
1

Advanced Algorithms

Ski-Rental Problem and Paging
Online Algorithms

Johannes Zink · WS20

                  k
p3

p4 p9p7 p8

page request
p5

p1 p2

p6 p9



2 - 1

Ski-Rental Problem

Winter is about to begin . . .

Introduction



2 - 2

Ski-Rental Problem

Winter is about to begin . . . . . . this means the ski season is back!∗

∗ in a normal year not being 2020

Introduction



2 - 3

Ski-Rental Problem

Winter is about to begin . . . . . . this means the ski season is back!∗

� But what if there is not always enough snow?

∗ in a normal year not being 2020

Introduction



2 - 4

Ski-Rental Problem

Winter is about to begin . . . . . . this means the ski season is back!∗

� But what if there is not always enough snow?

∗ in a normal year not being 2020

� Is it worth buying new skis?

� Or should we rather rent them?



2 - 5

Ski-Rental Problem

Winter is about to begin . . . . . . this means the ski season is back!∗

� But what if there is not always enough snow?

∗ in a normal year not being 2020

� Is it worth buying new skis?

� Or should we rather rent them?

� We don’t know the weather (much) in advance.
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Ski-Rental Problem – definition

Behavior.
� Every day when there is “good” weather, you go skiing.
� We call this is a good day.

� Each morning, we can check if today is a good day, but we can’t check any earlier.

� Buying skis costs M [Euros] and you have them forever.

� In the end, there will have been T good days.

(When to) buy skis?

Cost.
� Renting skis for 1 day costs 1 [Euro].

Plan.
� Not knowing T,
� devise a strategy if and when to buy skis.
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Renting costs 1/day

Buying costs M
T good daysStrategy I: Buy on the first good day

Strategy II: never buy, always rent

� Imagine this was the only good day the whole winter.

� Then we have paid M; optimally, we would have rented and paid 1.

� So Strategy I is M times worse than the optimal strategy.

→ for arbitrarily large M arbitrarily bad

� Suppose there are many good days, i.e. T > M.

� Then we have paid T.
Optimally, we would have bought on or before the first good day and paid M.

� Strategy II is T/M times worse than the optimal strategy.

→ for arbitrarily large T arbitrarily bad

competitive
ratio
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cOPT
=

1
2 ·(2M−1)+ 1

2 ·((1+α)M−1)
M = 3+α

2 −
1
M

M ∞
= 3+α

2

⇒ Strategy IV (with α =
√
5−1
2 ≈ 0.62) is 1.81-competitive, randomized, and better

than any deterministic strategy.

� With a more sophisticated probability distribution for the time we buy skis, we can
even get a competitive ratio of e

e−1 ≈ 1.58.
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Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages
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� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

� Sequence σ of page requests having to be fulfilled in order. / We have to fulfill a
request before we see the next request.
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Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

� Sequence σ of page requests having to be fulfilled in order. / We have to fulfill a
request before we see the next request.

Objective value:

� Minimize the number of page faults while fulfilling σ.
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� If the k page faults of LRU in Pi are on distinct pages (different from p), we’re done.

� Assume LRU has in Pi two page faults on one page q. In between, q has to be evicted
from the cache. According to LRU, there were k distinct page requests in between.
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Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

Hk = 1 + 1
2 +

1
3 + . . . + 1

k is the k-th harmonic number and for k ≥ 2: Hk < ln(k) + 1.

Remark.
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⇒ Randomization helps!

� For requests j = 1, . . . , s to stale pages, consider the expected number of faults E[Fj].

�

No deterministic
strategy is better
than k-competitive.

Reminder.
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Discussion

� Online Algorithms operate in a setting different from that of classical algorithms.
However, this setting of incomplete information is very natural and occurs often in
real-world applications. Can you think of further examples?

� We might also transform a classical problem with incomplete information into an
online problem. E.g.: Matching problem for ride sharing.

� Randomization can help to improve our behavior on worst-case instances. You may
also think of: we are less predictable for an adversary.
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