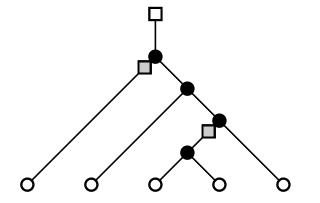


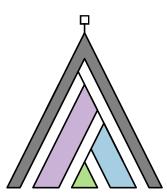
Advanced Algorithms

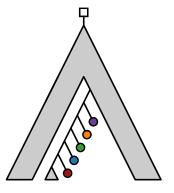
Rearrangement distance of phylogenetic trees

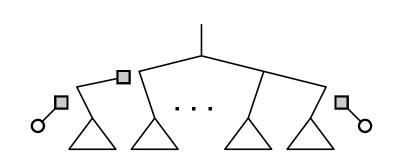
Kernelisation, fpt and approximation algorithm

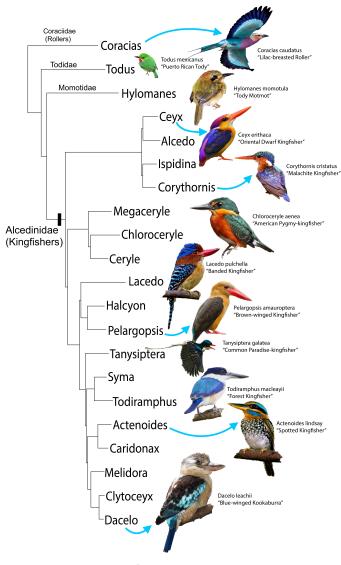
Jonathan Klawitter · WS20

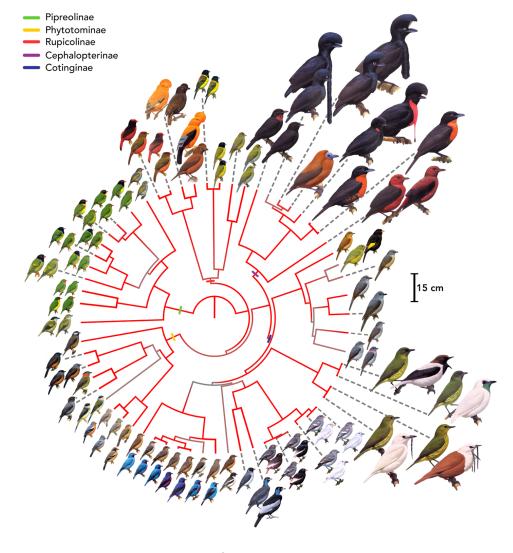






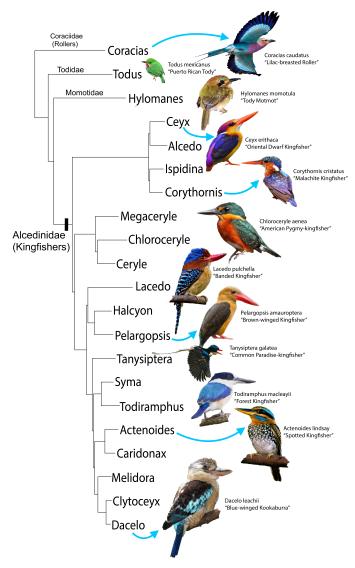






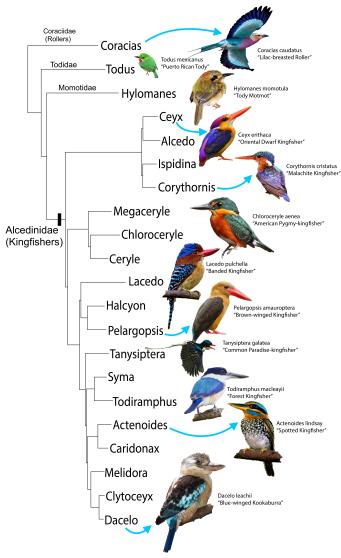
by Jenna McCullough 2016

by Berv & Prum 2014



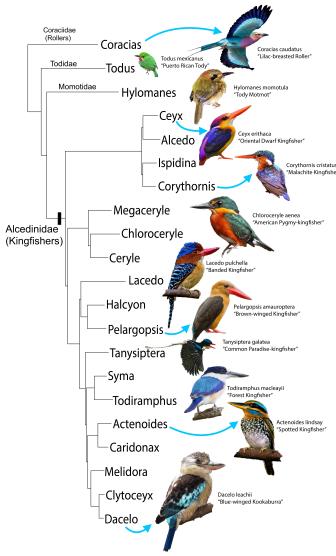
by Jenna McCullough 2016

- Leaves are labelled with taxa.
- Each taxon represents a species, population, individual organism, gene, chromosome, . . .



by Jenna McCullough 2016

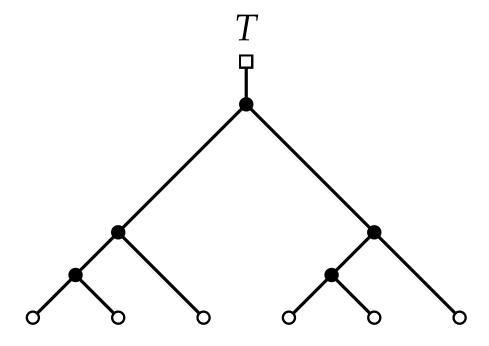
- Leaves are labelled with taxa.
- Each taxon represents a species, population, individual organism, gene, chromosome, . . .
- Edge lenghts represents amount of time passed or genetic distance.



by Jenna McCullough 2016

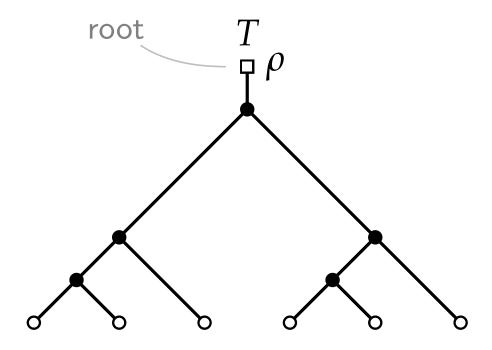
- Leaves are labelled with taxa.
- Each taxon represents a species, population, individual organism, gene, chromosome, ...
- Edge lenghts represents amount of time passed or genetic distance.
- Inference methods compute a phylogenetic tree based on some model and data.

Let $X = \{1, 2, 3, ... n\}$. A **(rooted, binary) phylogenetic tree** T is a rooted tree with the following properties:



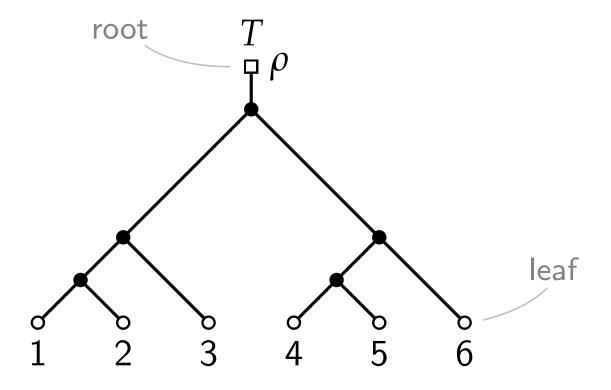
Let $X = \{1, 2, 3, ... n\}$. A **(rooted, binary) phylogenetic tree** T is a rooted tree with the following properties:

■ The unique **root** is labeled ρ and has outdegree 1.



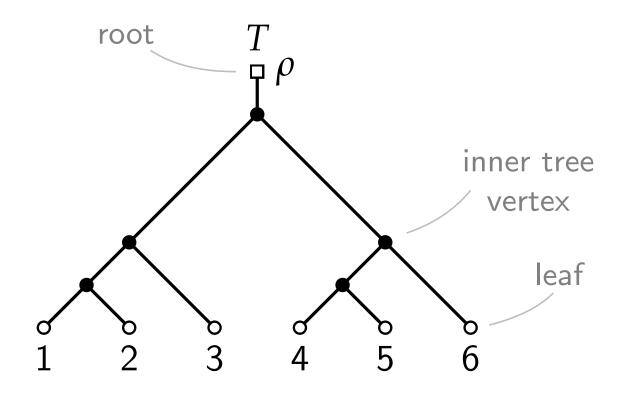
Let $X = \{1, 2, 3, ... n\}$. A **(rooted, binary) phylogenetic tree** T is a rooted tree with the following properties:

- The unique **root** is labeled ρ and has outdegree 1.
- \blacksquare The leaves are bijectively labeled by X.



Let $X = \{1, 2, 3, ... n\}$. A **(rooted, binary) phylogenetic tree** T is a rooted tree with the following properties:

- The unique **root** is labeled ρ and has outdegree 1.
- \blacksquare The leaves are bijectively labeled by X.
- All other vertices have indegree 1 and outdegree 2.



Let $X = \{1, 2, 3, \dots n\}$.

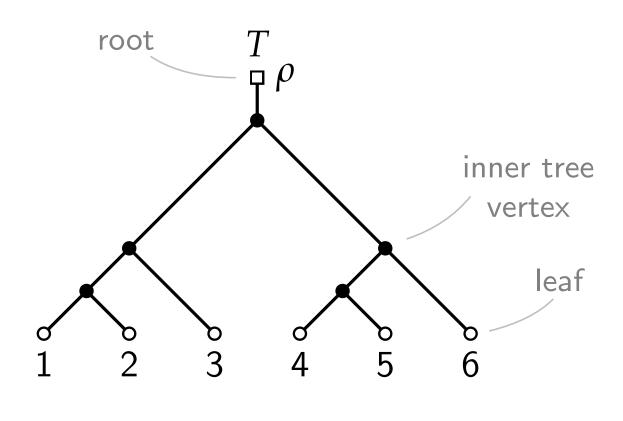
A (rooted, binary) phylogenetic tree T is a rooted tree with the following properties:

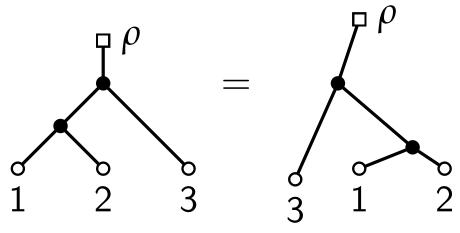
- The unique **root** is labeled ρ and has outdegree 1.
- lacktriangle The leaves are bijectively labeled by X.
- All other vertices have indegree 1 and outdegree 2.

Remarks.

Here, in our definition

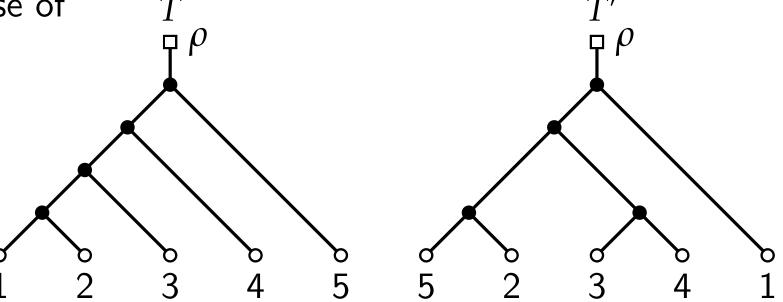
- vertices have no heights and
- the order of leaves does not matter.





For the same taxa, we may infer different phylogenetic trees because of the use of

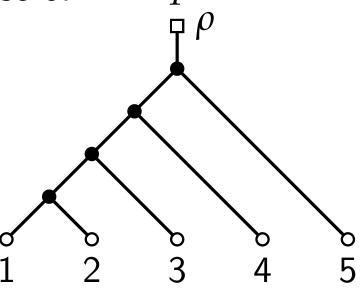
- different inference methods,
- different models, or
- different data.

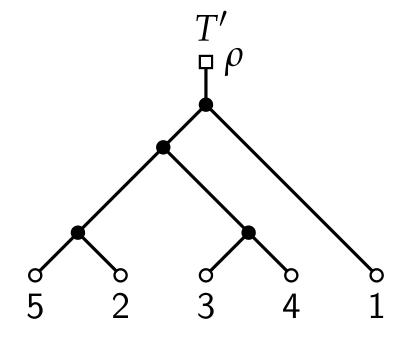


For the same taxa, we may infer different phylogenetic trees because of the use of

- different inference methods,
- different models, or
- different data.

We want to be able to **compare** different phylogenetic trees. How?

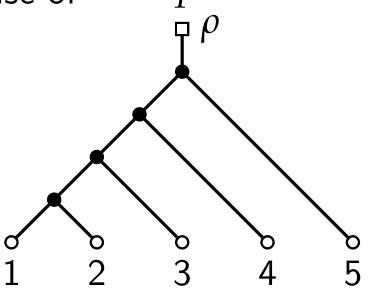


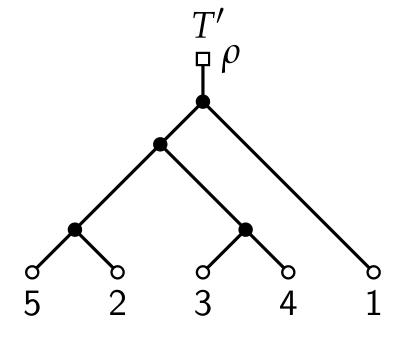


For the same taxa, we may infer different phylogenetic trees because of the use of

- different inference methods,
- different models, or
- different data.

We want to be able to **compare** different phylogenetic trees. How?





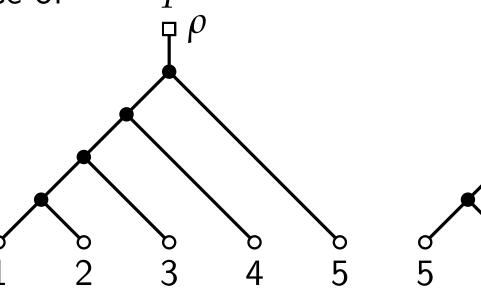
Goal.

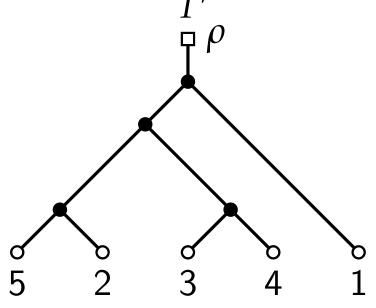
Define a metric on phylogenetic trees on X and devise algorithms to compute it.

For the same taxa, we may infer different phylogenetic trees because of the use of

- different inference methods,
- different models, or
- different data.

We want to be able to **compare** different phylogenetic trees. How?



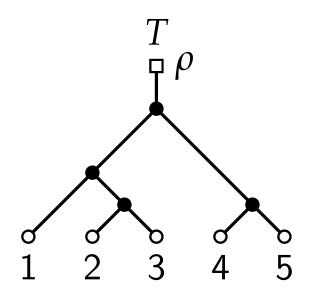


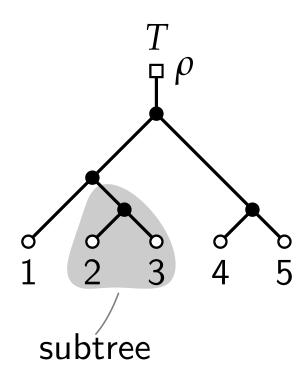
Goal.

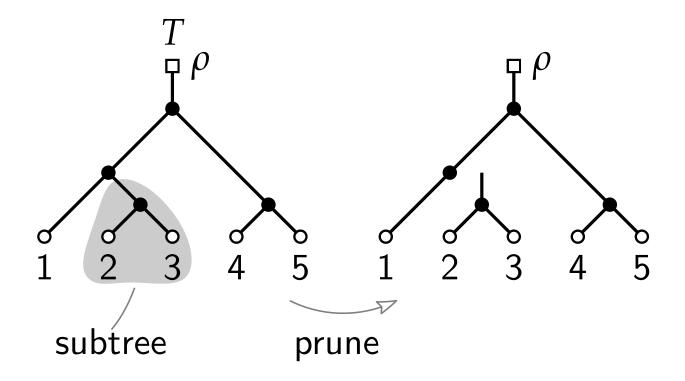
Define a **metric** on phylogenetic trees on X and devise algorithms to compute it.

