Advanced Algorithms

QP-Relaxation
 for Max Cut

Cut

\square Let $G=(V, E)$ be a graph with edge weights $c: E \rightarrow \mathbb{N}$.

- A cut of G is a partition $(S, V \backslash S)$ of V.
- The weight of a cut $(S, V \backslash S)$ is

$$
c(S, V \backslash S)=\sum_{\substack{u v \in E, u \in S, v \in V \backslash S}} c(u v)
$$

The MaxCut Problem

Input. Graph $G=(V, E)$, edge weights $c: E \rightarrow \mathbb{N}$.
Output. Cut $(S, V \backslash S)$ of G with maximum weight.
■ MaxCut is NP-hard.

$$
c(S, V \backslash V)=18
$$

Randomized 0.5-approximation for (unweighted) MaxCut

Theorem 1.

CoinFlipMaxCut is a randomized
0.5 -approximation algorithm for MaxCut.

Proof.

- Runs in $O(n+m)$.

■ Compute expected weight of cut:

$$
\begin{aligned}
\mathrm{E}[c(\operatorname{CoinFlipMaxCuT}(G))] & =\mathrm{E}[|E(S, V \backslash S)|] \\
& =\sum_{e \in E} \mathrm{P}[e \in E(S, V \backslash S)] \\
& =\sum_{e \in E} \frac{1}{2}=\frac{1}{2}|E| \geq \frac{1}{2} \mathrm{OPT}(G)
\end{aligned}
$$

■ Can be "derandomized". Exercise.

LP-Relaxation

Integer Linear Program maximize$c^{\boldsymbol{\top}} x$	
subject to	$A x$

\curvearrowright Solution, approximation, or bound

Assignment for ILP

Solution for LP

e.g. rounding

Goemans-Williamson algorithm for MaxCut

Goemans-Williamson algorithm for MaxCut

$\mathrm{QP}(G, c)$

Idea.

- Indicator variables $x_{i} \in\{1,-1\}$
$\square x_{i} x_{j}= \begin{cases}1 & \text { if } i, j \text { in same partition } \\ -1 & \text { otherwise }\end{cases}$

- Weight matrix $c_{i j}$

	1	2	3	4	5
1		3			1
2	3		5		2
3		5		6	
4			6		2
5	1	2		2	

- Solution

$$
\begin{aligned}
& x_{2}=x_{4}=1 \\
& x_{1}=x_{3}=x_{5}=-1
\end{aligned}
$$

Note.

- Solving $\operatorname{QP}(G)$ is NP-hard.

■ Otherwise MaxCut wouldn't be NP-hard.

Goemans-Williamson algorithm for MaxCut

1-dimensional
quadratic program

- Here explained for $k=2$,
- but unknown if QP^{2} can be solved optimally in poly. time.
approximation for
$\square \mathrm{QP}^{n}$ can be solved in poly. time.

Relaxation of $\operatorname{QP}(G, c)$

$$
\begin{array}{lrl}
\hline \mathrm{QP}^{2}(G, c) & & \text { "." is scalar product. } \\
\text { maximize } & \frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{i j}\left(1-x^{i} \cdot x^{j}\right) & x^{i} \text { lies on unit circle. } \\
\text { subject to } & x^{i} \cdot x^{i}=1 & x^{i} x^{j}=x_{1}^{i} x_{1}^{j}+x_{2}^{i} x_{2}^{j}= \\
& x^{i}=\left(x_{1}^{i}, x_{2}^{i}\right) & \in \mathbb{R}^{2}
\end{array}
$$

subject to

subject to

\square We maximize angles $\alpha_{i j}$:
\square since larger $\alpha_{i j}$, increases contribution of $c_{i j}$.
$\frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{i j}\left(1-\cos \left(\alpha_{i j}\right)\right)$

Goemans-Williamson algorithm for MaxCut

Algorithm RandomizedMaxCut

RandomizedMaxCut(G, c)
Compute optimal solution $\left(\tilde{x}^{1}, \ldots, \tilde{x}^{n}\right)$ for $\operatorname{QP}^{2}(G, c)$
Pick random vector $r \in \mathbb{R}^{2}$
$S \leftarrow\left\{i \in V: \tilde{x}^{i} \cdot r \geq 0\right\}$
return $c(S, V \backslash S)$ - \tilde{x}^{i} lies above line ℓ orthogonal to r

RandomMaxCut - expected value

Lemma 2.

Let X be the solution of RandomizedMaxCut($G, ~ c)$. If r is picked uniformally at random, then

$$
\mathrm{E}[X]=\sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{i j} \frac{\alpha_{i j}}{\pi} .
$$

Proof.

