Julius-Maximilians-
UNIVERSITAT
WURZBURG

Advanced Algorithms

Online Algorithms
Ski-Rental Problem and Paging

Johannes Zink - WS20

k
Po[ps[ps] <2
page request
P4|P1|P2|P7|P8|P9

Introduction

Winter is about to begin . ..

Introduction

Winter is about to begin this means the ski season is back!”

*

in a normal year not being 2020

Introduction

Winter is about to begin this means the ski season is back!”

B But what if there is not always enough snow?

*

in a normal year not being 2020

Ski-Rental Problem

Winter is about to begin this means the ski season is back!”

B But what if there is not always enough snow?
B s it worth buying new skis?

B Or should we rather rent them?

*

in a normal year not being 2020

Ski-Rental Problem

Winter is about to begin this means the ski season is back!”

B But what if there is not always enough snow?
B s it worth buying new skis?

B Or should we rather rent them?

B We don't know the weather (much) in advance.

*

in a normal year not being 2020

Ski-Rental Problem — definition

Behavior.
B Every day when there is “good” weather, you go skiing.
m We call this is a good day.

Ski-Rental Problem — definition

Behavior.
B Every day when there is “good” weather, you go skiing.
m We call this is a good day.

B Each morning, we can check if today is a good day, but we can't check any earlier.

Ski-Rental Problem — definition

Behavior.
B Every day when there is “good” weather, you go skiing.
m We call this is a good day.

B Each morning, we can check if today is a good day, but we can't check any earlier.

Cost.
B Renting skis for 1 day costs 1 [Euro].

Ski-Rental Problem — definition

Behavior.
B Every day when there is “good” weather, you go skiing.
m We call this is a good day.

B Each morning, we can check if today is a good day, but we can't check any earlier.

Cost.
B Renting skis for 1 day costs 1 [Euro].

B Buying skis costs M [Euros| and you have them forever.

Ski-Rental Problem — definition

Behavior.
B Every day when there is “good” weather, you go skiing.
m We call this is a good day.

B Each morning, we can check if today is a good day, but we can't check any earlier.

Cost.
B Renting skis for 1 day costs 1 [Euro].

B Buying skis costs M [Euros| and you have them forever.

B In the end, there will have been T good days.

Ski-Rental Problem — definition

Behavior.
B Every day when there is “good” weather, you go skiing.
m We call this is a good day.

B Each morning, we can check if today is a good day, but we can't check any earlier.

Cost.
B Renting skis for 1 day costs 1 [Euro].

B Buying skis costs M [Euros| and you have them forever.

B In the end, there will have been T good days.

(When to) buy skis?

Ski-Rental Problem — definition

Behavior.
B Every day when there is “good” weather, you go skiing.
m We call this is a good day.

B Each morning, we can check if today is a good day, but we can't check any earlier.

Cost.
B Renting skis for 1 day costs 1 [Euro].

B Buying skis costs M [Euros| and you have them forever.

B In the end, there will have been T good days.

(When to) buy skis?
Plan.

B Not knowing T,
B devise a strategy if and when to buy skis.

4-1

Ski-Rental Problem — Strategies | and |l

Renting costs 1/day
Buying costs M
T good days

4.2

Ski-Rental Problem — Strategies | and |l

Renting costs 1/day
) Buying costs M
Strategy |: Buy on the first good day T good days

4-3

Ski-Rental Problem — Strategies | and |l

Renting costs 1/day
) Buying costs M
Strategy |: Buy on the first good day T good days

B Imagine this was the only good day the whole winter.

4 -

Ski-Rental Problem — Strategies | and |l

Renting costs 1/day

) Buying costs M
Strategy |: Buy on the first good day T good days

B Imagine this was the only good day the whole winter.
B Then we have paid M; optimally, we would have rented and paid 1.

4 -

Ski-Rental Problem — Strategies | and |l

Renting costs 1/day

) Buying costs M
Strategy |: Buy on the first good day T good days

B Imagine this was the only good day the whole winter.
B Then we have paid M; optimally, we would have rented and paid 1.
B So Strategy | is M times worse than the optimal strategy.

4 -

Ski-Rental Problem — Strategies | and |l

Renting costs 1/day
) Buying costs M
Strategy |: Buy on the first good day T good days

B Imagine this was the only good day the whole winter.
B Then we have paid M; optimally, we would have rented and paid 1.
B So Strategy | is M times worse than the optimal strategy.

— for arbitrarily large M arbitrarily bad

4 -

Ski-Rental Problem — Strategies | and |l

Renting costs 1/day
) Buying costs M
Strategy |: Buy on the first good day T good days

B Imagine this was the only good day the whole winter.
B Then we have paid M; optimally, we would have rented and paid 1.
B So Strategy | is M times worse than the optimal strategy.

— for arbitrarily large M arbitrarily bad

Strategy ll: never buy, always rent

4 -

Ski-Rental Problem — Strategies | and |l

Renting costs 1/day
) Buying costs M
Strategy |: Buy on the first good day T good days

B Imagine this was the only good day the whole winter.
B Then we have paid M; optimally, we would have rented and paid 1.
B So Strategy | is M times worse than the optimal strategy.

— for arbitrarily large M arbitrarily bad

Strategy ll: never buy, always rent

B Suppose there are many good days, i.e. T > M.

4 -

Ski-Rental Problem — Strategies | and |l

Renting costs 1/day

) Buying costs M
Strategy |: Buy on the first good day T good days

B Imagine this was the only good day the whole winter.
B Then we have paid M; optimally, we would have rented and paid 1.
B So Strategy | is M times worse than the optimal strategy.

— for arbitrarily large M arbitrarily bad

Strategy ll: never buy, always rent

B Suppose there are many good days, i.e. T > M.

B Then we have paid T.
Optimally, we would have bought on or before the first good day and paid M.

4 -

Ski-Rental Problem — Strategies | and |l

Renting costs 1/day

) Buying costs M
Strategy |: Buy on the first good day T good days

B Imagine this was the only good day the whole winter.
B Then we have paid M; optimally, we would have rented and paid 1.
B So Strategy | is M times worse than the optimal strategy.

— for arbitrarily large M arbitrarily bad

Strategy ll: never buy, always rent

B Suppose there are many good days, i.e. T > M.

B Then we have paid T.
Optimally, we would have bought on or before the first good day and paid M.

m Strategy Il is T/ M times worse than the optimal strategy.

4 -

Ski-Rental Problem — Strategies | and |l

Renting costs 1/day
) Buying costs M
Strategy |: Buy on the first good day T good days

B Imagine this was the only good day the whole winter.
B Then we have paid M; optimally, we would have rented and paid 1.
B So Strategy | is M times worse than the optimal strategy.

— for arbitrarily large M arbitrarily bad

Strategy ll: never buy, always rent

B Suppose there are many good days, i.e. T > M.

B Then we have paid T.
Optimally, we would have bought on or before the first good day and paid M.

m Strategy Il is T/ M times worse than the optimal strategy.

— for arbitrarily large T arbitrarily bad

11

4 -

Ski-Rental Problem — Strategies | and |l

Renting costs 1/day
) Buying costs M
Strategy |: Buy on the first good day T good days

B Imagine this was the only good day the whole winter.
B Then we have paid M; optimally, we would have rented and paid 1.
B So Strategy | is M times worse than the optimal strategy.

— for arbitrarily large M arbitrarily bad

Strategy Il: never buy, always rent competitive

B Suppose there are many good days, i.e. T > M. ratio

B Then we have paid T.
Optimally, we would have bou

m Strategy Il is T/ M times worse than the optimal strategy.

on or before the first good day and paid M.

