Advanced Algorithms ## Approximation algorithms Coloring and scheduling problems Jonathan Klawitter · WS20 ## Dealing with NP-hard problems #### What should we do? - Sacrifice optimality for speed - Heuristics - Approximation Algorithms - Optimal Solutions - Exact exponential-time algorithms - Fine-grained analysis parameterized algorithms Heuristic Approximation NP-hard Exponential FPT ### Dealing with NP-hard problems #### What should we do? - Sacrifice optimality for speed - Heuristics - Approximation Algorithms - Optimal Solutions - Exact exponential-time algorithms - Fine-grained analysis parameterized algorithms this lecture ## Approximation algorithms #### Problem. - For NP-hard optimisation problems, we cannot compute the optimal solution of each instance efficiently (unless P = NP). - Heuristics offer no guarantee on the quality of their solutions. ### Approximation algorithms #### Problem. - For NP-hard optimisation problems, we cannot compute the optimal solution of each instance efficiently (unless P = NP). - Heuristics offer no guarantee on the quality of their solutions. #### Goal. - Design approximation algorithms that - run in polynomial time and - compute solutions of guaranteed quality. - Study techniques for the design and analysis of approximation algorithms. ### Approximation algorithms #### Problem. - For NP-hard optimisation problems, we cannot compute the optimal solution of each instance efficiently (unless P = NP). - Heuristics offer no guarantee on the quality of their solutions. #### Goal. - Design approximation algorithms that - run in polynomial time and - compute solutions of guaranteed quality. - Study techniques for the design and analysis of approximation algorithms. #### Overview. - Approximation algorithms that compute solutions with/that are - additive guarantee, relative guarantee, "arbitraility good". ## Approximation with additive guarantee #### Definition. Let Π be an optimisation problem and let \mathcal{A} be a polynomial-time algorithm that computes the value $\mathcal{A}(I)$ for an instance I of Π . ${\cal A}$ is called an approximation algorithm with additive guarantee δ if $$|\mathsf{OPT}(I) - \mathcal{A}(I)| \le \delta(I)$$ for every instance I of Π . ### Approximation with additive guarantee #### Definition. Let Π be an optimisation problem and let \mathcal{A} be a polynomial-time algorithm that computes the value $\mathcal{A}(I)$ for an instance I of Π . ${\cal A}$ is called an approximation algorithm with additive guarantee δ if $$|\mathsf{OPT}(I) - \mathcal{A}(I)| \le \delta(I)$$ for every instance I of Π . Most problems do not admit an approximation algorithm with additive guarantee. **Input.** A graph G = (V, E). Let Δ be the maximum degree of G. **Input.** A graph G = (V, E). Let Δ be the maximum degree of G. Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors. **Input.** A graph G = (V, E). Let Δ be the maximum degree of G. Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors. Even Vertex 3-Coloring is NP-complete. **Input.** A graph G = (V, E). Let Δ be the maximum degree of G. Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors. - Min Vertex Coloring is NP-hard. - Even Vertex 3-Coloring is NP-complete. #### Greedy Vertex Coloring (G) **Input.** A graph G = (V, E). Let Δ be the maximum degree of G. Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors. - Min Vertex Coloring is NP-hard. - Even Vertex 3-Coloring is NP-complete. #### Greedy Vertex Coloring (G) **Input.** A graph G = (V, E). Let Δ be the maximum degree of G. 0-0 Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors. - Min Vertex Coloring is NP-hard. - Even Vertex 3-Coloring is NP-complete. #### GREEDY VERTEX COLORING (G) **Input.** A graph G = (V, E). Let Δ be the maximum degree of G. Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors. - Min Vertex Coloring is NP-hard. - Even Vertex 3-Coloring is NP-complete. #### Greedy Vertex Coloring (G) **Input.** A graph G = (V, E). Let Δ be the maximum degree of G. Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors. - Min Vertex Coloring is NP-hard. - Even Vertex 3-Coloring is NP-complete. #### GREEDY VERTEX COLORING (G) **Input.** A graph G = (V, E). Let Δ be the maximum degree of G. 0—0 Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors. - Min Vertex Coloring is NP-hard. - Even Vertex 3-Coloring is NP-complete. #### GREEDY VERTEX COLORING (G) **Input.** A graph G = (V, E). Let Δ be the maximum degree of G. Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors. - Min Vertex Coloring is NP-hard. - Even Vertex 3-Coloring is NP-complete. #### Greedy Vertex Coloring (G) **Input.** A graph G = (V, E). Let Δ be the maximum degree of G. Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors. - Min Vertex Coloring is NP-hard. - Even Vertex 3-Coloring is NP-complete. #### Greedy Vertex Coloring (G) Color vertices in some order with lowest feasible color. #### Theorem 1. The algorithm GreedyVertexColoring computes a vertex coloring with at most $\Delta+1$ colors in $\mathcal{O}(n+m)$ time. Hence, it has an additive approximation gurantee of $\Delta-1$. **Input.** A graph G = (V, E). Let Δ be the maximum degree of G. **Input.** A graph G = (V, E). Let Δ be the maximum degree of G. **Input.** A graph G = (V, E). Let Δ be the maximum degree of G. - Min Edge Coloring is NP-hard. - Even Edge 3-Coloring is NP-complete. **Input.** A graph G = (V, E). Let Δ be the maximum degree of G. - Min Edge Coloring is NP-hard. - Even Edge 3-Coloring is NP-complete. - The minimum number of colors needed for an edge coloring of G is called the **chromatic index** $\chi'(G)$. - $\chi'(G)$ is lower bounded by **Input.** A graph G = (V, E). Let Δ be the maximum degree of G. - Min Edge Coloring is NP-hard. - Even Edge 3-Coloring is NP-complete. - The minimum number of colors needed for an edge coloring of G is called the **chromatic index** $\chi'(G)$. - $\chi'(G)$ is lower bounded by Δ . **Input.