

Visualization of Graphs

Lecture 5: Orthogonal Layouts

Part I:
Topolgy – Shape – Metric

Jonathan Klawitter

Orthogonal Layout – Applications

ER diagram in OGDF

Orthogonal Layout – Applications

ER diagram in OGDF

Organigram of HS Limburg

UML diagram by Oracle

Circuit diagram by Jeff Atwood

Orthogonal Layout – Definition

Definition.

A drawing Γ of a graph G = (V, E) is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

- Edges lie on grid ⇒
 bends lie on grid points
- Max degree of each vertex is at most 4
- Otherwise

Planarization.

- Fix embedding
- Crossings become vertices

Aesthetic criteria.

Orthogonal Layout – Definition

Definition.

A drawing Γ of a graph G = (V, E) is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

- \blacksquare Edges lie on grid \Rightarrow bends lie on grid points
- Max degree of each vertex is at most 4
- Otherwise

Planarization.

- Fix embedding
- Crossings become vertices Length of edges

Aesthetic criteria.

- Number of bends
- Width, height, area
- Monotonicity of edges

Topology – Shape – Metrics

Three-step approach:

 $V = \{v_1, v_2, v_3, v_4\}$ $E = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$

reduce crossings

combinatorial embedding/ planarization

bend minimization

orthogonal representation

METRICS

TOPOLOGY

Topology – Shape – Metrics

Three-step approach:

 $V = \{v_1, v_2, v_3, v_4\}$ $E = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$

reduce crossings

combinatorial embedding/planarization

orthogonal representation

Topology

SHAPE

METRICS

2

area mini-

mization

[Tamassia 1987]

Visualization of Graphs

Lecture 5: Orthogonal Layouts

Jonathan Klawitter

Orthogonal Representation

Idea.

Describe orthogonal drawing combinatorically.

Definitions.

Let G = (V, E) be a plane graph with faces F and outer face f_0 .

- Let e be an edge with the face f to the right. An edge description of e wrt f is a triple (e, δ, α) where
 - lacksquare δ is a sequence of $\{0,1\}^*$ (0 = right bend, 1 = left bend)
 - lacktriangle α is angle $\in \{\frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\}$ between e and next edge e'
- A face representation H(f) of f is a clockwise ordered sequence of edge descriptions (e, δ, α) .
- lacktriangle An orthogonal representation H(G) of G is defined as

$$H(G) = \{ H(f) \mid f \in F \}.$$

Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

Concrete coordinates are not fixed yet!

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F, f_0 .

- (H2) For each **edge** $\{u,v\}$ shared by faces f and g with $((u,v),\delta_1,\alpha_1) \in H(f)$ and $((v,u),\delta_2,\alpha_2) \in H(g)$ sequence δ_1 is reversed and inverted δ_2 .
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ and $r=(e,\delta,\alpha)$. Let $C(r):=|\delta|_0-|\delta|_1+2-\alpha\cdot 2/\pi$.

For each **face** f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v the sum of incident angles is 2π .

Visualization of Graphs

Lecture 5: Orthogonal Layouts

Jonathan Klawitter

Reminder: s-t-Flow Networks

Flow network (G = (V, E); S, T; u) with

- lacksquare directed graph G = (V, E)
- lacksquare sources $S\subseteq V$, sinks $T\subseteq V$
- edge capacity $u: E \to \mathbb{R}_0^+$

A function $X: E \to \mathbb{R}_0^+$ is called S-T-flow, if:

$$0 \le X(i,j) \le u(i,j) \qquad orall (i,j) \in E$$
 $\sum_{(i,j)\in E} X(i,j) - \sum_{(j,i)\in E} X(j,i) = 0 \qquad orall i \in V \setminus (S \cup T)$

A maximum S-T-flow is an S-T-flow where $\sum_{(i,j)\in E, i\in S} X(i,j)$ is maximized.

