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Winter is about to begin . .. ... this means the ski season is back!”

B But what if there is not always enough snow?
B s it worth buying new skis?

B Or should we rather rent them?

B We don't know the weather (much) in advance.

*

in a normal year not being 2020
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Ski-Rental Problem — definition

Behavior.
B Every day when there is “good” weather, you go skiing.
m We call this is a good day.

B Each morning, we can check if today is a good day, but we can't check any earlier.

Cost.
B Renting skis for 1 day costs 1 [Euro].

B Buying skis costs M [Euros| and you have them forever.

B In the end, there will have been T good days.

(When to) buy skis?
Plan.

B Not knowing T,
B devise a strategy if and when to buy skis.
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Renting costs 1/day
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Strategy |: Buy on the first good day T good days

B Imagine this was the only good day the whole winter.
B Then we have paid M; optimally, we would have rented and paid 1.
B So Strategy | is M times worse than the optimal strategy.

— for arbitrarily large M arbitrarily bad
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B On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has ...

B Least Frequently Used (LFU): ... the lowest number of accesses since it was loaded.

B Least Recently Used (LRU): ... been accessed least recently.

B First-in-first-out (FIFO): ... been in cache the longest.

Which of them is—theoretically provable—the best strategy?

[Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.]
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[Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.]

Proof. (only for LRU, FIFO similar) MIN: optimal strategy
B Initially, the cache contains the same pages for all strategies. | 0: sequence of pages

B We partition ¢ into phases Py, P, ..., s.t. LRU has at most k faults in Py
and exactly k faults in each other phase.

We show next: MIN has at least 1 fault in each phase.

Clearly, MIN also faults in Pp; consider P; (i > 1) and let p be the last page of P;_1.

Show: P; contains k distinct page requests different from p (implies a fault for MIN).
If the k page faults of LRU in P; are on distinct pages (different from p), we're done.

Assume LRU has in P; two page faults on one page g. In between, g has to be evicted
from the cache. According to LRU, there were k distinct page requests in between.
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[Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.]

Proof. (only for LRU, FIFO similar) MIN: optimal strategy

m Initially, the cache contains the same pages for all strategies. | 0: sequence of pages

B We partition ¢ into phases Py, P, ..., s.t. LRU has at most k faults in Py
and exactly k faults in each other phase.

We show next: MIN has at least 1 fault in each phase.

Clearly, MIN also faults in Pp; consider P; (i > 1) and let p be the last page of P;_1.

Show: P; contains k distinct page requests different from p (implies a fault for MIN).
If the k page faults of LRU in P; are on distinct pages (different from p), we're done.

Assume LRU has in P; two page faults on one page g. In between, g has to be evicted
from the cache. According to LRU, there were k distinct page requests in between.

Similarly, if LRU faults on p in P;, there were k distinct page requests in between.
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Randomized strategy: MARKING
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B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

page request

Phase P4

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.



k

Paging — rand. strat. Bon

swap

-

11-10

P5

pa{ps) Pe

pP7

P8

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

page request

Phase P4

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.
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-
page request

Randomized strategy: MARKING Phase P;
B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.



k 11-12

Pagmg — rand. strat. mark requested page [P1[Ps]ps] < P2
\_/7 page request

Pa|P2|Pe6|P7|P8|P9
Randomized strategy: MARKING Phase P;

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.
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Paging — rand. strat. PEr L

-
page request

Randomized strategy: MARKING Phase P;
B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.
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pP3

P4

p2

Pé

pP7

P8

P9

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

page request

Phase P4

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.
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Paging — rand. strat. PE A

-
page request

Randomized strategy: MARKING Phase P;
B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.
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Pagmg — rand. strat. is already marked ,Pl Vs ?’3\ <5
~ 7 page request
Pa|P2|Pe6|P7|P8| P9
Randomized strategy: MARKING Phase P,

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.
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Paging — rand. strat. BoaPs <P

-
page request

Randomized strategy: MARKING Phase P;
B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.
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choose u.a.r. |P1

-
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p2

P4

p2

Pé

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

page request

Phase P4

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.
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swap

