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Data structures

A data structure is a concept to
� store,
� organize, and
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As such, it is a collection of
� data values,
� their relations, and
� the operations that can applied to the data.
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Data structures

A data structure is a concept to
� store,
� organize, and
� manage data.

As such, it is a collection of
� data values,
� their relations, and
� the operations that can applied to the data.

Remarks.
� We look at data structures as a designer/implementer

(and not necessarily as a user).

� To define a data structure and to implement it are two
different tasks.

� What do we represent?

� How much space is required?

� Dynamic or static?

� Which operations are defined?

� How fast are they?

⇒
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Succinct data structures

Goal.
� Use space “close” to information-theoretical minimum,

� but still support time-efficient operations.

Let L be the information-theoretical lower bound
to represent a class of objects.
Then a data structure, which still supports
time-efficient operations, is called

� implicit, if it takes L + O(1) bits of space;

� succinct, if it takes L + o(L) bits of space;

� compact, if it takes O(L) bits of space.
Examples?
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Examples for implicit data structures

� arrays to represent lists
� but why not linked lists?

� sorted arrays to represent sorted lists
� but why not binary search trees?

� arrays to represent complete binary trees and heaps

leftChild(i) = 2i

rightChild(i) = 2i + 1
parent(i) = b i

2c

1 2 3 4 5 6 . . .
And unbalanced

trees?

7

� 1-dim arrays to represent multi-dimensional arrays
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Represent a subset S ⊂ [n] and support O(1)-time operations:

� member(i) returns if i ∈ S

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit

� predecessor and successor can be answered using rank

and select
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Succinct indexable dictionary

Represent a subset S ⊂ [n] and support O(1)-time operations:

� member(i) returns if i ∈ S

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit

� predecessor and successor can be answered using rank

and select

How many bits of space do we need to distinguish them?

How many different subsets of [n] are there? 2n

log 2n = n bits
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Succinct indexable dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plus o(n)-space structures to answer in O(1) time

b

select(5) = 9

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit

rank(15) =

rank(9) = 5 = rank(12)
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Succinct indexable dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise
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Succinct indexable dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plus o(n)-space structures to answer in O(1) time

b

select(5) = 9

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit

rank(15) = 6

rank(9) = 5 = rank(12)

Exercise: Use them to answer
predecessor and successor.

⇒
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{
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Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O( n
log2 n

log n) = O( n
log n ) ⊆ o(n) bits

{
# chunks rank

{ {

3 5

1 1 1 1 1
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Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O( n
log2 n

log n) = O( n
log n ) ⊆ o(n) bits

2. Split chunks into ( 12 log n)-bit subchunks

1
2 log n

and store cumulative rank within chunk:

{{

3 5

1 1 1 1 1
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Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O( n
log2 n

log n) = O( n
log n ) ⊆ o(n) bits

2. Split chunks into ( 12 log n)-bit subchunks

1
2 log n

and store cumulative rank within chunk:

{{

3 5

1 1 1 1 1 111
31
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Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O( n
log2 n

log n) = O( n
log n ) ⊆ o(n) bits

2. Split chunks into ( 12 log n)-bit subchunks

1
2 log n

and store cumulative rank within chunk: 2 log log n bits

{{

3 5

1 1 1 1 1 111
31
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Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O( n
log2 n

log n) = O( n
log n ) ⊆ o(n) bits

2. Split chunks into ( 12 log n)-bit subchunks

1
2 log n

⇒ O( n
log n log log n) ⊆ o(n) bits

and store cumulative rank within chunk: 2 log log n bits

{{

# subch. rel. rank

{ {

3 5

1 1 1 1 1 111
31
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Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O( n
log2 n

log n) = O( n
log n ) ⊆ o(n) bits

2. Split chunks into ( 12 log n)-bit subchunks

1
2 log n

⇒ O( n
log n log log n) ⊆ o(n) bits

and store cumulative rank within chunk: 2 log log n bits

3. Use lookup table for bitstrings of length ( 12 log n)
⇒ O(

√
n log n log log n) ⊆ o(n) bits

bitstring query i answer

{{

{ { {

3 5

1 1 1 1 1 111
31
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Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O( n
log2 n

log n) = O( n
log n ) ⊆ o(n) bits

2. Split chunks into ( 12 log n)-bit subchunks

1
2 log n

⇒ O( n
log n log log n) ⊆ o(n) bits

and store cumulative rank within chunk: 2 log log n bits

3. Use lookup table for bitstrings of length ( 12 log n)
⇒ O(

√
n log n log log n) ⊆ o(n) bits

4. rank = rank of chunk
+ relative rank of subchunk within chunk
+ relative rank of element within subchunk