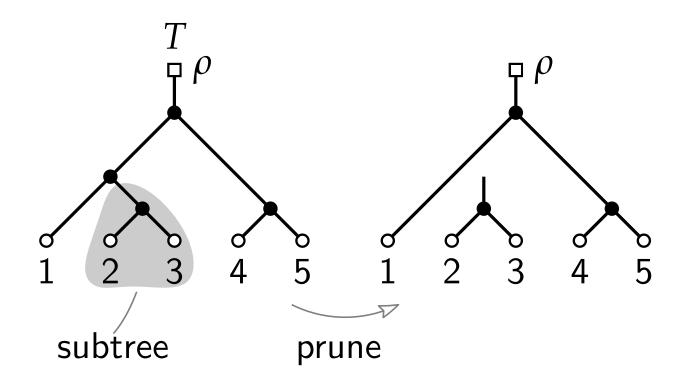
Idea.

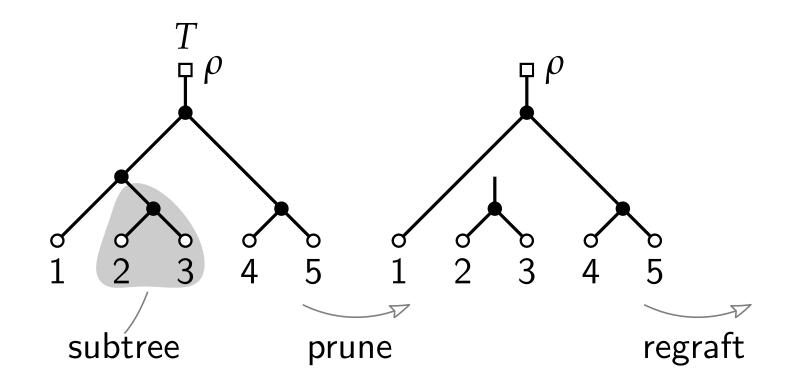
Count the number of rearrangement operations that are necessary to transform T into T'.

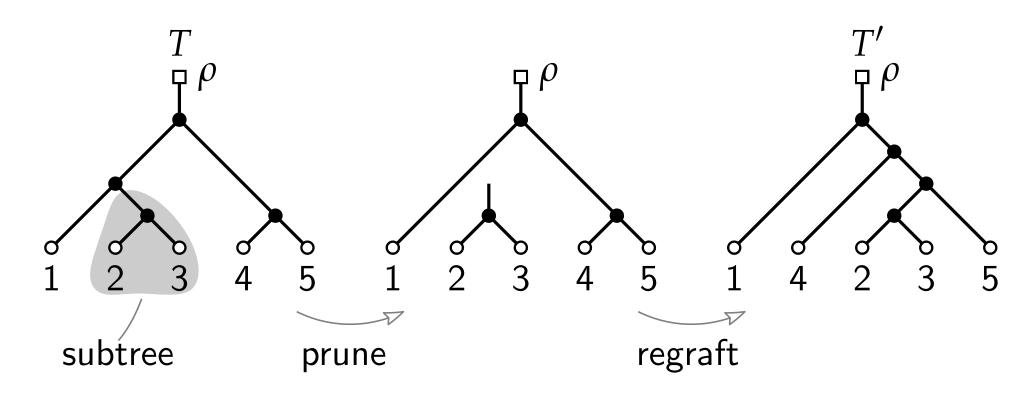


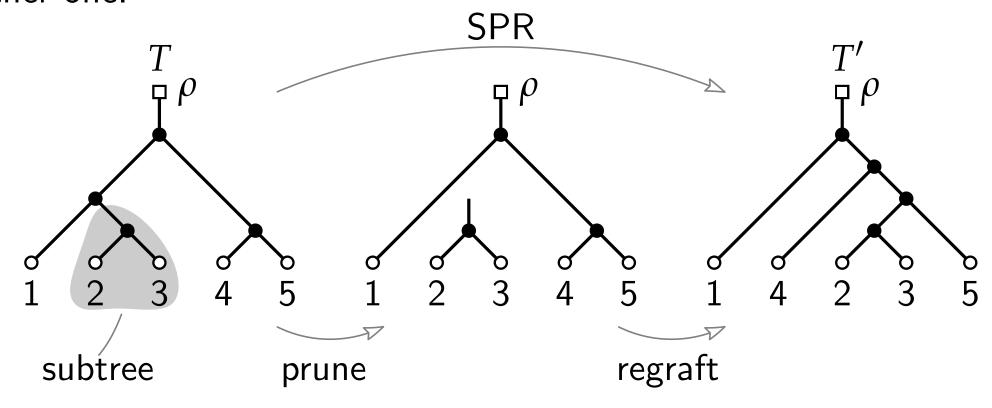




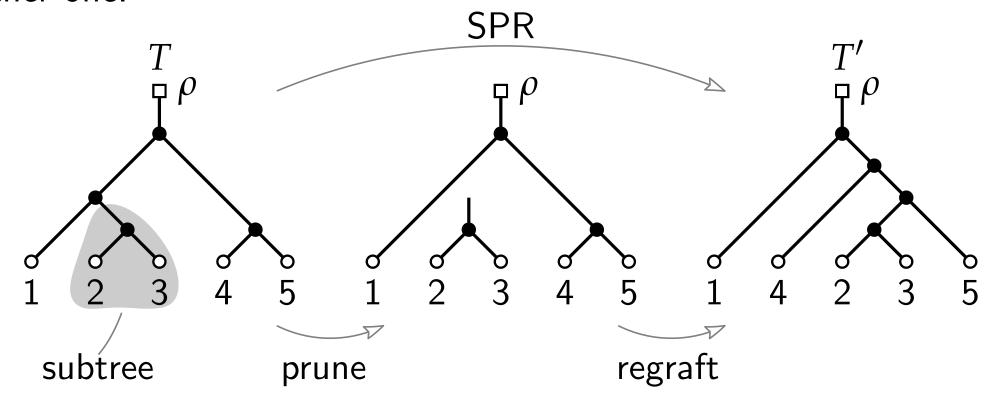








An SPR operation transforms one phylogenetic tree into another one.



Note that an SPR operation is reversible.

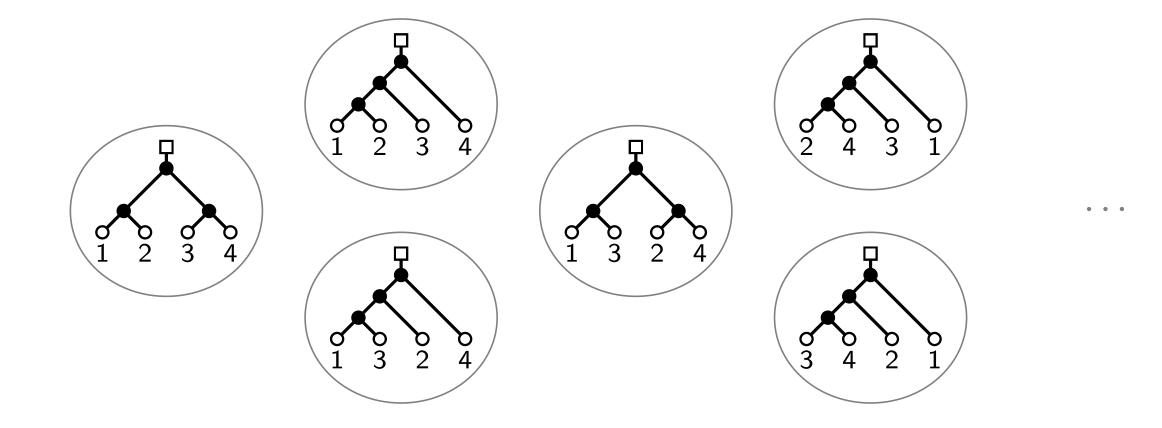
SPR-graph

SPR induces the SPR-graph G = (V, E):

SPR-graph

SPR induces the **SPR-graph** G = (V, E):

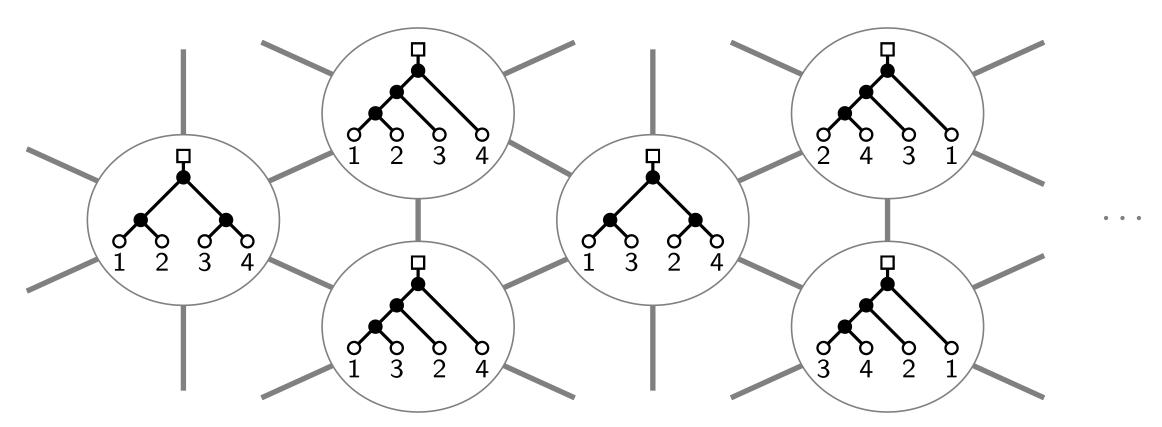
 $lackbox{\llocation} V = \{T \mid T \text{ is a phylogenetic tree on } X\}$



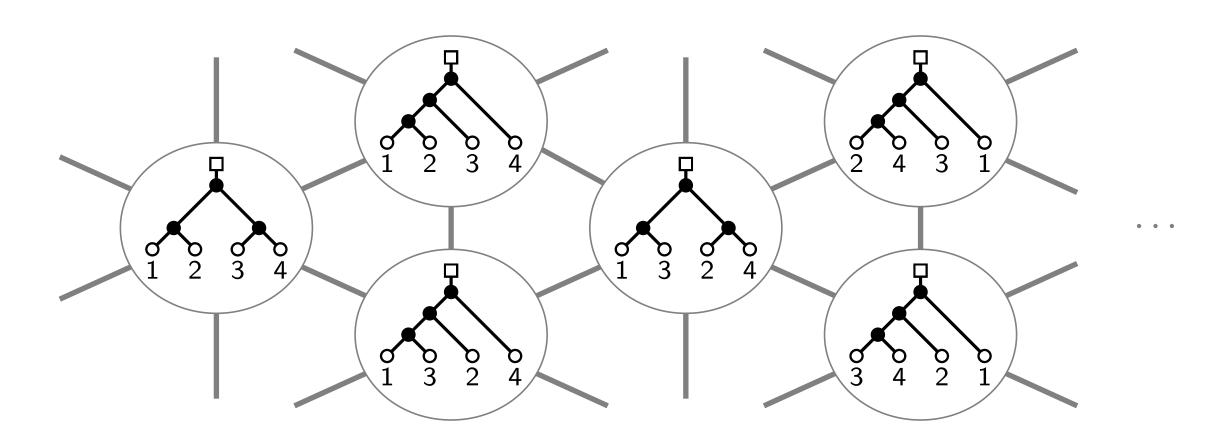
SPR-graph

SPR induces the **SPR-graph** G = (V, E):

- $V = \{T \mid T \text{ is a phylogenetic tree on } X\}$
- $T, T' \in E$ if T can be transformed into T' with a single SPR operation



The SPR-distance $d_{SPR}(T, T')$ of T and T' is defined as the distance of T and T' in the SPR-graph G.



The SPR-distance $d_{SPR}(T, T')$ of T and T' is defined as the distance of T and T' in the SPR-graph G.

Lemma 1.

The SPR-graph *G* is connected.

The SPR-distance $d_{SPR}(T, T')$ of T and T' is defined as the distance of T and T' in the SPR-graph G.

Lemma 1.

The SPR-graph *G* is connected.

Proof as exercise or in discussion.

The SPR-distance $d_{SPR}(T, T')$ of T and T' is defined as the distance of T and T' in the SPR-graph G.

Lemma 1.

The SPR-graph *G* is connected.

Proof as exercise or in discussion.

Lemma 2.

The SPR-distance is a metric.

The SPR-distance $d_{SPR}(T, T')$ of T and T' is defined as the distance of T and T' in the SPR-graph G.

Lemma 1.

The SPR-graph *G* is connected.

Proof as exercise or in discussion.

Lemma 2.

The SPR-distance is a metric.

Proof. G is connected and undirected.

The SPR-distance $d_{SPR}(T, T')$ of T and T' is defined as the distance of T and T' in the SPR-graph G.

Lemma 1.

The SPR-graph *G* is connected.

Proof as exercise or in discussion.

Lemma 2.

The SPR-distance is a metric.

Proof. *G* is connected and undirected.

Goal.

Compute the SPR-distance $d_{SPR}(T, T')$.

The SPR-distance $d_{SPR}(T, T')$ of T and T' is defined as the distance of T and T' in the SPR-graph G.

Lemma 1.

The SPR-graph *G* is connected.

Proof as exercise or in discussion.

Lemma 2.

The SPR-distance is a metric.

Proof. G is connected and undirected.

Goal.

Compute the SPR-distance $d_{SPR}(T, T')$.

 \dots but G is huge!

$$|V(G)| = (2n-3)!! = (2n-3) \cdot (2n-5) \cdot \dots \cdot 5 \cdot 3$$

The SPR-distance $d_{SPR}(T, T')$ of T and T' is defined as the distance of T and T' in the SPR-graph G.

Lemma 1.

The SPR-graph *G* is connected.

Proof as exercise or in discussion.

Lemma 2.

The SPR-distance is a metric.

Proof. G is connected and undirected.

Goal.

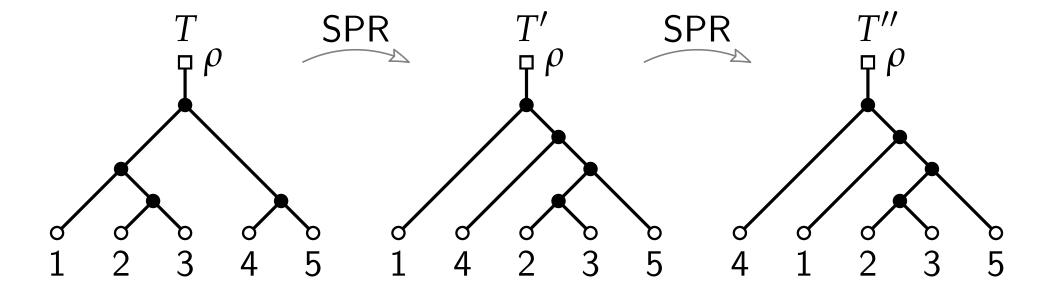
Compute the SPR-distance $d_{SPR}(T, T')$.

 \dots but G is huge!

