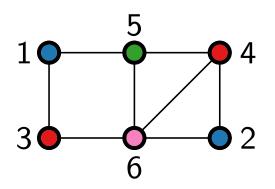


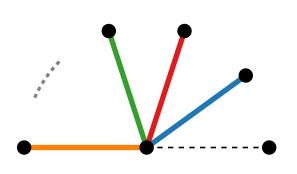
Advanced Algorithms

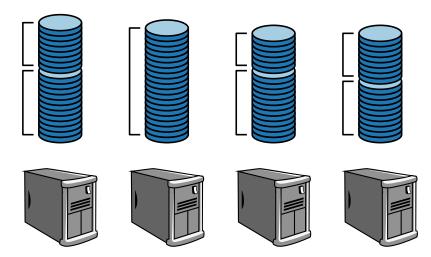
Approximation algorithms

Coloring and scheduling problems

Jonathan Klawitter · WS20







Dealing with NP-hard problems

What should we do?

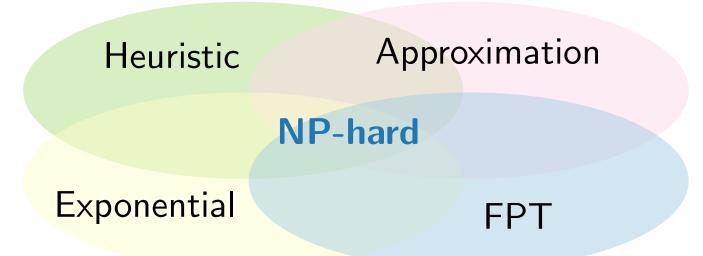
- Sacrifice optimality for speed
 - Heuristics
 - Approximation Algorithms
- Optimal Solutions
 - Exact exponential-time algorithms
 - Fine-grained analysis parameterized algorithms

Heuristic Approximation
NP-hard
Exponential FPT

Dealing with NP-hard problems

What should we do?

- Sacrifice optimality for speed
 - Heuristics
 - Approximation Algorithms
- Optimal Solutions
 - Exact exponential-time algorithms
 - Fine-grained analysis parameterized algorithms



this lecture

Approximation algorithms

Problem.

- For NP-hard optimisation problems, we cannot compute the optimal solution of each instance efficiently (unless P = NP).
- Heuristics offer no guarantee on the quality of their solutions.

Approximation algorithms

Problem.

- For NP-hard optimisation problems, we cannot compute the optimal solution of each instance efficiently (unless P = NP).
- Heuristics offer no guarantee on the quality of their solutions.

Goal.

- Design approximation algorithms that
 - run in polynomial time and
 - compute solutions of guaranteed quality.
- Study techniques for the design and analysis of approximation algorithms.

Approximation algorithms

Problem.

- For NP-hard optimisation problems, we cannot compute the optimal solution of each instance efficiently (unless P = NP).
- Heuristics offer no guarantee on the quality of their solutions.

Goal.

- Design approximation algorithms that
 - run in polynomial time and
 - compute solutions of guaranteed quality.
- Study techniques for the design and analysis of approximation algorithms.

Overview.

- Approximation algorithms that compute solutions with/that are
 - additive guarantee, relative guarantee, "arbitraility good".

Approximation with additive guarantee

Definition.

Let Π be an optimisation problem and let \mathcal{A} be a polynomial-time algorithm that computes the value $\mathcal{A}(I)$ for an instance I of Π .

 ${\cal A}$ is called an approximation algorithm with additive guarantee δ if

$$|\mathsf{OPT}(I) - \mathcal{A}(I)| \le \delta(I)$$

for every instance I of Π .

Approximation with additive guarantee

Definition.

Let Π be an optimisation problem and let \mathcal{A} be a polynomial-time algorithm that computes the value $\mathcal{A}(I)$ for an instance I of Π .

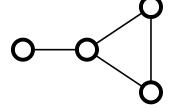
 ${\cal A}$ is called an approximation algorithm with additive guarantee δ if

$$|\mathsf{OPT}(I) - \mathcal{A}(I)| \le \delta(I)$$

for every instance I of Π .

Most problems do not admit an approximation algorithm with additive guarantee.

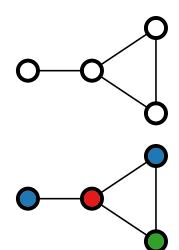
Input. A graph G = (V, E). Let Δ be the maximum degree of G.



Input. A graph G = (V, E). Let Δ be the maximum degree of G.

Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the

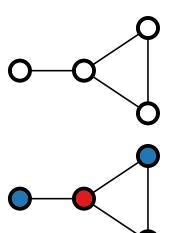
same color, with minimum number of colors.



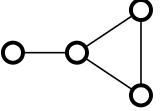
Input. A graph G = (V, E). Let Δ be the maximum degree of G.

Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors.

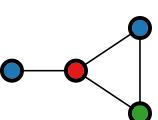
Even Vertex 3-Coloring is NP-complete.



Input. A graph G = (V, E). Let Δ be the maximum degree of G.

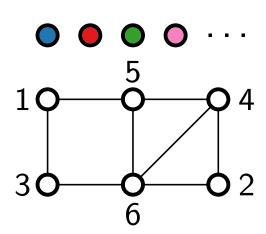


Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors.



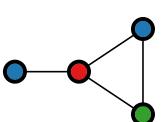
- Min Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

Greedy Vertex Coloring (G)



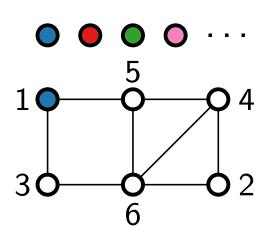
Input. A graph G = (V, E). Let Δ be the maximum degree of G.

Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors.



- Min Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

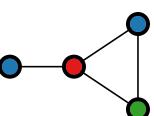
Greedy Vertex Coloring (G)



Input. A graph G = (V, E). Let Δ be the maximum degree of G.

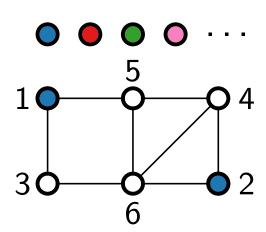
0-0

Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors.



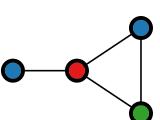
- Min Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

GREEDY VERTEX COLORING (G)



Input. A graph G = (V, E). Let Δ be the maximum degree of G.

Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors.

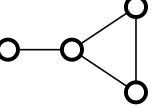


- Min Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

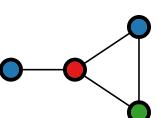
Greedy Vertex Coloring (G)



Input. A graph G = (V, E). Let Δ be the maximum degree of G.

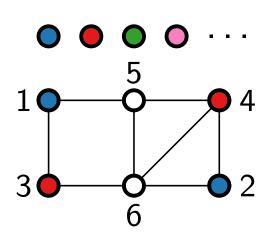


Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors.



- Min Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

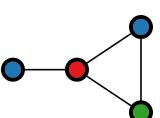
GREEDY VERTEX COLORING (G)



Input. A graph G = (V, E). Let Δ be the maximum degree of G.

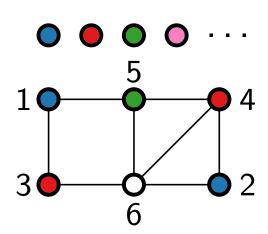
0—0

Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors.



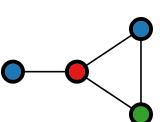
- Min Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

GREEDY VERTEX COLORING (G)



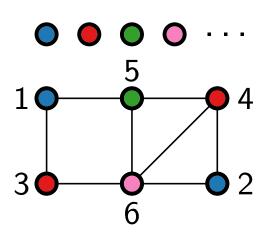
Input. A graph G = (V, E). Let Δ be the maximum degree of G.

Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors.



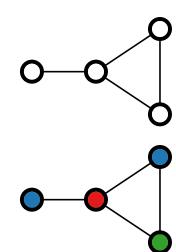
- Min Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

Greedy Vertex Coloring (G)



Input. A graph G = (V, E). Let Δ be the maximum degree of G.

Output. A vertex coloring, that is, an assignment of colors to the vertices of G such that now two adjacent vertices get the same color, with minimum number of colors.