{{

3 5

1 1 1 1 1 111
31
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Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O( n
log2 n

log n) = O( n
log n ) ⊆ o(n) bits

2. Split chunks into ( 12 log n)-bit subchunks

1
2 log n

⇒ O( n
log n log log n) ⊆ o(n) bits

and store cumulative rank within chunk: 2 log log n bits

3. Use lookup table for bitstrings of length ( 12 log n)
⇒ O(

√
n log n log log n) ⊆ o(n) bits

4. rank = rank of chunk
+ relative rank of subchunk within chunk
+ relative rank of element within subchunk

{{
⇒ O(1) time

3 5

1 1 1 1 1 111
31

+ O(1) time
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Select in o(n) bits

b

1. Store indices of every (log n log log n)th 1 bit in array

log n log log n 1’s{
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Select in o(n) bits

b

1. Store indices of every (log n log log n)th 1 bit in array

⇒ O( n
log n log log n log n) = O( n

log log n ) ⊆ o(n) bits

# groups index

log n log log n 1’s{
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Select in o(n) bits

b

1. Store indices of every (log n log log n)th 1 bit in array

⇒ O( n
log n log log n log n) = O( n

log log n ) ⊆ o(n) bits

2. Within group of (log n log log n) 1 bits of length r bits:

log n log log n 1’s{
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Select in o(n) bits

b

1. Store indices of every (log n log log n)th 1 bit in array

⇒ O( n
log n log log n log n) = O( n

log log n ) ⊆ o(n) bits

2. Within group of (log n log log n) 1 bits of length r bits:

if r ≥ (log n log log n)2

then store indices of 1 bits in group in array
⇒ O( n

(log n log log n)2 (log n log log n) log n) ⊆ O( n
log log n )

# groups index# 1 bits

log n log log n 1’s{
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Select in o(n) bits

b

1. Store indices of every (log n log log n)th 1 bit in array

⇒ O( n
log n log log n log n) = O( n

log log n ) ⊆ o(n) bits

2. Within group of (log n log log n) 1 bits of length r bits:

if r ≥ (log n log log n)2

then store indices of 1 bits in group in array
⇒ O( n

(log n log log n)2 (log n log log n) log n) ⊆ O( n
log log n )

else problem is reduced to bitstrings of length r < (log n log log n)2

log n log log n 1’s{
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Select in o(n) bits

b

1. Store indices of every (log n log log n)th 1 bit in array

⇒ O( n
log n log log n log n) = O( n

log log n ) ⊆ o(n) bits

2. Within group of (log n log log n) 1 bits of length r bits:

if r ≥ (log n log log n)2

then store indices of 1 bits in group in array
⇒ O( n

(log n log log n)2 (log n log log n) log n) ⊆ O( n
log log n )

else problem is reduced to bitstrings of length r < (log n log log n)2

3. Repeat 1. and 2. on reduced bitstrings

log n log log n 1’s{
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Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

log n log log n 1’s{
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Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

log n log log n 1’s{

{(log log n)2 1’s
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Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O( n
(log log n)2 log log n) = O( n

log log n ) bits

# subgroups rel. index

log n log log n 1’s{

{(log log n)2 1’s
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Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O( n
(log log n)2 log log n) = O( n

log log n ) bits

2’ Within group of (log log n)2th 1 bits of length r′ bits:

log n log log n 1’s{

{(log log n)2 1’s
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Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O( n
(log log n)2 log log n) = O( n