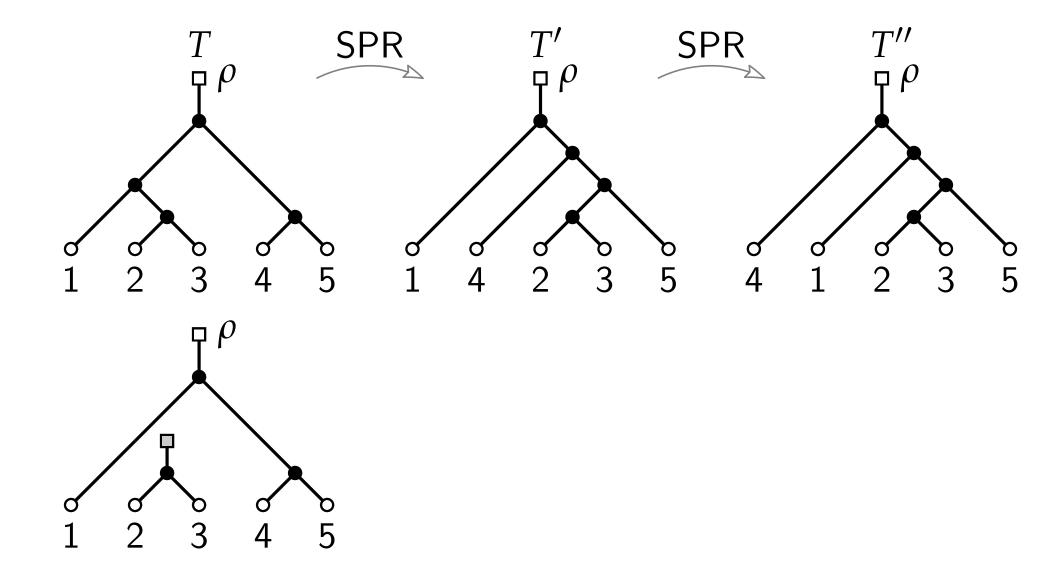
$$|V(G)| = (2n-3)!! = (2n-3) \cdot (2n-5) \cdot \dots \cdot 5 \cdot 3$$

Can we rephrase the problem?

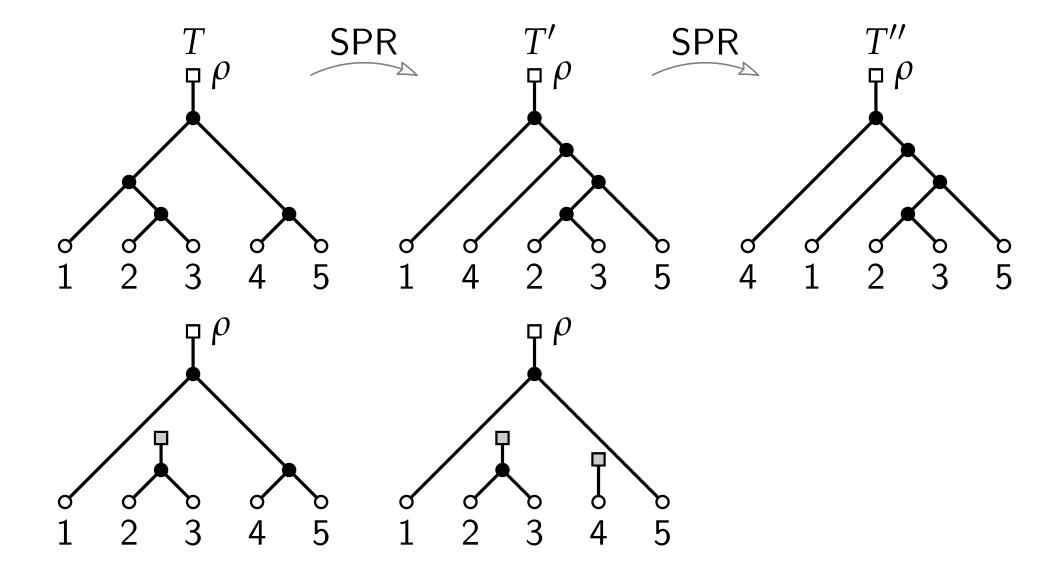
Maximum agreement forests

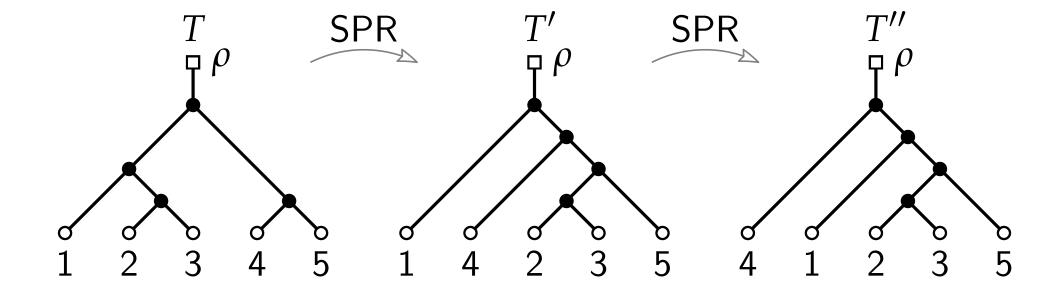


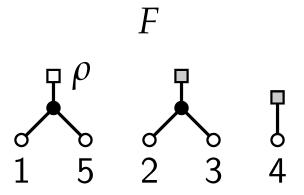
Maximum agreement forests

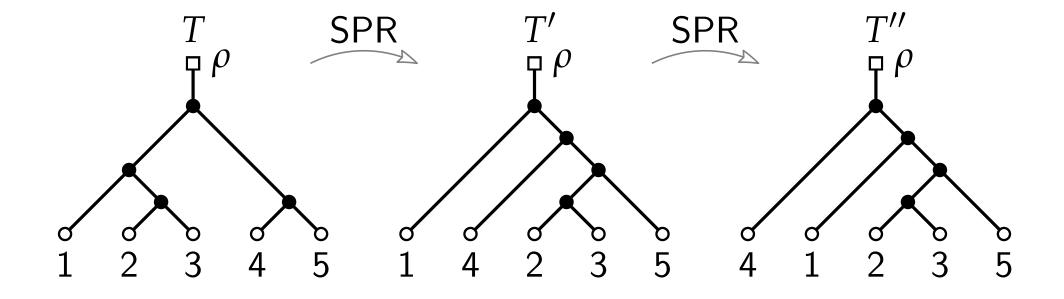


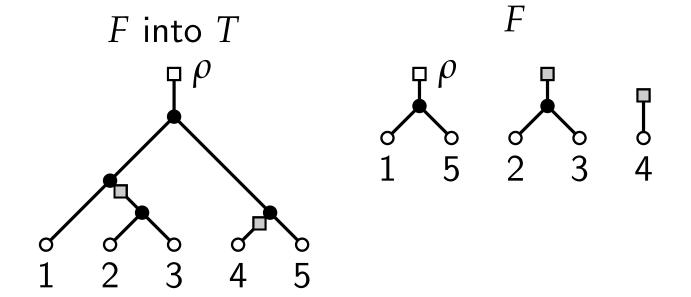
Maximum agreement forests

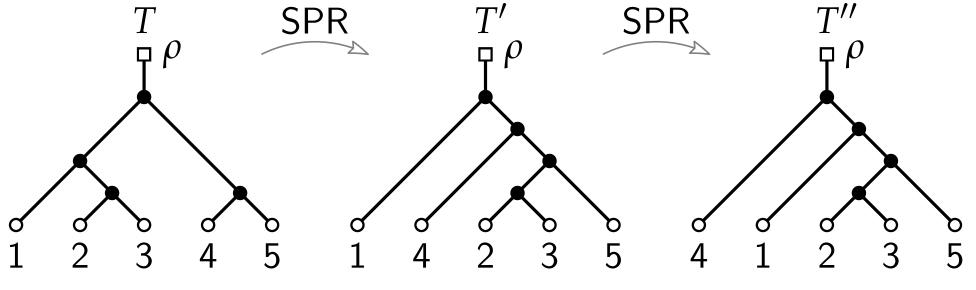


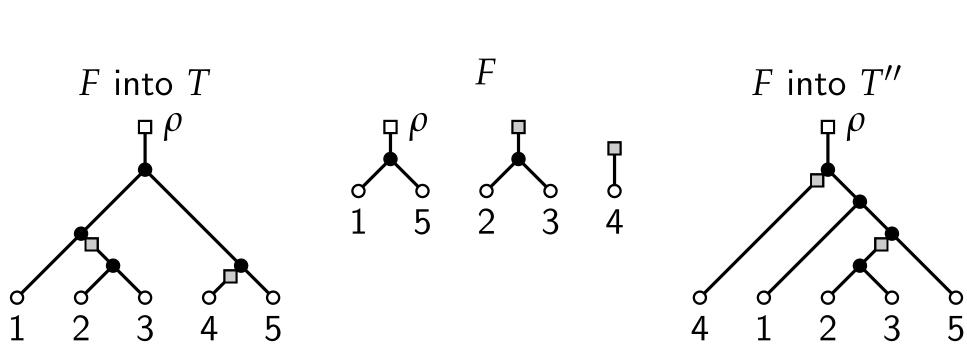


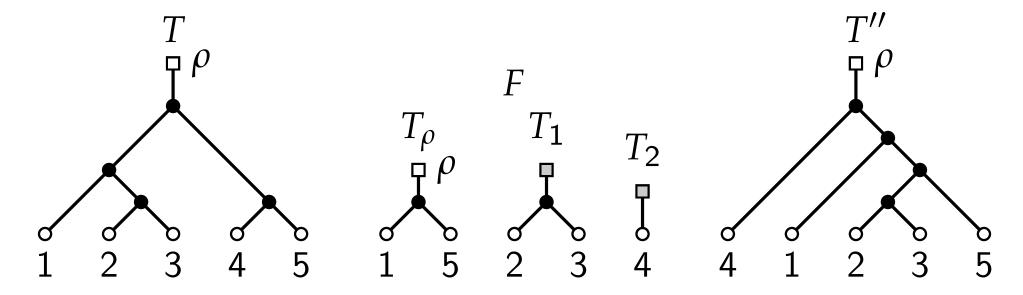






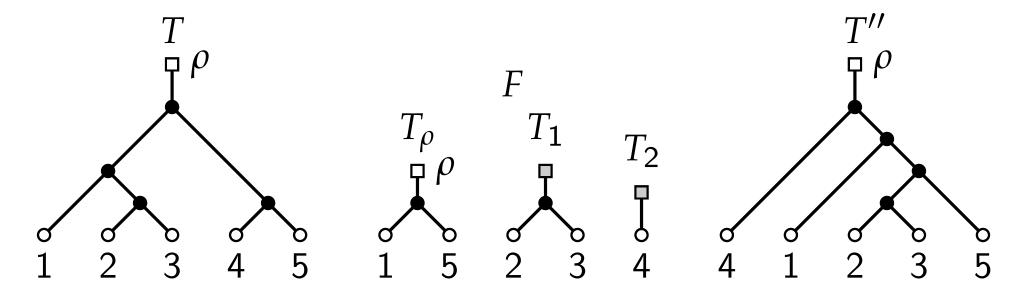






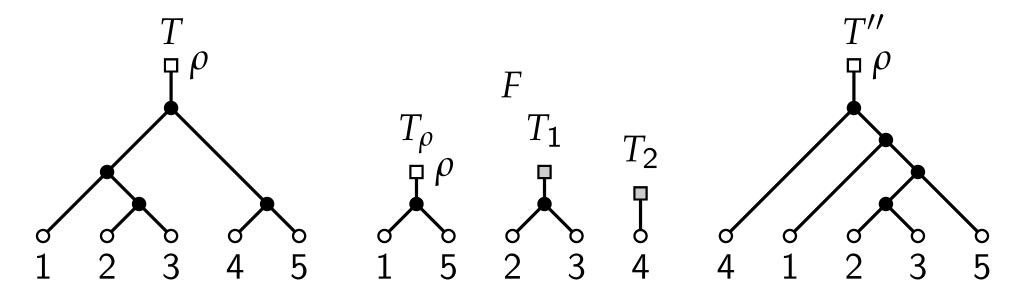
An **agreement forest** F of T and T'' is a forest $\{T_{\rho}, T_1, T_2, \ldots, T_k\}$ such that

lacksquare the label sets of the T_i partition $X \cup \{\rho\}$,



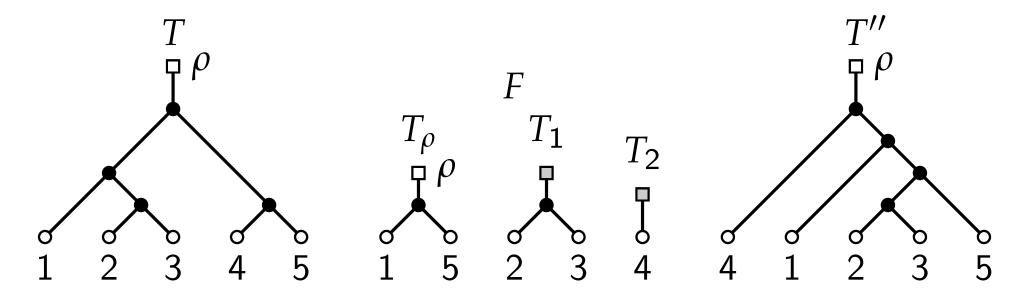
An **agreement forest** F of T and T'' is a forest $\{T_{\rho}, T_1, T_2, \ldots, T_k\}$ such that

- lacksquare the label sets of the T_i partition $X \cup \{\rho\}$,
- lacksquare ho is in the label set of $T_{
 ho}$, and



An **agreement forest** F of T and T'' is a forest $\{T_{\rho}, T_1, T_2, \ldots, T_k\}$ such that

- the label sets of the T_i partition $X \cup \{\rho\}$,
- ightharpoonup ho is in the label set of $T_{
 ho}$, and
- there exist edge-disjoint embeddings of subdivisions of the T_i 's into T and T'' that cover all edges.



An **agreement forest** F of T and T'' is a forest $\{T_{\rho}, T_1, T_2, \ldots, T_k\}$ such that

- the label sets of the T_i partition $X \cup \{\rho\}$,
- ightharpoonup ho is in the label set of $T_{
 ho}$, and
- there exist edge-disjoint embeddings of subdivisions of the T_i 's into T and T'' that cover all edges.

If k is minimal, F is a maximum agreement forest (MAF).

```
Let T and T' be two phylogenetic trees on X.
 Let F = \{T_\rho, T_1, T_2, \ldots, T_k\} be a MAF of T and T'.
 Define \mathsf{m}(T, T') = k = |F| - 1.
```

Let T and T' be two phylogenetic trees on X. Let $F = \{T_{\rho}, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'. Define $\mathsf{m}(T, T') = k = |F| - 1.$

Theorem 3. $m(T, T') = d_{SPR}(T, T')$

Let T and T' be two phylogenetic trees on X. Let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'. Define $\mathsf{m}(T, T') = k = |F| - 1.$

Theorem 3. $m(T, T') = d_{SPR}(T, T')$

Let T and T' be two phylogenetic trees on X. Let $F = \{T_\rho, T_1, T_2, \dots, T_k\}$ be a MAF of T and T'. Define $\mathsf{m}(T, T') = k = |F| - 1.$

Theorem 3.
$$m(T, T') = d_{SPR}(T, T')$$

Proof of " \leq " by induction on $d = d_{SPR}(T, T')$.