-

11-19

p2

pa(p2) pe

pP7

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

page request

Phase P4

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.
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Paging — rand. strat. ToaPs <P

-
page request

Randomized strategy: MARKING Phase P;
B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.
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p2

P4

P1

Pé

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

page request

Phase P4

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.
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Paging — rand. strat. TP o3

-
page request

Randomized strategy: MARKING Phase P;
B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.
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pP3

P4

P1

Pé

pP7

P8

P9

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

page request

Phase P4

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.
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Paging — rand. strat. e A

-
page request

Randomized strategy: MARKING Phase P;
B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.
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11-25

Pé

P4

P1

Pé

pP7

P8

P9

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

page request

Phase P4

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.
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k

unmark all |P2|P5[P3| <=
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Pé

P4

P1

Pé

pP7

P8

P9

Randomized strategy: MARKING

B Proceeds in phases

start new phase

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

page request

Phase P>
\_/

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.
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Pé

P4

P1

Pé

pP7

P8

P9

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

page request

Phase P>

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.
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Paging — rand. strat. sl <
swap page request
pa|p1{Pe) P7|Ps| P9

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.
B When a page Is requested, it gets marked.

Phase P>

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.
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Paging — rand. strat. FArEr A

-
page request

Randomized strategy: MARKING Phase P,
B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.
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Pé

P4

P1

p2

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

page request

Phase P>

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.
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Paging — rand. strat. AR A,

-
page request

Randomized strategy: MARKING Phase P,
B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.
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k

choose uwﬂ <

11 - 32

P9

P4

P1

p2

pP7

P8

P9

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

page request

Phase P>

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.
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k
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P9

P4

P1

p2

pP7

P8

P9

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

page request

Phase P>

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

[ Theorem 3. MARKING is 2H-competitive. |
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k
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P9

P4

P1

p2

pP7

P8

P9

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

page request

Phase P>

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

[ Theorem 3. MARKING is 2H-competitive. |

Remark.

Hi=1+3+%+...+ 7 is the k-th harmonic number and for k > 2: Hy < In(k) + 1.
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Proof.
B A page is stale if it is unmarked, but was marked in P;_1.

B A page is clean if it is unmarked, but not stale.
B SpaArk (Smin): set of pages in the cache of MARKING (MIN)

] dbegin: ’SM||\| — SMARK‘ at the beginning of P

B d.g: ‘SM||\| — SMARK‘ at the end of P;

12 -

We consider
phase P;.
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(Theorem 3. MARKING is 2Hk—competitive.J

Proof.

A page is stale if it is unmarked, but was marked in P;_1.

A page is clean if it is unmarked, but not stale.

SMARK (Smin): set of pages in the cache of MARKING (MIN)
Abegin: |SMIN — SMARK | at the beginning of P,

dend: |ISMIN — SMARK| at the end of P,

c: number of clean pages requested in P;

12 -

We consider
phase P;.
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Proof.

A page is stale if it is unmarked, but was marked in P;_1.

A page is clean if it is unmarked, but not stale.
SMARK (Smin): set of pages in the cache of MARKING (MIN)

dbegin: ’SM||\| — SMARK‘ at the beginning of P;
Aand: ‘SM||\| — SMARK‘ at the end of P;

c: number of clean pages requested in P;

MIN has > max(c — dpegin: dend) faults.

12 -

We consider
phase P;.
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(Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B A page is stale if it is unmarked, but was marked in P;_1. phase P;.

A page is clean if it is unmarked, but not stale.
SMARK (Smin): set of pages in the cache of MARKING (MIN)

dbegin: ’SM||\| — SMARK‘ at the beginning of P;
Aand: ‘SM||\| — SMARK‘ at the end of P;

c: number of clean pages requested in P;

MIN has > max(c — dbeginv dend) > %(C — dbegin + dend) faults.
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Proof. We consider
B A page is stale if it is unmarked, but was marked in P;_1. phase P;.