log log n ) bits

2’ Within group of (log log n)2th 1 bits of length r′ bits:

if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array

log n log log n 1’s{

{(log log n)2 1’s
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Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O( n
(log log n)2 log log n) = O( n

log log n ) bits

2’ Within group of (log log n)2th 1 bits of length r′ bits:

if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array

⇒ O( n
(log log n)4 (log log n)2 log log n) = O( n

log log n ) bits

# subgroups # 1 bits rel. index

log n log log n 1’s{

{(log log n)2 1’s
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Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O( n
(log log n)2 log log n) = O( n

log log n ) bits

2’ Within group of (log log n)2th 1 bits of length r′ bits:

if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array

⇒ O( n
(log log n)4 (log log n)2 log log n) = O( n

log log n ) bits

else problem is reduced to bitstrings of length r′ < (log log n)4

log n log log n 1’s{

{(log log n)2 1’s
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Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O( n
(log log n)2 log log n) = O( n

log log n ) bits

2’ Within group of (log log n)2th 1 bits of length r′ bits:

if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array

⇒ O( n
(log log n)4 (log log n)2 log log n) = O( n

log log n ) bits

else problem is reduced to bitstrings of length r′ < (log log n)4

4. Use lookup table for bitstrings of length r′ ≤ (log log n)4 ≤ 1
2 log n

⇒ O(
√

n log n log log n) = o(n) bits
bitstring query j answer

log n log log n 1’s{

{(log log n)2 1’s
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Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O( n
(log log n)2 log log n) = O( n

log log n ) bits

2’ Within group of (log log n)2th 1 bits of length r′ bits:

if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array

⇒ O( n
(log log n)4 (log log n)2 log log n) = O( n

log log n ) bits

else problem is reduced to bitstrings of length r′ < (log log n)4

4. Use lookup table for bitstrings of length r′ ≤ (log log n)4 ≤ 1
2 log n

⇒ O(
√

n log n log log n) = o(n) bits
bitstring query j answer

log n log log n 1’s{

{(log log n)2 1’s
+ O(1) time
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Number of binary trees on n vertices: Cn = 1
n+1 (

2n
n )

log Cn = 2n + o(n) (by Stirling’s approximation)
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Succinct representation of binary trees

Number of binary trees on n vertices: Cn = 1
n+1 (

2n
n )

log Cn = 2n + o(n) (by Stirling’s approximation)

⇒ We can use 2n + o(n) bits to represent binary trees.
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Succinct representation of binary trees

Number of binary trees on n vertices: Cn = 1
n+1 (

2n
n )

log Cn = 2n + o(n) (by Stirling’s approximation)

⇒ We can use 2n + o(n) bits to represent binary trees.

Difficulty is when binary tree is not full.



9 - 4

Succinct representation of binary trees

Idea.
� Add external nodes

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select
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Succinct representation of binary trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b
Idea.
� Add external nodes

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select
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Succinct representation of binary trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

Idea.
� Add external nodes

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select
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Succinct representation of binary trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

Operations.
� parent(i) = select(b i

2c)
� leftChild(i) = 2 rank(i)

� rightChild(i) = 2 rank(i) + 1

� rank(i) is index for array storing actual values
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Succinct representation of trees - LOUDS

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
20 21

⇒ 2n + o(n) bits

Size.
� each vertex (except root) is represented twice,

namely with a 1 and with a 0

� o(n) bits for rank and select
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Succinct representation of trees - LOUDS

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10
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0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
20 21

Operations.
� Let i be index of 1 in louds sequence.

� rank(i) is index for array storing
vertex objects/values.
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Discussion

� Succinct data structures are
� space efficient
� support fast operations
but
� are mostly static (dynamic at extra cost),
� number of operations are limited,
� complex → harder to implement

� Rank and select form basis for many succinct representations
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Main reference:

� Lecture 17 of Advanced Data Structures (MIT, Fall’17) by
Erik Demaine

� [Jac ’89] “Space efficient Static Trees and Graphs”

Recommendations:

� Lecture 18 of Demaine’s course on compact & succinct
arrays & trees
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