 4

- Combinatorial embedding F and outer face f_{0}

Find: Orthogonal representation $H(G)$ with minimum number of bends that preserves the embedding

Idea.

Formulate as a network flow problem:

- a unit of flow $=\measuredangle \frac{\pi}{2}$

■ vertices $\xrightarrow{\measuredangle}$ faces (\# $\angle \frac{\pi}{2}$ per face)
■ faces $\xrightarrow{\measuredangle}$ neighbouring faces (\# bends toward the neighbour)

Flow Network for Bend Minimization

(H1) $H(G)$ corresponds to F, f_{0}.
(H 2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_{1} is reversed and inverted δ_{2}.
(H3) For each face f it holds that:

$$
\sum_{r \in H(f)} C(r)= \begin{cases}-4 & \text { if } f=f_{0} \\ +4 & \text { otherwise }\end{cases}
$$

(H4) For each vertex v the sum of incident angles is 2π.

Define flow network $N(G)=((V \cup F, E) ; b ; \ell ; u$; cost $)$:
■ $E=\left\{(v, f)_{e e^{\prime}} \in V \times F \mid v\right.$ between edges e, e^{\prime} of $\left.\partial f\right\} \cup$ $\left\{(f, g)_{e} \in F \times F \mid f, g\right.$ have common edge $\left.e\right\}$

Flow Network for Bend Minimization

(H1) $H(G)$ corresponds to F, f_{0}.
(H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_{1} is reversed and inverted δ_{2}.
(H3) For each face f it holds that:

$$
\sum_{r \in H(f)} C(r)= \begin{cases}-4 & \text { if } f=f_{0} \\ +4 & \text { otherwise }\end{cases}
$$

(H4) For each vertex v the sum of incident angles is 2π.

Define flow network $N(G)=((V \cup F, E) ; b ; \ell ; u$; cost $)$:
■ $E=\left\{(v, f)_{e e^{\prime}} \in V \times F \mid v\right.$ between edges e, e^{\prime} of $\left.\partial f\right\} \cup$ $\left\{(f, g)_{e} \in F \times F \mid f, g\right.$ have common edge $\left.e\right\}$

■ $b(v)=4 \quad \forall v \in V$
$\square b(f)=-2 \operatorname{deg}_{G}(f)+ \begin{cases}-4 & \text { if } f=f_{0}, \\ +4 & \text { otherwise }\end{cases}$

$$
\begin{aligned}
\forall(v, f) \in E, v \in V, f \in F & \ell(v, f):=1 \leq X(v, f) \leq 4=: u(v, f) \\
& \operatorname{cost}(v, f)=0 \\
\forall(f, g) \in E, f, g \in F & \ell(f, g):=0 \leq X(f, g) \leq \infty=: u(f, g)
\end{aligned}
$$

$$
\operatorname{cost}(f, g)=1 \quad \text { We model only the }
$$

number of bends.
Why is it enough?

Flow Network for Bend Minimization

(H1) $H(G)$ corresponds to F, f_{0}.
(H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_{1} is reversed and inverted δ_{2}.
(H3) For each face f it holds that:

$$
\sum_{r \in H(f)} C(r)= \begin{cases}-4 & \text { if } f=f_{0} \\ +4 & \text { otherwise }\end{cases}
$$

(H4) For each vertex v the sum of incident angles is 2π.

Define flow network $N(G)=((V \cup F, E) ; b ; \ell ; u ; \operatorname{cost})$:
■ $E=\left\{(v, f)_{e e^{\prime}} \in V \times F \mid v\right.$ between edges e, e^{\prime} of $\left.\partial f\right\} \cup$ $\left\{(f, g)_{e} \in F \times F \mid f, g\right.$ have common edge $\left.e\right\}$

■ $b(v)=4 \quad \forall v \in V$
$\square b(f)=-2 \operatorname{deg}_{G}(f)+ \begin{cases}-4 & \text { if } f=f_{0}, \\ +4 & \text { otherwise }\end{cases}$

$$
\begin{aligned}
\forall(v, f) \in E, v \in V, f \in F & \ell(v, f):=1 \leq X(v, f) \leq 4=: u(v, f) \\
& \operatorname{cost}(v, f)=0 \\
\forall(f, g) \in E, f, g \in F & \ell(f, g):=0 \leq X(f, g) \leq \infty=: u(f, g) \\
& \operatorname{cost}(f, g)=1 \quad \begin{array}{l}
\text { We model only the }
\end{array} \\
&
\end{aligned}
$$