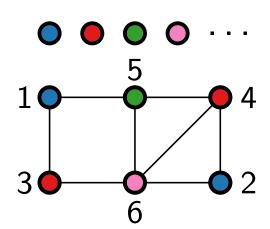
- Min Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

Greedy Vertex Coloring (G)

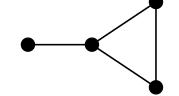
Color vertices in some order with lowest feasible color.

Theorem 1.

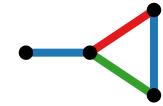
The algorithm GreedyVertexColoring computes a vertex coloring with at most $\Delta+1$ colors in $\mathcal{O}(n+m)$ time. Hence, it has an additive approximation gurantee of $\Delta-1$.



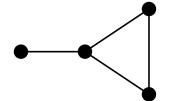
Input. A graph G = (V, E). Let Δ be the maximum degree of G.

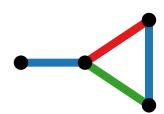


Input. A graph G = (V, E). Let Δ be the maximum degree of G.



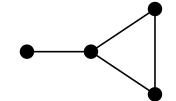
Input. A graph G = (V, E). Let Δ be the maximum degree of G.

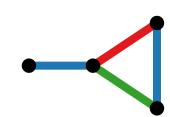




- Min Edge Coloring is NP-hard.
- Even Edge 3-Coloring is NP-complete.

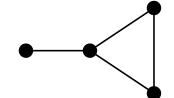
Input. A graph G = (V, E). Let Δ be the maximum degree of G.

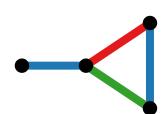




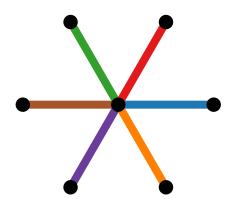
- Min Edge Coloring is NP-hard.
- Even Edge 3-Coloring is NP-complete.
- The minimum number of colors needed for an edge coloring of G is called the **chromatic index** $\chi'(G)$.
- $\chi'(G)$ is lower bounded by

Input. A graph G = (V, E). Let Δ be the maximum degree of G.

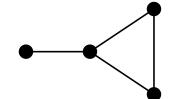


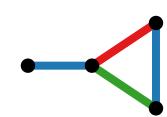


- Min Edge Coloring is NP-hard.
- Even Edge 3-Coloring is NP-complete.
- The minimum number of colors needed for an edge coloring of G is called the **chromatic index** $\chi'(G)$.
- $\chi'(G)$ is lower bounded by Δ .

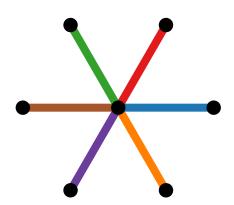


Input. A graph G = (V, E). Let Δ be the maximum degree of G.





- Min Edge Coloring is NP-hard.
- Even Edge 3-Coloring is NP-complete.
- The minimum number of colors needed for an edge coloring of G is called the **chromatic index** $\chi'(G)$.
- $\chi'(G)$ is lower bounded by Δ .
- We show that $\chi'(G) \leq \Delta + 1$.



Vizing's Theorem.

For every graph G=(V,E) with maximum degree Δ holds that $\Delta \leq \chi'(G) \leq \Delta + 1$.

Vizing's Theorem.

For every graph G=(V,E) with maximum degree Δ holds that $\Delta \leq \chi'(G) \leq \Delta + 1$.

Proof by induction on m = |E|.

Base case m=1 is trivial.

Vizing's Theorem.

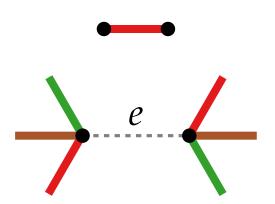
For every graph G=(V,E) with maximum degree Δ holds that $\Delta \leq \chi'(G) \leq \Delta + 1$.

Proof by induction on m = |E|.

Base case m=1 is trivial.

Let G be a graph on m edges and e an edge of G.

■ By induction, G - e has a $\Delta(G - e) + 1$ edge coloring.



Vizing's Theorem.

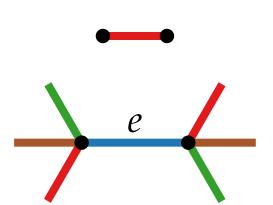
For every graph G = (V, E) with maximum degree Δ holds that $\Delta \leq \chi'(G) \leq \Delta + 1$.

Proof by induction on m = |E|.

Base case m=1 is trivial.

Let G be a graph on m edges and e an edge of G.

- By induction, G e has a $\Delta(G e) + 1$ edge coloring.
- If $\Delta(G) > \Delta(G e)$, color e with color $\Delta(G) + 1$.



Vizing's Theorem.

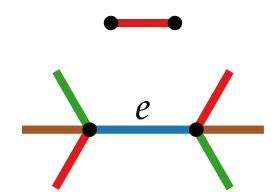
For every graph G=(V,E) with maximum degree Δ holds that $\Delta \leq \chi'(G) \leq \Delta + 1$.

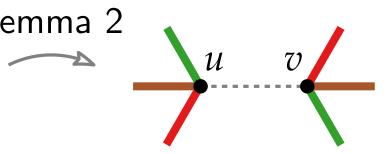
Proof by induction on m = |E|.

Base case m=1 is trivial.

Let G be a graph on m edges and e an edge of G.

- By induction, G e has a $\Delta(G e) + 1$ edge coloring.
- If $\Delta(G) > \Delta(G e)$, color e with color $\Delta(G) + 1$.
- If $\Delta(G) = \Delta(G e)$, change coloring such that u and v (of $e = \{u, v\}$) miss the same color α .





Vizing's Theorem.

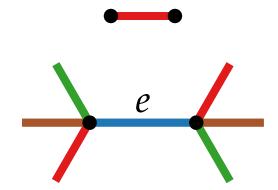
For every graph G=(V,E) with maximum degree Δ holds that $\Delta \leq \chi'(G) \leq \Delta + 1$.

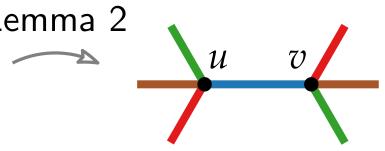
Proof by induction on m = |E|.

Base case m=1 is trivial.

Let G be a graph on m edges and e an edge of G.

- By induction, G e has a $\Delta(G e) + 1$ edge coloring.
- If $\Delta(G) > \Delta(G e)$, color e with color $\Delta(G) + 1$.
- If $\Delta(G) = \Delta(G e)$, change coloring such that u and v (of $e = \{u, v\}$) miss the same color α .
- **Then color** e with with α .





Lemma 2.

Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color.

Lemma 2.

Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color.

Proof. Note, each vertex is missing a color.

Lemma 2.

Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color.

Proof. Note, each vertex is **missing** a color. Let u miss β and v miss α_1 ; apply the following algorithm:



Lemma 2.

Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color.

Proof. Note, each vertex is **missing** a color. Let u miss β and v miss α_1 ; apply the following algorithm: VIZINGRECOLORING $(G = (V, E), u, c, \alpha_1)$

```
i \leftarrow 1
while \exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\} do
\begin{array}{c} v_i \leftarrow w \\ \alpha_{i+1} \leftarrow \text{min color missing at } w \\ i + + \end{array}
```

return
$$v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}$$



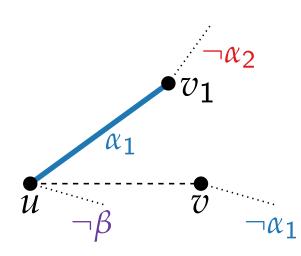
Lemma 2.

Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color.

Proof. Note, each vertex is **missing** a color. Let u miss β and v miss α_1 ; apply the following algorithm:

```
VIZINGRECOLORING(G = (V, E), u, c, \alpha_1)
i \leftarrow 1
while \exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\} do
\begin{array}{c} v_i \leftarrow w \\ \alpha_{i+1} \leftarrow \text{min color missing at } w \\ i + + \end{array}
```

return $v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}$

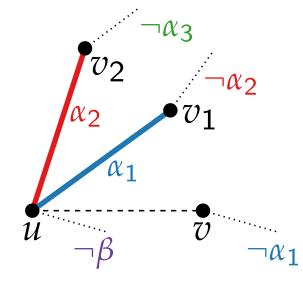


Lemma 2.

Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color.

