Julius-Maximilians-
UNIVERSITAT
WURZBURG

Advanced Algorithms

Approximation algorithms
Coloring and scheduling problems

Jonathan Klawitter - WS20

Dealing with NP-hard problems

What should we do?

B Sacrifice optimality for speed
m Heuristics
m Approximation Algorithms

this lecture

B Optimal Solutions
m Exact exponential-time algorithms
B Fine-grained analysis — parameterized algorithms

Heuristic Approximation

NP-hard

Exponential EPT

Approximation algorithms

Problem.
B For NP-hard optimisation problems, we cannot compute the
optimal solution of each instance efficiently (unless P = NP).

B Heuristics offer no guarantee on the quality of their solutions.

Goal.
B Design approximation algorithms that
B run in polynomial time and
m compute solutions of guaranteed quality.

B Study techniques for the design and analysis of
approximation algorithms.

Overview.
B Approximation algorithms that compute solutions with /that are
m additive guarantee, W relative guarantee, ® “arbitraility good".

Approximation with additive guarantee

(« s_®

Definition.

Let IT be an optimisation problem and let A be a
polynomial-time algorithm that computes the value

A(I) for an instance I of IT.
A is called an approximation algorithm with

additive guarantee 0 if

IOPT(I) — A(I)| < 4(1)

kfor every instance [of 11.

B Most problems do not admit an approximation
algorithm with additive guarantee.

Minimum vertex coloring

Input. A graph G = (V,E). Let A be the maximum degree of G.

Output. A vertex coloring, that is, an assignment of colors to the

vertices of G such that now two adjacent vertices get the
same color, with minimum number of colors.

B Min Vertex Coloring is NP-hard.
B Even Vertex 3-Coloring is NP-complete.

GREEDY VERTEXCOLORING(G)
Color vertices in some order with lowest feasible color.

N

‘Theorem 1.
The algorithm GreedyVertexColoring computes a vertex
coloring with at most A 4 1 colors in O(n + m) time.

kHence, It has an additive approximation gurantee of A — 1.)

e—0 O

t i

> (

Minimum edge coloring

Input. A graph G = (V,E). Let A be the maximum degree of G.

Output. An edge coloring, that is, an assignment of colors to the
edges of G such that now two incident edges get the same _q

color, with minimum number of colors.
B Min Edge Coloring is NP-hard.

B Even Edge 3-Coloring is NP-complete.

B The minimum number of colors needed for an edge co-
loring of G is called the chromatic index x'(G).

B x'(G) is lower bounded by A.
B We show that ' (G) < A+ 1.

Minimum edge coloring — upper bound

~\

(Vizing’s Theorem.
For every graph G = (V, E) with maximum degree A
holds that A < x'(G) < A+ 1.

_ Y,
Proof by induction on m = |E|.
B Base case m =1 is trivial. PN

Let G be a graph on m edges and e an edge of G.
B By induction, G —e has a A(G — ¢) + 1 edge coloring. H
B If A(G) > A(G —e), color e with color A(G) + 1.

B If A(G) = A(G —e), change coloring such that u and v
(of e = {u,v}) miss the same color «.

Lemma 2
B Then color e with with w«. >u v< —A >u v<

Minimum edge coloring — recoloring

'Lemma 2.

Let G have a (A + 1) edge coloring c, let u, v be
non-adjacent, and deg(u),deg(v) < A. Then ¢ can be
kchanged such that u and v miss the same color.

)Uh

Proof. Note, each vertex is missing a color.

Let u miss 5 and v miss «1; apply the following algorithm: P i
VIZINGRECOLORING(G = (V,E), u,c, a1) 1 misses
1+ 1

while Jw € N(u): |c({u,w}) = a; A
w & {vy1,...,0;_1} do

U; < W
®; 1 < min color missing at w o

return 0y, ...,0;, &1, ..., %41

Minimum edge coloring — recoloring

'Lemma 2.

Let G have a (A + 1) edge coloring c, let u, v be
non-adjacent, and deg(u),deg(v) < A. Then ¢ can be
kchanged such that u and v miss the same color.