■ $E[X]=\sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{i j} \mathrm{P}\left[\ell\right.$ separates $\left.\tilde{x}^{i}, \tilde{x}^{j}\right]$

- $\mathrm{P}\left[\ell\right.$ separates $\left.\tilde{x}^{i}, \tilde{x}^{j}\right]=\mathrm{P}\left[s\right.$ or t lies on $\left.B_{i j}\right]$

$$
=\frac{\alpha_{i j}}{2 \pi}+\frac{\alpha_{i j}}{2 \pi}=\frac{\alpha_{i j}}{\pi}
$$

■ $B_{i j}$ has length $\alpha_{i j}=\arccos \left(\tilde{x}^{i} \cdot \tilde{x}^{j}\right)$.

RandomMaxCut - quality

Theorem 3.

Let X be the solution of RandomizedMaxCut(G, c).
Then

$$
\frac{\mathrm{E}[X]}{\mathrm{OPT}(G, c)} \geq 0.8785 .
$$

Proof.
■ Lemma 2: $\mathrm{E}[X]=\sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{i j} \alpha_{i j}^{\pi}$

- Optimal solution for QP^{2} :
- $\frac{\mathrm{E}[X]}{\mathrm{OPT}(G, c)} \geq \frac{\mathrm{E}[X]}{\mathrm{QP}^{2}(G, c)}$

■ $\frac{\alpha_{i j}}{\pi} \geq \frac{1-\cos \left(\alpha_{i j}\right)}{2} \cdot 0.8785$

$$
\operatorname{QP}^{2}(G, c)=\sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{i j} \frac{1-\cos \left(\alpha_{i j}\right)}{2}
$$

■ $\mathrm{QP}^{2}(G, c)$ is relaxation of $\mathrm{QP}(G, c)$:

$$
\operatorname{QP}^{2}(G, c) \geq \operatorname{OPT}(G, c)
$$

Example

1. Step: Build QP

$$
\begin{array}{lr}
\text { maximize } & \frac{1}{2} \sum_{j=1}^{6} \sum_{i=1}^{j-1} c_{i j}\left(1-x_{i} x_{j}\right) \\
\text { subject to } & x_{i}^{2}=1
\end{array}
$$

2. Step: Relax QP to QP^{2}

$$
\begin{array}{lrl}
\text { maximize } & \frac{1}{2} \sum_{j=1}^{6} \sum_{i=1}^{j-1} c_{i j}\left(1-x^{i} \cdot x^{j}\right) & \\
\text { subject to } & x^{i} \cdot x^{i} & =1 \\
& x^{i}=\left(x_{1}^{i}, x_{2}^{i}\right) & \in \mathbb{R}^{2}
\end{array}
$$

3. Step: Solve QP^{2}

Variable	x^{1}	x^{2}	x^{3}	x^{4}	x^{5}	x^{6}
Angle	0	180	120	165	345	210

4. Step: Guess r
5. Step: Derive S

Goemans-Williamson algorithm for MaxCut

1-dimensional
 quadratic program

$G=(V, E), c$
approximation for
MaxCut on G

- So far, $k=2$.
- QP^{n} can be solved in polynomial time.
relax to k dimensions for $k \leq n$

quadratic program QP ${ }^{k}$

solve
real-valued solution for Q^{k}

$\mathrm{QP}^{n}(G, c)$
$\mathrm{QP}^{2}(G, c)$
maximize $\quad \frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{i j}\left(1-x^{i} \cdot x^{j}\right)$
subject to

$$
\begin{aligned}
x^{i} \cdot x^{i} & =1 \\
x^{i}=\left(x_{1}^{i}, x_{2}^{i}\right) & \in \mathbb{R}^{2}
\end{aligned}
$$

$$
\mathbf{Q P}^{n}(G, c)
$$

maximize $\quad \frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{i j}\left(1-x^{i} \cdot x^{j}\right)$
subject to

$$
\begin{aligned}
x^{i} \cdot x^{i} & =1 \\
x^{i} & \in \mathbb{R}^{n}
\end{aligned}
$$

- A matrix M is called positive semidefinite if, for any vector $v \in \mathbb{R}^{n}$:

$$
v^{\top} \cdot M \cdot v \geq 0
$$

- $M=\left(m_{i j}\right)=\left(x^{i} \cdot x^{j}\right)$ is positive semidefinite.
- $\mathrm{QP}^{n}(G, c)$ becomes problem SEmiDefiniteCut(G, c).

■ Can be approximated in time poly. in (G, c) and $1 / \varepsilon$ with additive guarantee ε.
■ For $\varepsilon=10^{-5}$, approximation guarantee for RANDOMMaxCut is achieved.

Discussion

■ Semidefinite programming is a powerful tool to develop approximation algorithms

- Whole book on this topic:

■ [Gärtner, Matoušek] "Approximation Algorithms and Semidefinite Progamming"

- Using randomness is another tool to design approximation algorithms.

■ See future lectures.

Literature

Original paper:
■ [GW '95] "Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming" Source:
■ [Vazirani Ch26] "Approximation Algorithms" Whole book on this topic:

- [Gärtner, Matoušek] "Approximation Algorithms and Semidefinite Progamming"