** A graph G = (V, E). Let Δ be the maximum degree of G. - Min Edge Coloring is NP-hard. - Even Edge 3-Coloring is NP-complete. - The minimum number of colors needed for an edge coloring of G is called the **chromatic index** $\chi'(G)$. - $\chi'(G)$ is lower bounded by Δ . - We show that $\chi'(G) \leq \Delta + 1$. #### Vizing's Theorem. For every graph G=(V,E) with maximum degree Δ holds that $\Delta \leq \chi'(G) \leq \Delta + 1$. #### Vizing's Theorem. For every graph G=(V,E) with maximum degree Δ holds that $\Delta \leq \chi'(G) \leq \Delta + 1$. **Proof** by induction on m = |E|. Base case m=1 is trivial. #### Vizing's Theorem. For every graph G=(V,E) with maximum degree Δ holds that $\Delta \leq \chi'(G) \leq \Delta + 1$. **Proof** by induction on m = |E|. Base case m=1 is trivial. Let G be a graph on m edges and e an edge of G. ■ By induction, G - e has a $\Delta(G - e) + 1$ edge coloring. #### Vizing's Theorem. For every graph G = (V, E) with maximum degree Δ holds that $\Delta \leq \chi'(G) \leq \Delta + 1$. **Proof** by induction on m = |E|. Base case m=1 is trivial. Let G be a graph on m edges and e an edge of G. - By induction, G e has a $\Delta(G e) + 1$ edge coloring. - If $\Delta(G) > \Delta(G e)$, color e with color $\Delta(G) + 1$. #### Vizing's Theorem. For every graph G=(V,E) with maximum degree Δ holds that $\Delta \leq \chi'(G) \leq \Delta + 1$. **Proof** by induction on m = |E|. Base case m=1 is trivial. Let G be a graph on m edges and e an edge of G. - By induction, G e has a $\Delta(G e) + 1$ edge coloring. - If $\Delta(G) > \Delta(G e)$, color e with color $\Delta(G) + 1$. - If $\Delta(G) = \Delta(G e)$, change coloring such that u and v (of $e = \{u, v\}$) miss the same color α . #### Vizing's Theorem. For every graph G=(V,E) with maximum degree Δ holds that $\Delta \leq \chi'(G) \leq \Delta + 1$. **Proof** by induction on m = |E|. Base case m=1 is trivial. Let G be a graph on m edges and e an edge of G. - By induction, G e has a $\Delta(G e) + 1$ edge coloring. - If $\Delta(G) > \Delta(G e)$, color e with color $\Delta(G) + 1$. - If $\Delta(G) = \Delta(G e)$, change coloring such that u and v (of $e = \{u, v\}$) miss the same color α . - **Then color** e with with α . #### Lemma 2. Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color. #### Lemma 2. Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color. **Proof.** Note, each vertex is missing a color. #### Lemma
2. Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color. **Proof.** Note, each vertex is **missing** a color. Let u miss β and v miss α_1 ; apply the following algorithm: #### Lemma 2. Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color. **Proof.** Note, each vertex is **missing** a color. Let u miss β and v miss α_1 ; apply the following algorithm: VIZINGRECOLORING $(G = (V, E), u, c, \alpha_1)$ ``` i \leftarrow 1 while \exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\} do \begin{array}{c} v_i \leftarrow w \\ \alpha_{i+1} \leftarrow \text{min color missing at } w \\ i + + \end{array} ``` return $$v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}$$ #### Lemma 2. Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color. **Proof.** Note, each vertex is **missing** a color. Let u miss β and v miss α_1 ; apply the following algorithm: ``` VIZINGRECOLORING(G = (V, E), u, c, \alpha_1) i \leftarrow 1 while \exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\} do \begin{array}{c} v_i \leftarrow w \\ \alpha_{i+1} \leftarrow \text{min color missing at } w \\ i + + \end{array} ``` return $v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}$ #### Lemma 2. Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color. **Proof.** Note, each vertex is **missing** a color. Let u miss β and v miss α_1 ; apply the following algorithm: ``` VIZINGRECOLORING(G = (V, E), u, c, \alpha_1) i \leftarrow 1 while \exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\} do v_i \leftarrow w \alpha_{i+1} \leftarrow \text{min color missing at } w i + + ``` #### Lemma 2. Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color. **Proof.** Note, each vertex is **missing** a color. Let u miss β and v miss α_1 ; apply the following algorithm: ``` VizingRecoloring(G = (V, E), u, c, \alpha_1) ``` ``` \begin{array}{l} i \leftarrow 1 \\ \textbf{while} \ \exists w \in N(u) \colon \ c(\{u,w\}) = \alpha_i \ \land \\ w \not \in \{v_1,\ldots,v_{i-1}\} \ \textbf{do} \\ \mid \ v_i \leftarrow w \\ \mid \ \alpha_{i+1} \leftarrow \text{min color missing at } w \\ \mid \ i + + \end{array} ``` #### Lemma 2. Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color. **Proof.** Note, each vertex is missing a color. Let u miss β and v miss α_1 ; apply the following algorithm: VIZINGRECOLORING $(G = (V, E), u, c, \alpha_1)$ ``` i \leftarrow 1 while \exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\} do \begin{array}{c} v_i \leftarrow w \\ \alpha_{i+1} \leftarrow \text{min color missing at } w \\ i + + \end{array} ``` #### Lemma 2. Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color. Proof. Note, each vertex is missing a color. Let u miss β and v miss α_1 ; apply the following algorithm: VIZINGRECOLORING $(G = (V, E), u, c, \alpha_1)$ $i \leftarrow 1$ while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do $\begin{array}{c} v_i \leftarrow w \\ \alpha_{i+1} \leftarrow \text{min color missing at } w \\ i + + \end{array}$ return $v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}$ $$v_3$$ v_2 v_3 v_2 v_3 v_4 v_2 v_3 v_4 v_6 v_6 v_6 v_6 v_7 v_8 Case 1: u misses α_{h+1} . #### Lemma 2. Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color. Proof. Note, each vertex is missing a color. Let u miss β and v miss α_1 ; apply the following algorithm: VIZINGRECOLORING $$(G = (V, E), u, c, \alpha_1)$$ $i \leftarrow 1$ while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do $v_i \leftarrow w$ $\alpha_{i+1} \leftarrow \text{min color missing at } w$ $i + +$ Case 1: u misses α_{h+1} . #### Lemma 2. Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color. Proof. Note, each vertex is missing a color. Let u miss β and v miss α_1 ; apply the following algorithm: VIZINGRECOLORING $$(G = (V, E), u, c, \alpha_1)$$ $i \leftarrow 1$ while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do $v_i \leftarrow w$ $\alpha_{i+1} \leftarrow \min \text{ color missing at } w$ Case 1: u misses α_{h+1} . #### Lemma 2. Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color. Proof. Note, each vertex is missing a color. Let u miss β and v miss α_1 ; apply the following algorithm: VIZINGRECOLORING $$(G = (V, E), u, c, \alpha_1)$$ $i \leftarrow 1$ while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do $$\begin{array}{c} v_i \leftarrow w \\ \alpha_{i+1} \leftarrow \text{min color missing at } w \\ i + + \end{array}$$ return $v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}$ v_h u v_h Case 1: u misses α_{h+1} . #### Lemma 2. Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color. Proof. Note, each vertex is missing a color. Let u miss β and v miss α_1 ; apply the following algorithm: VIZINGRECOLORING $$(G = (V, E), u, c, \alpha_1)$$ $i \leftarrow 1$ while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do $v_i \leftarrow w$ $\alpha_{i+1} \leftarrow \text{min color missing at } w$ $i + +$ Case 1: u misses α_{h+1} . #### Lemma 2. Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color. Proof. Note, each vertex is missing a color. Let u miss β and v miss α_1 ; apply the following algorithm: VIZINGRECOLORING $$(G = (V, E), u, c, \alpha_1)$$ $i \leftarrow 1$ while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do $$\begin{array}{c} v_i \leftarrow w \\ \alpha_{i+1} \leftarrow \text{min color missing at } w \\ i + + \end{array}$$ return $v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}$ v_h α_{h+1} α_2 α_2 α_2 α_2 α_3 α_4 α_3 α_2 α_4 α_5 Case 1: u misses α_{h+1} . #### Lemma 2. Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color. Proof. Note, each vertex is missing a color. Let u miss β and v miss α_1 ; apply the following algorithm: VIZINGRECOLORING $$(G = (V, E), u, c, \alpha_1)$$ $i \leftarrow 1$ while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do $$\begin{array}{c} v_i \leftarrow w \\ \alpha_{i+1} \leftarrow \text{min color missing at } w \\ i + + \end{array}$$ Case 1: u misses α_{h+1} . #### Lemma 2. Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color. Proof. Note, each vertex is missing a color. VIZINGRECOLORING $$(G = (V, E), u, c, \alpha_1)$$ $i \leftarrow 1$ while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do $v_i \leftarrow w$ $\alpha_{i+1} \leftarrow \text{min color missing at } w$ $i + +$ return $v_1, \dots, v_i; \alpha_1, \dots, \alpha_{i+1}$ $$v_3$$ v_2 v_3 v_2 v_3 v_4 v_2 v_3 v_4 v_6 v_6 v_6 v_7 v_8 Case 2: $$\alpha_{h+1} = \alpha_j$$, $j < h$. #### Lemma 2. Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color. Proof. Note, each vertex is missing a color. VIZINGRECOLORING $$(G = (V, E), u, c, \alpha_1)$$ $i \leftarrow 1$ while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do $v_i \leftarrow w$ $\alpha_{i+1} \leftarrow \text{min color missing at } w$ $i + +$ return $v_1, \dots, v_i; \alpha_1, \dots, \alpha_{i+1}$ Case 2: $$\alpha_{h+1} = \alpha_j$$, $j < h$. #### Lemma 2. Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color. Proof. Note, each vertex is missing a color. VIZINGRECOLORING $$(G = (V, E), u, c, \alpha_1)$$ $i \leftarrow 1$ while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do $v_i \leftarrow w$ $\alpha_{i+1} \leftarrow \text{min color missing at } w$ $i + +$ return $v_1, \dots, v_i; \alpha_1, \dots, \alpha_{i+1}$ Case 2: $$\alpha_{h+1} = \alpha_j$$, $j < h$. #### Lemma 2. Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed
such that u and v miss the same color. Proof. Note, each vertex is missing a color. VIZINGRECOLORING $$(G = (V, E), u, c, \alpha_1)$$ $i \leftarrow 1$ while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do $v_i \leftarrow w$ $\alpha_{i+1} \leftarrow \text{min color missing at } w$ $i + +$ return $v_1, \dots, v_i; \alpha_1, \dots, \alpha_{i+1}$ Case 2: $$\alpha_{h+1} = \alpha_j$$, $j < h$. #### Lemma 2. Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color. Proof. Note, each vertex is missing a color. VIZINGRECOLORING $$(G = (V, E), u, c, \alpha_1)$$ $i \leftarrow 1$ while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do $v_i \leftarrow w$ $\alpha_{i+1} \leftarrow \text{min color missing at } w$ $i + +$ return $v_1, \dots, v_i; \alpha_1, \dots, \alpha_{i+1}$ Case 2: $$\alpha_{h+1} = \alpha_j$$, $j < h$. #### Lemma 2. Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color. Proof. Note, each vertex is missing a color. VIZINGRECOLORING $$(G = (V, E), u, c, \alpha_1)$$ $i \leftarrow 1$ while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do $v_i \leftarrow w$ $\alpha_{i+1} \leftarrow \text{min color missing at } w$ $i + +$ return $v_1, \dots, v_i; \alpha_1, \dots, \alpha_{i+1}$ Case 2: $$\alpha_{h+1} = \alpha_j, j < h$$. #### Lemma 2. Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color. **Proof.** Note, each vertex is missing a color. VIZINGRECOLORING $$(G = (V, E), u, c, \alpha_1)$$ $i \leftarrow 1$ while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do $v_i \leftarrow w$ $\alpha_{i+1} \leftarrow \text{min color missing at } w$ $i + +$ return $v_1, \dots, v_i; \alpha_1, \dots, \alpha_{i+1}$ Case 2: $$\alpha_{h+1} = \alpha_j, j < h$$. #### Lemma 2. Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color. Proof. Note, each vertex is missing a color. VIZINGRECOLORING $$(G = (V, E), u, c, \alpha_1)$$ $i \leftarrow 1$ while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do $v_i \leftarrow w$ $\alpha_{i+1} \leftarrow \text{min color missing at } w$ $i + +$ return $v_1, \dots, v_i; \alpha_1, \dots, \alpha_{i+1}$ Case 2: $$\alpha_{h+1} = \alpha_j$$, $j < h$. #### Lemma 2. Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color. **Proof.** Note, each vertex is missing a color. VIZINGRECOLORING $$(G = (V, E), u, c, \alpha_1)$$ $i \leftarrow 1$ while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do $v_i \leftarrow w$ $\alpha_{i+1} \leftarrow \text{min color missing at } w$ $i + +$ return $v_1, \dots, v_i; \alpha_1, \dots, \alpha_{i+1}$ Case 2: $$\alpha_{h+1} = \alpha_j$$, $j < h$. #### Lemma 2. Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color. Proof. Note, each vertex is missing a color. VIZINGRECOLORING $$(G = (V, E), u, c, \alpha_1)$$ $i \leftarrow 1$ while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do $v_i \leftarrow w$ $\alpha_{i+1} \leftarrow \text{min color missing at } w$ $i + +$ return $v_1, \dots, v_i; \alpha_1, \dots, \alpha_{i+1}$ **Proof** continued for #### **Proof** continued for Case 2: $\alpha_{h+1} = \alpha_j$, j < h and we need to find a color for $\{u, v_j\}$. Consider subgraph G' of G induced by edges with color β and α_j . #### **Proof** continued for - Consider subgraph G' of G induced by edges with color β and α_j . - Since $\Delta(G') \leq 2$, we can recolor components. #### **Proof** continued for - Consider subgraph G' of G induced by edges with color β and α_j . - Since $\Delta(G') \leq 2$, we can recolor components. #### **Proof** continued for - Consider subgraph G' of G induced by edges with color β and α_j . - Since $\Delta(G') \leq 2$, we can recolor components. - u, v_j, v_h have degree 1 in G'⇒ they are not all in same component #### **Proof** continued for - Consider subgraph G' of G induced by edges with color β and α_j . - Since $\Delta(G') \leq 2$, we can recolor components. - u, v_j, v_h have degree 1 in G'⇒ they are not all in same component - If v_i and u are not in the same component: - lacksquare Recolor component ending at v_j #### **Proof** continued for - Consider subgraph G' of G induced by edges with color β and α_j . - Since $\Delta(G') \leq 2$, we can recolor components. - u, v_j, v_h have degree 1 in G'⇒ they are not all in same component - If v_j and u are not in the same component: - lacktriangle Recolor component ending at v_i - lacksquare v_i now misses β #### **Proof** continued for - Consider subgraph G' of G induced by edges with color β and α_j . - Since $\Delta(G') \leq 2$, we can recolor components. - u, v_j, v_h have degree 1 in G'⇒ they are not all in same component - If v_j and u are not in the same component: - lacktriangle Recolor component ending at v_i - lacksquare v_j now misses eta - Color $\{u, v_j\}$ in β #### **Proof** continued for - Consider subgraph G' of G induced by edges with color β and α_j . - Since $\Delta(G') \leq 2$, we can recolor components. - u, v_j, v_h have degree 1 in G'⇒ they are not all in same component - If v_i and u are not in the same component: - lacktriangle Recolor component ending at v_j - \mathbf{v}_i now misses β - lacksquare Color $\{u, v_j\}$ in β - What if v_i and u are in the same component? #### Minimum edge coloring - algorithm ``` VIZINGEDGECOLORING(G = (V, E)) if E=\emptyset then return 0 else \{u,v\} \leftarrow \text{random edge of } G G' \leftarrow G - e VIZINGEDGEColoring(G') if \Delta(G') < \Delta(G) then Color \{u, v\} with lowest free color else Recolor E with Lemma 2 Color \{u, v\} with color now missing at u and v ``` ### Minimum edge coloring - algorithm VizingEdgeColoring(G = (V, E)) ``` if E = \emptyset then \bot return 0 ``` #### else ``` \{u,v\} \leftarrow \text{random edge of } G G' \leftarrow G - e VIZINGEDGECOLORING(G') ``` #### if $\Delta(G') < \Delta(G)$ then Color $\{u, v\}$ with lowest free color #### else Recolor E with Lemma 2 Color $\{u, v\}$ with color now missing at u and v #### Theorem 4. VIZINGEDGECOLORING \mathcal{A} is an approximation algorithm with additive approximation guarantee $\mathcal{A}(G) - \mathsf{OPT}(G) \leq 1$. ### Approximation with relative factor An additive approximation guarantee can seldomly be achieved; but sometimes there is a multiplicative . . . ### Approximation with relative factor An additive approximation guarantee can seldomly be achieved; but sometimes there is a multiplicative . . . #### Definition. Let Π be an minimisation problem and $\alpha \in \mathbb{Q}^+$. A **(factor)** α -approximation algorithm for Π is a polynomial-time algorithm \mathcal{A} , which computes for every instance I of Π a value $\mathcal{A}(I)$ such that $$\frac{\mathcal{A}(I)}{\mathsf{OPT}(I)} \leq \alpha.$$ We call α the approximation factor. ### Approximation with relative factor An additive approximation guarantee can seldomly be achieved; but sometimes there is a multiplicative Let Π be an minimisation problem and $\alpha \in \mathbb{Q}^+$. A (factor) α -approximation algorithm for Π is a polynomial-time algorithm A, which computes for every instance I of Π a value $\mathcal{A}(I)$ such that $$\frac{\mathcal{A}(I)}{\mathsf{OPT}(I)} \stackrel{\geq}{\leq} \alpha.$$ We call α the approximation factor. # 2-approximation for Metric TSP (from AGT) **Input.** Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$. # 2-approximation for Metric TSP (from AGT) Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$. Output. Shortest Hamilton cycle. **Input.** Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$. Output. Shortest Hamilton cycle. Input. Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$. Output. Shortest Hamilton cycle. #### Input. Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$. #### Output. Shortest Hamilton cycle. #### Algorithm. Compute MST. ### Input. Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$. #### Output. Shortest Hamilton cycle. ### Algorithm. Compute MST. #### Input. Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$. Output. Shortest
Hamilton cycle. - Compute MST. - Double edges. ### Input. Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$. #### Output. Shortest Hamilton cycle. - Compute MST. - Double edges. - Walk along tree, ### Input. Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$. #### Output. Shortest Hamilton cycle. - Compute MST. - Double edges. - Walk along tree, #### Input. Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$. Output. Shortest Hamilton cycle. - Compute MST. - Double edges. - Walk along tree, ### Input. Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$. Output. Shortest Hamilton cycle. - Compute MST. - Double edges. - Walk along tree, Input. Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$. Output. Shortest Hamilton cycle. - Compute MST. - Double edges. - Walk along tree, - skipping visited vertices Input. Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$. Output. Shortest Hamilton cycle. - Compute MST. - Double edges. - Walk along tree, - skipping visited vertices ### Input. Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$. Output. Shortest Hamilton cycle. - Compute MST. - Double edges. - Walk along tree, - skipping visited vertices - and adding shortcuts. ### Input. Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$. #### Output. Shortest Hamilton cycle. - Compute MST. - Double edges. - Walk along tree, - skipping visited vertices - and adding shortcuts. ### Input. Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$. Output. Shortest Hamilton cycle. - Compute MST. - Double edges. - Walk along tree, - skipping visited vertices - and adding shortcuts. ### Input. Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$. Output. Shortest Hamilton cycle. - Compute MST. - Double edges. - Walk along tree, - skipping visited vertices - and adding shortcuts. #### Input. Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$. #### Output. Shortest Hamilton cycle. - Compute MST. - Double edges. - Walk along tree, - skipping visited vertices - and adding shortcuts. ### Input. Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$. Output. Shortest Hamilton cycle. - Compute MST. - Double edges. - Walk along tree, - skipping visited vertices - and adding shortcuts. #### Input. Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$. ### Output. Shortest Hamilton cycle. ### Algorithm. - Compute MST. - Double edges. - Walk along tree, - skipping visited vertices - and adding shortcuts. The MST edge doubling algorithm is a 2-approximation algorithm for metric TSP. #### Proof. $$d(A) \le d(cycle) = 2d(MST) \le 2OPT$$ ``` NEARESTADDITIONALGORITHM(G = (V, E), d) Find closest pair, say i and j Set tour T to go from i to j to i for n-2 iterations do Find pair i \in T and j \not\in T with min d(i,j) Let k be vertex after i in T Add j between i and k ``` ``` NEARESTADDITIONALGORITHM(G = (V, E), d) Find closest pair, say i and j Set tour T to go from i to j to i for n-2 iterations do Find pair i \in T and j \not\in T with min d(i,j) Let k be vertex after i in T Add j between i and k ``` Add j between i and k ``` NEARESTADDITIONALGORITHM(G = (V, E), d) Find closest pair, say i and j Set tour T to go from i to j to i for n-2 iterations do | Find pair i \in T and j \not\in T with min d(i,j) | Let k be vertex after i in T ``` ``` NearestAdditionAlgorithm(G = (V, E), d) ``` Find closest pair, say i and jSet tour T to go from i to j to ifor n-2 iterations **do** ``` NearestAdditionAlgorithm(G = (V, E), d) ``` Find closest pair, say i and jSet tour T to go from i to j to ifor n-2 iterations **do** ``` NEARESTADDITIONALGORITHM (G = (V, E), d) ``` Find