— for arbitrarily large T arbitrarily bad

12

5-1

Ski-Rental Problem — Strategy Il

Renting costs 1/day
Buying costs M
T good days

5-2

Ski-Rental Problem — Strategy Il

Renting costs 1/day

_ _ Buying costs M
Is there a strategy that cannot become arbitrarily bad? T good days

5-3

Ski-Rental Problem — Strategy Il

Renting costs 1/day

_ _ Buying costs M
Is there a strategy that cannot become arbitrarily bad? — Yes! T good days

5-4

Ski-Rental Problem — Strategy Il

Renting costs 1/day
_ _ Buying costs M
Is there a strategy that cannot become arbitrarily bad? — Yes! T good days

Strategy lll: buy on the M-th good day

5-5

Ski-Rental Problem — Strategy Il

Renting costs 1/day

_ _ Buying costs M
Is there a strategy that cannot become arbitrarily bad? — Yes! T good days

Strategy lll: buy on the M-th good day
B Observation: the optimal solution pays min(M, T)

5-6

Ski-Rental Problem — Strategy Il

Renting costs 1/day

_ _ Buying costs M
Is there a strategy that cannot become arbitrarily bad? — Yes! T good days

Strategy lll: buy on the M-th good day
B Observation: the optimal solution pays min(M, T)
B If T < M, the competitive ratio is 1.

H-

Ski-Rental Problem — Strategy Il

Renting costs 1/day

_ _ Buying costs M
Is there a strategy that cannot become arbitrarily bad? — Yes! T good days

Strategy lll: buy on the M-th good day
B Observation: the optimal solution pays min(M, T)

B If T < M, the competitive ratio is 1. Otherwise, it is 2]\1/{4_1 =2 — %

5-

Ski-Rental Problem — Strategy Il

Renting costs 1/day

_ _ Buying costs M
Is there a strategy that cannot become arbitrarily bad? — Yes! T good days

Strategy lll: buy on the M-th good day
B Observation: the optimal solution pays min(M, T)
B If T < M, the competitive ratio is 1. Otherwise, it is 2]\]/{/1_1 = 2 — % Mz o,

H-

Ski-Rental Problem — Strategy Il

Renting costs 1/day
_ _ Buying costs M
Is there a strategy that cannot become arbitrarily bad? — Yes! T good days

Strategy lll: buy on the M-th good day

B Observation: the optimal solution pays min(M, T)

B If T < M, the competitive ratio is 1. Otherwise, it is 2]\]/{/1_1 —o_ 1 Mzw®o

= Strategy lll is deterministic and 2-competitive.

5-

Ski-Rental Problem — Strategy Il

Renting costs 1/day
_ _ Buying costs M
Is there a strategy that cannot become arbitrarily bad? — Yes! T good days

Strategy lll: buy on the M-th good day

B Observation: the optimal solution pays min(M, T)

B If T < M, the competitive ratio is 1. Otherwise, it is 2]\]/{/1_1 —o_ 1 Mzw®o

= Strategy lll is deterministic and 2-competitive.

[Theorem 1. No det. strategy is better than 2-competitive (for M ~+ co; in general: 2 — M).]

10

5-

Ski-Rental Problem — Strategy Il

Renting costs 1/day
_ _ Buying costs M
Is there a strategy that cannot become arbitrarily bad? — Yes! T good days

Strategy lll: buy on the M-th good day

B Observation: the optimal solution pays min(M, T)

B If T < M, the competitive ratio is 1. Otherwise, it is 2]\]/{/1_1 —o_ 1 Mzw®o

= Strategy lll is deterministic and 2-competitive.

[Theorem 1. No det. strategy is better than 2-competitive (for M ~+ co; in general: 2 — M).]

Proof ldea.

11

5-

Ski-Rental Problem — Strategy Il

Renting costs 1/day
Buying costs M

Is there a strategy that cannot become arbitrarily bad? — Yes! T good days

Strategy lll: buy on the M-th good day
B Observation: the optimal solution pays min(M, T)
B If T < M, the competitive ratio is 1. Otherwise, it is 2]\]/{/1_1 —o_ 1 Mzw®o

= Strategy lll is deterministic and 2-competitive.

[Theorem 1. No det. strategy is better than 2-competitive (for M ~+ co; in general: 2 — M).J

Proof ldea.

B Any det. strategy can be formulated as 'buy on the X-th days of rental’ for a fixed X.

5-

Ski-Rental Problem — Strategy Il

Renting costs 1/day
_ _ Buying costs M
Is there a strategy that cannot become arbitrarily bad? — Yes! T good days

Strategy lll: buy on the M-th good day
B Observation: the optimal solution pays min(M, T)
B If T < M, the competitive ratio is 1. Otherwise, it is 2]\]/{/1_1 o1 Mzwo

= Strategy lll is deterministic and 2-competitive.

[Theorem 1. No det. strategy is better than 2-competitive (for M ~+ co; in general: 2 — ﬁ).]

Proof ldea.

13

B Any det. strategy can be formulated as 'buy on the X-th days of rental’ for a fixed X.

B For X = 0and X = o it's arbitrarily bad; assume X € IN™. Observe, w. c.is T = X.

5-

Ski-Rental Problem — Strategy Il

Renting costs 1/day
Buying costs M

Is there a strategy that cannot become arbitrarily bad? — Yes! T good days

Strategy lll: buy on the M-th good day
B Observation: the optimal solution pays min(M, T)
B If T < M, the competitive ratio is 1. Otherwise, it is 2]\]/{/1_1 —o_ 1 Mzw®o

= Strategy lll is deterministic and 2-competitive.

[Theorem 1. No det. strategy is better than 2-competitive (for M ~+ co; in general: 2 — M).J

Proof ldea.

B Any det. strategy can be formulated as 'buy on the X-th days of rental’ for a fixed X.

B For X = 0and X = o it's arbitrarily bad; assume X € IN™. Observe, w. c.is T = X.

R costs for deterministic startegy
COPT

5-

Ski-Rental Problem — Strategy Il

Renting costs 1/day
Buying costs M

Is there a strategy that cannot become arbitrarily bad? — Yes! T good days

Strategy lll: buy on the M-th good day
B Observation: the optimal solution paysmin(M, T)

B If T < M, the competitive ratio is 1. Otherwise, it is VE
= Strategy lll is deterministic and 2-competitive.

[Theorem 1. No det. strategy is better than 2-competitive (for M ~+ co; in general: 2 — M).]

Proof ldea.

B Any det. strategy can be formulated as ‘buy on the X-th days of rental” for a fixed X.

B For X = 0and X = o it's arbitrarily bad; assume X € IN™. Observe, w. c.is T = X.

Cdet X—-14+M
COPT min(X,M)

5-

Ski-Rental Problem — Strategy Il

Renting costs 1/day
Buying costs M

Is there a strategy that cannot become arbitrarily bad? — Yes! T good days

Strategy lll: buy on the M-th good day
B Observation: the optimal solution pays min(M, T)

B If T < M, the competitive ratio is 1. Otherwise, it is VE
= Strategy lll is deterministic and 2-competitive.

[Theorem 1. No det. strategy is better than 2-competitive (for M ~+ co; in general: 2 — M).]

Proof ldea.

B Any det. strategy can be formulated as 'buy on the X-th days of rental’ for a fixed X.

B For X = 0and X = o it's arbitrarily bad; assume X € IN™. Observe, w. c.is T = X.

Cdet — X—14M ~ o0 (X=14X+1 M-14M
COPT min(X,M) — X ' M

5-

Ski-Rental Problem — Strategy Il

Renting costs 1/day
Buying costs M

Is there a strategy that cannot become arbitrarily bad? — Yes! T good days

Strategy lll: buy on the M-th good day
B Observation: the optimal solution pays min(M, T)

B If T < M, the competitive ratio is 1. Otherwise, it is VE
= Strategy lll is deterministic and 2-competitive.

[Theorem 1. No det. strategy is better than 2-competitive (for M ~+ co; in general: 2 — M).]

Proof ldea.

17

B Any det. strategy can be formulated as 'buy on the X-th days of rental’ for a fixed X.

B For X = 0and X = o it's arbitrarily bad; assume X € IN™. Observe, w. c.is T = X.

Cdet . X—14+M - X—1+X+4+1 M-1+M\ _ .: 1Y _~ 1
CopT — min(X.M) > mln(e i) = min (2,2 M) =2—5;

5-

Ski-Rental Problem — Strategy Il

Renting costs 1/day
Buying costs M

Is there a strategy that cannot become arbitrarily bad? — Yes! T good days

Strategy lll: buy on the M-th good day
B Observation: the optimal solution pays min(M, T)

B If T < M, the competitive ratio is 1. Otherwise, it is VE
= Strategy lll is deterministic and 2-competitive.