A page is clean if it is unmarked, but not stale.
SMARK (Smin): set of pages in the cache of MARKING (MIN)

dbegin: ’SM||\| — SMARK‘ at the beginning of P;
Aand: ‘SM||\| — SMARK‘ at the end of P;

c: number of clean pages requested in P;

Apegin
MIN has > max(c — dbeginv dend) > %(C — dbegin _|_dend) = % — b2g | de2“d faults.
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(Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B A page is stale if it is unmarked, but was marked in P;_1. phase P;.

A page is clean if it is unmarked, but not stale.
SMARK (Smin): set of pages in the cache of MARKING (MIN)

dbegin: ’SM||\| — SMARK‘ at the beginning of P;
Aand: ‘SM||\| — SMARK‘ at the end of P;

c: number of clean pages requested in P;

Apegin
MIN has > max(c — dbeginv dend) > %(C — dbegin _|_dend) = % — b2g | de2“d faults.

d in - d in
Over all phases, all =2&" 3nd end ancel out. except the first 228" and the last Gend
P ) D P > >
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(Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B A page is stale if it is unmarked, but was marked in P;_1. phase P;.

A page is clean if it is unmarked, but not stale.
SMARK (Smin): set of pages in the cache of MARKING (MIN)

dbegin: ’SM||\| — SMARK‘ at the beginning of P;
Aand: ‘SM||\| — SMARK‘ at the end of P;

c: number of clean pages requested in P;

Apegin
MIN has > max(c — dbeginv dend) > %(C — dbegin _|_dend) = % — b2g | de2“d faults.

d in - d in
Over all phases, all =" and deT”d cancel out, except the first £ and the last deT“d

B Since the first dpegin = 0, MIN has at least 5 faults per phase.



12 - 14

Paging — rand. strategy analysis

[Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B For the clean pages, MARKING has ¢ faults. phase P;.




12-15

Paging — rand. strategy analysis

(Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B For the clean pages, MARKING has ¢ faults. phase P;.

M For the stale pages, there are s = k — ¢ < k — 1 requests.




12-16

Paging — rand. strategy analysis

[ Theorem 3. MARKING is 2H-competitive.|

Proof. We consider
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B Forrequests j = 1,...,s to stale pages, consider the expected number of faults E[F]-].
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(Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B For the clean pages, MARKING has ¢ faults. phase P;.

M For the stale pages, there are s = k — ¢ < k — 1 requests.

B Forrequests j = 1,...,s to stale pages, consider the expected number of faults E[Fj].

B c(j): # clean pages requested in this phase so far
s(j): # phase-initially stale pages having not been requested

m E[F] =04 951
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(Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B For the clean pages, MARKING has ¢ faults. phase P;.

M For the stale pages, there are s = k — ¢ < k — 1 requests.

B Forrequests j = 1,...,s to stale pages, consider the expected number of faults E[Fj].

B c(j): # clean pages requested in this phase so far
s(j): # phase-initially stale pages having not been requested

() (j):k"'l_j

) LS e

m E[F) = U0
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(Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B For the clean pages, MARKING has ¢ faults. phase P;.

M For the stale pages, there are s = k — ¢ < k — 1 requests.

B Forrequests j = 1,...,s to stale pages, consider the expected number of faults E[F;|.
B c(j): # clean pages requested in this phase so far

s(j): # phase-initially stale pages having not been requested

o(i s(j)=k+1—j
m B[R] = 2G04 05 1< i

— j= 1E[F]
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(Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B For the clean pages, MARKING has c faults. phase P;.

M For the stale pages, there are s = k — ¢ < k — 1 requests.

B Forrequests j = 1,...,s to stale pages, consider the expected number of faults E[F;|.
B c(j): # clean pages requested in this phase so far

s(j): # phase-initially stale pages having not been requested

o s(j)=k+1—j
m E[F) = o4 Gh 1<

—k+1—]
") ElF] <Y et
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(Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B For the clean pages, MARKING has c faults. phase P;.

M For the stale pages, there are s = k — ¢ < k — 1 requests.