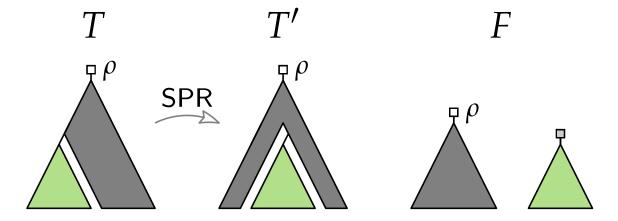
 \blacksquare Case d=1 is easy. \checkmark

$$T$$
 T' F P^{ρ} P^{ρ} P^{ρ}

Let T and T' be two phylogenetic trees on X. Let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'. Define $\mathsf{m}(T, T') = k = |F| - 1.$

Theorem 3.
$$m(T, T') = d_{SPR}(T, T')$$

- \blacksquare Case d=1 is easy. \checkmark
- Assume $m(T, T') \le d_{SPR}(T, T')$ holds for all $d \le \ell$.

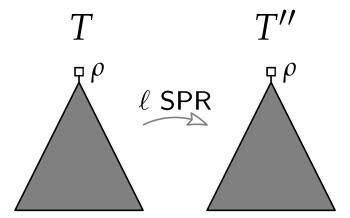


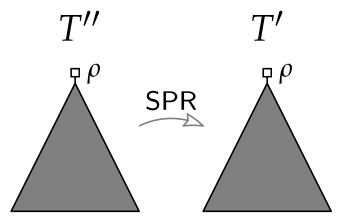
Let T and T' be two phylogenetic trees on X. Let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'. Define $\mathsf{m}(T, T') = k = |F| - 1.$

Theorem 3.
$$m(T, T') = d_{SPR}(T, T')$$

Proof of " \leq " by induction on $d = d_{SPR}(T, T')$.

If $d = \ell + 1$, then there exists T'' with $\mathsf{d}_{\mathsf{SPR}}(T, T'') = \ell$ and $\mathsf{d}_{\mathsf{SPR}}(T'', T') = 1$.

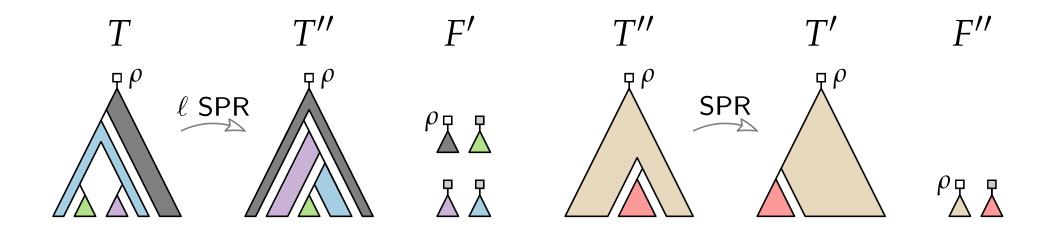




Let T and T' be two phylogenetic trees on X. Let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'. Define $\mathsf{m}(T, T') = k = |F| - 1.$

Theorem 3.
$$m(T, T') = d_{SPR}(T, T')$$

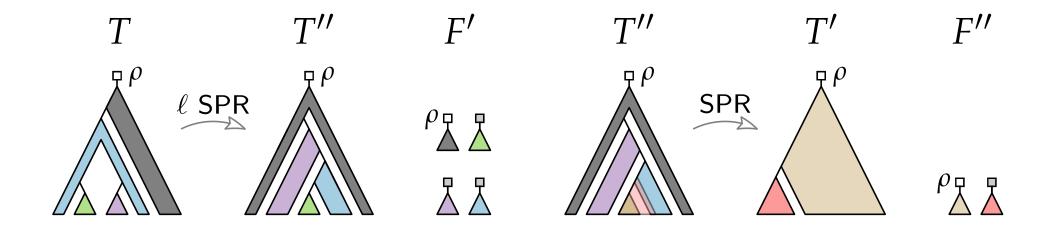
- If $d = \ell + 1$, then there exists T'' with $\mathsf{d}_{\mathsf{SPR}}(T,T'') = \ell$ and $\mathsf{d}_{\mathsf{SPR}}(T'',T') = 1$.
 - There exists MAF F' for T and T'' and T'' and T'.



Let T and T' be two phylogenetic trees on X. Let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'. Define $\mathsf{m}(T, T') = k = |F| - 1.$

Theorem 3.
$$m(T, T') = d_{SPR}(T, T')$$

- If $d = \ell + 1$, then there exists T'' with $\mathsf{d}_{\mathsf{SPR}}(T,T'') = \ell$ and $\mathsf{d}_{\mathsf{SPR}}(T'',T') = 1$.
 - There exists MAF F' for T and T'' and T'' and T'.



Let T and T' be two phylogenetic trees on X. Let $F = \{T_\rho, T_1, T_2, \dots, T_k\}$ be a MAF of T and T'. Define $\mathsf{m}(T, T') = k = |F| - 1$.

Theorem 3.
$$m(T, T') = d_{SPR}(T, T')$$

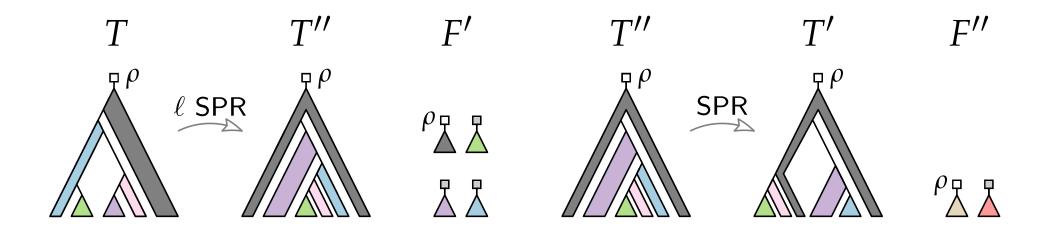
- If $d = \ell + 1$, then there exists T'' with $\mathsf{d}_{\mathsf{SPR}}(T,T'') = \ell$ and $\mathsf{d}_{\mathsf{SPR}}(T'',T') = 1$.
 - There exists MAF F' for T and T'' and T'' and T'.



Let T and T' be two phylogenetic trees on X. Let $F = \{T_\rho, T_1, T_2, \dots, T_k\}$ be a MAF of T and T'. Define $\mathsf{m}(T, T') = k = |F| - 1$.

Theorem 3.
$$m(T, T') = d_{SPR}(T, T')$$

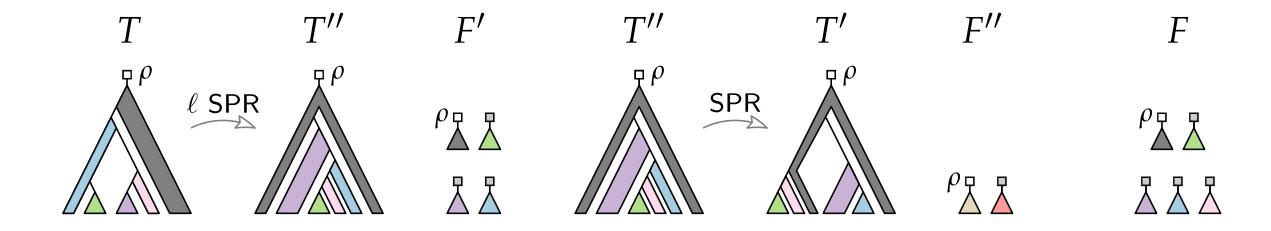
- If $d = \ell + 1$, then there exists T'' with $\mathsf{d}_{\mathsf{SPR}}(T,T'') = \ell$ and $\mathsf{d}_{\mathsf{SPR}}(T'',T') = 1$.
 - There exists MAF F' for T and T'' and T'' and T'.



Let T and T' be two phylogenetic trees on X. Let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'. Define $\mathsf{m}(T, T') = k = |F| - 1.$

Theorem 3.
$$m(T, T') = d_{SPR}(T, T')$$

- If $d = \ell + 1$, then there exists T'' with $\mathsf{d}_{\mathsf{SPR}}(T,T'') = \ell$ and $\mathsf{d}_{\mathsf{SPR}}(T'',T') = 1$.
 - There exists MAF F' for T and T'' and T'' and T'.



Let T and T' be two phylogenetic trees on X. Let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'. Define $\mathsf{m}(T, T') = k = |F| - 1.$

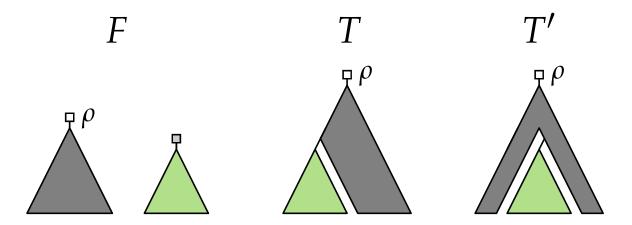
Theorem 3. $m(T, T') = d_{SPR}(T, T')$

Let T and T' be two phylogenetic trees on X. Let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'. Define $\mathsf{m}(T, T') = k = |F| - 1.$

Theorem 3.
$$m(T, T') = d_{SPR}(T, T')$$

Proof of " \geq " by induction on d = m(T, T').

 \blacksquare Case d=1 is easy. \checkmark

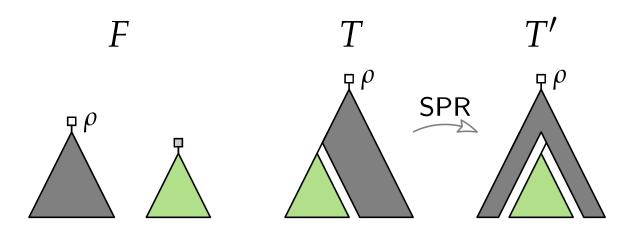


Let T and T' be two phylogenetic trees on X. Let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'. Define $\mathsf{m}(T, T') = k = |F| - 1.$

Theorem 3.
$$m(T, T') = d_{SPR}(T, T')$$

Proof of " \geq " by induction on d = m(T, T').

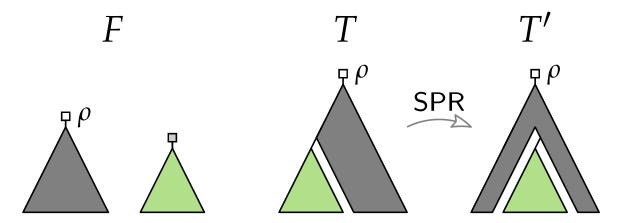
 \blacksquare Case d=1 is easy. \checkmark



Let T and T' be two phylogenetic trees on X. Let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'. Define $\mathsf{m}(T, T') = k = |F| - 1.$

Theorem 3.
$$m(T, T') = d_{SPR}(T, T')$$

- \blacksquare Case d=1 is easy. \checkmark
- Assume $m(T, T') \ge d_{SPR}(T, T')$ holds for all $d \le \ell$.

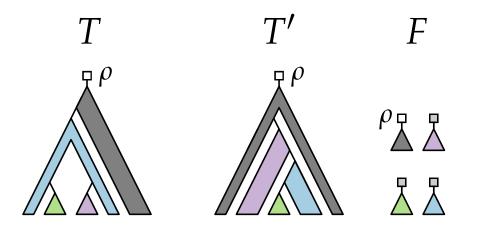


Let T and T' be two phylogenetic trees on X. Let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'. Define $\mathsf{m}(T, T') = k = |F| - 1.$

Theorem 3.
$$m(T, T') = d_{SPR}(T, T')$$

Proof of " \geq " by induction on d = m(T, T').

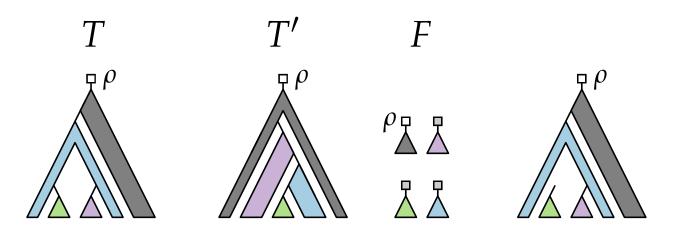
■ Let F be a MAF of T and T' of size $\ell + 2$. $\Rightarrow m = \ell + 1$



Let T and T' be two phylogenetic trees on X. Let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'. Define $\mathsf{m}(T, T') = k = |F| - 1.$

Theorem 3.
$$m(T, T') = d_{SPR}(T, T')$$

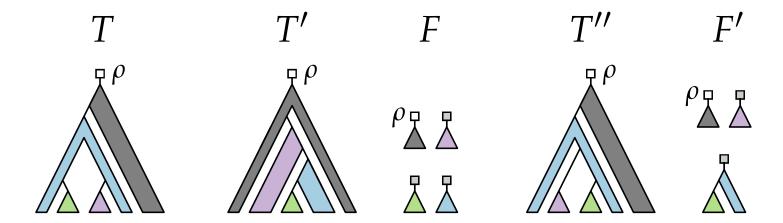
- Let F be a MAF of T and T' of size $\ell + 2$. $\Rightarrow m = \ell + 1$
- \blacksquare There exists a T_i that can be pruned in T.



Let T and T' be two phylogenetic trees on X. Let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'. Define $\mathsf{m}(T, T') = k = |F| - 1$.

Theorem 3.
$$m(T, T') = d_{SPR}(T, T')$$

- Let F be a MAF of T and T' of size $\ell + 2$.
- \blacksquare There exists a T_i that can be pruned in T.
- Regraft T_i according to the embedding of F into $T' \Rightarrow T'' \& F'$



Let T and T' be two phylogenetic trees on X. Let $F = \{T_\rho, T_1, T_2, \dots, T_k\}$ be a MAF of T and T'. Define $\mathsf{m}(T, T') = k = |F| - 1.$

Theorem 3. $m(T, T') = d_{SPR}(T, T')$

- Let F be a MAF of T and T' of size $\ell + 2$.
- \blacksquare There exists a T_i that can be pruned in T.
- Regraft T_i according to the embedding of F into $T' \Rightarrow T'' \& F'$
- \blacksquare F' is an AF for T' and T''
- ightharpoonup $\Rightarrow \mathsf{d}_{\mathsf{SPR}}(T'',T') \leq \ell$

Let T and T' be two phylogenetic trees on X. Let $F = \{T_\rho, T_1, T_2, \dots, T_k\}$ be a MAF of T and T'. Define $\mathsf{m}(T, T') = k = |F| - 1$.

Theorem 3.
$$m(T, T') = d_{SPR}(T, T')$$

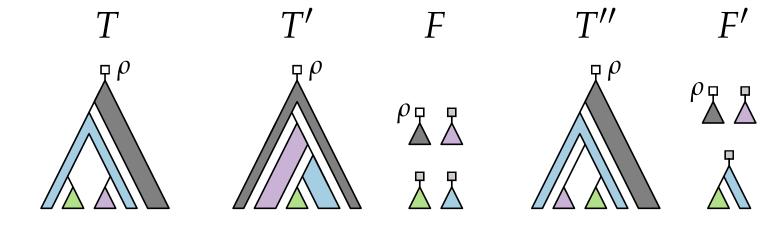
- Let F be a MAF of T and T' of size $\ell + 2$.
- lacksquare There exists a T_i that can be pruned in T.
- T T' F T'' F'
- Regraft T_i according to the embedding of F into $T' \Rightarrow T'' \& F'$
- \blacksquare F' is an AF for T' and T''
- $\Rightarrow \mathsf{d}_{\mathsf{SPR}}(T'',T') \leq \ell$

Let T and T' be two phylogenetic trees on X. Let $F = \{T_\rho, T_1, T_2, \dots, T_k\}$ be a MAF of T and T'. Define $\mathsf{m}(T, T') = k = |F| - 1.$

Theorem 3.
$$m(T, T') = d_{SPR}(T, T')$$

- Let F be a MAF of T and T' of size $\ell + 2$.
- lacksquare There exists a T_i that can be pruned in T.
- Regraft T_i according to the embedding of F into $T' \Rightarrow T'' \& F'$
- \blacksquare F' is an AF for T' and T''

$$ightharpoonup$$
 $\Rightarrow \mathsf{d}_{\mathsf{SPR}}(T'',T') \leq \ell$



Theorem 4. [HJWZ '96, BS '05]

Computing $d_{SPR}(T, T')$ is NP-hard.

