

Algorithmische Graphentheorie

Sommersemester 2021

12. Vorlesung

Färben planarer Graphen und Planaritätstest

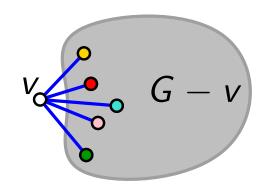
Graphen färben

Def. Sei G = (V, E) ein Graph. Eine Abbildung $f: V \to \{1, ..., k\}$ heißt k-Färbung, falls für alle $uv \in E$ gilt $f(u) \neq f(v)$.

Beob. G bipartit \Leftrightarrow G 2-färbbar. G k-partit \Leftrightarrow G k-färbbar.

Beob. Jeder planare Graph ist 6-färbbar.

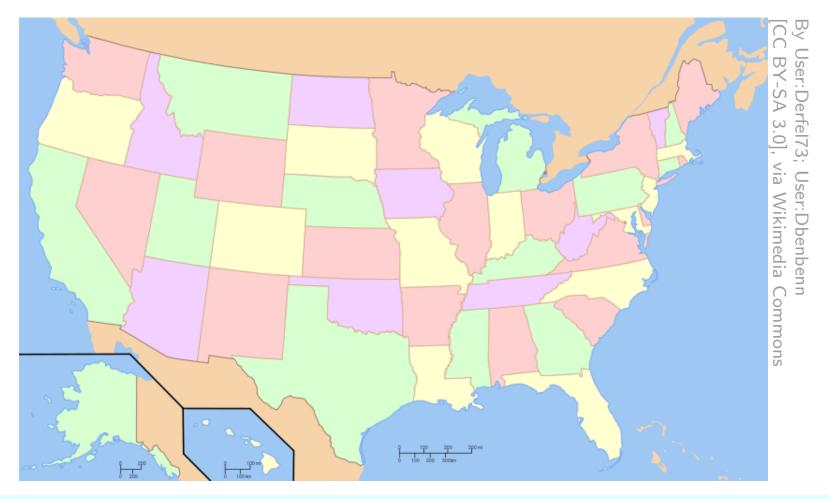
Beweis. G hat einen Knoten v vom Grad ≤ 5 . Färbe G - v induktiv. Nimm sechste Farbe für v.



Satz. Fünf-Farben-Satz [Heawood 1890] Jeder planare Graph ist 5-färbbar.

Percy John Heawood 1861 Newport, GB 1955 Durham, GB

Der Vier-Farben-Satz von 1976



Satz. Vier-Farben-Satz

Jeder planare Graph ist 4-färbbar.

[Appel & Haken 1976]

[Robertson, Sanders, Seymour, Thomas 1997]

Eine andere Art von Färbung

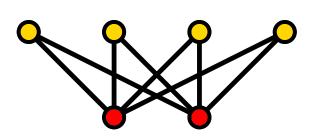
- **Def.** Gegeben ein Graph G und für jeden Knoten v von G eine Liste L_v von "Farben", so ist eine Listenfärbung von G eine Abbildung $\lambda \colon V \to \bigcup_v L_v$ mit $\bullet \ \lambda(v) \in L_v$ und $\bullet \ \lambda(u) \neq \lambda(v) \ \forall uv \in E(G)$.
- **Bsp.** Eine "normale" Färbung $c: V \to \{1, ..., k\}$ entspricht einer Listenfärbung mit $L_v = \{1, ..., k\}$ für alle $v \in V(G)$.

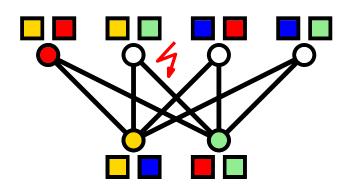
Listenfärbbarkeit

Ein Graph G = (V, E) ist k-listenfärbbar, wenn G für jede Wahl von Listen der Länge k eine Listenfärbung hat.

Beob. G k-listenfärbbar $\Rightarrow k$ -färbbar.