[Theorem 1. No det. strategy is better than 2-competitive (for M ~+ co; in general: 2 — M).]

Proof ldea.

18

B Any det. strategy can be formulated as 'buy on the X-th days of rental’ for a fixed X.

B For X = 0and X = o it's arbitrarily bad; assume X € IN™. Observe, w. c.is T = X.

Coet . X—14M (X 14X41 M—14MY _ L1\ s 1 Me
COPT min(X,M) Z mln(X , M) — min (2,2 M) — M)

6-1

Ski-Rental Problem — Strategy IV

Renting costs 1/day

_ _ _ _ Buying costs M
Can we get below this bound using randomization? T good days

6-2

Ski-Rental Problem — Strategy IV

Renting costs 1/day

_ _ _ _ ’ Buying costs M
Can we get below this bound using randomization? — Let's try! T good days

o -

Ski-Rental Problem — Strategy IV

Renting costs 1/day
_ _ _ _ , Buying costs M
Can we get below this bound using randomization? — Let's try! T good days

Strategy IV: throw a coin; HEAD: buy on the M-th good day
TAIL: buy on the «M-th good day (&« € (0,1))

o -

Ski-Rental Problem — Strategy IV

Renting costs 1/day
_ _ _ _ , Buying costs M
Can we get below this bound using randomization? — Let's try! T good days

Strategy IV: throw a coin; HEAD: buy on the M-th good day
TAIL: buy on the «M-th good day (&« € (0,1))

B Observation: worst case canonlybe T= M or T = aM

o -

Ski-Rental Problem — Strategy IV

Renting costs 1/day

_ _ _ _ ’ Buying costs M
Can we get below this bound using randomization? — Let's try! T good days

Strategy IV: throw a coin; HEAD: buy on the M-th good day
TAIL: buy on the «M-th good day (&« € (0,1))

B Observation: worst case canonlybe T= M or T = aM

_] E[CStrategyIV] - %'(ZM_]-)—'_%'((]-—'_“)M_]-) 3+« 1 Moo 34y
B Case T = M: CorT = i = =& _ - = =&

o -

Ski-Rental Problem — Strategy IV

Renting costs 1/day

_ _ _ _ ’ Buying costs M
Can we get below this bound using randomization? — Let's try! T good days

Strategy IV: throw a coin; HEAD: buy on the M-th good day
TAIL: buy on the «M-th good day (&« € (0,1))

B Observation: worst case canonlybe T= M or T = aM

_] E[CStrategyIV] - %'(ZM_]-)—'_%'((]-—'_“)M_]-) 3+« 1 Moo 34y
B Case T = M: CorT = i = =& _ - = =&

_ g Elcstategyivl _ 5-aM+3-((1+a)M-1) _ 1 1 M- 1
B Case T = aM: cort XM =ltn—am = 1+

6-7

Ski-Rental Problem — Strategy IV

Renting costs 1/day

_ _ _ _ ’ Buying costs M
Can we get below this bound using randomization? — Let's try! T good days

Strategy IV: throw a coin; HEAD: buy on the M-th good day
TAIL: buy on the «M-th good day (&« € (0,1))

B Observation: worst case can only be T = M or T = aM try & = 3
_] E[CStrategyIV] - %'(ZM_]-)—'_%'((]-—'_“)M_]-) 3+« 1 Moo 34y
B Case T = M: CorT = i = =& _ - = =&

_ g Elcstategyivl _ 5-aM+3-((1+a)M-1) _ 1 1 M- 1
B Case T = aM: cort XM =ltn—am = 1+

6-8

Ski-Rental Problem — Strategy IV

Renting costs 1/day

_ _ _ _ ’ Buying costs M
Can we get below this bound using randomization? — Let's try! T good days

Strategy IV: throw a coin; HEAD: buy on the M-th good day
TAIL: buy on the «M-th good day (&« € (0,1))

B Observation: worst case can only be T = M or T = aM try & = 3
— . E[CStrategyIV] _ %(2M—1)‘|‘%((1—|—0€)M—1) 34 1] Mwo 344 7
W Case I'=M: —oor = M =2 —M = 7 —1<?

_ g Elcstategyivl _ 5-aM+3-((1+a)M-1) _ 1 1 M- 1
B Case T = aM: cort XM =ltn—am = 1+

6-9

Ski-Rental Problem — Strategy IV

Renting costs 1/day

_ _ _ _ ’ Buying costs M
Can we get below this bound using randomization? — Let's try! T good days

Strategy IV: throw a coin; HEAD: buy on the M-th good day
TAIL: buy on the «M-th good day (&« € (0,1))

B Observation: worst case can only be T = M or T = aM try & = 3
— . E[CStrategyIV] _ %(2M—1)‘|‘%((1—|—0€)M—1) 34 1] Mwo 344 7
W Case I'=M: —oor = M =2 —M = 7 —1<?

_ . E[CStrategyIV] __ 7 . _ 1 1 -~ 1
B Case T = aM: - — M _1‘|'2__2(xM — 1+2—“—2

6-10

Ski-Rental Problem — Strategy IV

Renting costs 1/day
_ _ _ _ , Buying costs M
Can we get below this bound using randomization? — Let's try! T good days

Strategy IV: throw a coin; HEAD: buy on the M-th good day
TAIL: buy on the «M-th good day (&« € (0,1))

B Observation: worst case can only be T =M or T = aM try & = 3
_ ; E[CStrategyIV] _ %'(2M_1)+%'((1—|—“)M_1) _ 3+« 1] Mwoo 344 7

B Case T = M: CoPT — M — 5 T M T_Z<2
_ : E[CStrategyIV] _ %'“M+%'((1+“)M_1) _ 1 1] Mmoo 1

B Case T = aM: CoPT = M —1—|—ﬂ—m = 1"‘5—2

not better than the deterministic Strategy Il

o -

Ski-Rental Problem — Strategy IV

Renting costs 1/day

_ _ _ _ ’ Buying costs M
Can we get below this bound using randomization? — Let's try! T good days

Strategy IV: throw a coin; HEAD: buy on the M-th good day
TAIL: buy on the «M-th good day (&« € (0,1))

B Observation: worst case canonlybe T= M or T = aM

_ ; E[CStrategyIV] %'(ZM_]-)—'_%'((]-—'_“)M_]-) 34w] Moo 34y
B Case T = M: CorT — i =33k _ & T=" =78
_ : E[CStrategyIV] %'“M—F%'((l—‘r“)M—l) 1 1 Moo 1

B The w. c. ratio is minimum if 33% =1+ 4

o -

Ski-Rental Problem — Strategy IV

Renting costs 1/day

_ _ _ _ ’ Buying costs M
Can we get below this bound using randomization? — Let's try! T good days

Strategy IV: throw a coin; HEAD: buy on the M-th good day
TAIL: buy on the «M-th good day (&« € (0,1))

B Observation: worst case canonlybe T= M or T = aM

_ ; E[CStrategyIV] %'(2M—1)+%'((1+“)M_1) 34w] Moo 34y
B Case T = M: CorT — i =33k _ & T=" =78
_ : E[CStrategyIV] %'“M—l—%'((l—‘r“)M—l) 1 1 Moo 1

M‘é

B Thew. c. ratio is minimum if % =1+ % = K =

o -

Ski-Rental Problem — Strategy IV

Renting costs 1/day
_ _ _ _ ’ Buying costs M
Can we get below this bound using randomization? — Let's try! T good days

Strategy IV: throw a coin; HEAD: buy on the M-th good day
TAIL: buy on the «M-th good day (&« € (0,1))

B Observation: worst case canonlybe T= M or T = aM

_ ; E[CStrategyIV] %'(2M—1)+%'((1+“)M_1) 34w] Moo 34y
B Case T = M: CorT — i =33k _ & T=" =78
_ : E[CStrategyIV] %'“M—l—%'((l—‘r“)M—l) 1 1 Moo 1

Vv5—1
2

B Thew. c. ratio is minimum if % =1+ % = K =

= Strategy IV (with & = @ ~ 0.62) is 1.81-competitive, randomized, and better
than any deterministic strategy.