Proof is by reduction from Exact Cover by 3-Sets.

Theorem 4. [HJWZ '96, BS '05]

Computing $d_{SPR}(T, T')$ is NP-hard.

Proof is by reduction from Exact Cover by 3-Sets.

- Construct kernel of the problem.
 - \blacksquare Replace T and T' with smaller S and S'.
 - We should be able to get $d_{SPR}(T, T')$ from $d_{SPR}(S, S')$.

Theorem 4. [HJWZ '96, BS '05]

Computing $d_{SPR}(T, T')$ is NP-hard.

Proof is by reduction from Exact Cover by 3-Sets.

- Construct kernel of the problem.
 - \blacksquare Replace T and T' with smaller S and S'.
 - We should be able to get $d_{SPR}(T, T')$ from $d_{SPR}(S, S')$.
- Show that size of the kernel depends on $d_{SPR}(T, T')$.

Theorem 4. [HJWZ '96, BS '05]

Computing $d_{SPR}(T, T')$ is NP-hard.

Proof is by reduction from Exact Cover by 3-Sets.

- Construct kernel of the problem.
 - \blacksquare Replace T and T' with smaller S and S'.
 - We should be able to get $d_{SPR}(T, T')$ from $d_{SPR}(S, S')$.
- Show that size of the kernel depends on $d_{SPR}(T, T')$.
- Devise an fpt algorithm by computing d_{SPR} for kernel.

Theorem 4. [HJWZ '96, BS '05]

Computing $d_{SPR}(T, T')$ is NP-hard.

Proof is by reduction from Exact Cover by 3-Sets.

- Construct kernel of the problem.
 - \blacksquare Replace T and T' with smaller S and S'.
 - We should be able to get $d_{SPR}(T, T')$ from $d_{SPR}(S, S')$.
- Show that size of the kernel depends on $d_{SPR}(T, T')$.
- Devise an fpt algorithm by computing d_{SPR} for kernel.
- Devise an approximation algorithm.

Kernelisation – Subtrees

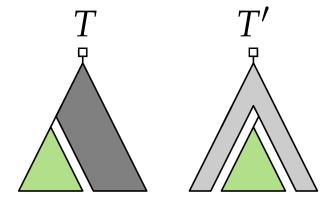
Common subtree reduction.

■ Replace any pendant subtree that occurs identically in both trees by a single leaf with a new label.

Kernelisation – Subtrees

Common subtree reduction.

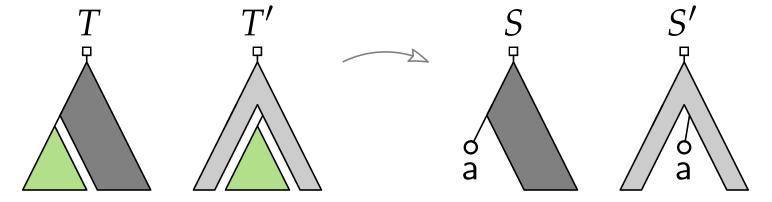
■ Replace any pendant subtree that occurs identically in both trees by a single leaf with a new label.



Kernelisation – Subtrees

Common subtree reduction.

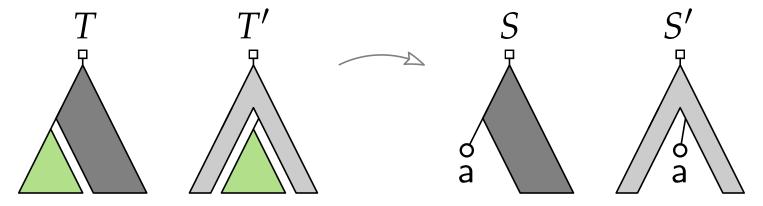
■ Replace any pendant subtree that occurs identically in both trees by a single leaf with a new label.



Kernelisation – Subtrees

Common subtree reduction.

Replace any pendant subtree that occurs identically in both trees by a single leaf with a new label.

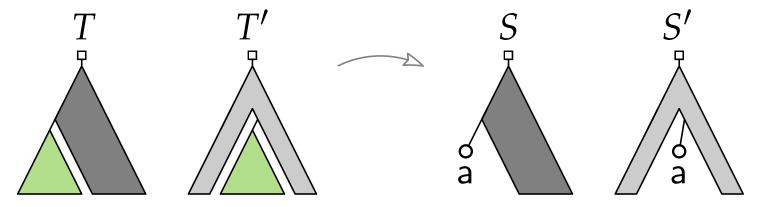


Lemma 5. Applying the common subtree reduction is safe; i.e. $d_{SPR}(T, T') = d_{SPR}(S, S')$.

Kernelisation – Subtrees

Common subtree reduction.

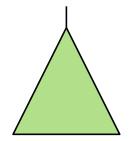
Replace any pendant subtree that occurs identically in both trees by a single leaf with a new label.



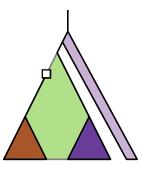
Lemma 5. Applying the common subtree reduction is safe; i.e. $d_{SPR}(T, T') = d_{SPR}(S, S')$.

Proof.

Suppose



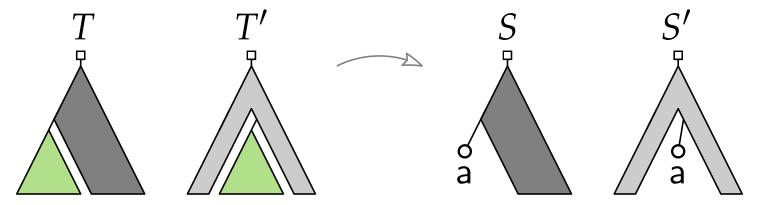
is covered by two trees of MAF



Kernelisation – Subtrees

Common subtree reduction.

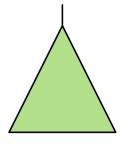
Replace any pendant subtree that occurs identically in both trees by a single leaf with a new label.



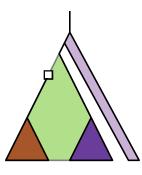
Lemma 5. Applying the common subtree reduction is safe; i.e. $d_{SPR}(T, T') = d_{SPR}(S, S')$.

Proof.

Suppose



is covered by two trees of MAF



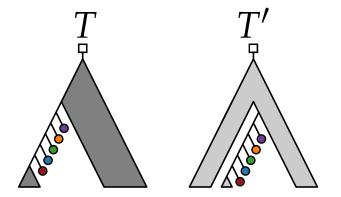
then there is alternative MAF

Chain reduction.

■ Replace any chain of leaves that occurs identically in both trees by three new leaves.

Chain reduction.

■ Replace any chain of leaves that occurs identically in both trees by three new leaves.



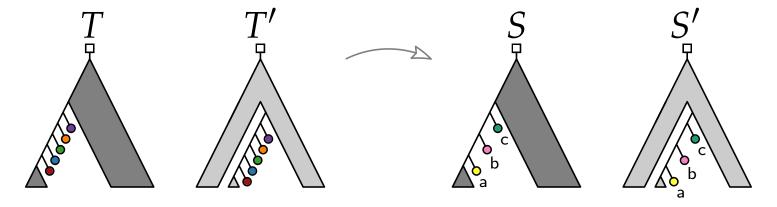
Chain reduction.

■ Replace any chain of leaves that occurs identically in both trees by three new leaves.



Chain reduction.

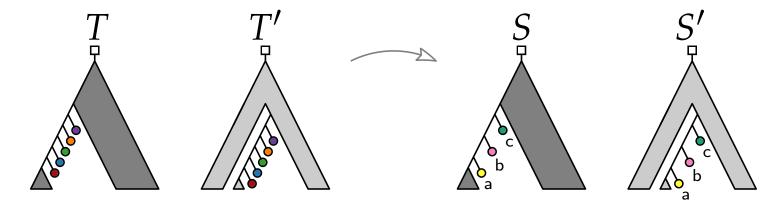
Replace any chain of leaves that occurs identically in both trees by three new leaves.



Lemma 6. Applying chain reduction is safe; i.e. $d_{SPR}(T, T') = d_{SPR}(S, S')$.

Chain reduction.

Replace any chain of leaves that occurs identically in both trees by three new leaves.



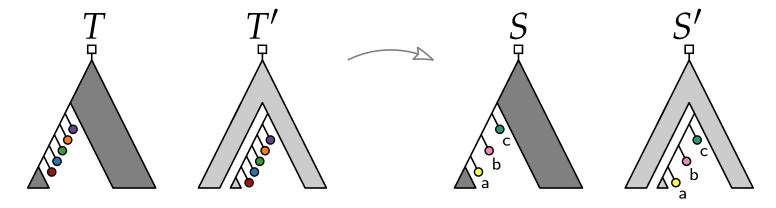
Lemma 6. Applying chain reduction is safe; i.e. $d_{SPR}(T, T') = d_{SPR}(S, S')$.

Proof.

- Show there is a tree with abc-chain in a MAF of S and S'.
- Swap abc-chain with original chain for MAF of T and T'.

Chain reduction.

Replace any chain of leaves that occurs identically in both trees by three new leaves.

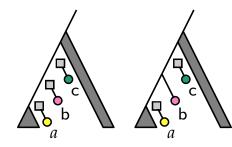


Lemma 6. Applying chain reduction is safe; i.e. $d_{SPR}(T, T') = d_{SPR}(S, S')$.

Proof.

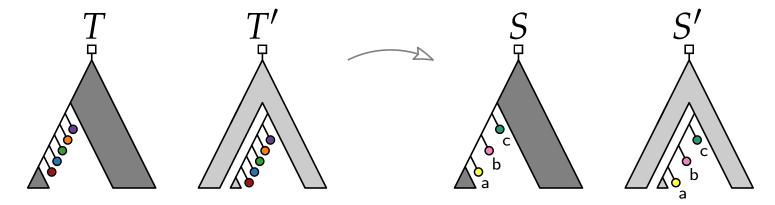
 Consider embedding of a MAF F into S.

Case 1



Chain reduction.

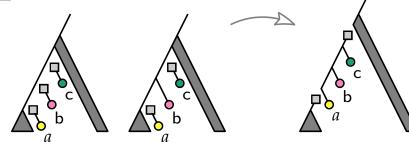
Replace any chain of leaves that occurs identically in both trees by three new leaves.



Lemma 6. Applying chain reduction is safe; i.e. $d_{SPR}(T, T') = d_{SPR}(S, S')$.

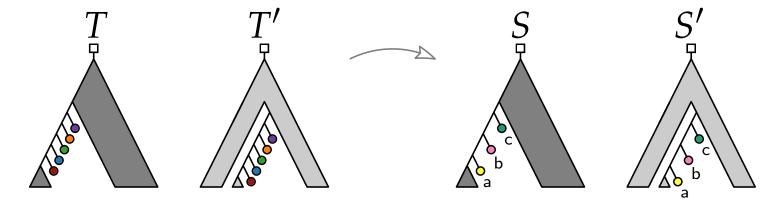
Proof.

 Consider embedding of a MAF F into S.



Chain reduction.

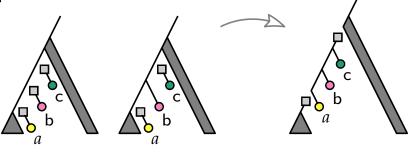
Replace any chain of leaves that occurs identically in both trees by three new leaves.

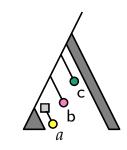


Lemma 6. Applying chain reduction is safe; i.e. $d_{SPR}(T, T') = d_{SPR}(S, S')$.

Proof.

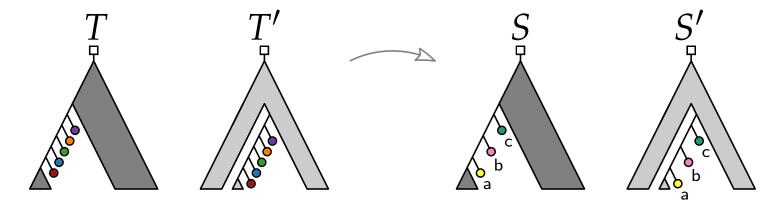
 Consider embedding of a MAF F into S.





Chain reduction.

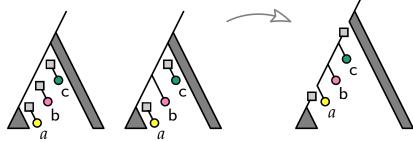
Replace any chain of leaves that occurs identically in both trees by three new leaves.

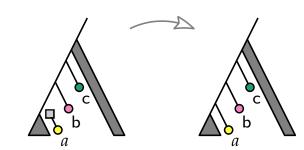


Lemma 6. Applying chain reduction is safe; i.e. $d_{SPR}(T, T') = d_{SPR}(S, S')$.

Proof.

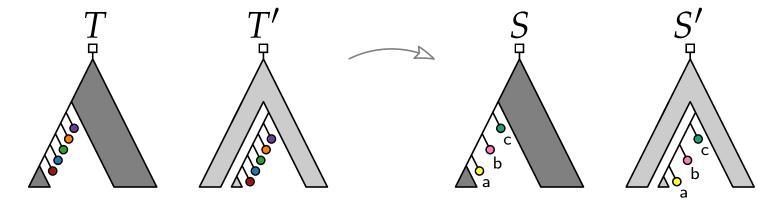
 Consider embedding of a MAF F into S.





Chain reduction.

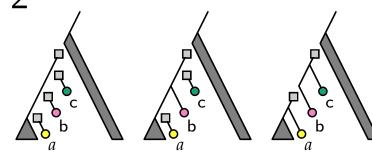
Replace any chain of leaves that occurs identically in both trees by three new leaves.



Lemma 6. Applying chain reduction is safe; i.e. $d_{SPR}(T, T') = d_{SPR}(S, S')$.

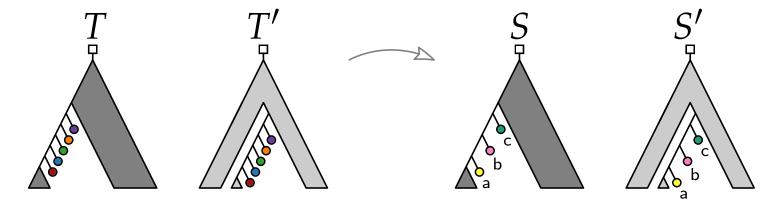
Proof.

 Consider embedding of a MAF F into S.



Chain reduction.

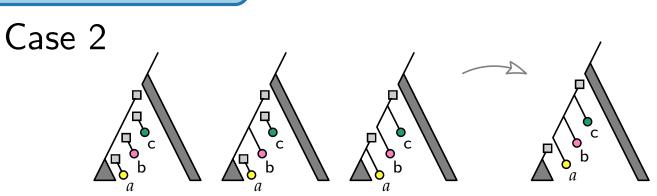
Replace any chain of leaves that occurs identically in both trees by three new leaves.



Lemma 6. Applying chain reduction is safe; i.e. $d_{SPR}(T, T') = d_{SPR}(S, S')$.

Proof.

 Consider embedding of a MAF F into S.



Theorem 7.

Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then $|X'| \leq 28 \, \mathsf{d}_{\mathsf{SPR}}(T,T')$.

Theorem 7.

Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then $|X'| \leq 28 \, \mathsf{d}_{\mathsf{SPR}}(T,T')$.

Proof. Let $F = \{T_{\rho}, T_1, \dots, T_k\}$ be MAF for S and S'. Let $n(T_i)$ be # of T_i that T_i overlaps with in embedding of F into S.

Theorem 7.

Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then $|X'| \leq 28 \, \mathsf{d}_{\mathsf{SPR}}(T,T')$.