closest pair, say i and jSet tour T to go from i to j to ifor n-2 iterations **do** ``` NearestAdditionAlgorithm(G = (V, E), d) ``` Find closest pair, say i and jSet tour T to go from i to j to i**for** n-2 iterations **do** ``` NEARESTADDITIONALGORITHM (G = (V, E), d) ``` Find closest pair, say i and jSet tour T to go from i to j to ifor n-2 iterations **do** ``` NEARESTADDITIONALGORITHM (G = (V, E), d) ``` Find closest pair, say i and jSet tour T to go from i to j to i**for** n-2 iterations **do** ``` NEARESTADDITIONALGORITHM(G = (V, E), d) Find closest pair, say i and j Set tour T to go from i to j to i for n-2 iterations do Find pair i \in T and j \notin T with min d(i,j) Let k be vertex after i in T Add j between i and k ``` ``` NEARESTADDITIONALGORITHM(G = (V, E), d) Find closest pair, say i and j Set tour T to go from i to j to i for n-2 iterations do | Find pair i \in T and j \notin T with min d(i,j) ``` #### Theorem 6. The NEARESTADDITIONALGORITHM is a 2-approximation algorithm for metric TSP. Let k be vertex after i in T Add j between i and k NEARESTADDITIONALGORITHM (G = (V, E), d) Find closest pair, say i and jSet tour T to go from i to j to i for n-2 iterations do Find pair $i \in T$ and $j \notin T$ with min d(i, j) Let k be vertex after i in T Add j between i and k #### Theorem 6. The NEARESTADDITIONALGORITHM is a 2-approximation algorithm for metric TSP. #### Proof. - Exercise. - Hints: MST and Prim's algorithm. ■ In some cases, we can get arbitrarily good approximations. In some cases, we can get arbitrarily good approximations. #### Definition. Let Π be a minimisation problem. An algorithm \mathcal{A} is called an **polynomial-time approximation scheme (PTAS)**, if \mathcal{A} computes for every input (I, ε) consisting of an instance I of Π and $\varepsilon > 0$ a value $\mathcal{A}(I)$, such that: - lacksquare $\mathcal{A}(I) \leq (1+\varepsilon) \cdot \mathsf{OPT}$, and - lacksquare the runtime of \mathcal{A} is polynomiall in |I| für every $\varepsilon > 0$. In some cases, we can get arbitrarily good approximations. Let Π be a minimisation problem. An algorithm \mathcal{A} is called an polynomial-time approximation scheme (PTAS), if \mathcal{A} computes for every input (I, ε) consisting of an instance I of Π and $\varepsilon > 0$ a value $\mathcal{A}(I)$, such that: $$\geq (1-arepsilon)$$ - $\geq (1 \varepsilon)$ $A(I) \leq (1 + \varepsilon) \cdot \mathsf{OPT}$, and - \blacksquare the runtime of \mathcal{A} is polynomiall in |I| für every $\varepsilon > 0$. In some cases, we can get arbitrarily good approximations. Let Π be a minimisation problem. An algorithm \mathcal{A} is called an polynomial-time approximation scheme (PTAS), if \mathcal{A} computes for every input (I, ε) consisting of an instance I of Π and $\varepsilon > 0$ a value $\mathcal{A}(I)$, such that: $$\geq (1-\varepsilon)$$ - $\geq (1 \varepsilon)$ $A(I) \leq (1 + \varepsilon) \cdot \mathsf{OPT}$, and - \blacksquare the runtime of \mathcal{A} is polynomiall in |I| für every $\varepsilon > 0$. \mathcal{A} is called a fully polynomial-time approximation scheme (FPTAS), if it runs polynomial in |I| and $1/\varepsilon$. In some cases, we can get arbitrarily good approximations. ### maximisation Let Π be a minimisation problem. An algorithm \mathcal{A} is called an polynomial-time approximation scheme (PTAS), if \mathcal{A} computes for every input (I, ε) consisting of an instance I of Π and $\varepsilon > 0$ a value $\mathcal{A}(I)$, such that: $$\geq (1-\varepsilon)$$ - $\geq (1-\varepsilon)$ $A(I) \leq (1+\varepsilon) \cdot \mathsf{OPT}$, and - lacksquare the runtime of $\mathcal A$ is polynomiall in |I| für every $\varepsilon>0$. \mathcal{A} is called a fully polynomial-time approximation scheme (FPTAS), if it runs polynomial in |I| and $1/\varepsilon$. ### **Examples.** $$\bigcirc \mathcal{O}\left(n^2 \cdot 3^{\frac{1}{\varepsilon}}\right) \Rightarrow \mathsf{PTAS} \mathsf{\ but\ not\ FPTAS}$$ $$\bigcirc \mathcal{O}\left(n^4 \cdot \left(\frac{1}{\varepsilon}\right)^2\right) \Rightarrow \mathsf{FPTAS}$$ ### Multiprocessor Scheduling Input. n jobs J_1, \ldots, J_n with durations p_1, \ldots, p_n . \blacksquare *m* identical machines (m < n) Input. n jobs J_1, \ldots, J_n with durations p_1, \ldots, p_n . $p_{1} \begin{bmatrix} p_{2} \\ J_{1} \\ p_{3} \end{bmatrix}$ $p_{4} \begin{bmatrix} p_{4} \\ J_{4} \\ p_{5} \end{bmatrix}$ $p_{5} \begin{bmatrix} p_{6} \\ J_{5} \\ p_{6} \end{bmatrix}$ $p_{7} \begin{bmatrix} p_{7} \\ J_{7} \\ p_{7} \end{bmatrix}$ \blacksquare m identical machines (m < n)
Output. Distribution of jobs to machines such that the time when all jobs have been processed is minimal. This is called the **makespan** of the distribution. Input. n jobs J_1, \ldots, J_n with durations p_1, \ldots, p_n . \blacksquare m identical machines (m < n) Output. Distribution of jobs to machines such that the time when all jobs have been processed is minimal. This is called the makespan of the distribution. Input. ■ n jobs J_1, \ldots, J_n with durations p_1, \ldots, p_n . \blacksquare m identical machines (m < n) Output. Distribution of jobs to machines such that the time when all jobs have been processed is minimal. This is called the **makespan** of the distribution. ### Input. ■ n jobs J_1, \ldots, J_n with durations p_1, \ldots, p_n . \blacksquare m identical machines (m < n) Output. Distribution of jobs to machines such that the time when all jobs have been processed is minimal. This is called the **makespan** of the distribution. Multiprocess scheduling is NP-hard. LISTSCHEDULING (J_1, \ldots, J_n, m) Put the first m jobs on the m machines Put next job on first free machine LISTSCHEDULING (J_1, \ldots, J_n, m) Put the first m jobs on the m machines Put next job on first free machine LISTSCHEDULING (J_1, \ldots, J_n, m) Put the first m jobs on the m machines Put next job on first free machine LISTSCHEDULING (J_1, \ldots, J_n, m) Put the first m jobs on the m machines Put next job on first free machine LISTSCHEDULING (J_1, \ldots, J_n, m) Put the first m jobs on the m machines Put next job on first free machine LISTSCHEDULING (J_1, \ldots, J_n, m) Put the first m jobs on the m machines Put next job on first free machine ### Example. LISTSCHEDULING runs in $\mathcal{O}(n)$ time. LISTSCHEDULING(J_1, \ldots, J_n, m) Put the first m jobs on the m machines Put next job on first free machine ### Example. LISTSCHEDULING runs in $\mathcal{O}(n)$ time. #### Theorem 7. LISTSCHEDULING is a $\left(2-\frac{1}{m}\right)$ -approximation algorithm. LISTSCHEDULING(J_1, \ldots, J_n, m) Put the first m jobs on the m machines Put next job on first free machine #### Theorem 7. LISTSCHEDULING is a $(2-\frac{1}{m})$ -approximation algorithm. **Proof.