B Forrequests j = 1,...,s to stale pages, consider the expected number of faults E[F;|.
B c(j): # clean pages requested in this phase so far

s(j): # phase-initially stale pages having not been requested

o s(j)=k+1—j
m E[F) = o4 Gh 1<

— k+1—]
S k ¢
— 1E[ ]<Z]1k-|-]_]—2]2]
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(Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B For the clean pages, MARKING has c faults. phase P;.

M For the stale pages, there are s = k — ¢ < k — 1 requests.

B Forrequests j = 1,...,s to stale pages, consider the expected number of faults E[F;|.
B c(j): # clean pages requested in this phase so far

s(j): # phase-initially stale pages having not been requested

o s(j)=k+1—j
m B[R] = 2G04 05 1< i

k
T EF] <X e <TE = (H— 1)
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(Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B For the clean pages, MARKING has c faults. phase P;.

M For the stale pages, there are s = k — ¢ < k — 1 requests.

B Forrequests j = 1,...,s to stale pages, consider the expected number of faults E[F;|.
B c(j): # clean pages requested in this phase so far

s(j): # phase-initially stale pages having not been requested

o s(j)=k+1—j
m E[F) = o4 Gh 1<

— k+1—]
k
L E[R] <Y e <Y, — e (Ho— 1)

B So the competitive ratio of Marking is +C(CI/{§_1) = 2H,.
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(Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B For the clean pages, MARKING has c faults. phase P;.

M For the stale pages, there are s = k — ¢ < k — 1 requests.

B Forrequests j = 1,...,s to stale pages, consider the expected number of faults E[F;|.
B c(j): # clean pages requested in this phase so far

s(j): # phase-initially stale pages having not been requested

o s(j)=k+1—j
m E[F) = o4 Gh 1<

— k+1—]
k
L E[R] <Y e <Y, — e (Ho— 1)

B So the competitive ratio of Marking is +C(CI/{§_1) = 2H,.
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Paging — rand. strategy analysis Reminder.
No deterministic

[Theorem 3. MARKING is 2Hk—competitive.J strategy is better
Proof than k-competitive.

B For the clean pages, MARKING has c faults.

-or the stale pages, there are s = k — ¢ < k — 1 requests.

]
B Forrequests j = 1,...,s to stale pages, consider the expected number of faults E[Fj].
]

c(j): # clean pages requested in this phase so far
s(j): # phase-initially stale pages having not been requested
. s(j)=k+1—7j
_ s(j)—c(j) c(j)
== 0t s e
k
m YL E[R ST i <56 = (Hy— 1)

B So the competitive ratio of Marking is +C(CI/{§_1) = 2H,.

L] EU?
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(Theorem 3. MARKING is 2Hk—competitive.J

Proof.

E[F) = G 0+ 1 < m

K
i1 BB <Y amrs <Xt =

So the competitive ratio of Marking is

For the clean pages, MARKING has ¢ faults.

-or the stale pages, there are s = k — ¢ < k — 1 requests.

c(j): # clean pages requested in this phase so far
s(j): # phase-initially stale pages having not been requested

s(j) =k+1—]j

¢+ (Hy—1)

‘|‘C(Hk—1)

c/2

— 2H,.

12 - 27

Reminder.

No deterministic
strategy is better
than k-competitive.

— Randomization helps!

For requests j = 1,..., s to stale pages, consider the expected number of faults E|[F;].
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Discussion

B Online Algorithms operate in a setting different from that of classical algorithms.
However, this setting of incomplete information is very natural and occurs often in
real-world applications. Can you think of further examples?

B We might also transform a classical problem with incomplete information into an
online problem. E.g.: Matching problem for ride sharing.

B Randomization can help to improve our behavior on worst-case instances. You may
also think of: we are less predictable for an adversary.
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Main source:

B Sabine Storandt’s lecture script “Randomized Algorithms” (2016-2017)

Original papers:

Belady'66] “A Study of Replacement Algorithms for Virtual-Storage Computer.”

Sleator, Tarjan'85] “Amortized Efficiency of List Update and Paging Rules.”

m [Fiat, Karp, Luby, McGeoch, Sleator, Young'91] “Competitive Paging Algorithms.”
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