Reminder: s-t-Flow Networks

Flow network (G = (V, E); s, t; u) with

- lacksquare directed graph G = (V, E)
- lacksquare source $s \in V$, sink $t \in V$
- edge capacity $u: E \to \mathbb{R}_0^+$

A function $X: E \to \mathbb{R}_0^+$ is called s-t-flow, if:

$$0 \leq X(i,j) \leq u(i,j) \qquad orall (i,j) \in E$$
 $\sum_{(i,j) \in E} X(i,j) - \sum_{(j,i) \in E} X(j,i) = 0 \qquad orall i \in V \setminus \{s,t\}$

[Finnrind, CC BY-SA 3.0, via Wikimedia Commons ∞

A maximum s-t-flow is an s-t-flow where $\sum X(s,j)$ is maximized. $(s,j) \in E$

General Flow Network

Flow network $(G = (V, E); b; \ell; u)$ with

- lacksquare directed graph G = (V, E)
- node production/consumption $b: V \to \mathbb{R}$ with $\sum_{i \in V} b(i)^{\vee}$
- \blacksquare edge *lower bound* $\ell: E \to \mathbb{R}_0^+$
- \blacksquare edge *capacity* $u: E \to \mathbb{R}_0^+$

A function $X: E \to \mathbb{R}_0^+$ is called **valid flow**, if:

$$\ell(i,j) \le X(i,j) \le u(i,j) \qquad \forall (i,j) \in E$$

$$\sum_{(i,j)\in E} X(i,j) - \sum_{(j,i)\in E} X(j,i) = b(i) \qquad \forall i \in V$$

• Cost function cost: $E \to \mathbb{R}_0^+$ and $\operatorname{cost}(X) := \sum_{(i,j) \in E} \operatorname{cost}(i,j) \cdot X(i,j)$

A minimum cost flow is a valid flow where cost(X) is minimized.

General Flow Network – Algorithms

Po	Polynomial Algorithms				
#	Due to	Year	Running Time		
1	Edmonds and Karp	1972	O((n + m') log U S(n, m, nC))		
2	Rock	1980	O((n + m') log U S(n, m, nC))		
3	Rock	1980	O(n log C M(n, m, U))		
4	Bland and Jensen	1985	O(m log C M(n, m, U))		
5	Goldberg and Tarjan	1987	$O(nm log (n^2/m) log (nC))$		
6	Goldberg and Tarjan	1988	O(nm log n log (nC))		
7	Ahuja, Goldberg, Orlin and Tarjan	1988	O(nm log log U log (nC))		

Strongly Polynomial Algorithms

#	Due to	Year	Running Time
1	Tardos	1985	O(m ⁴)
2	Orlin	1984	$O((n + m')^2 \log n S(n, m))$
3	Fujishige	1986	$O((n + m')^2 \log n S(n, m))$
4	Galil and Tardos	1986	$O(n^2 \log n S(n, m))$
5	Goldberg and Tarjan	1987	$O(nm^2 \log n \log(n^2/m))$
6	Goldberg and Tarjan	1988	$O(nm^2 log^2 n)$
7	Orlin (this paper)	1988	$O((n + m') \log n S(n, m))$

 $S(n, m) = O(m + n \log n)$ Fredman and Tarjan [1984] $S(n, m, C) = O(Min (m + n\sqrt{\log C}),$ Ahuja, Mehlhorn, Orlin and Tarjan [1990] $(m \log \log C))$ Van Emde Boas, Kaas and Zijlstra[1977] $M(n, m) = O(min (nm + n^{2+\epsilon}, nm \log n)$ Where ϵ is any fixed constant. King, Rao, and Tarjan [1991] $M(n, m, U) = O(nm \log (\frac{n}{m}\sqrt{\log U} + 2))$ Ahuja, Orlin and Tarjan [1989]

Theorem.

[Orlin 1991]

The minimum cost flow problem can be solved in $O(n^2 \log^2 n + m^2 \log n)$ time.

Theorem.

[Cornelsen & Karrenbauer 2011]

The minimum cost flow problem for planar graphs with bounded costs and faze sizes can be solved in $O(n^{3/2})$ time.

Topology – Shape – Metrics

Three-step approach:

 $V = \{v_1, v_2, v_3, v_4\}$ $E = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$

reduce crossings

combinatorial embedding/planarization

bend minimization

orthogonal representation

1 0----3

Topology

SHAPE

METRICS

Bend Minimization with Given Embedding

Geometric bend minimization.

Given: \blacksquare Plane graph G = (V, E) with maximum degree 4

lacksquare Combinatorial embedding F and outer face f_0

Find: Orthogonal drawing with minimum number of bends that

preserves the embedding.