Jeder bipartite Graph ist 2-färbbar – aber nicht unbedingt 2-listenfärbbar.





Listenfärbbarkeit planarer Graphen

Satz. Nicht-Vier-Farben-Satz [Voigt, 1993] Nicht jeder planare Graph ist 4-listenfärbbar.

Carsten Thomassen 1948 in Grindsted, DK

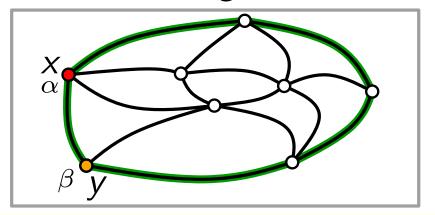
Satz. Jeder planare Graph ist 5-*listen*färbbar.

[Thomassen 1994]

(also auch 5-färbbar!)

Beweis von Thomassens Satz

OBdA G fast trianguliert, d.h. alle Innenfacetten sind Dreiecke



und der Kreis, der die Außenfacette begrenzt, ist einfach.

> Thomassens Trick: Verschärfe Aussage, beweise mit Induktion!

Beh. Falls G fast triang., K Kreis, der Außenfacette begrenzt, (i) zwei adj. Knoten $x, y \in K$ sind mit $\alpha \neq \beta$ gefärbt,

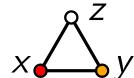
(ii)
$$|L_v| \geq 3$$
 für alle $v \in K \setminus \{x, y\}$,

(iii)
$$|L_v| \geq 5$$
 für alle $v \in V \setminus K$,

dann lässt sich die Färbung von x & y auf G fortsetzen.

Bew. Per Induktion über n = |V|.

$$n = 3$$
:



n=3: Färbe z mit Farbe $\gamma \in L_z \setminus \{\alpha, \beta\}$.

Induktionsschritt n > 3

Fall 1: K hat Sehne uv.

uv zerlegt K in K_1 und K_2 .

Sei G_1 der Teilgraph von G auf und innerhalb $K_1 + uv$.

Wende Induktionsvoraussetzung (IV) auf G_1 an.

Wende IV (mit schon gefärbten Knoten u und v!) auf G_2 an.

Sei $w \neq y$ Nachbar von x auf K.

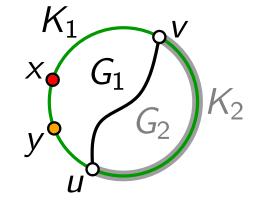
Sei $N(w) = \{x, w_1, \dots, w_t, v\}$ Nachbarschaft von w.

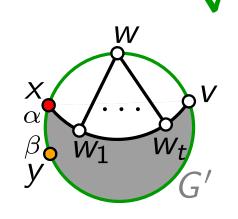
$$|L_w| \geq 3 \Rightarrow \exists \gamma, \delta \in L_w \setminus \{\alpha\}$$

 $L'_{w_i} := L_{w_i} \setminus \{\gamma, \delta\}.$ G' = G - w ist fast trianguliert.

 \Rightarrow G' mit Listen L' erfüllt IV \Rightarrow 5-Listenfärbung von G'

Färbe w mit $\{\gamma, \delta\} \setminus \mathsf{Farbe}(v) \Rightarrow \mathsf{5}\mathsf{-Listenf\"{a}rbung} \ \mathsf{von} \ \mathsf{G} \checkmark \square$





Planaritätstest

Satz. [Hopcroft & Tarjan, J. ACM 1974]

Sei G ein einfacher Graph mit n Knoten. Dann kann man in O(n) Zeit entscheiden, ob G planar ist.

Robert Endre Tarjan *1948 Pomona, CA, USA

John Edward Hopcroft *1939, Seattle, WA, U.S.A.

Ziemlich kompliziert! \Rightarrow Wir behandeln einfacheren Algorithmus mit Laufzeit $O(n^3)$.

Planaritätstest

Satz. [Auslander & Parter 1961]

Sei G ein einfacher Graph mit n Knoten. Dann kann man in $O(n^3)$ Zeit entscheiden, ob G planar ist.