Proof. Let $F = \{T_\rho, T_1, \dots, T_k\}$ be MAF for S and S'.

Let $n(T_i)$ be # of T_j that T_i overlaps with in embedding of F into S.

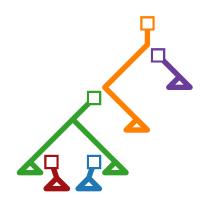
Claim 1. $\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \le 4k = 4 d_{SPR}(T, T').$

Theorem 7.

Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then $|X'| \leq 28 \, \mathsf{d}_{\mathsf{SPR}}(T,T')$.

Proof. Let $F = \{T_\rho, T_1, \dots, T_k\}$ be MAF for S and S'.

Claim 1.
$$\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \le 4k = 4 d_{SPR}(T, T').$$

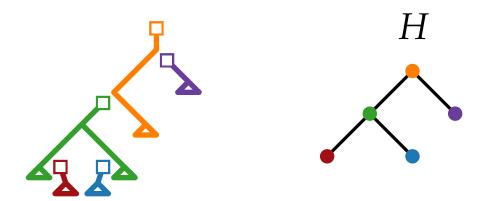


Theorem 7.

Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then $|X'| \leq 28 \, \mathsf{d}_{\mathsf{SPR}}(T,T')$.

Proof. Let $F = \{T_\rho, T_1, \dots, T_k\}$ be MAF for S and S'.

Claim 1.
$$\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \le 4k = 4 d_{SPR}(T, T').$$

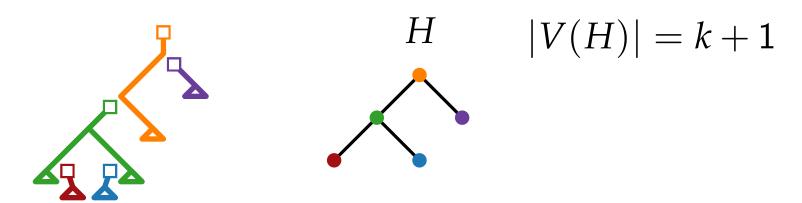


Theorem 7.

Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then $|X'| \leq 28 \, \mathsf{d}_{\mathsf{SPR}}(T,T')$.

Proof. Let $F = \{T_{\rho}, T_1, \dots, T_k\}$ be MAF for S and S'.

Claim 1.
$$\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \le 4k = 4 d_{SPR}(T, T').$$



Theorem 7.

Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then $|X'| \leq 28 \, \mathsf{d}_{\mathsf{SPR}}(T,T')$.

Proof. Let $F = \{T_{\rho}, T_1, \dots, T_k\}$ be MAF for S and S'.

Claim 1.
$$\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \le 4k = 4 d_{SPR}(T, T').$$

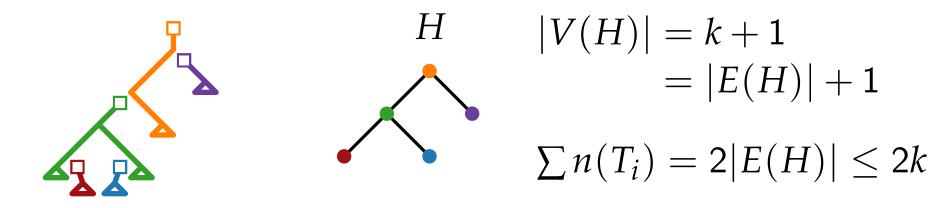


Theorem 7.

Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then $|X'| \leq 28 \, \mathsf{d}_{\mathsf{SPR}}(T,T')$.

Proof. Let $F = \{T_\rho, T_1, \dots, T_k\}$ be MAF for S and S'.

Claim 1.
$$\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \le 4k = 4 d_{SPR}(T, T').$$



Theorem 7.

Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then $|X'| \leq 28 \, \mathsf{d}_{\mathsf{SPR}}(T,T')$.

Proof. Let $F = \{T_{\rho}, T_1, \dots, T_k\}$ be MAF for S and S'.

Let $n(T_i)$ be # of T_j that T_i overlaps with in embedding of F into S.

Claim 1. $\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \le 4k = 4 d_{SPR}(T, T').$

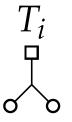
Theorem 7.

Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then $|X'| \leq 28 \, \mathsf{d}_{\mathsf{SPR}}(T,T')$.

Proof. Let $F = \{T_\rho, T_1, \dots, T_k\}$ be MAF for S and S'.

Let $n(T_i)$ be # of T_j that T_i overlaps with in embedding of F into S.

Claim 1.
$$\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \le 4k = 4 d_{SPR}(T, T').$$



Theorem 7.

Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then $|X'| \leq 28 \, \mathsf{d}_{\mathsf{SPR}}(T,T')$.

Proof. Let $F = \{T_{\rho}, T_1, \dots, T_k\}$ be MAF for S and S'.

Let $n(T_i)$ be # of T_j that T_i overlaps with in embedding of F into S.

Claim 1.
$$\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \le 4k = 4 d_{SPR}(T, T').$$

$$T_i$$
 T_i

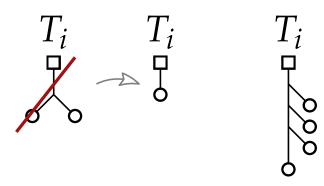
Theorem 7.

Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then $|X'| \leq 28 \, \mathsf{d}_{\mathsf{SPR}}(T,T')$.

Proof. Let $F = \{T_{\rho}, T_1, \dots, T_k\}$ be MAF for S and S'.

Let $n(T_i)$ be # of T_j that T_i overlaps with in embedding of F into S.

Claim 1.
$$\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \le 4k = 4 d_{SPR}(T, T')$$
.



Theorem 7.

Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then $|X'| \leq 28 \, \mathsf{d}_{\mathsf{SPR}}(T,T')$.

Proof. Let $F = \{T_{\rho}, T_1, \dots, T_k\}$ be MAF for S and S'.

Let $n(T_i)$ be # of T_j that T_i overlaps with in embedding of F into S.

Claim 1.
$$\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \le 4k = 4 d_{SPR}(T, T')$$
.

$$T_i$$
 T_i T_i T_i T_i T_j

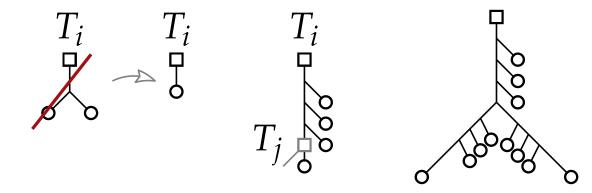
Theorem 7.

Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then $|X'| \leq 28 \, \mathsf{d}_{\mathsf{SPR}}(T,T')$.

Proof. Let $F = \{T_{\rho}, T_1, \dots, T_k\}$ be MAF for S and S'.

Let $n(T_i)$ be # of T_j that T_i overlaps with in embedding of F into S.

Claim 1.
$$\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \le 4k = 4 d_{SPR}(T, T')$$
.



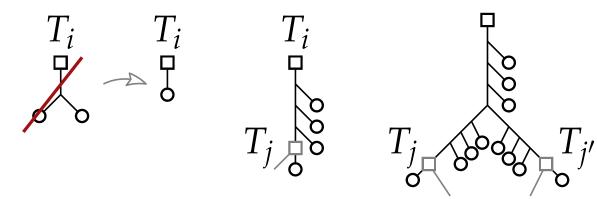
Theorem 7.

Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then $|X'| \leq 28 \, \mathsf{d}_{\mathsf{SPR}}(T,T')$.

Proof. Let $F = \{T_{\rho}, T_1, \dots, T_k\}$ be MAF for S and S'.

Let $n(T_i)$ be # of T_j that T_i overlaps with in embedding of F into S.

Claim 1.
$$\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \le 4k = 4 d_{SPR}(T, T').$$



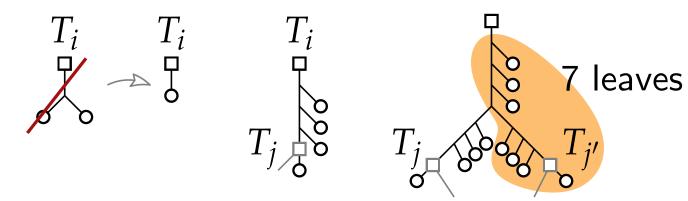
Theorem 7.

Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then $|X'| \leq 28 \, \mathsf{d}_{\mathsf{SPR}}(T,T')$.

Proof. Let $F = \{T_\rho, T_1, \dots, T_k\}$ be MAF for S and S'.

Let $n(T_i)$ be # of T_j that T_i overlaps with in embedding of F into S.

Claim 1.
$$\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \le 4k = 4 d_{SPR}(T, T').$$



Theorem 7.

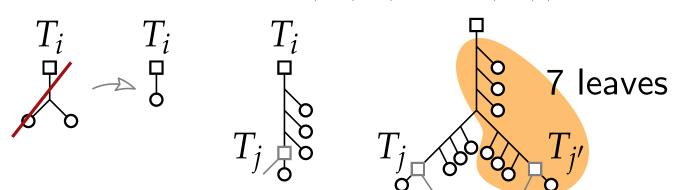
Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then $|X'| \leq 28 \, \mathsf{d}_{\mathsf{SPR}}(T,T')$.

Proof. Let $F = \{T_{\rho}, T_1, \dots, T_k\}$ be MAF for S and S'.

Let $n(T_i)$ be # of T_i that T_i overlaps with in embedding of F into S.

Claim 1.
$$\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \le 4k = 4 d_{SPR}(T, T').$$

Claim 2. # leaves of $T_i \leq 7(n(T_i) + n'(T_i))$.



 $\sum_{i=\rho}^{k} \# \text{ leaves of } T_i$

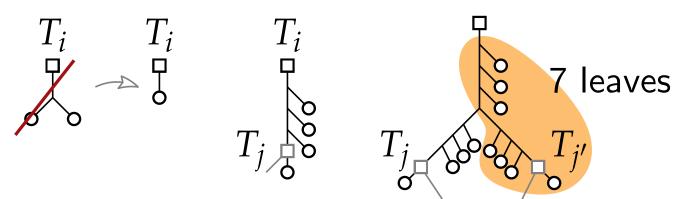
Theorem 7.

Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then $|X'| \leq 28 \, \mathsf{d}_{\mathsf{SPR}}(T,T')$.

Proof. Let $F = \{T_\rho, T_1, \dots, T_k\}$ be MAF for S and S'.

Let $n(T_i)$ be # of T_i that T_i overlaps with in embedding of F into S.

Claim 1.
$$\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \le 4k = 4 d_{SPR}(T, T').$$



$$\sum_{i=\rho}^{k} \# \text{ leaves of } T_i$$

$$\leq \sum_{i=\rho}^{k} 7(n(T_i) + n'(T_i))$$

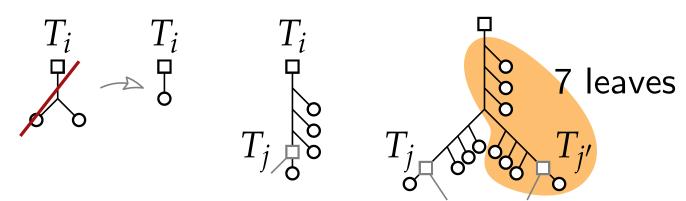
Theorem 7.

Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then $|X'| \leq 28 \, \mathsf{d}_{\mathsf{SPR}}(T,T')$.

Proof. Let $F = \{T_\rho, T_1, \dots, T_k\}$ be MAF for S and S'.

Let $n(T_i)$ be # of T_i that T_i overlaps with in embedding of F into S.

Claim 1.
$$\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \le 4k = 4 d_{SPR}(T, T').$$



$$\sum_{i=\rho}^{k} \# \text{ leaves of } T_i$$

$$\leq \sum_{i=\rho}^{k} 7(n(T_i) + n'(T_i))$$

$$\leq 28k$$

FPT algorithm

Theorem 8.

Computing $d_{SPR}(T, T')$ is fixed-parameter tractable when parameterized by $d_{SPR}(T, T')$.

FPT algorithm

Theorem 8.

Computing $d_{SPR}(T, T')$ is fixed-parameter tractable when parameterized by $d_{SPR}(T, T')$.

Proof.

- Reduce T and T' to S and S' by exhaustively applying the reduction rules.
- Let S and S' be on X' and let $k = d_{SPR}(S, S')$.

FPT algorithm

Theorem 8.

Computing $d_{SPR}(T, T')$ is fixed-parameter tractable when parameterized by $d_{SPR}(T, T')$.

Proof.

- Reduce T and T' to S and S' by exhaustively applying the reduction rules.
- Let S and S' be on X' and let $k = d_{SPR}(S, S')$.
- \blacksquare S has at most $4|X'|^2$ neighbours.

Theorem 8.

Computing $d_{SPR}(T, T')$ is fixed-parameter tractable when parameterized by $d_{SPR}(T, T')$.

- Reduce T and T' to S and S' by exhaustively applying the reduction rules.
- Let S and S' be on X' and let $k = d_{SPR}(S, S')$.
- \blacksquare S has at most $4|X'|^2$ neighbours.
 - lacksquare S has less than 2|X'| edges to cut and to attach to.

Theorem 8.

Computing $d_{SPR}(T, T')$ is fixed-parameter tractable when parameterized by $d_{SPR}(T, T')$.

- Reduce T and T' to S and S' by exhaustively applying the reduction rules.
- Let S and S' be on X' and let $k = d_{SPR}(S, S')$.
- \blacksquare S has at most $4|X'|^2$ neighbours.
 - lacksquare S has less than 2|X'| edges to cut and to attach to.
- Length-k BFS from S visits at most $O\left(\left(4|X'|^2\right)^k\right) = O\left((56k)^{2k}\right)$ trees.

Theorem 8.

Computing $d_{SPR}(T, T')$ is fixed-parameter tractable when parameterized by $d_{SPR}(T, T')$.

- Reduce T and T' to S and S' by exhaustively applying the reduction rules.
- Let S and S' be on X' and let $k = d_{SPR}(S, S')$.
- \blacksquare S has at most $4|X'|^2$ neighbours.
 - lacksquare S has less than 2|X'| edges to cut and to attach to. ____ by Theorem 7
- Length-k BFS from S visits at most $O\left(\left(4|X'|^2\right)^k\right) = O\left((56k)^{2k}\right)$ trees.

Theorem 8.

Computing $d_{SPR}(T, T')$ is fixed-parameter tractable when parameterized by $d_{SPR}(T, T')$.

- Reduce T and T' to S and S' by exhaustively applying the reduction rules.
- Let S and S' be on X' and let $k = d_{SPR}(S, S')$.
- \blacksquare S has at most $4|X'|^2$ neighbours.
 - lacksquare S has less than 2|X'| edges to cut and to attach to. ____ by Theorem 7
- Length-k BFS from S visits at most $O\left(\left(4|X'|^2\right)^k\right) = O\left((56k)^{2k}\right)$ trees.
- Since $k = d_{SPR}(S, S') = d_{SPR}(T, T')$, this yields an fpt algorithm.

Idea.