) U h
0.,“

Proof. Note, each vertex is missing a color.
Let u miss 5 and v miss «1; apply the following algorithm:

VIZINGRECOLORING(G = (V,E), u,c, 1) Case 2 =0, j < h.
1+ 1
while Jw € N(u): c({u,w}) =a; A
w g {vl,...,vi_l} do

U; < W

®; 1 < min color missing at w
I+t
return 0y, ...,0;, &1, ..., %41

Minimum edge coloring — recoloring

Proof continued for
Case 2: a1 = wj,] < h and ﬁMw
we need to find a color for {u,v;}. o J o

m Consider subgraph G’ of G induced by | |
edges with color 5 and «;. —B. % o ,»%(x]-

. X
B Since A(G") < 2, we can recolor components. / —p

B u,0;, 0y have degree 1 in G’
= they are not all in same component
W If v; and u are not in the same component:
® Recolor component ending at v,
B U; now misses [
m Color {u,v;} in B
B What if vj and u are in the same component?

Minimum edge coloring - algorithm

VIZINGEDGECOLORING(G = (V, E))

ifLEre:tgntgen ‘Theorem 4.
else VIZINGEDGECOLORING A is an
approximation algorithm with
g//t:} g_andom edge of & additive approximation guarantee
— <
VI1ZINGEDGECOLORING(G') kA(G) OPT(G) < 1.

if A(G') < A(G) then
| Color {u,v} with lowest free color
else

Recolor E with Lemma 2
Color {u, v} with color now missing at u and ©

Approximation with relative factor

B An additive approximation guarantee can seldomly be
achieved; but sometimes there is a multiplicative . ..

fD f. .t.
EHILIon. maximisation

instance I of IT a value A(I) such that

A(I)
OPT(I)

INTV

X.

\We call « the approximation factor.

Let IT be an minimisation problem and a € Q.
A (factor) a-approximation algorithm for IT is a
polynomial-time algorithm A, which computes for every

10 -

2-approximation for Metric TSP (from AGT)

Input. Complete graph G = (V, E) and distance function
d : E — R>q, which satisfies the triangle inequality,
ie. Vu,o,w eV :duw) <du,v)+do w).

Output. Shortest Hamilton cycle.

Algorithm.
B Compute MST.

11-20

2-approximation for Metric TSP (from AGT)

Input. Complete graph G = (V, E) and distance function
d : E — R>q, which satisfies the triangle inequality, u.ﬁv

ie. Vu,o,w eV :duw) <du,v)+do w).
w

Output. Shortest Hamilton cycle.

Algorithm.

m Compute MST. Theorem 5.
The MST edge doubling algorithm

IS a 2-approximation algorithm for
B Walk along tree, metric TSP.

B Double edges.

J

B skipping visited vertices Proof.

B and adding shortcuts. d(A) < d(cycle) =2d(MST) < 20PT

12 - 12

Nearest addition algorithm for Metric TSP

NEARESTADDITIONALGORITHM(G = (V, E), d)

Find closest pair, say 7 and j
Set tour T to go from i to j to i
for n — 2 iterations do
Find pairi € T and j ¢ T with mind(i, j)
Let k be vertex after i in T
Add j between 7 and k

‘Theorem 6.] Proof.

The NEARESTADDITIONALGORITHM B Exercise.

IS a 2-approximation algorithm for
metric TSP.

B Hints: MST and Prim’s algorithm.

Approximation schemes

B In some cases, we can get arbitrarily good approximations.

(« s
Definition. maximisation
Let IT be a minimisation problem. An algorithm A is called

an polynomial-time approximation scheme (PTAS), if
A computes for every input (I, €) consisting of an instance
I of IT and &€ > 0 a value A(I), such that:

> (1)
m A(I) < (1+¢)-OPT, and
B the runtime of A is polynomiell in |I| fiir every € > 0.

A is called a fully polynomial-time approximation
scheme (FPTAS), if it runs polynomial in |I| and 1/¢.

