
1

Advanced Algorithms

Indexable Dictionaries and Trees
Succinct Data Structures

Jonathan Klawitter · WS20
10

1110

110

110

10

10

0 0 0

0

0

2 - 1

Data structures

A data structure is a concept to
� store,
� organize, and
� manage data.

As such, it is a collection of
� data values,
� their relations, and
� the operations that can applied to the data.

2 - 2

Data structures

A data structure is a concept to
� store,
� organize, and
� manage data.

As such, it is a collection of
� data values,
� their relations, and
� the operations that can applied to the data.

Remarks.
� We look at data structures as a designer/implementer

(and not necessarily as a user).

� To define a data structure and to implement it are two
different tasks.

2 - 3

Data structures

A data structure is a concept to
� store,
� organize, and
� manage data.

As such, it is a collection of
� data values,
� their relations, and
� the operations that can applied to the data.

Remarks.
� We look at data structures as a designer/implementer

(and not necessarily as a user).

� To define a data structure and to implement it are two
different tasks.

� What do we represent?

� How much space is required?

� Dynamic or static?

� Which operations are defined?

� How fast are they?

⇒

3 - 1

Succinct data structures

Goal.
� Use space “close” to information-theoretical minimum,

� but still support time-efficient operations.

3 - 2

Succinct data structures

Goal.
� Use space “close” to information-theoretical minimum,

� but still support time-efficient operations.

Let L be the information-theoretical lower bound
to represent a class of objects.
Then a data structure, which still supports
time-efficient operations, is called

� implicit, if it takes L + O(1) bits of space;

3 - 3

Succinct data structures

Goal.
� Use space “close” to information-theoretical minimum,

� but still support time-efficient operations.

Let L be the information-theoretical lower bound
to represent a class of objects.
Then a data structure, which still supports
time-efficient operations, is called

� implicit, if it takes L + O(1) bits of space;

� succinct, if it takes L + o(L) bits of space;

3 - 4

Succinct data structures

Goal.
� Use space “close” to information-theoretical minimum,

� but still support time-efficient operations.

Let L be the information-theoretical lower bound
to represent a class of objects.
Then a data structure, which still supports
time-efficient operations, is called

� implicit, if it takes L + O(1) bits of space;

� succinct, if it takes L + o(L) bits of space;

� compact, if it takes O(L) bits of space.

3 - 5

Succinct data structures

Goal.
� Use space “close” to information-theoretical minimum,

� but still support time-efficient operations.

Let L be the information-theoretical lower bound
to represent a class of objects.
Then a data structure, which still supports
time-efficient operations, is called

� implicit, if it takes L + O(1) bits of space;

� succinct, if it takes L + o(L) bits of space;

� compact, if it takes O(L) bits of space.
Examples?

4 - 1

Examples for implicit data structures

4 - 2

Examples for implicit data structures

� arrays to represent lists
� but why not linked lists?

4 - 3

Examples for implicit data structures

� arrays to represent lists
� but why not linked lists?

� 1-dim arrays to represent multi-dimensional arrays

4 - 4

Examples for implicit data structures

� arrays to represent lists
� but why not linked lists?

� sorted arrays to represent sorted lists
� but why not binary search trees?

� 1-dim arrays to represent multi-dimensional arrays

4 - 5

Examples for implicit data structures

� arrays to represent lists
� but why not linked lists?

� sorted arrays to represent sorted lists
� but why not binary search trees?

� arrays to represent complete binary trees and heaps

leftChild(i) = 2i

rightChild(i) = 2i + 1
parent(i) = b i

2c

1 2 3 4 5 6 . . .7

� 1-dim arrays to represent multi-dimensional arrays

4 - 6

Examples for implicit data structures

� arrays to represent lists
� but why not linked lists?

� sorted arrays to represent sorted lists
� but why not binary search trees?