Proof. Note, each vertex is **missing** a color. Let u miss β and v miss α_1 ; apply the following algorithm:

```
VIZINGRECOLORING(G = (V, E), u, c, \alpha_1)
i \leftarrow 1
while \exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\} do
v_i \leftarrow w
\alpha_{i+1} \leftarrow \text{min color missing at } w
i + +
```



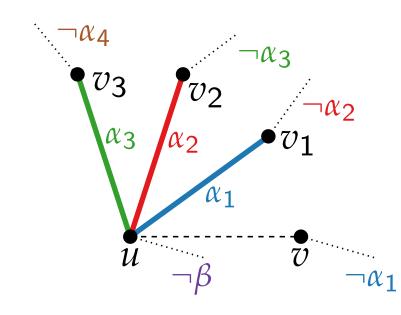
Lemma 2.

Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color.

Proof. Note, each vertex is **missing** a color. Let u miss β and v miss α_1 ; apply the following algorithm:

```
VizingRecoloring(G = (V, E), u, c, \alpha_1)
```

```
\begin{array}{l} i \leftarrow 1 \\ \textbf{while} \ \exists w \in N(u) \colon \ c(\{u,w\}) = \alpha_i \ \land \\ w \not \in \{v_1,\ldots,v_{i-1}\} \ \textbf{do} \\ \mid \ v_i \leftarrow w \\ \mid \ \alpha_{i+1} \leftarrow \text{min color missing at } w \\ \mid \ i + + \end{array}
```



Lemma 2.

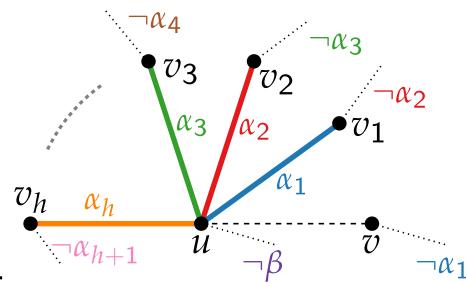
Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color.

Proof. Note, each vertex is missing a color.

Let u miss β and v miss α_1 ; apply the following algorithm:

VIZINGRECOLORING $(G = (V, E), u, c, \alpha_1)$

```
i \leftarrow 1
while \exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\} do
\begin{array}{c} v_i \leftarrow w \\ \alpha_{i+1} \leftarrow \text{min color missing at } w \\ i + + \end{array}
```



Lemma 2.

Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color.

Proof. Note, each vertex is missing a color.

Let u miss β and v miss α_1 ; apply the following algorithm:

VIZINGRECOLORING $(G = (V, E), u, c, \alpha_1)$ $i \leftarrow 1$ while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do $\begin{array}{c} v_i \leftarrow w \\ \alpha_{i+1} \leftarrow \text{min color missing at } w \\ i + + \end{array}$

return $v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}$

$$v_3$$
 v_2
 v_3
 v_2
 v_3
 v_4
 v_2
 v_3
 v_4
 v_6
 v_6
 v_6
 v_6
 v_7
 v_8
 v_8

Case 1: u misses α_{h+1} .

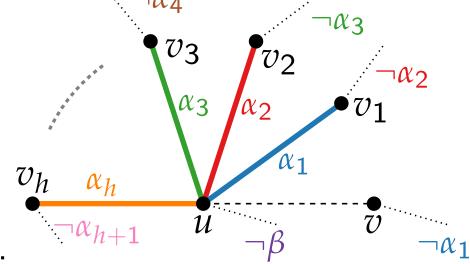
Lemma 2.

Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color.

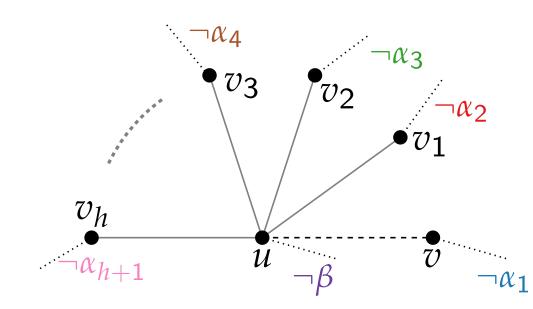
Proof. Note, each vertex is missing a color.

Let u miss β and v miss α_1 ; apply the following algorithm:

VIZINGRECOLORING
$$(G = (V, E), u, c, \alpha_1)$$
 $i \leftarrow 1$
while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do
 $v_i \leftarrow w$
 $\alpha_{i+1} \leftarrow \text{min color missing at } w$
 $i + +$



Case 1: u misses α_{h+1} .



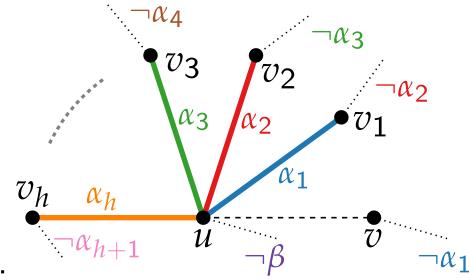
Lemma 2.

Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color.

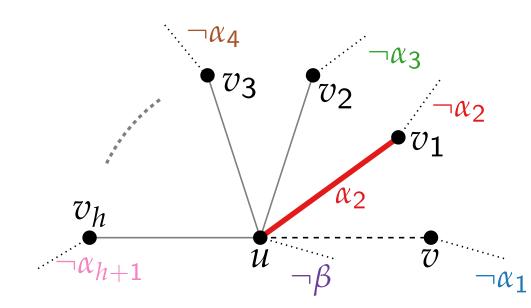
Proof. Note, each vertex is missing a color.

Let u miss β and v miss α_1 ; apply the following algorithm:

VIZINGRECOLORING
$$(G = (V, E), u, c, \alpha_1)$$
 $i \leftarrow 1$
while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do
 $v_i \leftarrow w$
 $\alpha_{i+1} \leftarrow \min \text{ color missing at } w$



Case 1: u misses α_{h+1} .



Lemma 2.

Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color.

Proof. Note, each vertex is missing a color.

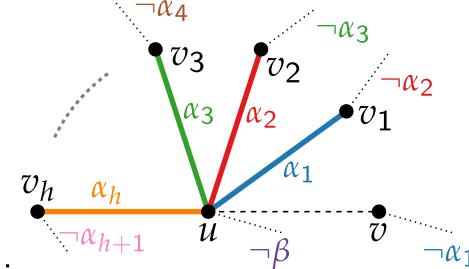
Let u miss β and v miss α_1 ; apply the following algorithm:

VIZINGRECOLORING
$$(G = (V, E), u, c, \alpha_1)$$
 $i \leftarrow 1$
while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do
$$\begin{array}{c} v_i \leftarrow w \\ \alpha_{i+1} \leftarrow \text{min color missing at } w \\ i + + \end{array}$$

return $v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}$

 v_h u v_h

Case 1: u misses α_{h+1} .



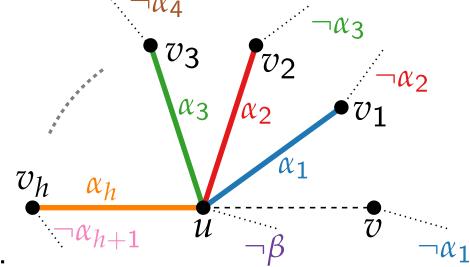
Lemma 2.

Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color.

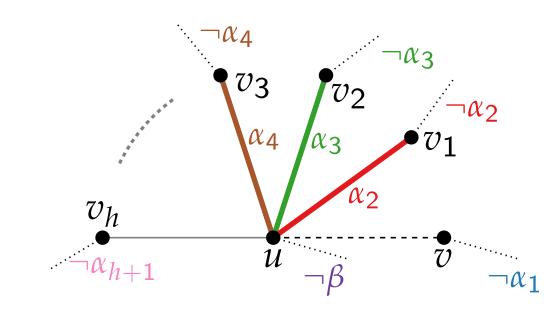
Proof. Note, each vertex is missing a color.

Let u miss β and v miss α_1 ; apply the following algorithm:

VIZINGRECOLORING
$$(G = (V, E), u, c, \alpha_1)$$
 $i \leftarrow 1$
while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do
 $v_i \leftarrow w$
 $\alpha_{i+1} \leftarrow \text{min color missing at } w$
 $i + +$



Case 1: u misses α_{h+1} .



Lemma 2.

Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color.