- Given reduced trees T and T' we compute an agreement forest F by
- successively making "cuts" and "eliminations".
- \blacksquare This shrink T and T' further and further.
- Show that |F| is at most 3|F'|, where F' is a MAF of T and T'.

```
APPROXDSPR(T, T')
  i \leftarrow 1
  G_i \leftarrow T
  H_i \leftarrow T'
  while \exists pair of sibling leaves a and b in G_i do
  return |H_i|-1
```

```
APPROXDSPR(T, T')
  i \leftarrow 1
  G_i \leftarrow T
  H_i \leftarrow T'
  while \exists pair of sibling leaves a and b in G_i do
  return |H_i|-1
```

```
APPROXDSPR(T, T')
```

$$i \leftarrow 1$$
 $G_i \leftarrow T$ $H_i \leftarrow T'$ while \exists pair of sibling leaves a and b in G_i do \dagger find the case that applies to a and b in H_i

a b

return $|H_i|-1$

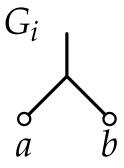
```
APPROXDSPR(T, T')
```

$$i \leftarrow 1$$

$$G_i \leftarrow T$$

$$H_i \leftarrow T'$$

while \exists pair of sibling leaves a and b in G_i do find the case that applies to a and b in H_i



return
$$|H_i|-1$$

$$H_i$$
 a
 b

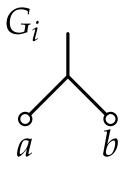
APPROXDSPR(T, T')

$$i \leftarrow 1$$

$$G_i \leftarrow T$$

$$H_i \leftarrow T'$$

while \exists pair of sibling leaves a and b in G_i do find the case that applies to a and b in H_i



return
$$|H_i|-1$$
 Case 1 Case 2

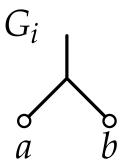
APPROXDSPR(T, T')

$$i \leftarrow 1$$

$$G_i \leftarrow T$$

$$H_i \leftarrow T'$$

while \exists pair of sibling leaves a and b in G_i do find the case that applies to a and b in H_i



return
$$|H_i|-1$$

$$H_i$$
 a
 b

$$a$$
 $\Delta \Delta b$

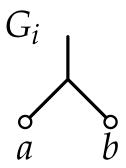
APPROXDSPR(T, T')

$$i \leftarrow 1$$

$$G_i \leftarrow T$$

$$H_i \leftarrow T'$$

while \exists pair of sibling leaves a and b in G_i do | find the case that applies to a and b in H_i

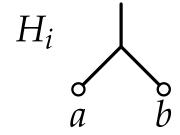


return $|H_i|-1$

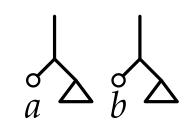
Case 1

Case 2

Case 3



$$a$$
 λ λ λ b



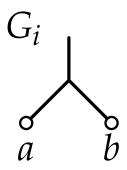
APPROXDSPR(T, T')

$$i \leftarrow 1$$

$$G_i \leftarrow T$$

$$H_i \leftarrow T'$$

while \exists pair of sibling leaves a and b in G_i do find the case that applies to a and b in H_i apply the corresponding transaction to obtain G_{i+1} from G_i and H_{i+1} from H_i i++

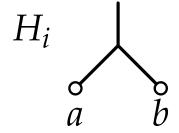


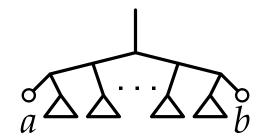
return $|H_i|-1$

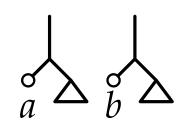
Case 1

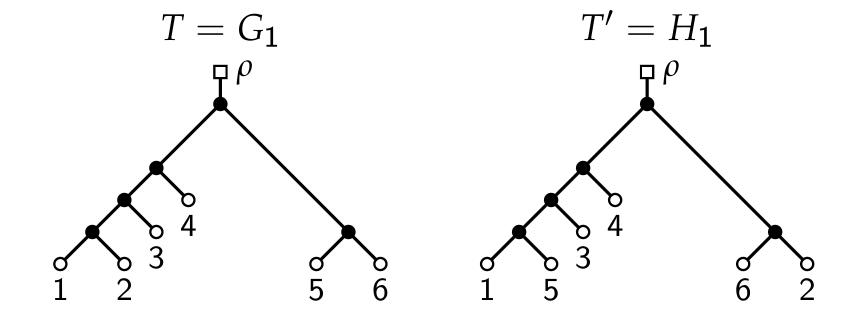
Case 2

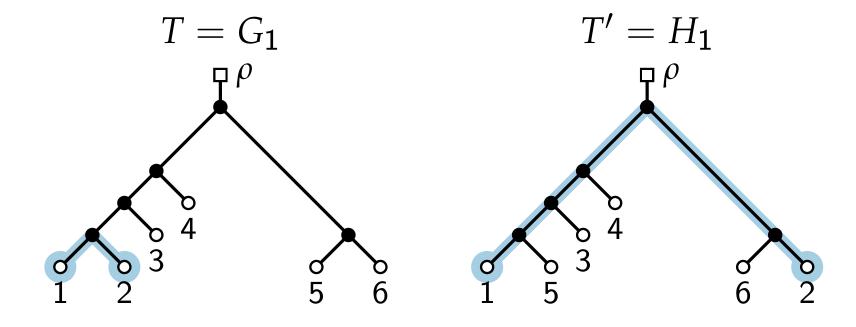
Case 3

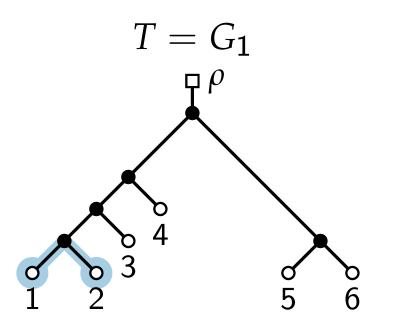


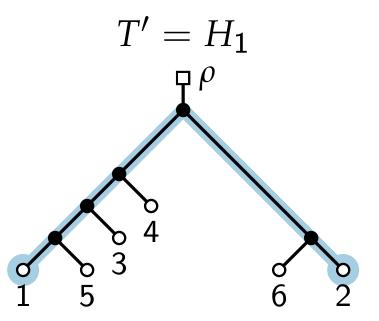




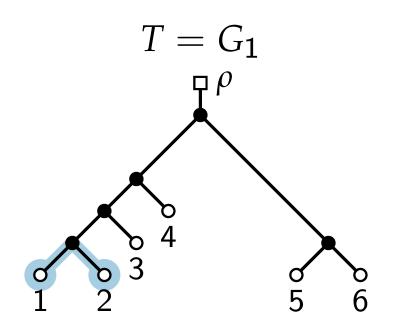


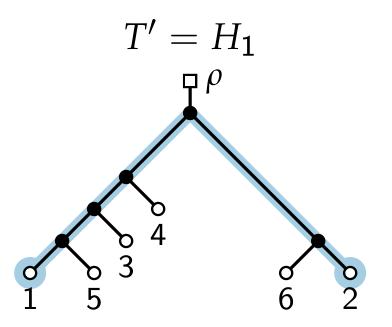




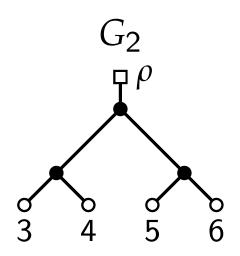


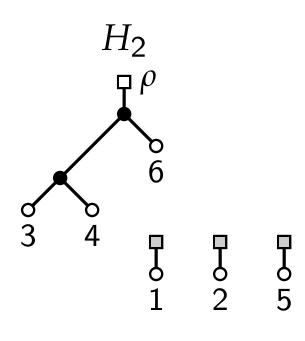
Should we cut of the leaves 1 or 2 or all in between them in H_1 ?



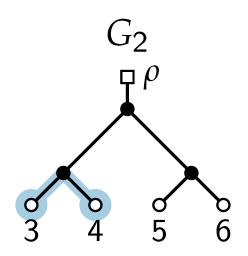


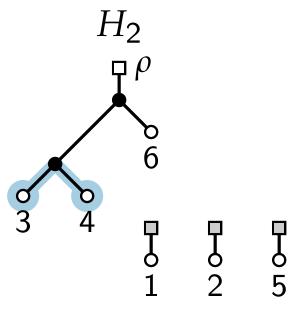
- Should we cut of the leaves 1 or 2 or all in between them in H_1 ?
- Do parts of each!

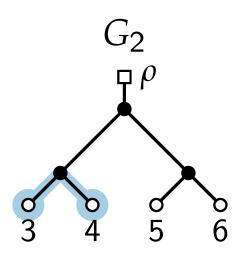


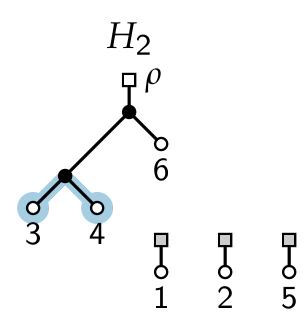


- Should we cut of the leaves 1 or 2 or all in between them in H_1 ?
- Do parts of each!



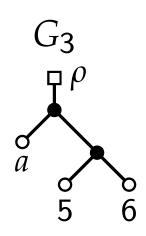


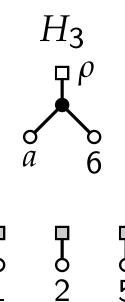




Case 1

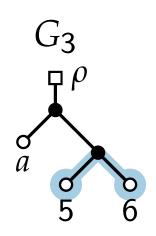
If the same cherry occurs in H_i , we can simply reduce it.

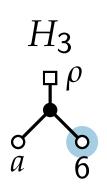




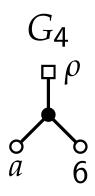
Case 1

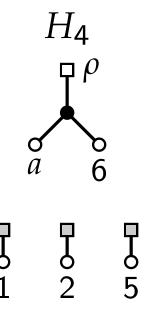
If the same cherry occurs in H_i , we can simply reduce it.



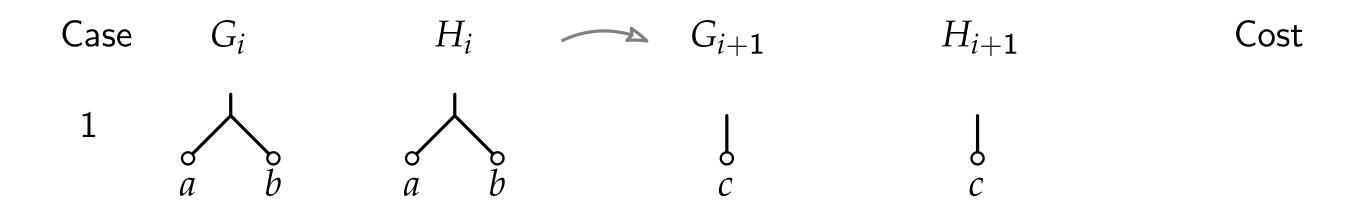


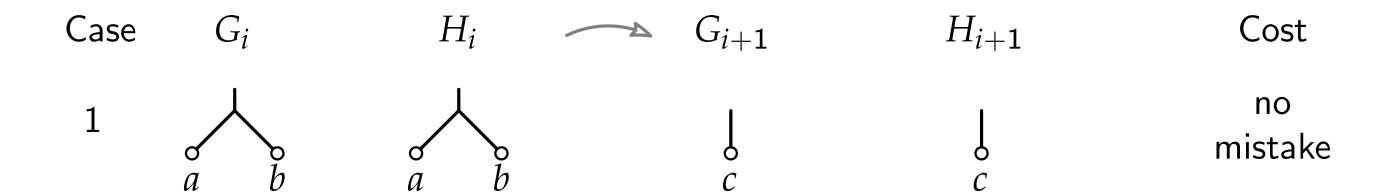
- Leaf b is the only leaf of a tree in H_i .
- \blacksquare Cut off b in G_i .

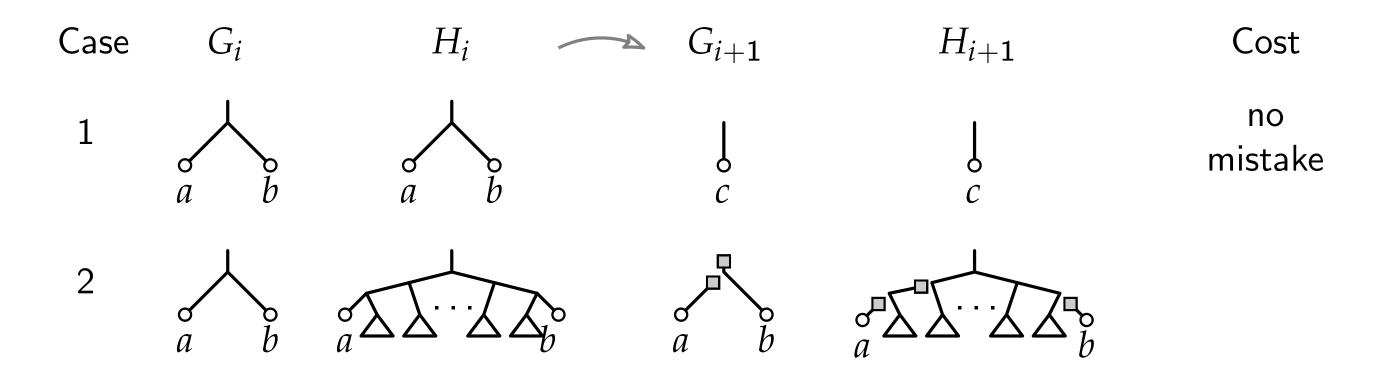


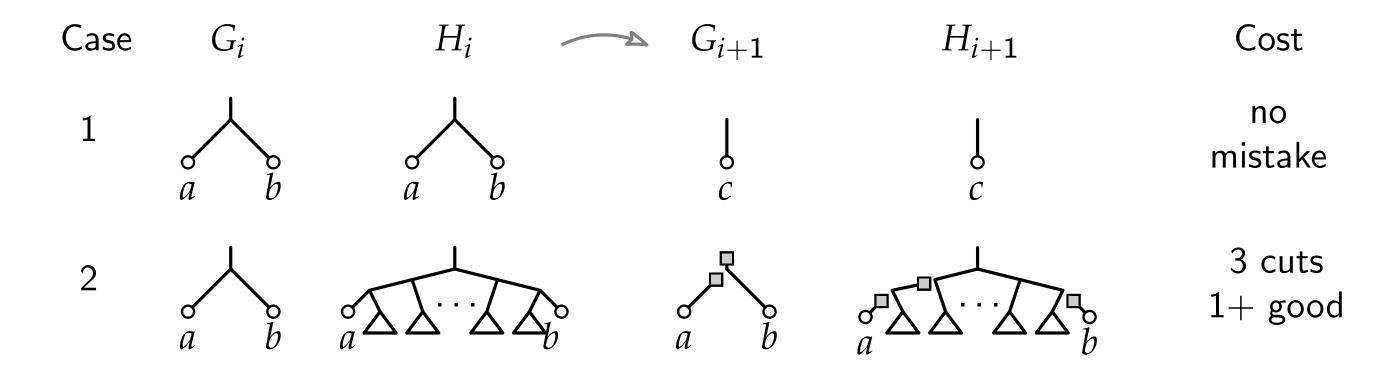


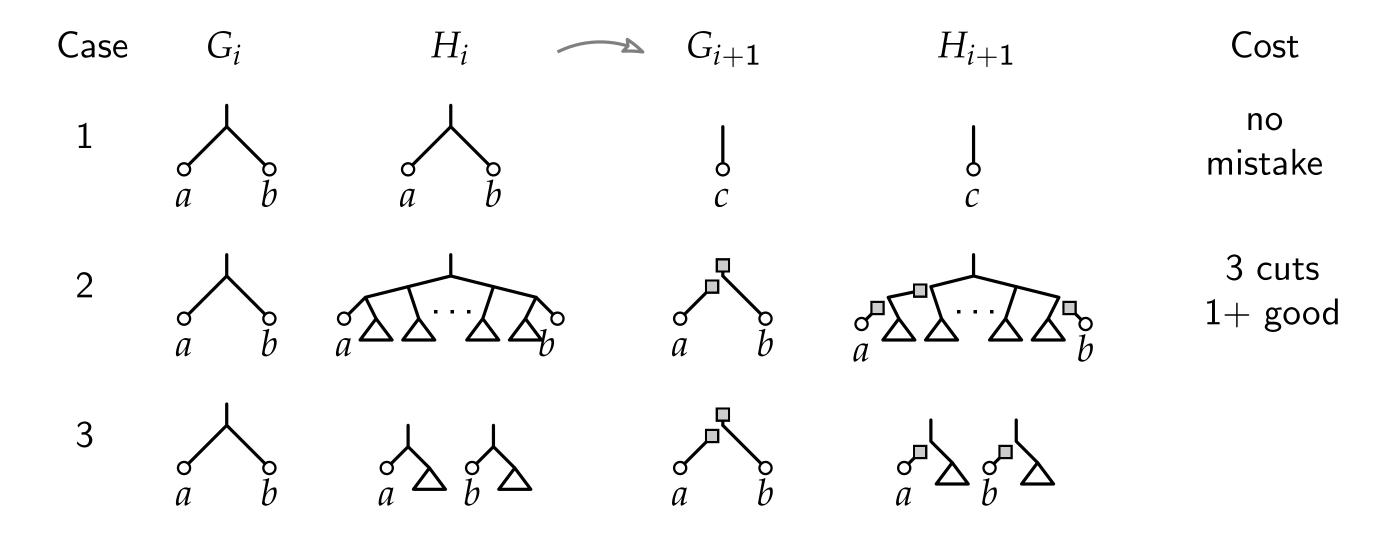
Return 3.