� arrays to represent complete binary trees and heaps

leftChild(i) = 2i

rightChild(i) = 2i + 1
parent(i) = b i

2c

1 2 3 4 5 6 . . .7

� 1-dim arrays to represent multi-dimensional arrays

4 - 7

Examples for implicit data structures

� arrays to represent lists
� but why not linked lists?

� sorted arrays to represent sorted lists
� but why not binary search trees?

� arrays to represent complete binary trees and heaps

leftChild(i) = 2i

rightChild(i) = 2i + 1
parent(i) = b i

2c

1 2 3 4 5 6 . . .
And unbalanced

trees?

7

� 1-dim arrays to represent multi-dimensional arrays

5 - 1

Succinct indexable dictionary

Represent a subset S ⊂ [n] and support O(1)-time operations:

� member(i) returns if i ∈ S

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit

� predecessor and successor can be answered using rank

and select

5 - 2

Succinct indexable dictionary

Represent a subset S ⊂ [n] and support O(1)-time operations:

� member(i) returns if i ∈ S

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit

� predecessor and successor can be answered using rank

and select

How many bits of space do we need to distinguish them?

How many different subsets of [n] are there?

5 - 3

Succinct indexable dictionary

Represent a subset S ⊂ [n] and support O(1)-time operations:

� member(i) returns if i ∈ S

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit

� predecessor and successor can be answered using rank

and select

How many bits of space do we need to distinguish them?

How many different subsets of [n] are there? 2n

5 - 4

Succinct indexable dictionary

Represent a subset S ⊂ [n] and support O(1)-time operations:

� member(i) returns if i ∈ S

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit

� predecessor and successor can be answered using rank

and select

How many bits of space do we need to distinguish them?

How many different subsets of [n] are there? 2n

log 2n = n bits

6 - 1

Succinct indexable dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

6 - 2

Succinct indexable dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b

6 - 3

Succinct indexable dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plus o(n)-space structures to answer in O(1) time

b

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit

6 - 4

Succinct indexable dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plus o(n)-space structures to answer in O(1) time

b

select(5) =

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit

6 - 5

Succinct indexable dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plus o(n)-space structures to answer in O(1) time

b

select(5) = 9

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit

6 - 6

Succinct indexable dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plus o(n)-space structures to answer in O(1) time

b

select(5) = 9

rank(9) =

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit

6 - 7

Succinct indexable dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plus o(n)-space structures to answer in O(1) time

b

select(5) = 9

rank(9) = 5

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit

6 - 8

Succinct indexable dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plus o(n)-space structures to answer in O(1) time

b

select(5) = 9

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit

rank(9) = 5 = rank(12)

6 - 9

Succinct indexable dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plus o(n)-space structures to answer in O(1) time

b

select(5) = 9

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit

rank(15) =

rank(9) = 5 = rank(12)

6 - 10

Succinct indexable dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plus o(n)-space structures to answer in O(1) time

b

select(5) = 9

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit

rank(15) = 6

rank(9) = 5 = rank(12)

6 - 11

Succinct indexable dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plus o(n)-space structures to answer in O(1) time

b

select(5) = 9

� rank(i) = # 1’s at or before position i

� select(j) = position of jth 1 bit

rank(15) = 6

rank(9) = 5 = rank(12)

Exercise: Use them to answer
predecessor and successor.

⇒

7 - 1

Rank in o(n) bits

b

7 - 2

Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

{

7 - 3

Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

{
3 5

1 1 1 1 1

7 - 4

Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O(n
log2 n

log n) = O(n
log n) ⊆ o(n) bits

{
chunks rank

{ {

3 5

1 1 1 1 1

7 - 5

Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O(n
log2 n

log n) = O(n
log n) ⊆ o(n) bits

2. Split chunks into (12 log n)-bit subchunks

1
2 log n

and store cumulative rank within chunk:

{{

3 5

1 1 1 1 1

7 - 6

Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O(n
log2 n

log n) = O(n
log n) ⊆ o(n) bits

2. Split chunks into (12 log n)-bit subchunks

1
2 log n

and store cumulative rank within chunk:

{{

3 5

1 1 1 1 1 111
31

7 - 7

Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O(n
log2 n

log n) = O(n
log n) ⊆ o(n) bits

2. Split chunks into (12 log n)-bit subchunks

1
2 log n

and store cumulative rank within chunk: 2 log log n bits

{{

3 5

1 1 1 1 1 111
31

7 - 8

Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O(n
log2 n

log n) = O(n
log n) ⊆ o(n) bits

2. Split chunks into (12 log n)-bit subchunks

1
2 log n

⇒ O(n
log n log log n) ⊆ o(n) bits

and store cumulative rank within chunk: 2 log log n bits

{{

subch. rel. rank

{ {

3 5

1 1 1 1 1 111
31

7 - 9

Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O(n
log2 n

log n) = O(n
log n) ⊆ o(n) bits

2. Split chunks into (12 log n)-bit subchunks

1
2 log n

⇒ O(n
log n log log n) ⊆ o(n) bits

and store cumulative rank within chunk: 2 log log n bits

3. Use lookup table for bitstrings of length (12 log n)
⇒ O(

√
n log n log log n) ⊆ o(n) bits

bitstring query i answer

{{

{ { {

3 5

1 1 1 1 1 111
31

7 - 10

Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O(n
log2 n

log n) = O(n
log n) ⊆ o(n) bits

2. Split chunks into (12 log n)-bit subchunks

1
2 log n

⇒ O(n
log n log log n) ⊆ o(n) bits

and store cumulative rank within chunk: 2 log log n bits

3. Use lookup table for bitstrings of length (12 log n)
⇒ O(

√
n log n log log n) ⊆ o(n) bits

4. rank = rank of chunk
+ relative rank of subchunk within chunk
+ relative rank of element within subchunk

{{

3 5

1 1 1 1 1 111
31

7 - 11

Rank in o(n) bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each log n bits

⇒ O(n
log2 n

log n) = O(n
log n) ⊆ o(n) bits

2. Split chunks into (12 log n)-bit subchunks

1
2 log n

⇒ O(n
log n log log n) ⊆ o(n) bits

and store cumulative rank within chunk: 2 log log n bits

3. Use lookup table for bitstrings of length (12 log n)
⇒ O(

√
n log n log log n) ⊆ o(n) bits

4. rank = rank of chunk
+ relative rank of subchunk within chunk
+ relative rank of element within subchunk

{{
⇒ O(1) time

3 5

1 1 1 1 1 111
31

+ O(1) time

8 - 1

Select in o(n) bits

b

8 - 2

Select in o(n) bits

b

1. Store indices of every (log n log log n)th 1 bit in array

log n log log n 1’s{

8 - 3

Select in o(n) bits

b

1. Store indices of every (log n log log n)th 1 bit in array

⇒ O(n
log n log log n log n) = O(n

log log n) ⊆ o(n) bits

groups index

log n log log n 1’s{

8 - 4

Select in o(n) bits

b

1. Store indices of every (log n log log n)th 1 bit in array

⇒ O(n
log n log log n log n) = O(n

log log n) ⊆ o(n) bits

2. Within group of (log n log log n) 1 bits of length r bits:

log n log log n 1’s{

8 - 5

Select in o(n) bits

b

1. Store indices of every (log n log log n)th 1 bit in array

⇒ O(n
log n log log n log n) = O(n

log log n) ⊆ o(n) bits

2. Within group of (log n log log n) 1 bits of length r bits:

if r ≥ (log n log log n)2

then store indices of 1 bits in group in array
⇒ O(n

(log n log log n)2 (log n log log n) log n) ⊆ O(n
log log n)