Beobachtung.

G planar \Leftrightarrow jede Zusammenhangskomponente von G ist planar.

Also können wir uns auf Algorithmen für zusammenhängende Graphen beschränken.

Zweifacher Knotenzusammenhang

bzgl. Inklusion maximale Knotenmenge $K \subseteq V$, für die G[K] zweifach zusammenhängend ist

Behauptung. G planar \Leftrightarrow

jede Zweifach-Zusammenhangskomponente (ZZK) von G ist planar.

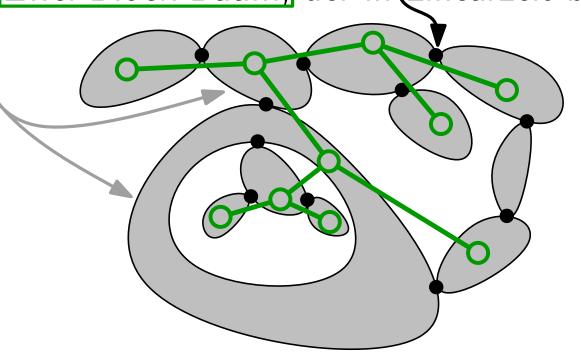
Zweifacher Knotenzusammenhang

bzgl. Inklusion maximale Knotenmenge $K \subseteq V$, für die G[K] zweifach zusammenhängend ist

Behauptung. G planar \Leftrightarrow

jede Zweifach-Zusammenhangskomponente (ZZK) von G ist planar.

ZZKs sind über *Schnittknoten* verbunden und bilden den sog. *Zwei-Block-Baum*, der in Linearzeit berechnet werden kann.



Zweifacher Knotenzusammenhang

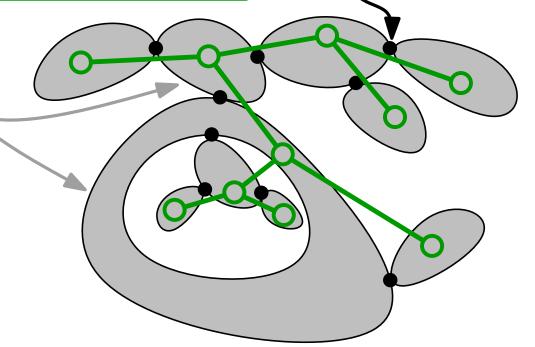
bzgl. Inklusion maximale Knotenmenge $K \subseteq V$, für die G[K] zweifach zusammenhängend ist

Behauptung. G planar \Leftrightarrow

jede Zweifach-Zusammenhangskomponente (ZZK) von G ist planar.

ZZKs sind über *Schnittknoten* verbunden und bilden den sog.

Zwei-Block-Baum, der in\Linearzeit berechnet werden kann.



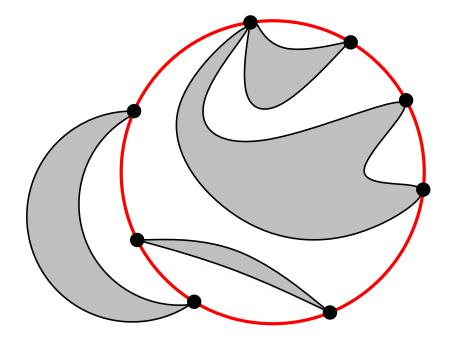
Es genügt zweifach zusammenhängende Graphen zu betrachten.

Ziel und Strategie

Ziel: Planaritätstest für zweifach zusammenhängende Graphen.