** Let J_k be the last job with start time S_k and finish time $T_k = \text{MAKESPAN}$ LISTSCHEDULING(J_1, \ldots, J_n, m) Put the first m jobs on the m machines Put next job on first free machine #### Theorem 7. LISTSCHEDULING is a $(2-\frac{1}{m})$ -approximation algorithm. **Proof.** Let J_k be the last job with start time S_k and finish time $T_k = \text{MAKESPAN}$ No machine idles at time S_k . $$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$ weight of all jobs but J_k evenly distributed on m machines LISTSCHEDULING(J_1, \ldots, J_n, m) Put the first m jobs on the m machines Put next job on first free machine #### Theorem 7. LISTSCHEDULING is a $(2-\frac{1}{m})$ -approximation algorithm. **Proof.** Let J_k be the last job with start time S_k and finish time $T_k = \text{MAKESPAN}$ No machine idles at time S_k . $$S_k \le \frac{1}{m} \sum_{i \ne k} p_i$$ weight of all jobs but J_k evenly distributed on m machines - For an optimal Makespan T_{OPT} , we have: - $T_{\mathsf{OPT}} \geq p_k$ LISTSCHEDULING(J_1, \ldots, J_n, m) Put the first m jobs on the m machines Put next job on first free machine #### Theorem 7. LISTSCHEDULING is a $(2-\frac{1}{m})$ -approximation algorithm. **Proof.** Let I_k be the last job with start time S_k and finish time $T_k = \text{MAKESPAN}$ No machine idles at time S_k . $$S_k \le \frac{1}{m} \sum_{i \ne k} p_i$$ weight of all jobs but J_k evenly distributed on m machines - For an optimal Makespan T_{OPT} , we have: - $T_{\text{OPT}} \ge p_k$ $T_{\text{OPT}} \ge \frac{1}{m} \sum_{i=1}^{n} p_i$ weight of all jobs evenly distributed LISTSCHEDULING(J_1, \ldots, J_n, m) Put the first m jobs on the m machines Put next job on first free machine #### Theorem 7. LISTSCHEDULING is a $(2-\frac{1}{m})$ -approximation algorithm. **Proof.** Let I_k be the last job with start time S_k and finish time $T_k = \text{MAKESPAN}$ No machine idles at time S_k . $$S_k \le \frac{1}{m} \sum_{i \ne k} p_i$$ weight of all jobs but J_k evenly distributed on m machines For an optimal Makespan T_{OPT} , we have: $$T_{\mathsf{OPT}} \geq p_k$$ $$T_k = S_k + p_k$$ LISTSCHEDULING(J_1, \ldots, J_n, m) Put the first m jobs on the m machines Put next job on first free machine #### Theorem 7. LISTSCHEDULING is a $(2-\frac{1}{m})$ -approximation algorithm. **Proof.** Let I_k be the last job with start time S_k and finish time $T_k = \text{MAKESPAN}$ No machine idles at time S_k . $$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$ weight of all jobs but J_k evenly distributed on m machines For an optimal Makespan T_{OPT} , we have: $$T_{\mathsf{OPT}} \geq p_k$$ ■ $$T_{\text{OPT}} \ge p_k$$ ■ $T_{\text{OPT}} \ge \frac{1}{m} \sum_{i=1}^n p_i$ weight of all jobs evenly distributed $$T_k = S_k + p_k$$ $$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$ LISTSCHEDULING(J_1, \ldots, J_n, m) Put the first m jobs on the m machines Put next job on first free machine #### Theorem 7. LISTSCHEDULING is a $(2-\frac{1}{m})$ -approximation algorithm. **Proof.** Let I_k be the last job with start time S_k and finish time $T_k = \text{MAKESPAN}$ No machine idles at time S_k . $$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$ weight of all jobs but J_k evenly distributed on m machines For an optimal MAKESPAN T_{OPT} , we have: $$T_{\mathsf{OPT}} \geq p_k$$ $$T_k = S_k + p_k$$ $$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$ $$= \frac{1}{m} \cdot \sum_{i=1}^n p_i + \left(1 - \frac{1}{m}\right) \cdot p_k$$ $$M_4$$ M_3 M_2 M_1 M_2 M_3 M_4 M_5 M_6 M_6 M_6 M_7 M_8 M_8 M_8 M_9 LISTSCHEDULING(J_1, \ldots, J_n, m) Put the first m jobs on the m machines Put next job on first free machine #### Theorem 7. LISTSCHEDULING is a $(2-\frac{1}{m})$ -approximation algorithm. **Proof.** Let J_k be the last job with start time S_k and finish time $T_k = \text{MAKESPAN}$ No machine idles at time S_k . $$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$ weight of all jobs but J_k evenly distributed on m machines For an optimal MAKESPAN T_{OPT} , we have: $$T_{\mathsf{OPT}} \geq p_k$$ ■ $$T_{\text{OPT}} \ge p_k$$ ■ $T_{\text{OPT}} \ge \frac{1}{m} \sum_{i=1}^n p_i$ weight of all jobs evenly distributed $$T_k = S_k + p_k$$ $$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$ $$= \frac{1}{m} \cdot \sum_{i=1}^{n} p_i + \left(1 - \frac{1}{m}\right) \cdot p_k$$ $$\leq T_{\text{OPT}} + \left(1 - \frac{1}{m}\right) \cdot T_{\text{OPT}}$$ LISTSCHEDULING(J_1, \ldots, J_n, m) Put the first m jobs on the m machines Put next job on first free machine #### Theorem 7. LISTSCHEDULING is a $(2-\frac{1}{m})$ -approximation algorithm. **Proof.** Let J_k be the last job with start time S_k and finish time $T_k = \text{MAKESPAN}$ No machine idles at time S_k . $$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$ weight of all jobs but J_k evenly distributed on m machines For an optimal Makespan T_{OPT} , we have: $$T_{\mathsf{OPT}} \geq p_k$$ ■ $$T_{\text{OPT}} \ge p_k$$ ■ $T_{\text{OPT}} \ge \frac{1}{m} \sum_{i=1}^{n} p_i$ weight of all jobs evenly distributed $$T_{k} = S_{k} + p_{k}$$ $$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i} + p_{k}$$ $$= \frac{1}{m} \cdot \sum_{i=1}^{n} p_{i} + \left(1 - \frac{1}{m}\right) \cdot p_{k}$$ $$\leq T_{\mathsf{OPT}} + \left(1 - \frac{1}{m}\right) \cdot T_{\mathsf{OPT}}$$ $$= \left(2 - \frac{1}{m}\right) \cdot T_{\mathsf{OPT}}$$ ``` For a constant \ell (1 \le \ell \le n) define the algorithm \mathcal{A}_{\ell} as follows. \mathcal{A}_{\ell}(J_1,\ldots,J_n,m) Sort jobs in descending order of runtime Schedule the \ell longest jobs J_1,\ldots,J_{\ell} optimally Use LISTSCHEDULING for the reamining jobs J_{\ell+1},\ldots,J_n ``` For a constant ℓ $(1 \le \ell \le n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$ Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$ $$\ell = 6$$ For a constant ℓ $(1 \le \ell \le n)$ define the algorithm \mathcal{A}_{ℓ} as follows. ``` \mathcal{A}_{\ell}(J_1,\ldots,J_n, m) ``` Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$ #### Example. $$\ell = 6$$ For a constant ℓ $(1 \le \ell \le n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$ Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$ #### Example. $$\ell = 6$$ | $M_4 \\ M_3 \\ M_2 \\ M_1$ | J_1 | | | |----------------------------|----------------|----------------|--| | M_3 | J ₂ | J_{5} | | | M_2 | J ₃ | | | | M_1 | J ₄ | J ₆ | | For a constant ℓ $(1 \le \ell \le n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$ Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$ ### Example. $$\ell = 6$$ | $M_4 \\ M_3 \\ M_2 \\ M_1$ | J_1 | | | |----------------------------|----------------|----------------|--| | M_3 | J ₂ | J_{5} | | | M_2 | J ₃ | | | | M_1 | J ₄ | J ₆ | | For a constant ℓ ($1 \le \ell \le n$) define the algorithm \mathcal{A}_{ℓ} as follows. $$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$ Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$ ### Example.