Flow Network Example

Legend
$\begin{array}{ll}V & \text { ○ } \\ F & \text { o }\end{array}$
$V \times F \supseteq \xrightarrow{1 / 4 / 0}$
$F \times F \supseteq \xrightarrow{0 / \infty / 1}$
$4=b$-value
3 flow

Flow Network Example

Legend
$\begin{array}{ll}V & 0 \\ F & 0\end{array}$
$V \times F \supseteq \xrightarrow{1 / 4 / 0}$
$F \times F \supseteq \xrightarrow{0 / \infty / 1}$
$4=b$-value
3 flow

Bend Minimization - Result

Theorem.
[Tamassia '87]
A plane graph $\left(G, F, f_{0}\right)$ has a valid orthogonal representation $H(G)$ with k bends iff the flow network $N(G)$ has a valid flow X with cost k.

Proof.
\Leftarrow Given valid flow X in $N(G)$ with cost k.
Construct orthogonal representation $H(G)$ with k bends.

- Transform from flow to orthogonal description.
- Show properties (H1)-(H4).
(H1) $\mathrm{H}(\mathrm{G})$ matches F, f_{0}
(H2) Bend order inverted and reversed on opposite sides
(H3) Angle sum of $f= \pm 4$
(H4) Total angle at each vertex $=2 \pi$
(H1) $H(G)$ corresponds to F, f_{0}.
(H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_{1} is reversed and inverted δ_{2}.
(H3) For each face f it holds that: $\sum_{r \in H(f)} C(r)= \begin{cases}-4 & \text { if } f=f_{0} \\ +4 & \text { otherwise. }\end{cases}$
$(\mathrm{H} 4)$ For each vertex v the sum of incident angles is 2π.

Bend Minimization - Result

Theorem.

[Tamassia '87]
A plane graph $\left(G, F, f_{0}\right)$ has a valid orthogonal representation $H(G)$ with k bends iff the flow network $N(G)$ has a valid flow X with cost k.

Proof.
\Rightarrow Given an orthogonal representation $H(G)$ with k bends.
Construct valid flow X in $N(G)$ with cost k.

- Define flow $X: E \rightarrow \mathbb{R}_{0}^{+}$.
- Show that X is a valid flow and has cost k.
(N1) $X(v f)=1 / 2 / 3 / 4$
$(\mathrm{N} 2) X(f g)=\left|\delta_{f g}\right|_{0},\left(e, \delta_{f g}, x\right)$ describes $e \stackrel{*}{=} f g$ from f
(N3) capacities, deficit/demand coverage
$(\mathrm{N} 4)$ cost $=k$

$$
\begin{aligned}
& b(v)=4 \quad \forall v \in V \\
& b(f)=-2 \operatorname{deg}_{G}(f)+\left\{\begin{array}{cl}
-4 & \text { if } f=f_{0}, \\
+4 & \text { otherwise }
\end{array}\right. \\
& \ell(v, f):=1 \leq X(v, f) \leq 4=: u(v, f) \\
& \operatorname{cost}(v, f)=0 \\
& \ell(f, g):=0 \leq X(f, g) \leq \infty=: u(f, g) \\
& \operatorname{cost}(f, g)=1
\end{aligned}
$$

Bend Minimization - Remarks

- From Theorem follows that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for the Min-Cost-Flow problem.

Theorem.

[Garg \& Tamassia 1996]
The minimum cost flow problem for planar graphs with bounded costs and vertex degrees can be solved in $O\left(n^{7 / 4} \sqrt{\log n}\right)$ time.

Theorem. [Cornelsen \& Karrenbauer 2011]
The minimum cost flow problem for planar graphs with bounded costs and faze sizes can be solved in $O\left(n^{3 / 2}\right)$ time.

Theorem.

[Garg \& Tamassia 2001]
Bend Minimization without a given combinatorial embedding is an NP-hard problem.

Visualization of Graphs

Lecture 5:
Orthogonal Layouts
Part IV:

Area Minimization

Jonathan Klawitter

Topology - Shape - Metrics

Three-step approach:

$$
\begin{aligned}
& V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \\
& E=\left\{v_{1} v_{2}, v_{1} v_{3}, v_{1} v_{4}, v_{2} v_{3}, v_{2} v_{4}\right\}
\end{aligned}
$$

Topology

Compaction

Compaction problem.