Strategie:

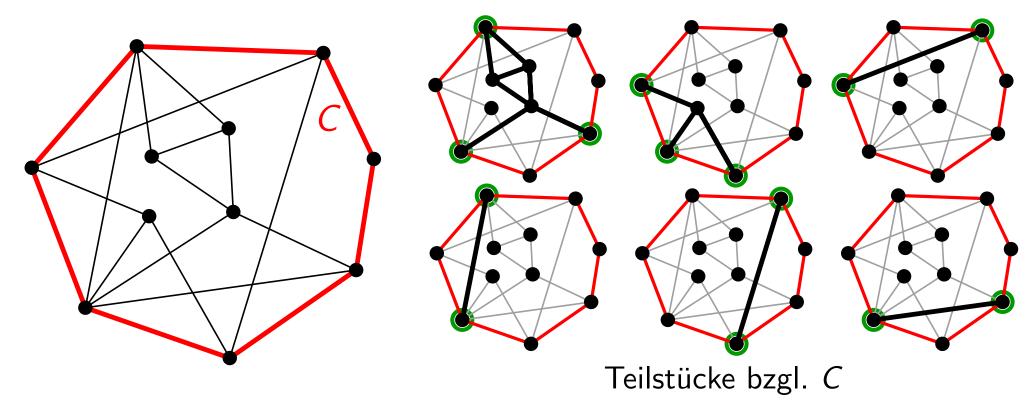
- Berechne separierenden Kreis und zerlege Graph in sogenannte Teilstücke.
- Teste Teilstücke rekursiv.



Teilstück

Def. Sei C ein Kreis und seien $e, e' \notin C$ Kanten. e und e' heißen $\ddot{a}quivalent$ (bezüglich C), wenn sie durch einen Pfad verbunden sind, der C nicht berührt. Die resultierenden Äquivalenzklassen heißen $Teilst \ddot{u}cke$ (bezüglich C).

Jedes Teilstück hat ≥ 2 *Anknüpfpunkte*.

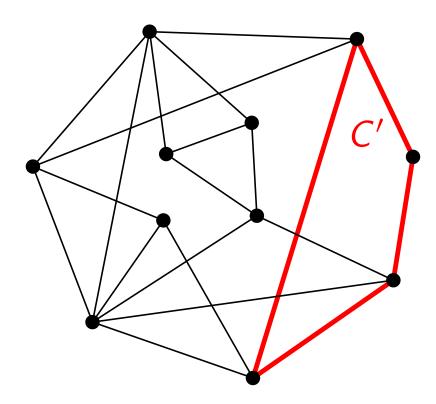


Separierender Kreis

Def. Ein Kreis heißt *separierend*, wenn er mindestens zwei Teilstücke induziert.

separierend

nicht separierend



Existenz separierender Kreis

Lem₁. Sei *C* ein *nicht-separierender* Kreis mit Teilstück *P*. Falls *P kein* Pfad ist, dann besitzt *G* einen separierenden Kreis *C'*, der aus einem Teilpfad von *C* und einem Pfad in *P* zwischen zwei Anknüpfpunkten von *P* besteht.

Beweis.

Seien u und v aufeinanderfolgende Anknüpfpunkte von P in der zyklischen Reihenfolge von C.

Betr. u-v-Pfad γ auf C ohne innere Anknüpfp.

Sei π ein u-v-Pfad in P.

Betrachte Kreis $C' := C + \pi - \gamma \Rightarrow \gamma$ ist Teilstück bzgl. C'.

Falls P kein Pfad ist, existiert eine Kante $e \in E(P) - E(\pi)$.

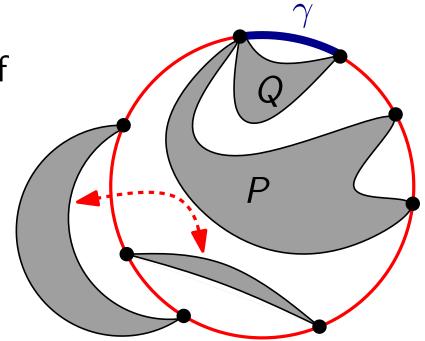
Teilstück δ , das e enthält, ist verschieden von $\gamma \Rightarrow C'$ sep. \square

Einander störende Teilstücke

G planar \Rightarrow jedes Teilstück wird entweder komplett im Inneren oder im Äußeren von C eingebettet.