Examples. mO (n2 - 3%) — PTAS but not FPTAS
2 1
O (n?+ni) = PTASbut not FPTAS o 5 (1 (2)%) = FPTAS

Multiprocessor Scheduling

Input. M n jobs [1,...,], with B m identical machines (m < n)
durations p1,..., Pu.
p1|:i Pz[i) . emes sareravasass makespan
. P4 P '
]1 B Pa — —r
p - Ps
8 5

i 8 88
e W ¥ W
T J7

Output. Distribution of jobs to machines such that the time when all
jobs have been processed is minimal.
This is called the makespan of the distribution.

B Multiprocess scheduling is NP-hard.

14 -

Multiprocessor Scheduling — List scheduling

LISTSCHEDULING(/1, ..., Jx, m)

Put the first m jobs on the m machines

Put next job on first free machine

LA
1 ”[i
Ai ’%i p{i

J5

Example.

d B i
G E W

15 -

Multiprocessor Scheduling — List scheduling

LISTSCHEDULING(/1, ..., [, m) ‘Theorem 7.
Put the first m jobs on the m machines | LISTSCHEDULING is a
Put next job on first free machine 22— % -approximation algorithm.
Example.)
p2 i i Ha -
[i [& pe| =
&= L p5_ pa
p1 po ai—m

J1 P[i _ l
8
: Pﬁip{i W

B LISTSCHEDULING runs in O(n) time.

16 -

Multiprocessor Scheduling — List scheduling (proof)

LISTSCHEDULING(J1, ...,

Put the first m jobs on the m machines
Put next job on first free machine

(Theorem 7.

\algorlthm.

LISTSCHEDULING is a (2 — X)-approximation

Proof. Let [;. be the last job with start time S and finish time T, = M AKESPAN

B No machine idles at time 5. B Hence:
Sp < — Z p; weight of all jobs but Jj Tie = Sk + Pr
M2k evenly distributed on m machines < % . Z D +
B For an optimal MAKESPAN TopT, we have: i#k
1 & : : 1 & 1
® TopT 2> Pk B Topt = 7 L pi Weight of all jobs =—-) pit(l-=) m
= — m m
=1 evenly distributed i=1
1
Ma < TopT + (1 - —> - TopT
M3 Jx m
M E 1
My : : = (2 — —> - TopT
Sk T, = MAKESPAN m

Multiprocessor Scheduling — PTAS

For a constant ¢ (1 < ¢ < n) define the algorithm A, as follows.

Ag(h]n, m)

Sort jobs in descending order of runtime

Schedule the £ longest jobs [q, ..., Jy optimally

Use LISTSCHEDULING for the reamining jobs [y, q,..., Jn
Example. r |
¢/ =6 I2 |

3 |
T4 |
Is |

sorted jobs

J6 | M3 J2 J5
| M I3
| My J4 |]6

JUHTTO

17 - 11

17 - 15

Multiprocessor Scheduling — PTAS

For a constant ¢ (1 < ¢ < n) define the algorithm A, as follows.

Ae(Jr,--- Jn, m) B Polynomial time for
Sort jobs in descending order of runtime O(nlogn) constant /-
Schedule the ¢ longest jobs |1, ..., J» optimally C’)(me) @(m€ + nlogn)
Use LISTSCHEDULING for the reamining jobs [, 1, ..., . On)

\

‘Theorem 8.