groups index# 1 bits

log n log log n 1’s{

8 - 6

Select in o(n) bits

b

1. Store indices of every (log n log log n)th 1 bit in array

⇒ O(n
log n log log n log n) = O(n

log log n) ⊆ o(n) bits

2. Within group of (log n log log n) 1 bits of length r bits:

if r ≥ (log n log log n)2

then store indices of 1 bits in group in array
⇒ O(n

(log n log log n)2 (log n log log n) log n) ⊆ O(n
log log n)

else problem is reduced to bitstrings of length r < (log n log log n)2

log n log log n 1’s{

8 - 7

Select in o(n) bits

b

1. Store indices of every (log n log log n)th 1 bit in array

⇒ O(n
log n log log n log n) = O(n

log log n) ⊆ o(n) bits

2. Within group of (log n log log n) 1 bits of length r bits:

if r ≥ (log n log log n)2

then store indices of 1 bits in group in array
⇒ O(n

(log n log log n)2 (log n log log n) log n) ⊆ O(n
log log n)

else problem is reduced to bitstrings of length r < (log n log log n)2

3. Repeat 1. and 2. on reduced bitstrings

log n log log n 1’s{

8 - 8

Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

log n log log n 1’s{

8 - 9

Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

log n log log n 1’s{

{(log log n)2 1’s

8 - 10

Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O(n
(log log n)2 log log n) = O(n

log log n) bits

subgroups rel. index

log n log log n 1’s{

{(log log n)2 1’s

8 - 11

Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O(n
(log log n)2 log log n) = O(n

log log n) bits

2’ Within group of (log log n)2th 1 bits of length r′ bits:

log n log log n 1’s{

{(log log n)2 1’s

8 - 12

Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O(n
(log log n)2 log log n) = O(n

log log n) bits

2’ Within group of (log log n)2th 1 bits of length r′ bits:

if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array

log n log log n 1’s{

{(log log n)2 1’s

8 - 13

Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O(n
(log log n)2 log log n) = O(n

log log n) bits

2’ Within group of (log log n)2th 1 bits of length r′ bits:

if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array

⇒ O(n
(log log n)4 (log log n)2 log log n) = O(n

log log n) bits

subgroups # 1 bits rel. index

log n log log n 1’s{

{(log log n)2 1’s

8 - 14

Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O(n
(log log n)2 log log n) = O(n

log log n) bits

2’ Within group of (log log n)2th 1 bits of length r′ bits:

if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array

⇒ O(n
(log log n)4 (log log n)2 log log n) = O(n

log log n) bits

else problem is reduced to bitstrings of length r′ < (log log n)4

log n log log n 1’s{

{(log log n)2 1’s

8 - 15

Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O(n
(log log n)2 log log n) = O(n

log log n) bits

2’ Within group of (log log n)2th 1 bits of length r′ bits:

if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array

⇒ O(n
(log log n)4 (log log n)2 log log n) = O(n

log log n) bits

else problem is reduced to bitstrings of length r′ < (log log n)4

4. Use lookup table for bitstrings of length r′ ≤ (log log n)4 ≤ 1
2 log n

⇒ O(
√

n log n log log n) = o(n) bits
bitstring query j answer

log n log log n 1’s{

{(log log n)2 1’s

8 - 16

Select in o(n) bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2th 1 bit in array

⇒ O(n
(log log n)2 log log n) = O(n

log log n) bits

2’ Within group of (log log n)2th 1 bits of length r′ bits:

if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array

⇒ O(n
(log log n)4 (log log n)2 log log n) = O(n

log log n) bits

else problem is reduced to bitstrings of length r′ < (log log n)4

4. Use lookup table for bitstrings of length r′ ≤ (log log n)4 ≤ 1
2 log n

⇒ O(
√

n log n log log n) = o(n) bits
bitstring query j answer

log n log log n 1’s{

{(log log n)2 1’s
+ O(1) time

9 - 1

Succinct representation of binary trees

Number of binary trees on n vertices: Cn = 1
n+1 (

2n
n)

log Cn = 2n + o(n) (by Stirling’s approximation)

9 - 2

Succinct representation of binary trees

Number of binary trees on n vertices: Cn = 1
n+1 (

2n
n)

log Cn = 2n + o(n) (by Stirling’s approximation)

⇒ We can use 2n + o(n) bits to represent binary trees.