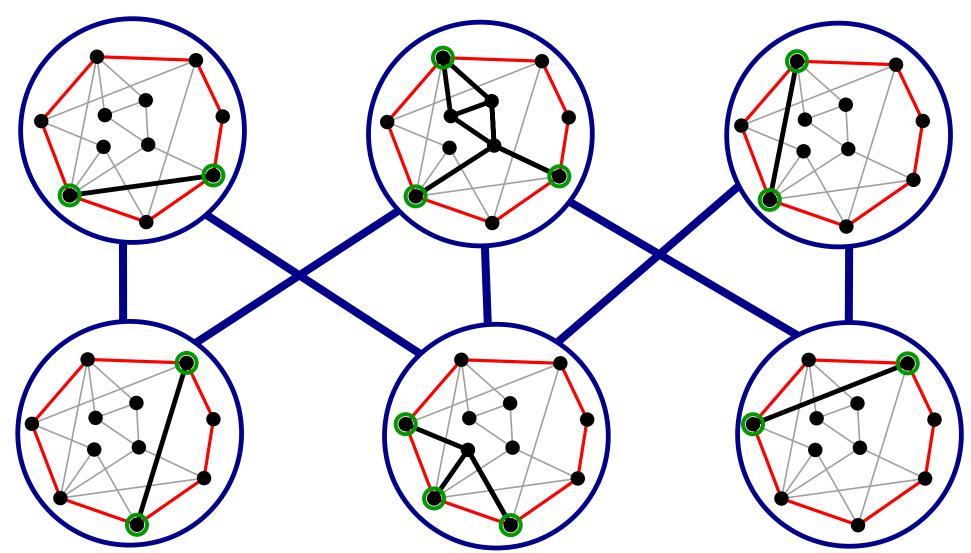
Beob. Zwei Teilstücke $P \neq Q$ können auf der gleichen Seite von C eingebettet werden \Leftrightarrow es existiert ein Teilpfad γ von C, so dass γ alle Anküpfpunkte von Q enthält, aber kein innerer Knoten von γ Anknüpfpunkt von P ist.

Def. Zwei Teilstücke, die nicht auf der gleichen Seite von *C* eingebettet werden können, stören einander.



Störgraph

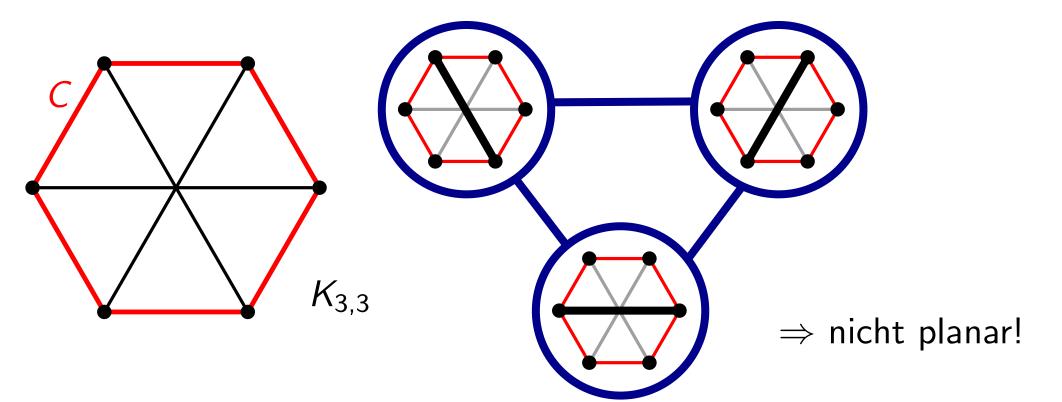
Def. Der Störgraph I (bezüglich C) hat als Knoten die Teilstücke. Zwei Teilstücke sind adjazent genau dann, wenn sie einander stören.