13

o -

Ski-Rental Problem — Strategy IV

Renting costs 1/day
_ _ _ _ ’ Buying costs M
Can we get below this bound using randomization? — Let's try! T good days

Strategy IV: throw a coin; HEAD: buy on the M-th good day
TAIL: buy on the «M-th good day (&« € (0,1))

B Observation: worst case canonlybe T= M or T = aM

1 1
[Case T — M: E[CStrategyIV] L §'(2M—1)—|—§°((1—|—(X)M—1) 34« o 1 Moo 34y

COPT o M 2 M 2
_ . E[CStrategyIV] _ %“M+%((1+OC)M—1) L 1 1 M:oo 1
B Case T = aM: o = T =1+ — 5 = 145

Mﬁ

B Thew. c. ratio is minimum if % =1+ % = K =

= Strategy IV (with & = \F ~ 0.62) is 1.81-competitive, randomized, and better
than any deterministic strategy.

B With a more sophisticated probability distribution for the time we buy skis, we can
even get a competitive ratio of .= =~ 1.58.

14

Online vs. Offline Algorithms

Online vs. Offline Algorithms

Online Algorithm

Online vs. Offline Algorithms

Online Algorithm

B No full information available initally
(online problem)

Online vs. Offline Algorithms

Online Algorithm

B No full information available initally
(online problem)

B Decisions are made with
incomplete information.

Online vs. Offline Algorithms

Online Algorithm

B No full information available initally
(online problem)

B Decisions are made with
incomplete information.

B The algorithm may get more informations over time or by exploring the instance.

Online vs. Offline Algorithms

Online Algorithm Offline Algorithm

B No full information available initally
(online problem)

B Decisions are made with
incomplete information.

B The algorithm may get more informations over time or by exploring the instance.

Online vs. Offline Algorithms

Online Algorithm Offline Algorithm
B No full information available initally B Full information available initally
(online problem) (offline problem)

B Decisions are made with
incomplete information.

B The algorithm may get more informations over time or by exploring the instance.

Online vs. Offline Algorithms

Online Algorithm Offline Algorithm

B No full information available initally B Full information available initally
(online problem) (offline problem)

B Decisions are made with B Decisions are made with
incomplete information. complete information.

B The algorithm may get more informations over time or by exploring the instance.

Online vs. Offline Algorithms

Online Algorithm Offline Algorithm

B No full information available initally B Full information available initally
(online problem) (offline problem)

B Decisions are made with B Decisions are made with
incomplete information. complete information.

B The algorithm may get more informations over time or by exploring the instance.

B The objective value of the returned solution divided by the objective value of an
optimal [offline] solution is the competitive ratio.

Online vs. Offline Algorithms

Online Algorithm Offline Algorithm

B No full information available initally B Full information available initally
(online problem) (offline problem)

B Decisions are made with B Decisions are made with
incomplete information. complete information.

B The algorithm may get more informations over time or by exploring the instance.

B The objective value of the returned solution divided by the objective value of an
optimal [offline] solution is the competitive ratio.

Online vs. Offline Algorithms

Online Algorithm Offline Algorithm

B No full information available initally B Full information available initally
(online problem) (offline problem)

B Decisions are made with B Decisions are made with
incomplete information. complete information.

B The algorithm may get more informations over time or by exploring the instance.

in the w. c. (determ. algo.)

B The objective value of the returned solution divided by the objective value of an
optimal [offline] solution is the competitive ratio.

Online vs. Offline Algorithms

Online Algorithm Offline Algorithm

B No full information available initally B Full information available initally
(online problem) (offline problem)

B Decisions are made with B Decisions are made with
incomplete information. complete information.

B The algorithm may get more informations over time or by exploring the instance.

: in th t avg. c. dom. algo.
in the w. c. (determ. algo.) 11 (02 veeiE 2. €. e 21,)

B The objective value of the returned solution divided by the objective value of an
optimal [offline] solution is the competitive ratio.

Online vs. Offline Algorithms

Online Algorithm

No full information available initally
(online problem)

Decisions are made with
incomplete information.

Offline Algorithm

B Full information available initally
(offline problem)

B Decisions are made with
complete information.

The algorithm may get more informations over time or by exploring the instance.

in the w. c. (determ. algo.)

in the worst avg. c. (random. algo.)

The objective value of the returned solution divided by the objective value of an
optimal [offline] solution is the competitive ratio.

Examples (problems & algos.):

Online vs. Offline Algorithms

Online Algorithm

No full information available initally
(online problem)

Decisions are made with
incomplete information.

Offline Algorithm

B Full information available initally
(offline problem)

B Decisions are made with
complete information.

The algorithm may get more informations over time or by exploring the instance.

in the w. c. (determ. algo.)

in the worst avg. c. (random. algo.)

The objective value of the returned solution divided by the objective value of an
optimal [offline] solution is the competitive ratio.

Examples (problems & algos.):

Ski-Rental Problem, searching in unkown environments, Cow-Path Problem,
Job Shop Scheduling, Paging (replacing entries in a memory), Insertion Sort

Online vs. Offline Algorithms

Online Algorithm

No full information available initally
(online problem)

Decisions are made with
incomplete information.

Offline Algorithm

B Full information available initally
(offline problem)

B Decisions are made with
complete information.

The algorithm may get more informations over time or by exploring the instance.

in the w. c. (determ. algo.)

in the worst avg. c. (random. algo.)

The objective value of the returned solution divided by the objective value of an
optimal [offline] solution is the competitive ratio.

Examples (problems & algos.):

Ski-Rental Problem, searching in unkown environments, Cow-Path Problem,
Job Shop Scheduling; Paging (replacing entries in a memory), Insertion Sort

Paging — definition

Given (offline/online):

Paging — definition 175

P8\

Given (offline/online):

B Fast access memory (a cache) with a capacity of k pages

Paging — definition

Given (offline/online):

B Fast access memory (a cache) with a capacity of k pages

B Slow access memory with unlimited capacity

p2

Paging — definition T EE

-
page request

P2|P3|P4|P6|P7|P9

Given (offline/online):
B Fast access memory (a cache) with a capacity of k pages
B Slow access memory with unlimited capacity

B If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

Paging — definition T EE

P2|P3|P4|P6|P7|P9 é page fault
Given (offline/online):
B Fast access memory (a cache) with a capacity of k pages

B Slow access memory with unlimited capacity

B If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

k o
Paging — definition Tipss <

-
swap page request

pP2(P3) pa| Pe| P7|P9

Given (offline/online):
B Fast access memory (a cache) with a capacity of k pages
B Slow access memory with unlimited capacity

B If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

k o
Paging — definition Tapss <

-
swap page request

p2(P1) Pa| Pe| P7|P9

Given (offline/online):
B Fast access memory (a cache) with a capacity of k pages
B Slow access memory with unlimited capacity

B If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

Paging — definition P3 R
fulfilled page requests page request

p2|P1|P4|P6|P7|P9

Given (offline/online):
B Fast access memory (a cache) with a capacity of k pages
B Slow access memory with unlimited capacity

B If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

Paging — definition p3 alpelpa Pt P8 P30
fulfilled page requests page request

pP2|P1|P4|P6|P7|P9

Given (offline/online):
B Fast access memory (a cache) with a capacity of k pages
B Slow access memory with unlimited capacity

B If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

B Sequence o of page requests having to be fulfilled in order. / We have to fulfill a
request before we see the next request.

k -

Paging — definition P3 ' Vs Psx <A P8 P3O
fulfilled page requests . swap page request

p2|P1{pa) Ps|P7| P9

Given (offline/online):
B Fast access memory (a cache) with a capacity of k pages
B Slow access memory with unlimited capacity

B If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

B Sequence o of page requests having to be fulfilled in order. / We have to fulfill a
request before we see the next request.