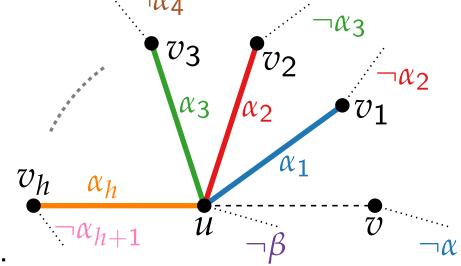
Proof. Note, each vertex is missing a color.

Let u miss β and v miss α_1 ; apply the following algorithm:

VIZINGRECOLORING
$$(G = (V, E), u, c, \alpha_1)$$
 $i \leftarrow 1$
while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do
$$\begin{array}{c} v_i \leftarrow w \\ \alpha_{i+1} \leftarrow \text{min color missing at } w \\ i + + \end{array}$$

return $v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}$

 v_h α_{h+1} α_2 α_2 α_2 α_2 α_3 α_4 α_3 α_2 α_4 α_5 α_5



Case 1: u misses α_{h+1} .

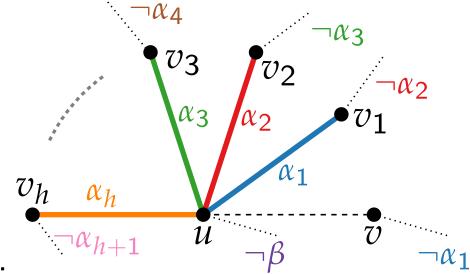
Lemma 2.

Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color.

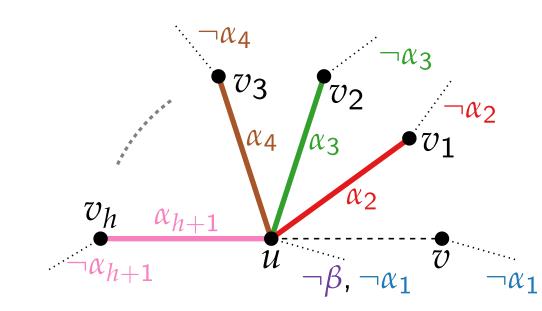
Proof. Note, each vertex is missing a color.

Let u miss β and v miss α_1 ; apply the following algorithm:

VIZINGRECOLORING
$$(G = (V, E), u, c, \alpha_1)$$
 $i \leftarrow 1$
while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do
$$\begin{array}{c} v_i \leftarrow w \\ \alpha_{i+1} \leftarrow \text{min color missing at } w \\ i + + \end{array}$$



Case 1: u misses α_{h+1} .



Lemma 2.

Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color.

Proof. Note, each vertex is missing a color.

VIZINGRECOLORING
$$(G = (V, E), u, c, \alpha_1)$$
 $i \leftarrow 1$
while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do
 $v_i \leftarrow w$
 $\alpha_{i+1} \leftarrow \text{min color missing at } w$
 $i + +$
return $v_1, \dots, v_i; \alpha_1, \dots, \alpha_{i+1}$

$$v_3$$
 v_2
 v_3
 v_2
 v_3
 v_4
 v_2
 v_3
 v_4
 v_6
 v_6
 v_6
 v_7
 v_8
 v_8

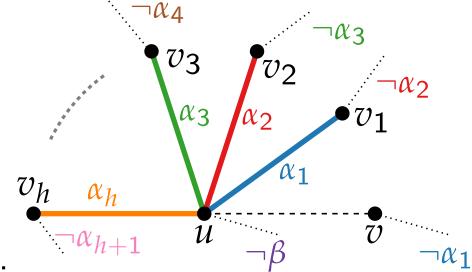
Case 2:
$$\alpha_{h+1} = \alpha_j$$
, $j < h$.

Lemma 2.

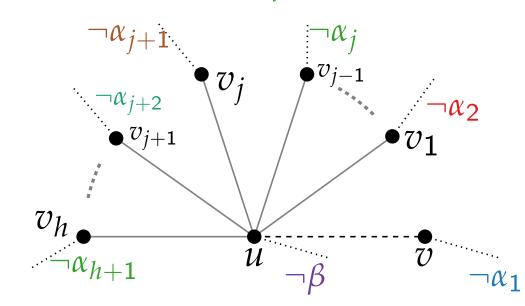
Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color.

Proof. Note, each vertex is missing a color.

VIZINGRECOLORING
$$(G = (V, E), u, c, \alpha_1)$$
 $i \leftarrow 1$
while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do
 $v_i \leftarrow w$
 $\alpha_{i+1} \leftarrow \text{min color missing at } w$
 $i + +$
return $v_1, \dots, v_i; \alpha_1, \dots, \alpha_{i+1}$



Case 2:
$$\alpha_{h+1} = \alpha_j$$
, $j < h$.

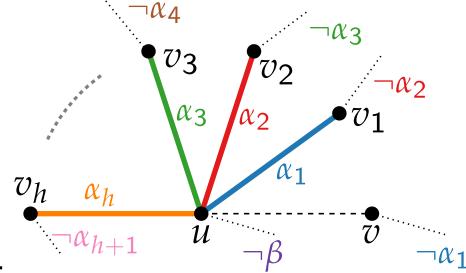


Lemma 2.

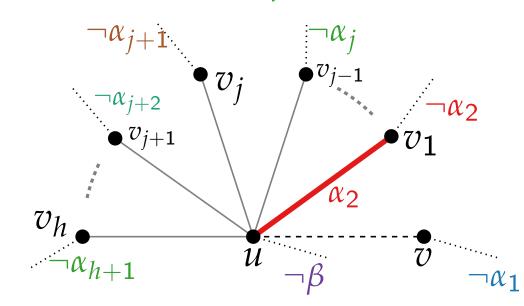
Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color.

Proof. Note, each vertex is missing a color.

VIZINGRECOLORING
$$(G = (V, E), u, c, \alpha_1)$$
 $i \leftarrow 1$
while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do
 $v_i \leftarrow w$
 $\alpha_{i+1} \leftarrow \text{min color missing at } w$
 $i + +$
return $v_1, \dots, v_i; \alpha_1, \dots, \alpha_{i+1}$



Case 2:
$$\alpha_{h+1} = \alpha_j$$
, $j < h$.

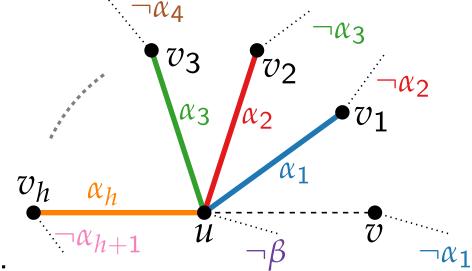


Lemma 2.

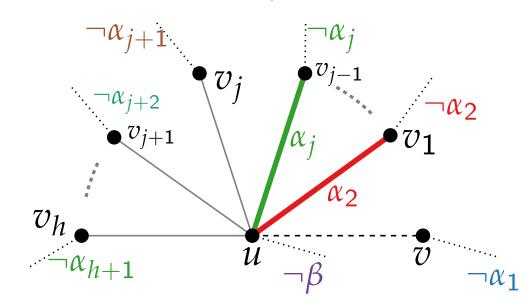
Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color.

Proof. Note, each vertex is missing a color.

VIZINGRECOLORING
$$(G = (V, E), u, c, \alpha_1)$$
 $i \leftarrow 1$
while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do
 $v_i \leftarrow w$
 $\alpha_{i+1} \leftarrow \text{min color missing at } w$
 $i + +$
return $v_1, \dots, v_i; \alpha_1, \dots, \alpha_{i+1}$



Case 2:
$$\alpha_{h+1} = \alpha_j$$
, $j < h$.

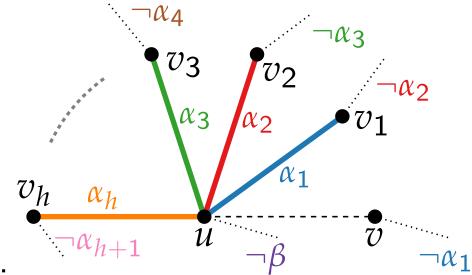


Lemma 2.

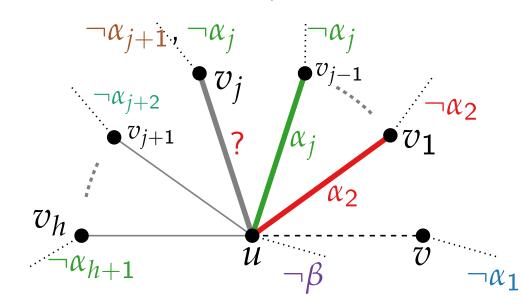
Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color.