Given: Plane graph $G=(V, E)$ with maximum degree 4

- Orthogonal representation $H(G)$

Find: Compact orthogonal layout of G that realizes $H(G)$

Special case.

All faces are rectangles.
\rightarrow Guarantees possible

- minimum total edge length

■ minimum area

Properties.

- bends only on the outer face

■ opposite sides of a face have the same length
Idea.
■ Formulate flow network for horizontal/vertical compaction

Flow Network for Edge Length Assignment

Definition.

Flow Network $N_{\text {hor }}=\left(\left(W_{\text {hor }}, E_{\text {hor }}\right) ; b ; \ell ; u ;\right.$ cost $)$
■ $W_{\text {hor }}=F \backslash\left\{f_{0}\right\} \cup\{s, t\} \quad$ व
■ $E_{\text {hor }}=\{(f, g) \mid f, g$ share a horizontal segment and f lies below $g\} \cup\{(t, s)\}$

- $\ell(a)=1 \quad \forall a \in E_{\mathrm{hor}}$
- $u(a)=\infty \quad \forall a \in E_{\text {hor }}$

■ $\operatorname{cost}(a)=1 \quad \forall a \in E_{\text {hor }}$
■ $b(f)=0 \quad \forall f \in W_{\text {hor }}$

Flow Network for Edge Length Assignment

Definition.

Flow Network $N_{\text {ver }}=\left(\left(W_{\text {ver }}, E_{\text {ver }}\right) ; b ; \ell ; u\right.$; cost $)$
$\square W_{\text {ver }}=F \backslash\left\{f_{0}\right\} \cup\{s, t\} \quad$ व
■ $E_{\text {ver }}=\{(f, g) \mid f, g$ share a vertical segment and f lies to the left of $g\} \cup\{(t, s)\}$

- $\ell(a)=1 \quad \forall a \in E_{\text {ver }}$

■ $u(a)=\infty \quad \forall a \in E_{\text {ver }}$
$\square \operatorname{cost}(a)=1 \quad \forall a \in E_{\text {ver }}$
■ $b(f)=0 \quad \forall f \in W_{\text {ver }}$

Compaction - Result

What if not all faces rectangular?

Theorem.

Valid min-cost-flows for $N_{\text {hor }}$ and $N_{\text {ver }}$ exists iff corresponding edge lenghts induce orthogonal drawing.

What values of the drawing represent the following?

- $\left|X_{\mathrm{hor}}(t, s)\right|$ and $\left|X_{\mathrm{ver}}(t, s)\right|$? width and height of drawing
- $\sum_{e \in E_{\mathrm{hor}}} X_{\mathrm{hor}}(e)+\sum_{e \in E_{\text {ver }}} X_{\text {ver }}(e)$ total edge length

Refinement of (G, H) - Inner Face

Refinement of (G, H) - Inner Face

Refinement of (G, H) - Outer Face

Refinement of (G, H) - Outer Face

Refinement of (G, H) - Outer Face

Refinement of (G, H) - Outer Face

Area minimized? No!
But we get bound $O\left((n+b)^{2}\right)$ on the area.
Theorem.
[Patrignani 2001]
Compaction for given orthogonal representation is in general NP-hard.

Visualization of Graphs

Lecture 5:
 Orthogonal Layouts

Part V:

NP-hardness

Jonathan Klawitter

Boundary, belt, and "piston" gadget

Boundary, belt, and "piston" gadget

Boundary, belt, and "piston" gadget

Clause gadgets

Example:
$C_{1}=x_{2} \vee \overline{x_{4}}$
$C_{2}=x_{1} \vee x_{2} \vee \overline{x_{3}}$
$C_{3}=x_{5}$
$C_{4}=x_{4} \vee \overline{x_{5}}$

insert ($2 n$ - (1)-ghain through each clause

Complete reduction

Literature

- [GD Ch. 5] for detailed explanation
- [Tamassia 1987] "On embedding a graph in the grid with the minmum number of bends" original paper on flow for bend minimisation
- [Patrignani 2001] "On the complexity of orthogonal compaction" NP-hardness proof of compactification

[^0]: [Orlin 1991]