Bipartiter Störgraph

- Lem₂. Sei G ein Graph mit separierendem Kreis C und Störgraphen I. Der Graph G ist genau dann planar, wenn
 - (i) für jedes Teilstück P der Graph C + P planar und
 - (ii) der Störgraph / bipartit ist.

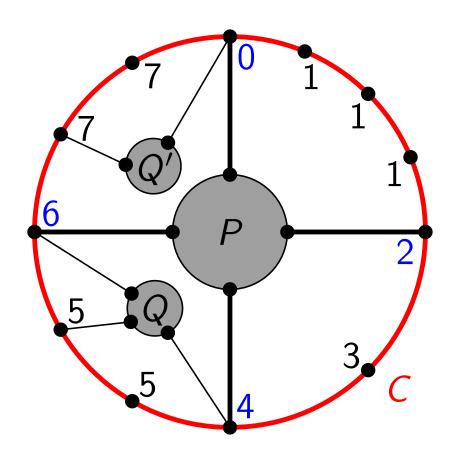
Beweis. Übung.



Berechnung Störgraph

Beob. Die Nachbarn eines Teilstücks P im Störgraphen lassen sich in O(n) Zeit bestimmen, wenn die Teilstücke bekannt sind.

Der Störgraph lässt sich so in $O(n^2)$ Zeit aufbauen.



Nummeriere Knoten von C mit Nummern $\{0, \ldots, 2k-1\}$ wie abgebildet.

Teilstück Q stört P nicht \Leftrightarrow alle Anknüpfpunkte von Q liegen in einem Intervall der Art

$$[2i, 2i + 2 \mod (2k + 2)]$$

Planaritätstest Ubung:

Falls G keinen separierenden Kreis hat, ist G planar.

```
PlanarityTest(zweifach-zsghd. G = (V, E), separ. Kreis C)
  Berechne Teilstücke bzgl. C
  foreach Teilstück P, das kein Pfad ist do
                                                Ubung:
      G' := C + P
                                                G' ist zweifach
      C' := C - \gamma + \pi wie in Lem<sub>1</sub>
                                                zusammenhängend.
      if PlanarityTest(G', C') == false then
         return false
  Berechne Störgraphen 1
  if / bipartit then
      return true
  else
      return false
```

Korrektheit? Per Induktion über |E| mit Hilfe von Lem₂.

Laufzeit

Falls G mehr als 3n-6 Kanten hat, ist G nicht planar.

Also können wir davon ausgehen, dass G(n) Kanten hat.

Berechnung der Teilstücke in O(n) Zeit durch Modifikation von BFS (Knoten auf C werden nicht exploriert).

Berechnung des Störgraphen in $O(n^2)$ Zeit.

 \Rightarrow Jeder Aufruf (ohne Rek.) in $O(n^2)$ Zeit.

Beh. Anzahl der Aufrufe (nicht nur der Teilstücke!) ist $\leq |E|$.

Beweis folgt auf der nächsten Folie!

 \Rightarrow Gesamtlaufzeit $O(n^3)$

Anzahl der rekursiven Aufrufe

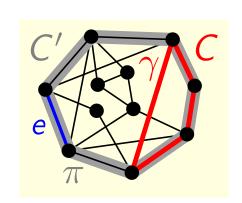
Beh. Anzahl der rekursiven Aufrufe ist $\leq |E|$.

Beweis. Assoziiere mit Aufruf (G', C') eine Kante $e \in C' - C$.

Zeige: Keine Kante wird $2 \times$ assoziiert!

```
PlanarityTest(G, C)
...

foreach Nicht-Pfad-Teilstück P do
G' := C + P
C' := C - \gamma + \pi \qquad // \pi \subset P
If PlanarityTest(<math>G', C') ...
...
```



- 1. Beob. $e_P \in \pi \subset P$ $\Rightarrow e_P \neq e_{P'}$ für jedes Teilstück $P' \neq P$ von G.
- 2. Beob. *e* liegt immer auf dem *neuen* Stück π des sep. Kreises Frühere Kanten *e* liegen auf $C \cap C'$ oder auf γ .