Compare with the following variation.

Combinatorial bend minimization.

Given: \blacksquare Plane graph G = (V, E) with maximum degree 4

 \blacksquare Combinatorial embedding F and outer face f_0

Find: Orthogonal representation H(G) with minimum

number of bends that preserves the embedding.

Combinatorial Bend Minimization

Combinatorial bend minimization.

Given: \blacksquare Plane graph G = (V, E) with maximum degree 4

 \blacksquare Combinatorial embedding F and outer face f_0

Find: Orthogonal representation H(G) with minimum

number of bends that preserves the embedding

Idea.

Formulate as a network flow problem:

 \blacksquare a unit of flow $= \angle \frac{\pi}{2}$

• vertices $\stackrel{\angle}{\longrightarrow}$ faces $(\# \angle \frac{\pi}{2} \text{ per face})$

■ faces $\stackrel{\checkmark}{\longrightarrow}$ neighbouring faces (# bends toward the neighbour)

Flow Network for Bend Minimization

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each **face** f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; cost)$:

■ $E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

Flow Network for Bend Minimization

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u,v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; cost)$:

- $\blacksquare E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup$ $\{(f,g)_e \in F \times F \mid f,g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V$

$$\Rightarrow \sum_{w} b(w) = 0$$
 (Euler)

$$\forall (v, f) \in E, v \in V, f \in F$$

$$\forall (f, g) \in E, f, g \in F$$

$$\ell(v,f):=1\leq X(v,f)\leq 4=:u(v,f)$$
 $\cot(v,f):=1\leq X(v,f)\leq 4=:u(v,f)$ $\cot(v,f)=0$ $\cot(v,f):=0\leq X(f,g)\leq \infty=:u(f,g)$ $\cot(f,g)=1$ We model only the number of bends. Why is it enough?

Flow Network for Bend Minimization

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u,v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v the sum of incident angles is 2π .

Define flow network $N(G) = ((V \cup F, E); b; \ell; u; cost)$:

- $\blacksquare E = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup$ $\{(f,g)_e \in F \times F \mid f,g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V$

$$\Rightarrow \sum_{w} b(w) = 0$$
 (Euler)

$$\forall (v, f) \in E, v \in V, f \in F$$

$$\forall (f, g) \in E, f, g \in F$$

$$\ell(f,g) \in E, v \in V, f \in F$$

$$\ell(v,f) := 1 \le X(v,f) \le 4 =: u(v,f)$$

$$\cos(v,f) = 0$$

$$\ell(f,g) := 0 \le X(f,g) \le \infty =: u(f,g)$$

$$\cos(f,g) = 1$$
 We model only the number of bends. Why is it enough?
$$\Longrightarrow \text{Exercise}$$

Flow Network Example

Legend

$$V$$
 O F O $\ell/u/\mathrm{cost}$ $V \times F \supseteq \frac{1/4/0}{2}$ F $V \times F \supseteq \frac{0/\infty/1}{2}$ $V \times F \supseteq 0$

3 flow

Flow Network Example

Legend

$$V$$
 C

$$F$$
 •

$$\ell/u/{\rm cost}$$

$$V \times F \supseteq \frac{1/4/0}{}$$

$$F \times F \supseteq \frac{0/\infty/1}{\bullet}$$

$$4 = b$$
-value

Bend Minimization – Result

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

Proof.

- \Leftarrow Given valid flow X in N(G) with cost k. Construct orthogonal representation H(G) with k bends.
 - Transform from flow to orthogonal description.
- Show properties (H1)–(H4).
- (H1) H(G) matches F, f_0
- (H2) Bend order inverted and reversed on opposite sides
- (H3) Angle sum of $f = \pm 4$
- (H4) Total angle at each vertex = 2π

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each **face** f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v the sum of incident angles is 2π .

 $\sqrt{}$

√ Exercise

Bend Minimization – Result

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

Proof.

- \Rightarrow Given an orthogonal representation H(G) with k bends. Construct valid flow X in N(G) with cost k.
- Define flow $X: E \to \mathbb{R}_0^+$.
- lacksquare Show that X is a valid flow and has cost k.