For constant 1 < ¢ < n, the algorithm A,
1

1Isal- m___approximation algorithm.
LE ¥

\. J

B For ¢ > 0, choose ¢ such that A, = Ay (Corollary 9.
is a (1 -+ ¢)-approximation algorithm. For a constant number of machines,

m{A:. | e > 0} isn't a FPTAS, since the \{‘Ag | e >0} is a PTAS.

running time is not polynomial in %

18-5

Multiprocessor Scheduling — PTAS (proof)

(Theorem 8.) Ao(J1,..., Jn, m)

For cons;cant 1 < ¢ <mn, the algorithm A, is a Sort jobs in descending order of runtime

1+ 1_? —approximation algorithm. Schedule the ¢ longest jobs J1,...,], optimally

. 14| 7 | y Use LISTSCHEDULING for the reamining jobs [y, 1,..., In

Proof. Let [;. be the last job with start time S; and finish time T;, = M AKESPAN

Case 1. [is one of the longest £ jobs [1,...,Js. ﬁg]211 | I5=I!< |

B Solution is optimal for J1,..., Jx ﬁi]4]3 e | |

B Hence, solution is optimal for [1,..., Jx 7k e = MimnanA
Case 2. Ji is not one of the longest ¢ jobs [1,...,]y ﬁ;‘]2]1 | e || ||

B Similar analysis to LISTSCHEDULING ﬁf]4]3 | To » 0 o

S.k Tk = MAKES.PAN Ag

B Use that there are £ + 1 jobs that are at least as
long as J; (including Ji).

18 - 12

Multiprocessor Scheduling — PTAS (proof)

(Theorem 8.) Ao(J1, ..., Jn, m)

For cons;cant 1 < ¢ <mn, the algorithm A, is a Sort jobs in descending order of runtime

1 _|_ 1_? _approximation algorithm_ SChedU|e the E IOngeSt jObS]]_, c ooy]g optlmally
. 14| 7 | y Use LISTSCHEDULING for the reamining jobs [y, 1,..., Jx
Proof of Case 2.

n
1 1 .
m 5 < aZi%kPi B TopT > %'lez Tkzsk—l—]?k
1=
B Consider only J1,..., Js, Ji: < i : Z i + Di
=,
: i#k
. Y one machine has
B TopT = P& (]‘ T {mJ) this many jobs™ 1 X 1
each has lenght > py :E'Zpi‘F 1—% " Pk
B ~ on average, each machine has more than - of the £/ + 1 jobs] 1
B at least one machine achieves the average I
© < TopT + o1 TopT

My J1 | | | 1 -+ \‘%J
M3 I J5 | |
My I3 Jk
My I4 | J6 | - |

S.k Tk = MAKES.PAN Ag

Discussion

Only “easy” NP-hard problems admit FPTAS (PTAS).
Not all problems can be approximated (Max Clique).

Study of approximability of NP-hard problems yields a more
fine-grained classification of the difficulty.

Approximation algorithms exist also for non-NP-hard problems

Approximation algorithms can be of various types:
greedy, local search, geometric, DP, ...

One important technique is LP-relaxation (next lecture).

Min Vertex Coloring on planar graphs can be approximated
with an additive approximation guarantee of 2.

Christofides’ approximation algorithm for Metric TSP has
approximation factor 1.5.

19 -

20

| iterature

Main references Kaus Jaen
B [Jansen, Margraf Ch3] “Approximative Igorithmen .
Algorithmen und Nichtapproximierbarkeit”

B [Williamson, Shmoys Ch3] “The Design of
Approximation Algorithms”

Another book recommendation: The DESIGN of
APPROXIMATION

ALGORITHMS

B [Vazirani] “Approximation Algorithms”

and don't forget our lecture
B Approximation Algorithms. pprogimaion
For more precise definitions see

B https://go.uniwue.de/approxdef

	Title page
	Dealing with NP-hard problems

	Approximation algorithms
	Approximation with additive guarantee
	Minimum vertex coloring
	Minimum edge coloring
	Minimum edge coloring -- upper bound
	Minimum edge coloring -- recoloring
	Minimum edge coloring - algorithm

	Approximation with relative factor
	2-approximation for Metric TSP (from AGT)
	Nearest addition algorithm for Metric TSP

	Approximation schemes
	Multiprocessor Scheduling
	Multiprocessor Scheduling -- List scheduling
	Multiprocessor Scheduling -- List scheduling (proof)
	Multiprocessor Scheduling -- PTAS
	Multiprocessor Scheduling -- PTAS (proof)

	Discussion
	Literature