Proof. Note, each vertex is missing a color.

VIZINGRECOLORING
$$(G = (V, E), u, c, \alpha_1)$$
 $i \leftarrow 1$
while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do
 $v_i \leftarrow w$
 $\alpha_{i+1} \leftarrow \text{min color missing at } w$
 $i + +$
return $v_1, \dots, v_i; \alpha_1, \dots, \alpha_{i+1}$



Case 2:
$$\alpha_{h+1} = \alpha_j$$
, $j < h$.

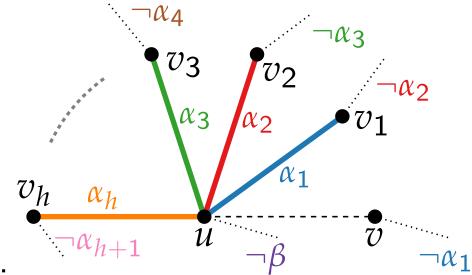


Lemma 2.

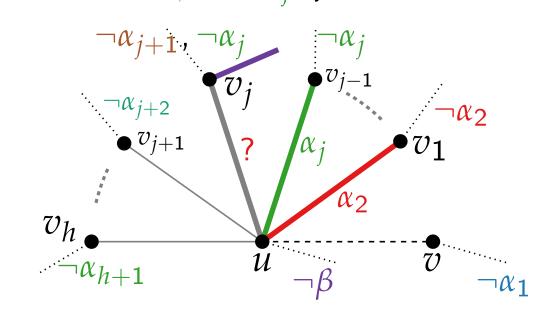
Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color.

Proof. Note, each vertex is missing a color.

VIZINGRECOLORING
$$(G = (V, E), u, c, \alpha_1)$$
 $i \leftarrow 1$
while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do
 $v_i \leftarrow w$
 $\alpha_{i+1} \leftarrow \text{min color missing at } w$
 $i + +$
return $v_1, \dots, v_i; \alpha_1, \dots, \alpha_{i+1}$



Case 2:
$$\alpha_{h+1} = \alpha_j, j < h$$
.

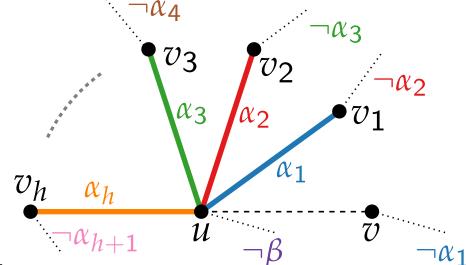


Lemma 2.

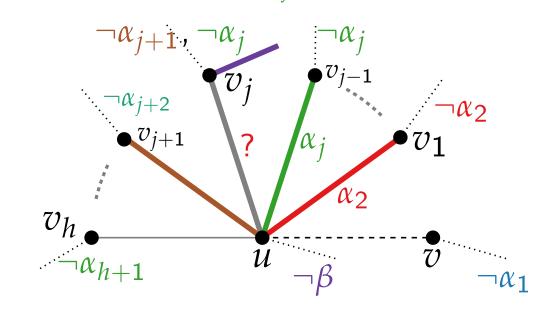
Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color.

Proof. Note, each vertex is missing a color.

VIZINGRECOLORING
$$(G = (V, E), u, c, \alpha_1)$$
 $i \leftarrow 1$
while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do
 $v_i \leftarrow w$
 $\alpha_{i+1} \leftarrow \text{min color missing at } w$
 $i + +$
return $v_1, \dots, v_i; \alpha_1, \dots, \alpha_{i+1}$



Case 2:
$$\alpha_{h+1} = \alpha_j, j < h$$
.

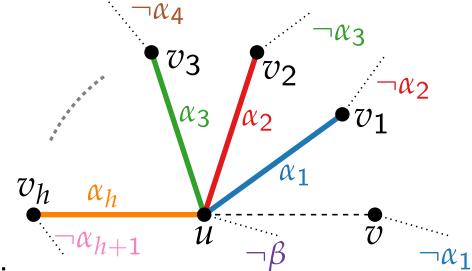


Lemma 2.

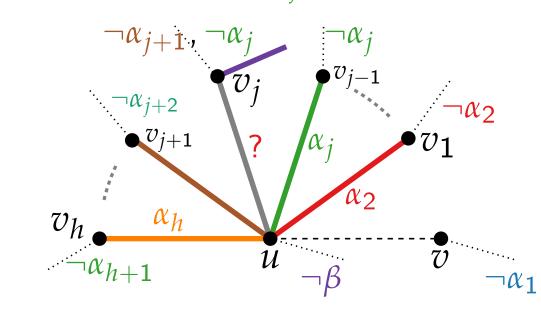
Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color.

Proof. Note, each vertex is missing a color.

VIZINGRECOLORING
$$(G = (V, E), u, c, \alpha_1)$$
 $i \leftarrow 1$
while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do
 $v_i \leftarrow w$
 $\alpha_{i+1} \leftarrow \text{min color missing at } w$
 $i + +$
return $v_1, \dots, v_i; \alpha_1, \dots, \alpha_{i+1}$



Case 2:
$$\alpha_{h+1} = \alpha_j$$
, $j < h$.

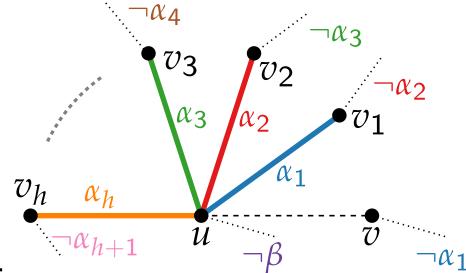


Lemma 2.

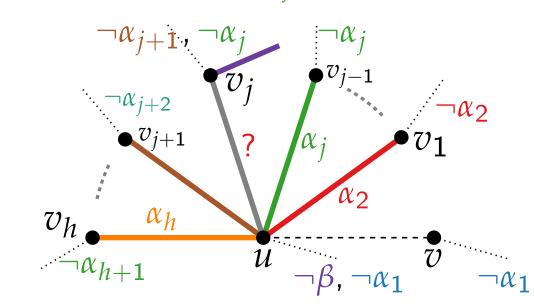
Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color.

Proof. Note, each vertex is missing a color.

VIZINGRECOLORING
$$(G = (V, E), u, c, \alpha_1)$$
 $i \leftarrow 1$
while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do
 $v_i \leftarrow w$
 $\alpha_{i+1} \leftarrow \text{min color missing at } w$
 $i + +$
return $v_1, \dots, v_i; \alpha_1, \dots, \alpha_{i+1}$



Case 2:
$$\alpha_{h+1} = \alpha_j$$
, $j < h$.

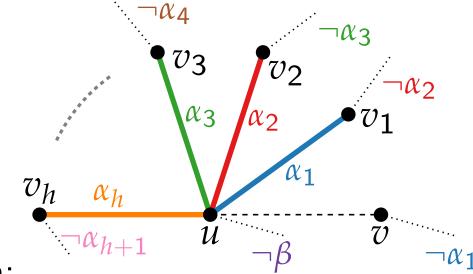


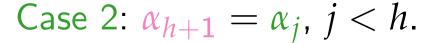
Lemma 2.

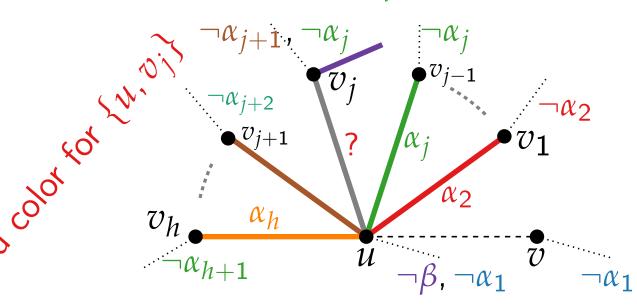
Let G have a $(\Delta + 1)$ edge coloring c, let u, v be non-adjacent, and $\deg(u)$, $\deg(v) < \Delta$. Then c can be changed such that u and v miss the same color.

Proof. Note, each vertex is missing a color.