10

k -

Paging — definition P3 ' Vs Psx <A P8 P3O
fulfilled page requests . swap page request

P2|P1{P3} Ps|P7| P9

Given (offline/online):
B Fast access memory (a cache) with a capacity of k pages
B Slow access memory with unlimited capacity

B If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

B Sequence o of page requests having to be fulfilled in order. / We have to fulfill a
request before we see the next request.

11

Paging — definition P3 pa alpelsl P8 P30

. -
fulfilled page requests page request

pP2|P1|P3|Pe6|P7|P9

Given (offline/online):
B Fast access memory (a cache) with a capacity of k pages
B Slow access memory with unlimited capacity

B If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

B Sequence o of page requests having to be fulfilled in order. / We have to fulfill a
request before we see the next request.

- 12

Paging — definition P3 pa ps PATATIL —0

. -
fulfilled page requests page request

pP2|P1|P3|Pe6|P7|P9

Given (offline/online):
B Fast access memory (a cache) with a capacity of k pages
B Slow access memory with unlimited capacity

B If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

B Sequence o of page requests having to be fulfilled in order. / We have to fulfill a
request before we see the next request.

- 13

k -

Paging — definition P3 pa ps Gipsips < —0
fulfilled page requests . swap page request

P2|P1{P3} Ps|P7| P9

Given (offline/online):
B Fast access memory (a cache) with a capacity of k pages
B Slow access memory with unlimited capacity

B If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

B Sequence o of page requests having to be fulfilled in order. / We have to fulfill a
request before we see the next request.

14

k -

Paging — definition P3 pa ps Gipsirs < —0
fulfilled page requests . swap page request

P2|P1{pa) Ps|P7| P9

Given (offline/online):
B Fast access memory (a cache) with a capacity of k pages
B Slow access memory with unlimited capacity

B If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

B Sequence o of page requests having to be fulfilled in order. / We have to fulfill a
request before we see the next request.

15

Paging — definition P34 P8 p3 EEE
fulfilled page requests page request

pP2|P1|P4|P6|P7|P9

Given (offline/online):
B Fast access memory (a cache) with a capacity of k pages
B Slow access memory with unlimited capacity

B If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

B Sequence o of page requests having to be fulfilled in order. / We have to fulfill a
request before we see the next request.

- 16

Paging — definition P34 P8 p3 EEE
fulfilled page requests page request

pP2|P1|P4|P6|P7|P9

Given (offline/online):
B Fast access memory (a cache) with a capacity of k pages
B Slow access memory with unlimited capacity

B If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

B Sequence o of page requests having to be fulfilled in order. / We have to fulfill a
request before we see the next request.

Objective value:

- 17

Paging — definition P34 P8 p3 EEE
fulfilled page requests page request

pP2|P1|P4|P6|P7|P9

Given (offline/online):
B Fast access memory (a cache) with a capacity of k pages
B Slow access memory with unlimited capacity

B If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

B Sequence o of page requests having to be fulfilled in order. / We have to fulfill a
request before we see the next request.

Objective value:

B Minimize the number of page faults while fulfilling c.

- 18

Paging — det. strat.

B On a page fault, a Paging algorithm chooses which page to evict from the cache.

Paging — det. strat. papsps ps ps AT DL 0

. -
fulfilled page requests page request

p1|P2|P3|P6|P7|P9

B On a page fault, a Paging algorithm chooses which page to evict from the cache.

Paging — det. strat. paps ps ps pa
fulfilled page reque

P1

p2

pP7

P9

B On a page fault, a Paging algorithm chooses which page to evict from the cache.

Paging — det. strat. papsps ps pa AT DL 0

. -
fulfilled page requests page request

P1|P2|P3|Pe6|P7|P9

B On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has ...

Paging — det. strat. paps ps ps pa
fulfilled page requests

-

P3 — 0

P1

p2

pP7

P9

page request

B On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has ...

B Least Frequently Used (LFU): ... the lowest number of accesses since it was loaded.

Paging — det. strat. paps ps ps pa
fulfilled page requests

k

pa(ps) ps

swap

-

P3 — 0

P1

p2(P3) Pe

pP7

P9

page request

B On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has

B Least Frequently Used (LFU): ... the lowest number of accesses since it was loaded.

Paging — det. strat. papsps ps ps AT DL 0

. -
fulfilled page requests page request

P1|P2|P3|Pe6|P7|P9

B On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has ...

B Least Frequently Used (LFU): ... the lowest number of accesses since it was loaded.

B Least Recently Used (LRU): ... been accessed least recently.

P3 — 0
page request

Paging — det. strat. paps ps ps pa
fulfilled page requests

P1

B On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has ...

B Least Frequently Used (LFU): ... the lowest number of accesses since it was loaded.

B Least Recently Used (LRU): ... been accessed least recently.

Paging — det. strat. papsps ps ps AT DL 0

. -
fulfilled page requests page request

P1|P2|P3|Pe6|P7|P9

B On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has ...

_east Frequently Used (LFU): ...the lowest number of accesses since it was loaded.

_east Recently Used (LRU): ... been accessed least recently.

First-in-first-out (FIFO): ... been in cache the longest.

Paging — det. strat. paps ps ps pa

fulfilled page requests

k

(P4) Ps| P8

swap

-

P3 — 0

P1

p2(P3) Pe

pP7

P9

page request

B On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has ...

_east Frequently Used (LFU): ...the lowest number of accesses since it was loaded.

_east Recently Used (LRU): ... been accessed least recently.

First-in-first-out (FIFO): ... been in cache the longest.

- 10

Paging — det. strat. papsps ps pa AT DL 0

. -
fulfilled page requests page request

P1|P2|P3|Pe6|P7|P9

B On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has ...

_east Frequently Used (LFU): ...the lowest number of accesses since it was loaded.

_east Recently Used (LRU): ... been accessed least recently.

First-in-first-out (FIFO): ... been in cache the longest.

Which of them is—theoretically provable—the best strategy?

- 11

Paging — det. strat. papsps ps pa AT DL 0

fulfilled page requests page request

P1|P2|P3|Pe6|P7|P9

B On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has ...

B Least Frequently Used (LFU): ... the lowest number of accesses since it was loaded.

B Least Recently Used (LRU): ... been accessed least recently.

B First-in-first-out (FIFO): ... been in cache the longest.

Which of them is—theoretically provable—the best strategy?

[Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.]

- 12

Paging — det. strategies analysis

(Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.)

10 -

Paging — det. strategies analysis

(Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.)
Proof. (only for LRU, FIFO similar)

10 -

10 -

Paging — det. strategies analysis

(Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.)

Proof. (only for LRU, FIFO similar) MIN: optimal strategy

0: sequence of pages

10 -

Paging — det. strategies analysis

(Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.]

Proof. (only for LRU, FIFO similar) MIN: optimal strategy

m Initially, the cache contains the same pages for all strategies. | 0: sequence of pages

10 -

Paging — det. strategies analysis

(Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.)

Proof. (only for LRU, FIFO similar) MIN: optimal strategy

m Initially, the cache contains the same pages for all strategies. | 0: sequence of pages

B We partition ¢ into phases Py, P, ..., s.t. LRU has at most k faults in Py
and exactly k faults in each other phase.

10 -

Paging — det. strategies analysis

(Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.)

Proof. (only for LRU, FIFO similar) MIN: optimal strategy

m Initially, the cache contains the same pages for all strategies. | 0: sequence of pages

B We partition ¢ into phases Py, P, ..., s.t. LRU has at most k faults in Py
and exactly k faults in each other phase.

B We show next: MIN has at least 1 fault in each phase.

10 -

Paging — det. strategies analysis

(Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.)

Proof. (only for LRU, FIFO similar) MIN: optimal strategy

m Initially, the cache contains the same pages for all strategies. | 0: sequence of pages

B We partition ¢ into phases Py, P, ..., s.t. LRU has at most k faults in Py
and exactly k faults in each other phase.

B We show next: MIN has at least 1 fault in each phase.
B Clearly, MIN also faults in Py; consider P; (i > 1) and let p be the last page of P;_;.