$$\ell = 6$$ | M_4 | J_1 | | | |-------|----------------|----------------|--| | M_3 | J_2 | J ₅ | | | M_2 | J ₃ | | | | M_1 | J ₄ | J ₆ | | For a constant ℓ ($1 \le \ell \le n$) define the algorithm \mathcal{A}_{ℓ} as follows. $$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$ Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$ ### Example. $$\ell = 6$$ | M_{4} | J_1 | | | |---------|----------------|----------------|---| | M_3 | J ₂ | J ₅ | _ | | M_2 | J ₃ | | | | M_1 | J ₄ | J ₆ | | For a constant ℓ ($1 \le \ell \le n$) define the algorithm \mathcal{A}_{ℓ} as follows. $$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$ Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$ ### Example. $$\ell = 6$$ | M_{4} | J_1 | | | |------------|----------------|----------------|--| | $M_{ m 4}$ | J ₂ | J_5 | | | M_2 | J ₃ | | | | M_1 | J ₄ | J ₆ | | For a constant ℓ ($1 \le \ell \le n$) define the algorithm \mathcal{A}_{ℓ} as follows. $$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$ Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$ ### Example. $$\ell = 6$$ | M_{4} | J_1 | | | |---------|----------------|---------|--| | M_3 | J ₂ | J_5 | | | M_2 | J ₃ | | | | M_1 | J ₄ | J_{6} | | For a constant ℓ ($1 \le \ell \le n$) define the algorithm \mathcal{A}_{ℓ} as follows. $$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$ Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$ ### Example. $$\ell = 6$$ | M_{4} | J_1 | | | | | |-------------|----------------|----------------|----------------|--|--| | M_4 M_3 | J ₂ | | J ₅ | | | | M_2 | J ₃ | | | | | | M_1 | J ₄ | J ₆ | | | | For a constant ℓ ($1 \le \ell \le n$) define the algorithm \mathcal{A}_{ℓ} as follows. $$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$ Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$ #### Example. $$\ell = 6$$ | M_{4} | J_1 | | | |---------|----------------|----------------|--| | M_3 | J ₂ | J ₅ | | | M_2 | J ₃ | | | | M_1 | J ₄ | J ₆ | | For a constant ℓ ($1 \le \ell \le n$) define the algorithm \mathcal{A}_{ℓ} as follows. $$\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$$ Sort jobs in descending order of runtime $\mathcal{O}(n\log n)$ Schedule the ℓ longest jobs J_1,\ldots,J_ℓ optimally $\mathcal{O}(m^\ell)$ Use ListScheduling for the reamining jobs $J_{\ell+1},\ldots,J_n$ $\mathcal{O}(n)$ Polynomial time for constant ℓ : $\mathcal{O}(m^{\ell} + n \log n)$ #### Example. $$\ell = 6$$ | | | | | _ | | |-------|----------------|----------------|--|---|--| | M_4 | $J_{f 1}$ | | | | | | M_3 | J ₂ | J ₅ | | _ | | | M_2 | J ₃ | | | | | | M_1 | J ₄ | J_{6} | | | | For a constant ℓ $(1 \le \ell \le n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $$\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$$ Sort jobs in descending order of runtime $\mathcal{O}(n\log n)$ Schedule the ℓ longest jobs J_1,\ldots,J_{ℓ} optimally $\mathcal{O}(m^{\ell})$ Use ListScheduling for the reamining jobs $J_{\ell+1},\ldots,J_n$ $\mathcal{O}(n)$ Polynomial time for constant ℓ : $\mathcal{O}(m^{\ell} + n \log n)$ #### Theorem 8. For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left\lfloor \frac{\ell}{m} \right\rfloor}$ -approximation algorithm. For a constant ℓ ($1 \le \ell \le n$) define the algorithm \mathcal{A}_{ℓ} as follows. $$\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$$ Sort jobs in descending order of runtime $\mathcal{O}(n\log n)$ Schedule the ℓ longest jobs J_1,\ldots,J_{ℓ} optimally $\mathcal{O}(m^{\ell})$ Use ListScheduling for the reamining jobs $J_{\ell+1},\ldots,J_n$ $\mathcal{O}(n)$ Polynomial time for constant ℓ : $\mathcal{O}(m^{\ell} + n \log n)$ #### Theorem 8. For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm. For $\varepsilon > 0$, choose ℓ such that $\mathcal{A}_{\varepsilon} = \mathcal{A}_{\ell(\varepsilon)}$ is a $(1+\varepsilon)$ -approximation algorithm. ### Corollary 9. For a constant number of machines, $\{A_{\varepsilon} \mid \varepsilon > 0\}$ is a PTAS. For a constant ℓ ($1 \le \ell \le n$) define the algorithm \mathcal{A}_{ℓ} as follows. $$\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$$ Sort jobs in descending order of runtime $\mathcal{O}(n\log n)$ Schedule the ℓ longest jobs J_1,\ldots,J_{ℓ} optimally $\mathcal{O}(m^{\ell})$ Use ListScheduling for the reamining jobs $J_{\ell+1},\ldots,J_n$ $\mathcal{O}(n)$ Polynomial time for constant ℓ : $\mathcal{O}(m^{\ell} + n \log n)$ #### Theorem 8. For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm. - For $\varepsilon > 0$, choose ℓ such that $\mathcal{A}_{\varepsilon} = \mathcal{A}_{\ell(\varepsilon)}$ is a $(1 + \varepsilon)$ -approximation algorithm. - $\{A_{\varepsilon} \mid \varepsilon > 0\}$ isn't a FPTAS, since the running time is not polynomial in $\frac{1}{\varepsilon}$. ### Corollary 9. For a constant number of machines, $\{A_{\varepsilon} \mid \varepsilon > 0\}$ is a PTAS. # Multiprocessor Scheduling – PTAS (proof) #### Theorem 8. For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm. ``` \mathcal{A}_{\ell}(J_1, \ldots, J_n, m) Sort jobs in descending order of runtime Schedule the \ell longest jobs J_1, \ldots, J_{\ell} optimally Use LISTSCHEDULING for the reamining jobs J_{\ell+1}, \ldots, J_n ``` **Proof.** Let J_k be the last job with start time S_k and finish time $T_k = \text{Makespan}$ #### Theorem 8. For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm. $$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$ Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$ **Proof.** Let J_k be the last job with start time S_k and finish time $T_k = \text{MAKESPAN}$ Case 1. J_k is one of the longest ℓ jobs J_1, \ldots, J_{ℓ} . #### Theorem 8. For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm. $$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$ Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$ **Proof.** Let J_k be the last job with start time S_k and finish time $T_k = \text{MAKESPAN}$ Case 1. J_k is one of the longest ℓ jobs J_1, \ldots, J_{ℓ} . - Solution is optimal for J_1, \ldots, J_k - \blacksquare Hence, solution is optimal for J_1, \ldots, J_n #### Theorem 8. For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm. $$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$ Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$ **Proof.** Let J_k be the last job with start time S_k and finish time $T_k = \text{MAKESPAN}$ Case 1. J_k is one of the longest ℓ jobs J_1, \ldots, J_{ℓ} . - Solution is optimal for J_1, \ldots, J_k - \blacksquare Hence, solution is optimal for J_1, \ldots, J_n Case 2. J_k is not one of the longest ℓ jobs J_1, \ldots, J_{ℓ} . #### Theorem 8. For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm. $$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$ Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$ **Proof.