9 - 3

Succinct representation of binary trees

Number of binary trees on n vertices: Cn = 1
n+1 (

2n
n)

log Cn = 2n + o(n) (by Stirling’s approximation)

⇒ We can use 2n + o(n) bits to represent binary trees.

Difficulty is when binary tree is not full.

9 - 4

Succinct representation of binary trees

Idea.
� Add external nodes

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select

9 - 5

Succinct representation of binary trees

Idea.
� Add external nodes

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select

9 - 6

Succinct representation of binary trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b
Idea.
� Add external nodes

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select

9 - 7

Succinct representation of binary trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

Idea.
� Add external nodes

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select

9 - 8

Succinct representation of binary trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

Operations.
� parent(i) = select(b i

2c)
� leftChild(i) = 2 rank(i)

� rightChild(i) = 2 rank(i) + 1

� rank(i) is index for array storing actual values

Idea.
� Add external nodes

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select

?

?

?

9 - 9

Succinct representation of binary trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

Operations.
� parent(i) = select(b i

2c)
� leftChild(i) = 2 rank(i)

� rightChild(i) = 2 rank(i) + 1

� rank(i) is index for array storing actual values

Idea.
� Add external nodes

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select

?

?

?

9 - 10

Succinct representation of binary trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

rank(7) = 6

Operations.
� parent(i) = select(b i

2c)
� leftChild(i) = 2 rank(i)

� rightChild(i) = 2 rank(i) + 1

� rank(i) is index for array storing actual values

Idea.
� Add external nodes

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select

?

?

?

9 - 11

Succinct representation of binary trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

rank(7) = 6

rank(10) = 7

Operations.
� parent(i) = select(b i

2c)
� leftChild(i) = 2 rank(i)

� rightChild(i) = 2 rank(i) + 1

� rank(i) is index for array storing actual values

Idea.
� Add external nodes

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select

?

?

?

9 - 12

Succinct representation of binary trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

rank(7) = 6

rank(10) = 7

Operations.
� parent(i) = select(b i

2c)
� leftChild(i) = 2 rank(i)

� rightChild(i) = 2 rank(i) + 1

� rank(i) is index for array storing actual values

Idea.
� Add external nodes

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select

?

9 - 13

Succinct representation of binary trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

rank(7) = 6

rank(10) = 7

Operations.
� parent(i) = select(b i

2c)
� leftChild(i) = 2 rank(i)

� rightChild(i) = 2 rank(i) + 1

� rank(i) is index for array storing actual values

Idea.
� Add external nodes

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select

9 - 14

Succinct representation of binary trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

rank(7) = 6

rank(10) = 7

Operations.
� parent(i) = select(b i

2c)
� leftChild(i) = 2 rank(i)

� rightChild(i) = 2 rank(i) + 1

� rank(i) is index for array storing actual values

Idea.
� Add external nodes

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select

Proof is

exercise.

9 - 15

Succinct representation of binary trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

rank(7) = 6

rank(10) = 7

Operations.
� parent(i) = select(b i

2c)
� leftChild(i) = 2 rank(i)

� rightChild(i) = 2 rank(i) + 1

� rank(i) is index for array storing actual values

Idea.
� Add external nodes

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select

Proof is

exercise.

9 - 16

Succinct representation of binary trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

Size.
� 2n +1 bits for b

� o(n) for rank
and select

rank(7) = 6

rank(10) = 7

Operations.
� parent(i) = select(b i

2c)
� leftChild(i) = 2 rank(i)

� rightChild(i) = 2 rank(i) + 1

� rank(i) is index for array storing actual values

Idea.
� Add external nodes

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select

Proof is

exercise.