10 -

Paging — det. strategies analysis

[Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.)

Proof. (only for LRU, FIFO similar) MIN: optimal strategy

m Initially, the cache contains the same pages for all strategies. | 0: sequence of pages

B We partition ¢ into phases Py, P, ..., s.t. LRU has at most k faults in Py
and exactly k faults in each other phase.

B We show next: MIN has at least 1 fault in each phase.
B Clearly, MIN also faults in Py; consider P; (i > 1) and let p be the last page of P;_;.

B Show: P; contains k distinct page requests different from p (implies a fault for MIN).

10 -

Paging — det. strategies analysis

[Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.)

Proof. (only for LRU, FIFO similar) MIN: optimal strategy

m Initially, the cache contains the same pages for all strategies. | 0: sequence of pages

B We partition ¢ into phases Py, P, ..., s.t. LRU has at most k faults in Py
and exactly k faults in each other phase.

B We show next: MIN has at least 1 fault in each phase.
B Clearly, MIN also faults in Py; consider P; (i > 1) and let p be the last page of P;_;.

B Show: P; contains k distinct page requests different from p (implies a fault for MIN).
B If the k page faults of LRU in P; are on distinct pages (different from p), we're done.

10 - 10

Paging — det. strategies analysis

[Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.]

Proof. (only for LRU, FIFO similar) MIN: optimal strategy
B Initially, the cache contains the same pages for all strategies. | 0: sequence of pages

B We partition ¢ into phases Py, P, ..., s.t. LRU has at most k faults in Py
and exactly k faults in each other phase.

We show next: MIN has at least 1 fault in each phase.

Clearly, MIN also faults in Pp; consider P; (i > 1) and let p be the last page of P;_1.

Show: P; contains k distinct page requests different from p (implies a fault for MIN).
If the k page faults of LRU in P; are on distinct pages (different from p), we're done.

Assume LRU has in P; two page faults on one page g. In between, g has to be evicted
from the cache. According to LRU, there were k distinct page requests in between.

10-11

Paging — det. strategies analysis

[Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.]

Proof. (only for LRU, FIFO similar) MIN: optimal strategy

m Initially, the cache contains the same pages for all strategies. | 0: sequence of pages

B We partition ¢ into phases Py, P, ..., s.t. LRU has at most k faults in Py
and exactly k faults in each other phase.

We show next: MIN has at least 1 fault in each phase.

Clearly, MIN also faults in Pp; consider P; (i > 1) and let p be the last page of P;_1.

Show: P; contains k distinct page requests different from p (implies a fault for MIN).
If the k page faults of LRU in P; are on distinct pages (different from p), we're done.

Assume LRU has in P; two page faults on one page g. In between, g has to be evicted
from the cache. According to LRU, there were k distinct page requests in between.

Similarly, if LRU faults on p in P;, there were k distinct page requests in between.

10 - 12

Paging — det. strategies analysis

(Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.)
Proof. (only for LRU, FIFO similar)

B Remains to prove: No deterministic strategy is better than k-competitive.

10 - 13

Paging — det. strategies analysis

(Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.)
Proof. (only for LRU, FIFO similar)

B Remains to prove: No deterministic strategy is better than k-competitive.

M Let there be k+ 1 pages in the memory system.

10 - 14

Paging — det. strategies analysis

[Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.)
Proof. (only for LRU, FIFO similar)

B Remains to prove: No deterministic strategy is better than k-competitive.

M Let there be k+ 1 pages in the memory system.

B For any deterministic strategy there's a worst-case page sequence o*
always requesting the page that is currently not in the cache.

10 - 15

Paging — det. strategies analysis

[Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.)
Proof. (only for LRU, FIFO similar)

B Remains to prove: No deterministic strategy is better than k-competitive.

M Let there be k+ 1 pages in the memory system.

B For any deterministic strategy there's a worst-case page sequence o*
always requesting the page that is currently not in the cache.

B Let MIN have a page fault on the i-th page of o*.

10 - 16

Paging — det. strategies analysis

(Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.]
Proof. (only for LRU, FIFO similar)

B Remains to prove: No deterministic strategy is better than k-competitive.

M Let there be k+ 1 pages in the memory system.

B For any deterministic strategy there's a worst-case page sequence o*
always requesting the page that is currently not in the cache.

B Let MIN have a page fault on the i-th page of o*.

B Then the next k — 1 requested pages are in the cache already & the next fault occurs
on the (i 4 k)-th page of o* the earliest. Until then, the det. strategy has k faults.

10 - 17

Paging — det. strategies analysis

(Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.]
Proof. (only for LRU, FIFO similar)

B Remains to prove: No deterministic strategy is better than k-competitive.

M Let there be k+ 1 pages in the memory system.

B For any deterministic strategy there's a worst-case page sequence o*
always requesting the page that is currently not in the cache.

B Let MIN have a page fault on the i-th page of o*.

B Then the next k — 1 requested pages are in the cache already & the next fault occurs
on the (i 4 k)-th page of o* the earliest. Until then, the det. strategy has k faults.

= The competitive ratio cannot be better than

10 - 18

Paging — det. strategies analysis

(Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.]
Proof. (only for LRU, FIFO similar)

B Remains to prove: No deterministic strategy is better than k-competitive.

M Let there be k+ 1 pages in the memory system.

B For any deterministic strategy there's a worst-case page sequence o*
always requesting the page that is currently not in the cache.

B Let MIN have a page fault on the i-th page of o*.

B Then the next k — 1 requested pages are in the cache already & the next fault occurs
on the (i 4 k)-th page of o* the earliest. Until then, the det. strategy has k faults.

= The competitive ratio cannot be better than

Paging — rand. strat.

Randomized strategy: MARKING

11 -

Paging — rand. strat.

Randomized strategy: MARKING

B Proceeds in phases

11 -

Paging — rand. strat.

Randomized strategy: MARKING
B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

11 -

Paging — rand. strat.

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.
B When a page Is requested, it gets marked.

11 -

Paging — rand. strat.

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.
B When a page Is requested, it gets marked.

B A page for eviction is chosen uniformly at random from the unmarked pages.

11 -

Paging — rand. strat.

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

11 -

k 11 -
Paging — rand. strat. D17 73]

Randomized strategy: MARKING Phase P;
B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

k 11 -
Paging — rand. strat. o A

-
page request

Randomized strategy: MARKING Phase P;
B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging — rand. strat.

k

choose uwﬂ -

11 -

P5

P4

Ps

Pé

pP7

P8

P9

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

page request

Phase P4

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

k

Paging — rand. strat. Bon

swap

-

11-10

P5

pa{ps) Pe

pP7

P8

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

page request

Phase P4

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

k 11-11
Paging — rand. strat. s A

-
page request

Randomized strategy: MARKING Phase P;
B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

k 11-12

Pagmg — rand. strat. mark requested page [P1[Ps]ps] < P2
_/7 page request

Pa|P2|Pe6|P7|P8|P9
Randomized strategy: MARKING Phase P;

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

k 11 - 13
Paging — rand. strat. PEr L

-
page request

Randomized strategy: MARKING Phase P;
B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

Pagmg — rand. strat. mark requested page P1P573] -

k

11- 14

pP3

P4

p2

Pé

pP7

P8

P9

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

page request

Phase P4

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

k 11 - 15
Paging — rand. strat. PE A

-
page request

Randomized strategy: MARKING Phase P;
B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

k 11- 16

Pagmg — rand. strat. is already marked ,Pl Vs ?’3\ <5
~ 7 page request
Pa|P2|Pe6|P7|P8| P9
Randomized strategy: MARKING Phase P,

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

k 11-17
Paging — rand. strat. BoaPs <P

-
page request

Randomized strategy: MARKING Phase P;
B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging — rand. strat.

choose u.a.r. |P1

-

11-18

p2

P4

p2

Pé

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

page request

Phase P4

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

k

Ve

Paging — rand. strat. RLE

swap

-

11-19

p2

pa(p2) pe

pP7

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

page request

Phase P4

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

k 11 - 20
Paging — rand. strat. ToaPs <P

-
page request

Randomized strategy: MARKING Phase P;
B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