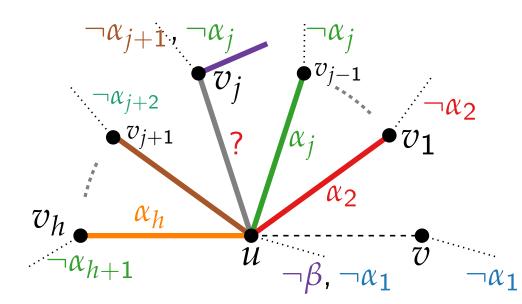
VIZINGRECOLORING
$$(G = (V, E), u, c, \alpha_1)$$
 $i \leftarrow 1$
while $\exists w \in N(u) \colon c(\{u, w\}) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do
 $v_i \leftarrow w$
 $\alpha_{i+1} \leftarrow \text{min color missing at } w$
 $i + +$
return $v_1, \dots, v_i; \alpha_1, \dots, \alpha_{i+1}$







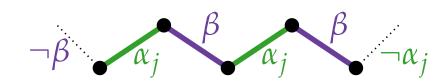
Proof continued for

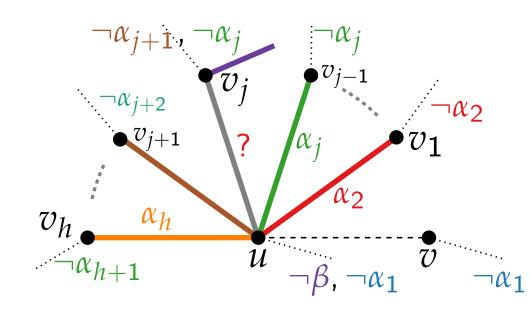


Proof continued for

Case 2: $\alpha_{h+1} = \alpha_j$, j < h and we need to find a color for $\{u, v_j\}$.

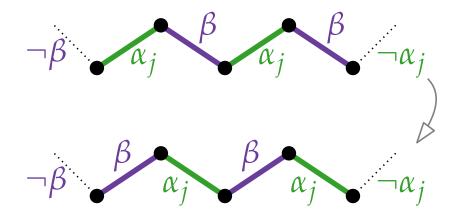
Consider subgraph G' of G induced by edges with color β and α_j .

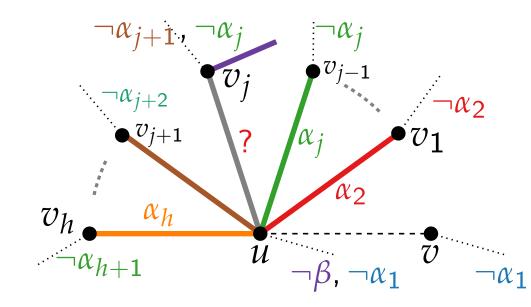




Proof continued for

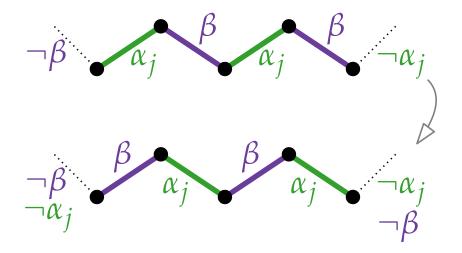
- Consider subgraph G' of G induced by edges with color β and α_j .
- Since $\Delta(G') \leq 2$, we can recolor components.

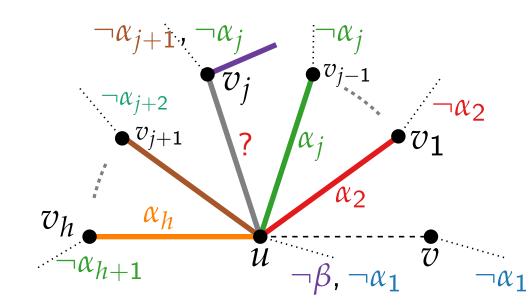




Proof continued for

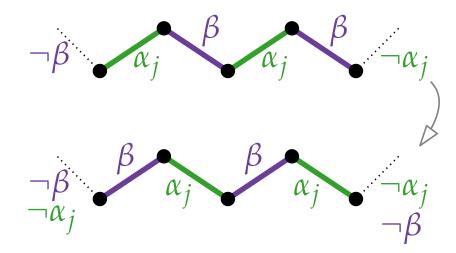
- Consider subgraph G' of G induced by edges with color β and α_j .
- Since $\Delta(G') \leq 2$, we can recolor components.

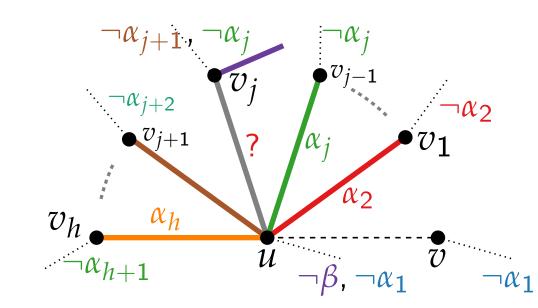




Proof continued for

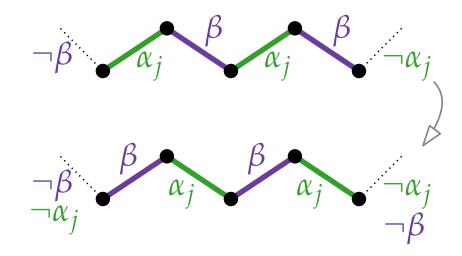
- Consider subgraph G' of G induced by edges with color β and α_j .
- Since $\Delta(G') \leq 2$, we can recolor components.
- u, v_j, v_h have degree 1 in G'⇒ they are not all in same component

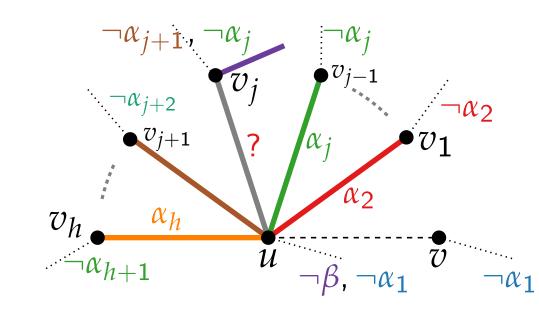




Proof continued for

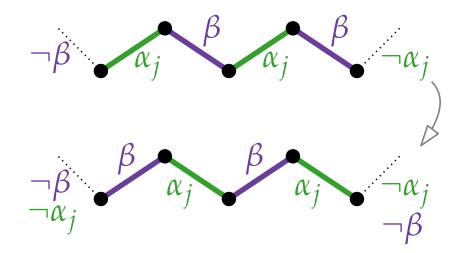
- Consider subgraph G' of G induced by edges with color β and α_j .
- Since $\Delta(G') \leq 2$, we can recolor components.
- u, v_j, v_h have degree 1 in G'⇒ they are not all in same component
- If v_i and u are not in the same component:
 - lacksquare Recolor component ending at v_j

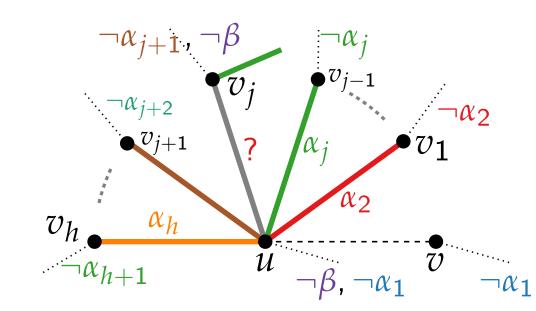




Proof continued for

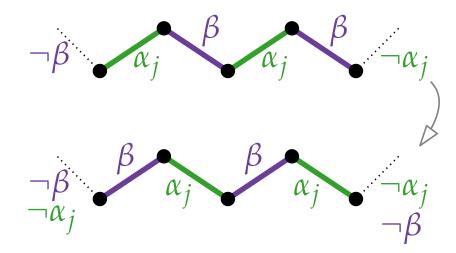
- Consider subgraph G' of G induced by edges with color β and α_j .
- Since $\Delta(G') \leq 2$, we can recolor components.
- u, v_j, v_h have degree 1 in G'⇒ they are not all in same component
- If v_j and u are not in the same component:
 - lacktriangle Recolor component ending at v_i
 - lacksquare v_i now misses β