** Let J_k be the last job with start time S_k and finish time $T_k = \text{MAKESPAN}$ Case 1. J_k is one of the longest ℓ jobs J_1, \ldots, J_{ℓ} . - Solution is optimal for J_1, \ldots, J_k - \blacksquare Hence, solution is optimal for J_1, \ldots, J_n Case 2. J_k is not one of the longest ℓ jobs J_1, \ldots, J_{ℓ} . - Similar analysis to ListScheduling - Use that there are $\ell+1$ jobs that are at least as long as J_k (including J_k). #### Theorem 8. For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+ rac{1- rac{1}{m}}{1+\left| rac{\ell}{m} ight|}$ -approximation algorithm. ### **Proof** of Case 2. $$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$ $$T_{\mathsf{OPT}} \geq p_k$$ $$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$ Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$ $$T_k = S_k + p_k$$ #### Theorem 8. For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+ rac{1- rac{1}{m}}{1+\left| rac{\ell}{m}\right|}$ -approximation algorithm. ### $\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$ Sort
jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$ ### **Proof** of Case 2. $$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$ $$T_{OPT} \geq p_k$$ $$T_k = S_k + p_k$$ $$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$ #### Theorem 8. For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+ rac{1- rac{1}{m}}{1+\left| rac{\ell}{m} ight|}$ -approximation algorithm. ### **Proof** of Case 2. $$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$ $$\blacksquare$$ $T_{\mathsf{OPT}} \geq p_k$ $$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$ Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$ $$T_k = S_k + p_k$$ $$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$ $$= \frac{1}{m} \cdot \sum_{i=1}^m p_i + \left(1 - \frac{1}{m}\right) \cdot p_k$$ $T_{\mathsf{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_i$ #### Theorem 8. For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm. ### **Proof** of Case 2. $$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$ $$T_{\mathsf{OPT}} \geq p_k$$ $$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$ Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally Use LISTSCHEDULING for the reamining jobs $J_{\ell+1}, \ldots, J_n$ $$T_k = S_k + p_k$$ $$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$ $$= \frac{1}{m} \cdot \sum_{i=1}^m p_i + \left(1 - \frac{1}{m}\right) \cdot p_k$$ $$\leq T_{\mathsf{OPT}} + \left(1 - \frac{1}{m}\right) \cdot T_{\mathsf{OPT}}$$ #### Theorem 8. For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_ℓ is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm. ### **Proof** of Case 2. $$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$ $$T_{\mathsf{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_i$$ $$T_{\mathsf{OPT}} \geq p_k$$ $$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$ Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally Use LISTSCHEDULING for the reamining jobs $J_{\ell+1}, \ldots, J_n$ $$T_{k} = S_{k} + p_{k}$$ $$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i} + p_{k}$$ $$= \frac{1}{m} \cdot \sum_{i=1}^{m} p_{i} + \left(1 - \frac{1}{m}\right) \cdot p_{k}$$ $$\leq T_{\text{OPT}} + \left(1 - \frac{1}{m}\right) \cdot T_{\text{OPT}}$$ can we do better? better? # Multiprocessor Scheduling – PTAS (proof) #### Theorem 8. For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm. $$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$ Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$ ### **Proof** of Case 2. - Consider only J_1, \ldots, J_ℓ, J_k : - $T_{\text{OPT}} \geq p_k \cdot \left(1 + \left| \frac{\ell}{m} \right| \right)$ one machine has this many jobs* each has lenght $\geq p_k$ - lacksquare on average, each machine has more than $rac{\ell}{m}$ of the $\ell+1$ jobs - at least one machine achieves the average $$M_4$$ M_3 M_2 M_1 M_3 M_2 M_3 M_4 M_5 M_5 M_6 M_6 M_6 M_7 M_8 M_8 M_9 $$T_k = S_k + p_k$$ $$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$ $$= \frac{1}{m} \cdot \sum_{i=1}^{m} p_i + \left(1 - \frac{1}{m}\right) \cdot p_k$$ $$\leq T_{\text{OPT}} + \left(1 - \frac{1}{m}\right) \cdot T_{\text{OPT}}$$ can we do #### Theorem 8. For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+ rac{1- rac{1}{m}}{1+| rac{\ell}{m}|}$ -approximation algorithm. $$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$ Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$ ### **Proof** of Case 2. $$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$ - Consider only J_1, \ldots, J_ℓ, J_k : - $T_{\mathsf{OPT}} \geq p_k \cdot \left(1 + \left| \frac{\ell}{m} \right| \right)$ one machine has this many jobs* each has lenght $\geq p_k$ - lacksquare on average, each machine has more than $rac{\ell}{m}$ of the $\ell+1$ jobs - at least one machine achieves the average $$M_4$$ M_3 M_2 M_2 M_1 M_3 M_4 M_5 M_5 M_5 M_5 M_6 $$T_k = S_k + p_k$$ $$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$ $$= \frac{1}{m} \cdot \sum_{i=1}^m p_i + \left(1 - \frac{1}{m}\right) \cdot p_k$$ $$\leq T_{\text{OPT}} + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|} \cdot T_{\text{OPT}}$$ ## Discussion - Only "easy" NP-hard problems admit FPTAS (PTAS). - Not all problems can be approximated (Max Clique). - Study of approximability of NP-hard problems yields a more fine-grained classification of the difficulty. ### Discussion - Only "easy" NP-hard problems admit FPTAS (PTAS). - Not all problems can be approximated (Max Clique). - Study of approximability of NP-hard problems yields a more fine-grained classification of the difficulty. - Approximation algorithms exist also for non-NP-hard problems - Approximation algorithms can be of various types: greedy, local search, geometric, DP, ... - One important technique is LP-relaxation (next lecture). ## Discussion - Only "easy" NP-hard problems admit FPTAS (PTAS). - Not all problems can be approximated (Max Clique). - Study of approximability of NP-hard problems yields a more fine-grained classification of the difficulty. - Approximation algorithms exist also for non-NP-hard problems - Approximation algorithms can be of various types: greedy, local search, geometric, DP, ... - One important technique is LP-relaxation (next lecture). - Min Vertex Coloring on planar graphs can be approximated with an additive approximation guarantee of 2. - Christofides' approximation algorithm for Metric TSP has approximation factor 1.5. Approximation ## Literature ### Main references - [Jansen, Margraf Ch3] "Approximative Algorithmen und Nichtapproximierbarkeit" - [Williamson, Shmoys Ch3] "The Design of Approximation Algorithms" Another book recommendation: - [Vazirani] "Approximation Algorithms" and don't forget our lecture - Approximation Algorithms. For more precise definitions see https://go.uniwue.de/approxdef