Pagmg — rand. strat. mark requested page 2

-

11-21

p2

P4

P1

Pé

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

page request

Phase P4

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

k 11 - 22
Paging — rand. strat. TP o3

-
page request

Randomized strategy: MARKING Phase P;
B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging — rand. strat. . .4 ' ‘

k

11-23

pP3

P4

P1

Pé

pP7

P8

P9

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

page request

Phase P4

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

k 11 - 24
Paging — rand. strat. e A

-
page request

Randomized strategy: MARKING Phase P;
B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging — rand. strat.

k

unmark all |P2|P5[P3| <=

11-25

Pé

P4

P1

Pé

pP7

P8

P9

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

page request

Phase P4

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging — rand. strat.

k

unmark all |P2|P5[P3| <=

11-26

Pé

P4

P1

Pé

pP7

P8

P9

Randomized strategy: MARKING

B Proceeds in phases

start new phase

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

page request

Phase P>
_/

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging — rand. strat.

k

choose uwﬂ -

11 - 27

Pé

P4

P1

Pé

pP7

P8

P9

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

page request

Phase P>

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

k

11 - 28

Paging — rand. strat. sl <
swap page request
pa|p1{Pe) P7|Ps| P9

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.
B When a page Is requested, it gets marked.

Phase P>

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

k 11 - 29
Paging — rand. strat. FArEr A

-
page request

Randomized strategy: MARKING Phase P,
B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

Pagmg — rand. strat. mark requested page iz

-

11-30

Pé

P4

P1

p2

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

page request

Phase P>

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

k 11 - 31
Paging — rand. strat. AR A,

-
page request

Randomized strategy: MARKING Phase P,
B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging — rand. strat.

k

choose uwﬂ <

11 - 32

P9

P4

P1

p2

pP7

P8

P9

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

page request

Phase P>

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging — rand. strat.

k

choose uwﬂ <

11- 33

P9

P4

P1

p2

pP7

P8

P9

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

page request

Phase P>

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

[Theorem 3. MARKING is 2H-competitive. |

Paging — rand. strat.

k

choose uwﬂ <

11 - 34

P9

P4

P1

p2

pP7

P8

P9

Randomized strategy: MARKING

B Proceeds in phases

B At the beginning of each phase, all pages are unmarked.

B When a page Is requested, it gets marked.

page request

Phase P>

B A page for eviction is chosen uniformly at random from the unmarked pages.

B If all pages are marked and a page fault occurs, unmark all and start new phase.

[Theorem 3. MARKING is 2H-competitive. |

Remark.

Hi=1+3+%+...+ 7 is the k-th harmonic number and for k > 2: Hy < In(k) + 1.

Paging — rand. strategy analysis

(Theorem 3. MARKING is 2Hk—competitive.J
Proof.

12 -

Paging — rand. strategy analysis

(Theorem 3. MARKING is 2Hk—competitive.J
Proof.

12 -

We consider
phase P;.

Paging — rand. strategy analysis

(Theorem 3. MARKING is 2Hk—competitive.J

Proof.
B A page is stale if it is unmarked, but was marked in P;_1.

12 -

We consider
phase P;.

12 -

Paging — rand. strategy analysis

(Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B A page is stale if it is unmarked, but was marked in P;_1. phase P;.

B A page is clean if it is unmarked, but not stale.

12 -

Paging — rand. strategy analysis

[Theorem 3. MARKING is 2H-competitive.|

Proof. We consider
B A page is stale if it is unmarked, but was marked in P;_1. phase P;.

B A page is clean if it is unmarked, but not stale.
B SpaArk (Smin): set of pages in the cache of MARKING (MIN)

Paging — rand. strategy analysis

(Theorem 3. MARKING is 2Hk—competitive.J

Proof.
B A page is stale if it is unmarked, but was marked in P;_1.

B A page is clean if it is unmarked, but not stale.
B SpaArk (Smin): set of pages in the cache of MARKING (MIN)

] dbegin: ’SM||\| — SMARK‘ at the beginning of P

12 -

We consider
phase P;.

Paging — rand. strategy analysis

(Theorem 3. MARKING is 2Hk—competitive.J

Proof.
B A page is stale if it is unmarked, but was marked in P;_1.

B A page is clean if it is unmarked, but not stale.
B SpaArk (Smin): set of pages in the cache of MARKING (MIN)

] dbegin: ’SM||\| — SMARK‘ at the beginning of P

B d.g: ‘SM||\| — SMARK‘ at the end of P;

12 -

We consider
phase P;.

Paging — rand. strategy analysis

(Theorem 3. MARKING is 2Hk—competitive.J

Proof.

A page is stale if it is unmarked, but was marked in P;_1.

A page is clean if it is unmarked, but not stale.

SMARK (Smin): set of pages in the cache of MARKING (MIN)
Abegin: |SMIN — SMARK | at the beginning of P,

dend: |ISMIN — SMARK| at the end of P,

c: number of clean pages requested in P;

12 -

We consider
phase P;.

Paging — rand. strategy analysis

(Theorem 3. MARKING is 2Hk—competitive.J

Proof.

A page is stale if it is unmarked, but was marked in P;_1.

A page is clean if it is unmarked, but not stale.
SMARK (Smin): set of pages in the cache of MARKING (MIN)

dbegin: ’SM||\| — SMARK‘ at the beginning of P;
Aand: ‘SM||\| — SMARK‘ at the end of P;

c: number of clean pages requested in P;

MIN has > max(c — dpegin: dend) faults.

12 -

We consider
phase P;.

12-10

Paging — rand. strategy analysis

(Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B A page is stale if it is unmarked, but was marked in P;_1. phase P;.

A page is clean if it is unmarked, but not stale.
SMARK (Smin): set of pages in the cache of MARKING (MIN)

dbegin: ’SM||\| — SMARK‘ at the beginning of P;
Aand: ‘SM||\| — SMARK‘ at the end of P;

c: number of clean pages requested in P;

MIN has > max(c — dbeginv dend) > %(C — dbegin + dend) faults.

12-11

Paging — rand. strategy analysis

(Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B A page is stale if it is unmarked, but was marked in P;_1. phase P;.

A page is clean if it is unmarked, but not stale.
SMARK (Smin): set of pages in the cache of MARKING (MIN)

dbegin: ’SM||\| — SMARK‘ at the beginning of P;
Aand: ‘SM||\| — SMARK‘ at the end of P;

c: number of clean pages requested in P;

Apegin
MIN has > max(c — dbeginv dend) > %(C — dbegin _|_dend) = % — b2g | de2“d faults.

12 - 12

Paging — rand. strategy analysis

(Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B A page is stale if it is unmarked, but was marked in P;_1. phase P;.

A page is clean if it is unmarked, but not stale.
SMARK (Smin): set of pages in the cache of MARKING (MIN)

dbegin: ’SM||\| — SMARK‘ at the beginning of P;
Aand: ‘SM||\| — SMARK‘ at the end of P;

c: number of clean pages requested in P;

Apegin
MIN has > max(c — dbeginv dend) > %(C — dbegin _|_dend) = % — b2g | de2“d faults.

d in - d in
Over all phases, all =2&" 3nd end ancel out. except the first 228" and the last Gend
P) D P > >

12-13

Paging — rand. strategy analysis

(Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B A page is stale if it is unmarked, but was marked in P;_1. phase P;.

A page is clean if it is unmarked, but not stale.
SMARK (Smin): set of pages in the cache of MARKING (MIN)

dbegin: ’SM||\| — SMARK‘ at the beginning of P;
Aand: ‘SM||\| — SMARK‘ at the end of P;

c: number of clean pages requested in P;

Apegin
MIN has > max(c — dbeginv dend) > %(C — dbegin _|_dend) = % — b2g | de2“d faults.

d in - d in
Over all phases, all =" and deT”d cancel out, except the first £ and the last deT“d

B Since the first dpegin = 0, MIN has at least 5 faults per phase.

12 - 14

Paging — rand. strategy analysis

[Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B For the clean pages, MARKING has ¢ faults. phase P;.