(N1)
$$X(vf) = 1/2/3/4$$

- (N2) $X(fg) = |\delta_{fg}|_0$, (e, δ_{fg}, x) describes $e \stackrel{*}{=} fg$ from f
- (N3) capacities, deficit/demand coverage

$$(N4) \cos t = k$$

$$b(v) = 4 \quad \forall v \in V$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$$

$$\ell(v, f) := 1 \le X(v, f) \le 4 =: u(v, f)$$
 $\cot(v, f) = 0$
 $\ell(f, g) := 0 \le X(f, g) \le \infty =: u(f, g)$
 $\cot(f, g) = 1$

$$\checkmark$$

Bend Minimization – Remarks

From Theorem follows that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for the Min-Cost-Flow problem.

Theorem.

[Garg & Tamassia 1996]

The minimum cost flow problem for planar graphs with bounded costs and vertex degrees can be solved in $O(n^{7/4}\sqrt{\log n})$ time.

Theorem.

[Cornelsen & Karrenbauer 2011]

The minimum cost flow problem for planar graphs with bounded costs and faze sizes can be solved in $O(n^{3/2})$ time.

Theorem.

[Garg & Tamassia 2001]

Bend Minimization without a given combinatorial embedding is an NP-hard problem.

Visualization of Graphs

Lecture 5: Orthogonal Layouts

Part IV:
Area Minimization

Jonathan Klawitter

Topology – Shape – Metrics

Three-step approach:

 $V = \{v_1, v_2, v_3, v_4\}$ $E = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$

reduce crossings

combinatorial embedding/planarization

orthogonal

bend minimization

representation

Topology - Shap

Compaction

Compaction problem.

Given: \blacksquare Plane graph G = (V, E) with maximum degree 4

lacktriangle Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

→ Guarantees possible ■ minimum total edge length

minimum area

Properties.

- bends only on the outer face
- opposite sides of a face have the same length

Idea.

■ Formulate flow network for horizontal/vertical compaction

Flow Network for Edge Length Assignment

Definition.

Flow Network $N_{\mathsf{hor}} = ((W_{\mathsf{hor}}, E_{\mathsf{hor}}); b; \ell; u; \mathsf{cost})$

- $E_{hor} = \{(f,g) \mid f,g \text{ share a } horizontal \text{ segment and } f \text{ lies } below g\} \cup \{(t,s)\}$
- \bullet $\ell(a) = 1 \quad \forall a \in E_{\mathsf{hor}}$
- $u(a) = \infty \quad \forall a \in E_{\mathsf{hor}}$
- $b(f) = 0 \quad \forall f \in W_{\mathsf{hor}}$

Flow Network for Edge Length Assignment

Definition.

Flow Network $N_{\text{ver}} = ((W_{\text{ver}}, E_{\text{ver}}); b; \ell; u; \text{cost})$

- $E_{\text{ver}} = \{(f,g) \mid f,g \text{ share a } \textit{vertical} \text{ segment and } f \text{ lies to the } \textit{left} \text{ of } g\} \cup \{(t,s)\}$
- \bullet $\ell(a) = 1 \quad \forall a \in E_{\text{ver}}$
- $u(a) = \infty \quad \forall a \in E_{\text{ver}}$
- $lackbox{b}(f) = 0 \quad \forall f \in W_{\text{ver}}$

Compaction – Result

What if not all faces rectangular?

Theorem.

Valid min-cost-flows for N_{hor} and N_{ver} exists iff corresponding edge lenghts induce orthogonal drawing.

What values of the drawing represent the following?

- $\blacksquare |X_{hor}(t,s)|$ and $|X_{ver}(t,s)|$? width and height of drawing

Theorem.

[Patrignani 2001]

Compaction for given orthogonal representation is in general NP-hard.

Visualization of Graphs

Lecture 5: Orthogonal Layouts

Part V: NP-hardness

Jonathan Klawitter

Boundary, belt, and "piston" gadget

Boundary, belt, and "piston" gadget

Boundary, belt, and "piston" gadget

Clause gadgets

Complete reduction

Literature

- [GD Ch. 5] for detailed explanation
- [Tamassia 1987] "On embedding a graph in the grid with the minmum number of bends" original paper on flow for bend minimisation
- [Patrignani 2001] "On the complexity of orthogonal compaction" NP-hardness proof of compactification