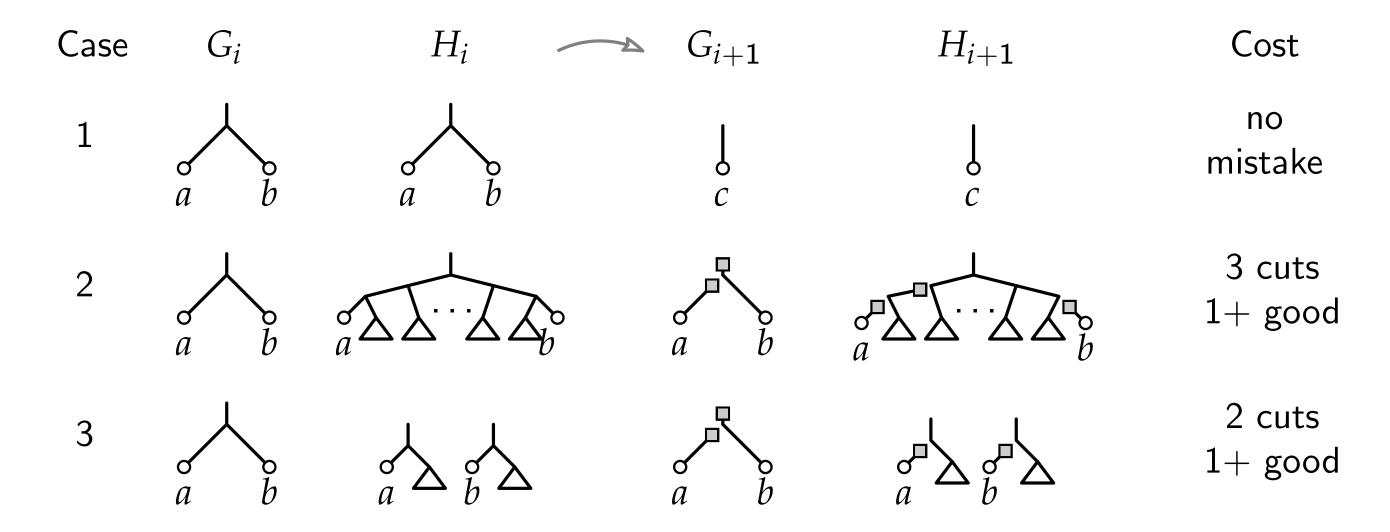


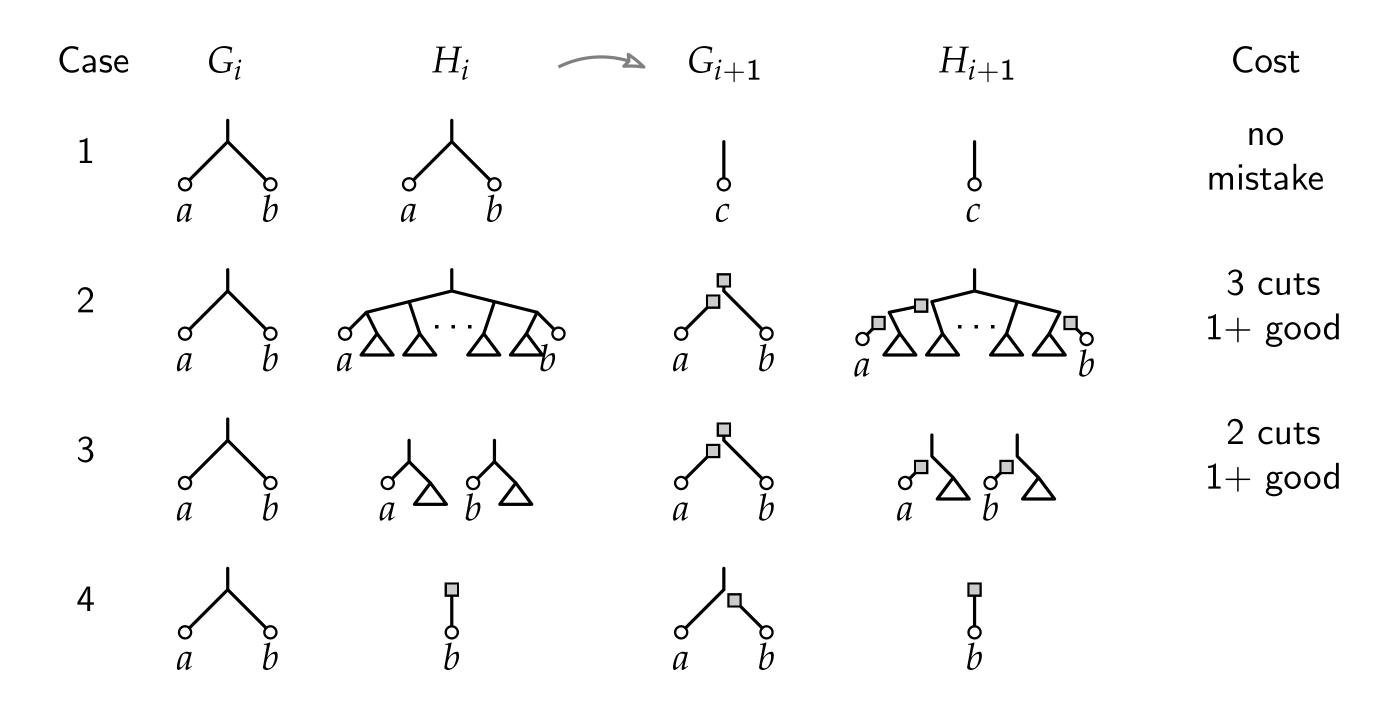


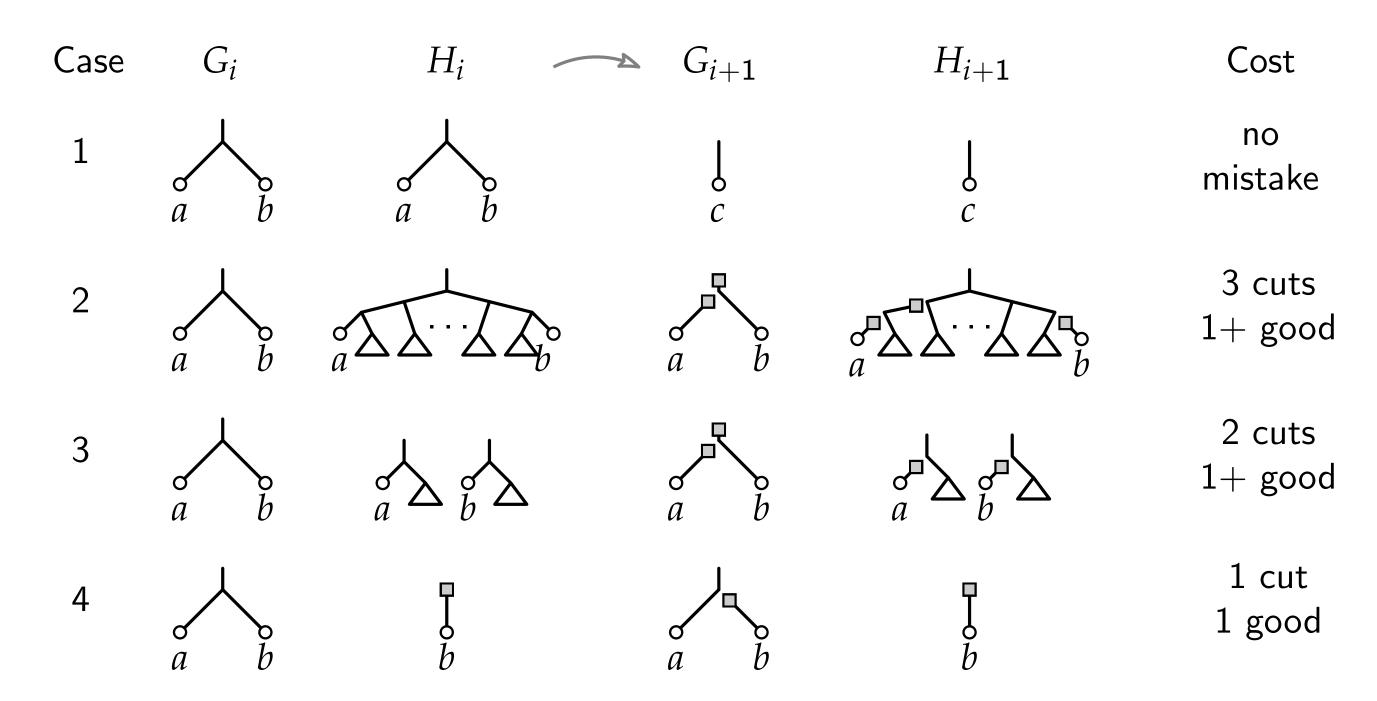


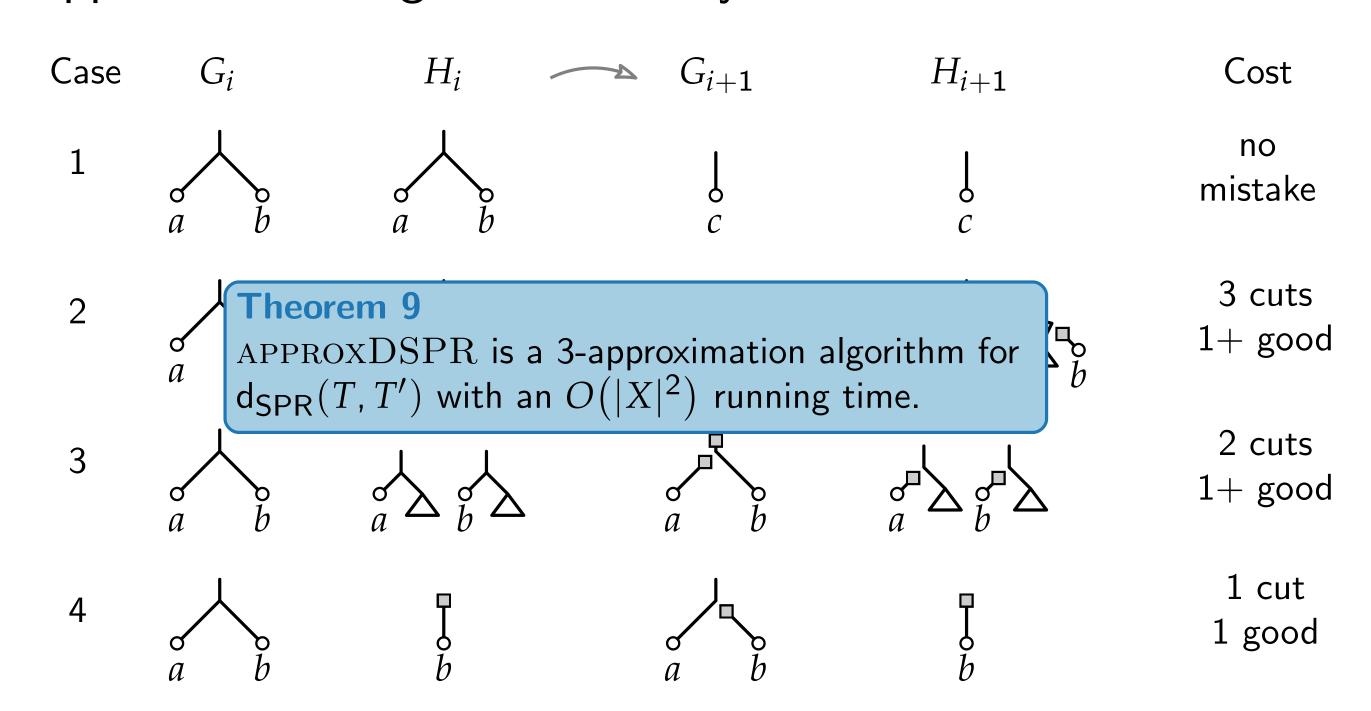






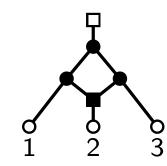






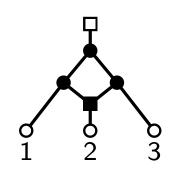
Phylogenetic trees.

- There are other classes of phylogenetic trees: unrooted, non-binary, ranked, . . .
- Trees can be generalized to **phylogenetic networks**, which can also have indegree 2 outdegree 1 vertices.



Phylogenetic trees.

- There are other classes of phylogenetic trees: unrooted, non-binary, ranked, . . .
- Trees can be generalized to **phylogenetic networks**, which can also have indegree 2 outdegree 1 vertices.



Maximum Agreement Forests.

- Reframing (characterising) a problem in a different way, can sometimes make your life a lot easier.
- MAF can be generalized to Maximum Agreement Graphs, but these don't characterize the SPR-distance of networks anymore.

Kernelization.

- Kernelization is an important technique to construct fpt algorithms.
- Result important since SPR-distance small in practice.
- \blacksquare Reduction rules actually give a kernel of size at most 15k-9.
- With further reduction rules can get size below 11k 9. [KL '18]
- Divide & conquer algorithm can (in practice) reduce further reduce problem sizes. [LS '11]

Kernelization.

- Kernelization is an important technique to construct fpt algorithms.
- Result important since SPR-distance small in practice.
- \blacksquare Reduction rules actually give a kernel of size at most 15k-9.
- With further reduction rules can get size below 11k 9. [KL '18]
- Divide & conquer algorithm can (in practice) reduce further reduce problem sizes. [LS '11]

Approximation algorithm.

■ There exist 2-approximation algorithms for the SPR-distance with a running time in $\mathcal{O}(n^3)$. [CHW '17]

Literature

Original papers:

- [BS '05] "On the computational complexity of the rooted subtree prune and regraft distance" for SPR, MAF, characterisation, fpt, divide & conquer
- [RSW '06] "The maximum agreement forest problem: Approximation algorithms and computational experiments"

Referenced papers:

- [HJWZ '96] "On the complexity of comparing evolutionary trees" for NP-hardness proof
- [KL '19] "New reduction rules for the tree bisection and reconnection distance"
- [CHW '17] "A New 2-Approximation Algorithm for rSPR Distance"
- [LS11] "A cluster reduction for computing the subtree distance between phylogenies"