10 - 1

Succinct representation of trees - LOUDS

LOUDS = Level Order Unary Degree Sequence

10 - 2

Succinct representation of trees - LOUDS

LOUDS = Level Order Unary Degree Sequence

10 - 3

Succinct representation of trees - LOUDS

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree

10 - 4

Succinct representation of trees - LOUDS

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

10 - 5

Succinct representation of trees - LOUDS

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
20 21

10 - 6

Succinct representation of trees - LOUDS

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
20 21

Size.
� each vertex (except root) is represented twice,

namely with a 1 and with a 0

� o(n) bits for rank and select

10 - 7

Succinct representation of trees - LOUDS

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
20 21

⇒ 2n + o(n) bits

Size.
� each vertex (except root) is represented twice,

namely with a 1 and with a 0

� o(n) bits for rank and select

10 - 8

Succinct representation of trees - LOUDS

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
20 21

Operations.
� Let i be index of 1 in louds sequence.

� rank(i) is index for array storing
vertex objects/values.

10 - 9

Succinct representation of trees - LOUDS

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

10 - 10

Succinct representation of trees - LOUDS

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 14 + 1 = 15

1
1

10 - 11

Succinct representation of trees - LOUDS

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 14 + 1 = 15

1
1

10 - 12

Succinct representation of trees - LOUDS

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 14 + 1 = 15

1
1

1

10 - 13

Succinct representation of trees - LOUDS

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 14 + 1 = 15

1
1

� nextSibling(i) = i + 1

1

10 - 14

Succinct representation of trees - LOUDS

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 14 + 1 = 15

1
1

� nextSibling(i) = i + 1
Exercise: chil

d(i, j)

with validity check

1

10 - 15

Succinct representation of trees - LOUDS

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 14 + 1 = 15

1
1

� nextSibling(i) = i + 1
Exercise: chil

d(i, j)

with validity check

� parent(i) = select1(rank0(i))

1

10 - 16

Succinct representation of trees - LOUDS

1

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 14 + 1 = 15

1
1

� nextSibling(i) = i + 1
Exercise: chil

d(i, j)

with validity check

� parent(i) = select1(rank0(i))

parent(8) = select1(rank0(8))
= select1(2) = 3

1

1

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1 01

10 - 17

Succinct representation of trees - LOUDS

1

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 14 + 1 = 15

1
1

� nextSibling(i) = i + 1
Exercise: chil

d(i, j)

with validity check

� parent(i) = select1(rank0(i))

parent(8) = select1(rank0(8))
= select1(2) = 3

1

1

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1 01

10 - 18

Succinct representation of trees - LOUDS

1

1

LOUDS = Level Order Unary Degree Sequence

� unary decoding of outdegree10

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 14 + 1 = 15

1
1

� nextSibling(i) = i + 1
Exercise: chil

d(i, j)

with validity check

� parent(i) = select1(rank0(i))

parent(8) = select1(rank0(8))
= select1(2) = 3

1

1

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1 01

11 - 1

Discussion

� Succinct data structures are
� space efficient
� support fast operations
but
� are mostly static (dynamic at extra cost),
� number of operations are limited,
� complex → harder to implement

11 - 2

Discussion

� Succinct data structures are
� space efficient
� support fast operations
but
� are mostly static (dynamic at extra cost),
� number of operations are limited,
� complex → harder to implement

� Rank and select form basis for many succinct representations

12

Literature

Main reference:

� Lecture 17 of Advanced Data Structures (MIT, Fall’17) by
Erik Demaine

� [Jac ’89] “Space efficient Static Trees and Graphs”

Recommendations:

� Lecture 18 of Demaine’s course on compact & succinct
arrays & trees

	Title page
	Data structures
	Succinct data structures
	Examples for implicit data structures

	Succinct indexable dictionary
	Idea
	Rank in o(n) bits and O(1) time
	Select in o(n) bits and O(1) time

	Succinct representation of binary trees
	Succinct representation of trees - LOUDS
	Discussion
	Literature