12-15

Paging — rand. strategy analysis

(Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B For the clean pages, MARKING has ¢ faults. phase P;.

M For the stale pages, there are s = k — ¢ < k — 1 requests.

12-16

Paging — rand. strategy analysis

[Theorem 3. MARKING is 2H-competitive.|

Proof. We consider
B For the clean pages, MARKING has ¢ faults. phase P;.

M For the stale pages, there are s = k — ¢ < k — 1 requests.

B Forrequests j = 1,...,s to stale pages, consider the expected number of faults E[F]-].

12 - 17

Paging — rand. strategy analysis

(Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B For the clean pages, MARKING has ¢ faults. phase P;.

M For the stale pages, there are s = k — ¢ < k — 1 requests.

B Forrequests j = 1,...,s to stale pages, consider the expected number of faults E[F;|.
B c(j): # clean pages requested in this phase so far

s(j): # phase-initially stale pages having not been requested

12 - 18

Paging — rand. strategy analysis

(Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B For the clean pages, MARKING has ¢ faults. phase P;.

M For the stale pages, there are s = k — ¢ < k — 1 requests.

B Forrequests j = 1,...,s to stale pages, consider the expected number of faults E[Fj].

B c(j): # clean pages requested in this phase so far
s(j): # phase-initially stale pages having not been requested

m E[F] =04 951

12-19

Paging — rand. strategy analysis

(Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B For the clean pages, MARKING has ¢ faults. phase P;.

M For the stale pages, there are s = k — ¢ < k — 1 requests.

B Forrequests j = 1,...,s to stale pages, consider the expected number of faults E[Fj].

B c(j): # clean pages requested in this phase so far
s(j): # phase-initially stale pages having not been requested

() (j):k"'l_j

) LS e

m E[F) = U0

12- 20

Paging — rand. strategy analysis

(Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B For the clean pages, MARKING has ¢ faults. phase P;.

M For the stale pages, there are s = k — ¢ < k — 1 requests.

B Forrequests j = 1,...,s to stale pages, consider the expected number of faults E[F;|.
B c(j): # clean pages requested in this phase so far

s(j): # phase-initially stale pages having not been requested

o(i s(j)=k+1—j
m B[R] = 2G04 05 1< i

— j= 1E[F]

12-21

Paging — rand. strategy analysis

(Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B For the clean pages, MARKING has c faults. phase P;.

M For the stale pages, there are s = k — ¢ < k — 1 requests.

B Forrequests j = 1,...,s to stale pages, consider the expected number of faults E[F;|.
B c(j): # clean pages requested in this phase so far

s(j): # phase-initially stale pages having not been requested

o s(j)=k+1—j
m E[F) = o4 Gh 1<

—k+1—]
") ElF] <Y et

12 - 22

Paging — rand. strategy analysis

(Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B For the clean pages, MARKING has c faults. phase P;.

M For the stale pages, there are s = k — ¢ < k — 1 requests.

B Forrequests j = 1,...,s to stale pages, consider the expected number of faults E[F;|.
B c(j): # clean pages requested in this phase so far

s(j): # phase-initially stale pages having not been requested

o s(j)=k+1—j
m E[F) = o4 Gh 1<

— k+1—]
S k ¢
— 1E[]<Z]1k-|-]_]—2]2]

12- 23

Paging — rand. strategy analysis

(Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B For the clean pages, MARKING has c faults. phase P;.

M For the stale pages, there are s = k — ¢ < k — 1 requests.

B Forrequests j = 1,...,s to stale pages, consider the expected number of faults E[F;|.
B c(j): # clean pages requested in this phase so far

s(j): # phase-initially stale pages having not been requested

o s(j)=k+1—j
m B[R] = 2G04 05 1< i

k
T EF] <X e <TE = (H— 1)

12 - 24

Paging — rand. strategy analysis

(Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B For the clean pages, MARKING has c faults. phase P;.

M For the stale pages, there are s = k — ¢ < k — 1 requests.

B Forrequests j = 1,...,s to stale pages, consider the expected number of faults E[F;|.
B c(j): # clean pages requested in this phase so far

s(j): # phase-initially stale pages having not been requested

o s(j)=k+1—j
m E[F) = o4 Gh 1<

— k+1—]
k
L E[R] <Y e <Y, — e (Ho— 1)

B So the competitive ratio of Marking is +C(CI/{§_1) = 2H,.

12- 25

Paging — rand. strategy analysis

(Theorem 3. MARKING is 2Hk—competitive.J

Proof. We consider
B For the clean pages, MARKING has c faults. phase P;.

M For the stale pages, there are s = k — ¢ < k — 1 requests.

B Forrequests j = 1,...,s to stale pages, consider the expected number of faults E[F;|.
B c(j): # clean pages requested in this phase so far

s(j): # phase-initially stale pages having not been requested

o s(j)=k+1—j
m E[F) = o4 Gh 1<

— k+1—]
k
L E[R] <Y e <Y, — e (Ho— 1)

B So the competitive ratio of Marking is +C(CI/{§_1) = 2H,.

12- 26

Paging — rand. strategy analysis Reminder.
No deterministic

[Theorem 3. MARKING is 2Hk—competitive.J strategy is better
Proof than k-competitive.

B For the clean pages, MARKING has c faults.

-or the stale pages, there are s = k — ¢ < k — 1 requests.

]
B Forrequests j = 1,...,s to stale pages, consider the expected number of faults E[Fj].
]

c(j): # clean pages requested in this phase so far
s(j): # phase-initially stale pages having not been requested
. s(j)=k+1—7j
_ s(j)—c(j) c(j)
== 0t s e
k
m YL E[R ST i <56 = (Hy— 1)

B So the competitive ratio of Marking is +C(CI/{§_1) = 2H,.

L] EU?

Paging — rand. strategy analysis

(Theorem 3. MARKING is 2Hk—competitive.J

Proof.

E[F) = G 0+ 1 < m

K
i1 BB <Y amrs <Xt =

So the competitive ratio of Marking is

For the clean pages, MARKING has ¢ faults.

-or the stale pages, there are s = k — ¢ < k — 1 requests.

c(j): # clean pages requested in this phase so far
s(j): # phase-initially stale pages having not been requested

s(j) =k+1—]j

¢+ (Hy—1)

‘|‘C(Hk—1)

c/2

— 2H,.

12 - 27

Reminder.

No deterministic
strategy is better
than k-competitive.

— Randomization helps!

For requests j = 1,..., s to stale pages, consider the expected number of faults E|[F;].

13 -

Discussion

B Online Algorithms operate in a setting different from that of classical algorithms.
However, this setting of incomplete information is very natural and occurs often in
real-world applications. Can you think of further examples?

13 -

Discussion

B Online Algorithms operate in a setting different from that of classical algorithms.
However, this setting of incomplete information is very natural and occurs often in
real-world applications. Can you think of further examples?

B We might also transform a classical problem with incomplete information into an
online problem. E.g.: Matching problem for ride sharing.

13 -

Discussion

B Online Algorithms operate in a setting different from that of classical algorithms.
However, this setting of incomplete information is very natural and occurs often in
real-world applications. Can you think of further examples?

B We might also transform a classical problem with incomplete information into an
online problem. E.g.: Matching problem for ride sharing.

B Randomization can help to improve our behavior on worst-case instances. You may
also think of: we are less predictable for an adversary.

14

| iterature

Main source:

B Sabine Storandt’s lecture script “Randomized Algorithms” (2016-2017)

Original papers:

Belady'66] “A Study of Replacement Algorithms for Virtual-Storage Computer.”

Sleator, Tarjan'85] “Amortized Efficiency of List Update and Paging Rules.”

m [Fiat, Karp, Luby, McGeoch, Sleator, Young'91] “Competitive Paging Algorithms.”

	Title page
	Ski-Rental Problem
	Motivation
	Definition
	Strategies I and II
	Strategy III
	Strategy IV

	Online vs. Offline Algorithms
	Paging
	Definition
	Deterministric strategy
	Deterministric strategies analysis
	Randomized strategies
	Randomized strategy analysis

	Discussion
	Literature