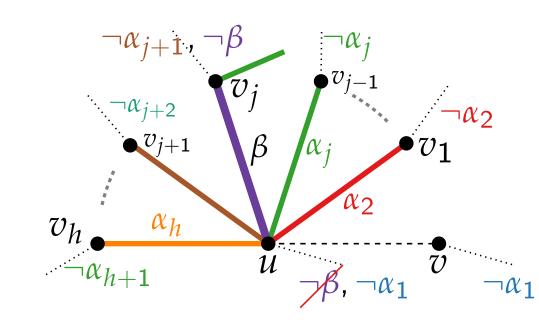




Proof continued for

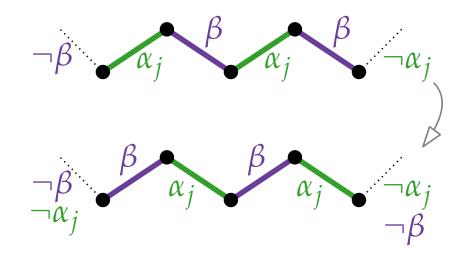
- Consider subgraph G' of G induced by edges with color β and α_j .
- Since $\Delta(G') \leq 2$, we can recolor components.
- u, v_j, v_h have degree 1 in G'⇒ they are not all in same component
- If v_j and u are not in the same component:
 - lacktriangle Recolor component ending at v_i
 - lacksquare v_j now misses eta
 - Color $\{u, v_j\}$ in β

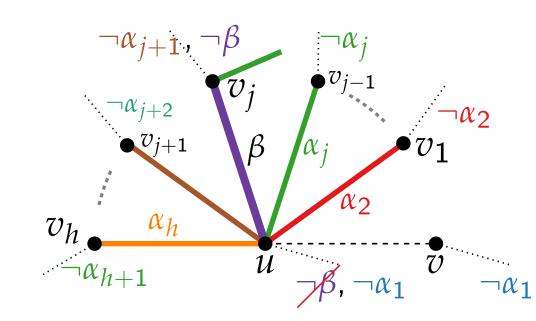




Proof continued for

- Consider subgraph G' of G induced by edges with color β and α_j .
- Since $\Delta(G') \leq 2$, we can recolor components.
- u, v_j, v_h have degree 1 in G'⇒ they are not all in same component
- If v_i and u are not in the same component:
 - lacktriangle Recolor component ending at v_j
 - \mathbf{v}_i now misses β
 - lacksquare Color $\{u, v_j\}$ in β
- What if v_i and u are in the same component?





Minimum edge coloring - algorithm

```
VIZINGEDGECOLORING(G = (V, E))
  if E=\emptyset then
      return 0
  else
      \{u,v\} \leftarrow \text{random edge of } G
     G' \leftarrow G - e
     VIZINGEDGEColoring(G')
      if \Delta(G') < \Delta(G) then
         Color \{u, v\} with lowest free color
      else
          Recolor E with Lemma 2
         Color \{u, v\} with color now missing at u and v
```

Minimum edge coloring - algorithm

VizingEdgeColoring(G = (V, E))

```
if E = \emptyset then \bot return 0
```

else

```
\{u,v\} \leftarrow \text{random edge of } G

G' \leftarrow G - e

VIZINGEDGECOLORING(G')
```

if $\Delta(G') < \Delta(G)$ then

Color $\{u, v\}$ with lowest free color

else

Recolor E with Lemma 2 Color $\{u, v\}$ with color now missing at u and v

Theorem 4.

VIZINGEDGECOLORING \mathcal{A} is an approximation algorithm with additive approximation guarantee $\mathcal{A}(G) - \mathsf{OPT}(G) \leq 1$.

Approximation with relative factor

An additive approximation guarantee can seldomly be achieved; but sometimes there is a multiplicative . . .

Approximation with relative factor

An additive approximation guarantee can seldomly be achieved; but sometimes there is a multiplicative . . .

Definition.

Let Π be an minimisation problem and $\alpha \in \mathbb{Q}^+$. A **(factor)** α -approximation algorithm for Π is a polynomial-time algorithm \mathcal{A} , which computes for every instance I of Π a value $\mathcal{A}(I)$ such that

$$\frac{\mathcal{A}(I)}{\mathsf{OPT}(I)} \leq \alpha.$$

We call α the approximation factor.

Approximation with relative factor

An additive approximation guarantee can seldomly be achieved; but sometimes there is a multiplicative

Let Π be an minimisation problem and $\alpha \in \mathbb{Q}^+$. A (factor) α -approximation algorithm for Π is a

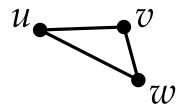
polynomial-time algorithm A, which computes for every instance I of Π a value $\mathcal{A}(I)$ such that

$$\frac{\mathcal{A}(I)}{\mathsf{OPT}(I)} \stackrel{\geq}{\leq} \alpha.$$

We call α the approximation factor.

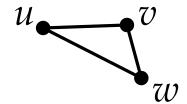
2-approximation for Metric TSP (from AGT)

Input. Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



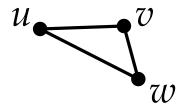
2-approximation for Metric TSP (from AGT)

Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



Output. Shortest Hamilton cycle.

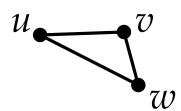
Input. Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



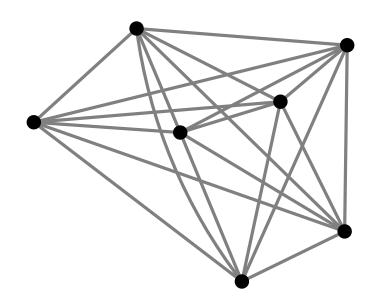
Output. Shortest Hamilton cycle.

Input.

Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.

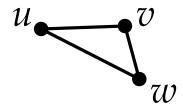


Output. Shortest Hamilton cycle.



Input.

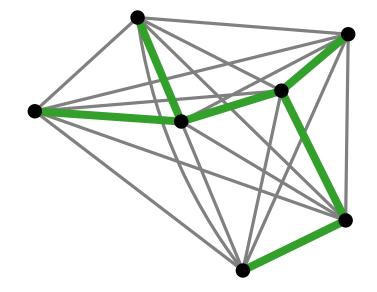
Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



Output. Shortest Hamilton cycle.

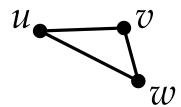
Algorithm.

Compute MST.



Input.

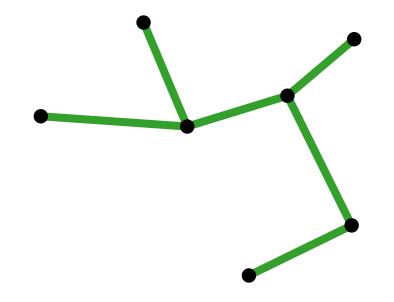
Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



Output. Shortest Hamilton cycle.

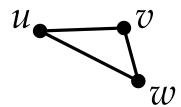
Algorithm.

Compute MST.



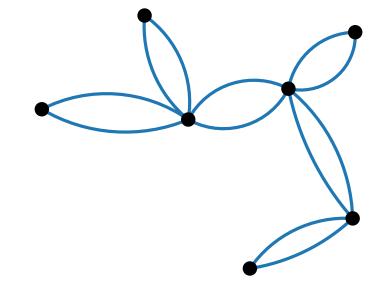
Input.

Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



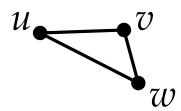
Output. Shortest Hamilton cycle.

- Compute MST.
- Double edges.



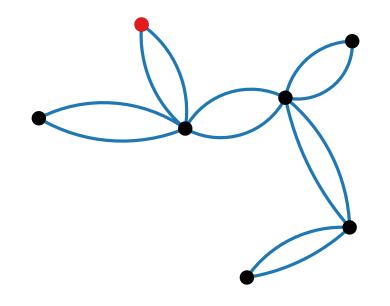
Input.

Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



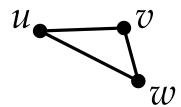
Output. Shortest Hamilton cycle.

- Compute MST.
- Double edges.
- Walk along tree,



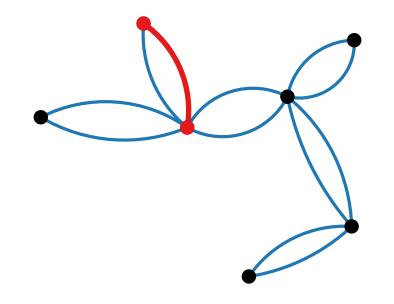
Input.

Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



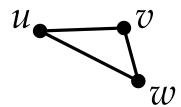
Output. Shortest Hamilton cycle.

- Compute MST.
- Double edges.
- Walk along tree,



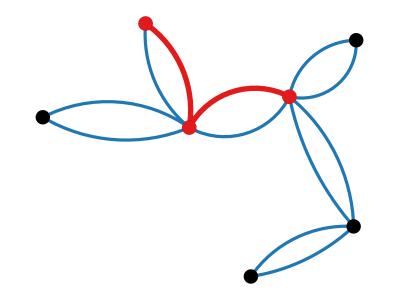
Input.

Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



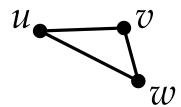
Output. Shortest Hamilton cycle.

- Compute MST.
- Double edges.
- Walk along tree,



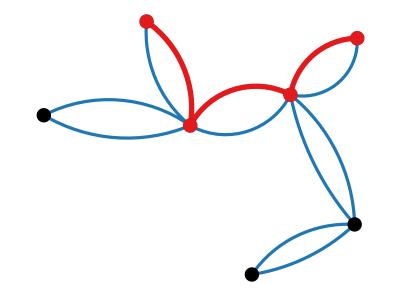
Input.

Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



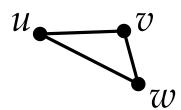
Output. Shortest Hamilton cycle.

- Compute MST.
- Double edges.
- Walk along tree,



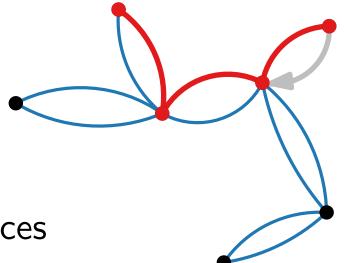
Input.

Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



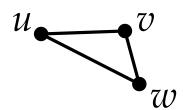
Output. Shortest Hamilton cycle.

- Compute MST.
- Double edges.
- Walk along tree,
- skipping visited vertices



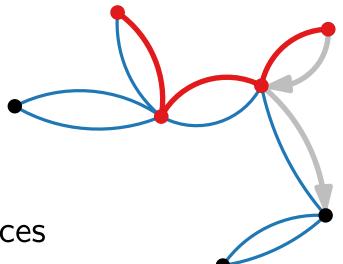
Input.

Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



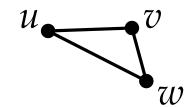
Output. Shortest Hamilton cycle.

- Compute MST.
- Double edges.
- Walk along tree,
- skipping visited vertices



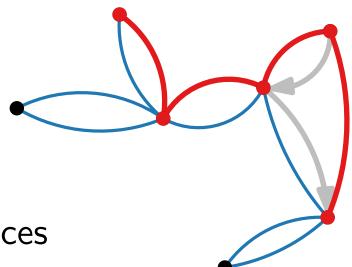
Input.

Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



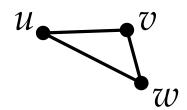
Output. Shortest Hamilton cycle.

- Compute MST.
- Double edges.
- Walk along tree,
- skipping visited vertices
- and adding shortcuts.



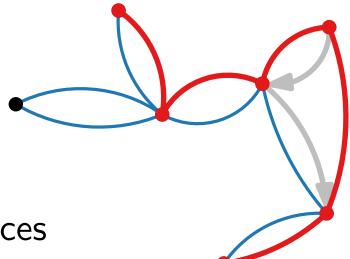
Input.

Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



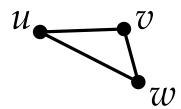
Output. Shortest Hamilton cycle.

- Compute MST.
- Double edges.
- Walk along tree,
- skipping visited vertices
- and adding shortcuts.



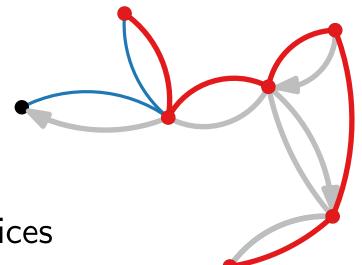
Input.

Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



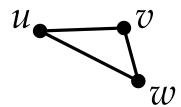
Output. Shortest Hamilton cycle.

- Compute MST.
- Double edges.
- Walk along tree,
- skipping visited vertices
- and adding shortcuts.



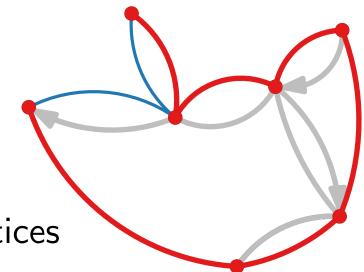
Input.

Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



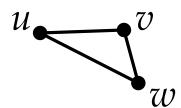
Output. Shortest Hamilton cycle.

- Compute MST.
- Double edges.
- Walk along tree,
- skipping visited vertices
- and adding shortcuts.



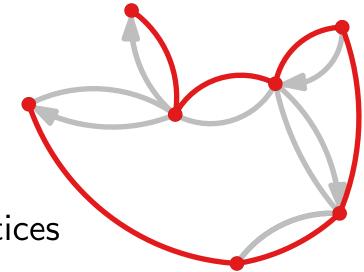
Input.

Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



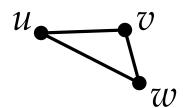
Output. Shortest Hamilton cycle.

- Compute MST.
- Double edges.
- Walk along tree,
- skipping visited vertices
- and adding shortcuts.



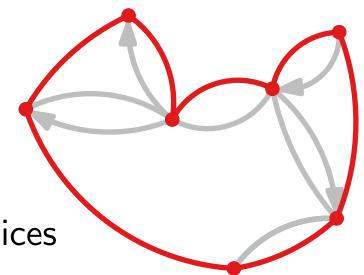
Input.

Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



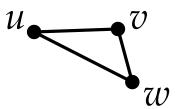
Output. Shortest Hamilton cycle.

- Compute MST.
- Double edges.
- Walk along tree,
- skipping visited vertices
- and adding shortcuts.



Input.

Complete graph G = (V, E) and distance function $d: E \to \mathbb{R}_{\geq 0}$, which satisfies the triangle inequality, i.e. $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.



Output. Shortest Hamilton cycle.

Algorithm.

- Compute MST.
- Double edges.
- Walk along tree,
- skipping visited vertices
- and adding shortcuts.

The MST edge doubling algorithm is a 2-approximation algorithm for metric TSP.

Proof.

$$d(A) \le d(cycle) = 2d(MST) \le 2OPT$$

```
NEARESTADDITIONALGORITHM(G = (V, E), d)

Find closest pair, say i and j

Set tour T to go from i to j to i

for n-2 iterations do

Find pair i \in T and j \not\in T with min d(i,j)

Let k be vertex after i in T

Add j between i and k
```

```
NEARESTADDITIONALGORITHM(G = (V, E), d)

Find closest pair, say i and j

Set tour T to go from i to j to i

for n-2 iterations do

Find pair i \in T and j \not\in T with min d(i,j)

Let k be vertex after i in T

Add j between i and k
```

Add j between i and k

```
NEARESTADDITIONALGORITHM(G = (V, E), d)
Find closest pair, say i and j
Set tour T to go from i to j to i

for n-2 iterations do

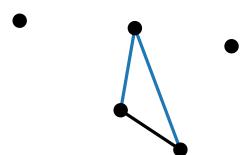
| Find pair i \in T and j \not\in T with min d(i,j)
| Let k be vertex after i in T
```

```
NearestAdditionAlgorithm(G = (V, E), d)
```

Find closest pair, say i and jSet tour T to go from i to j to ifor n-2 iterations **do**

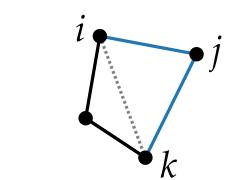
```
NearestAdditionAlgorithm(G = (V, E), d)
```

Find closest pair, say i and jSet tour T to go from i to j to ifor n-2 iterations **do**



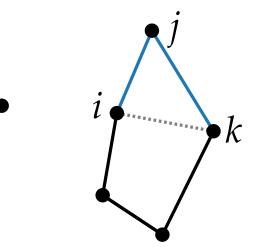
```
NEARESTADDITIONALGORITHM (G = (V, E), d)
```

Find closest pair, say i and jSet tour T to go from i to j to ifor n-2 iterations **do**



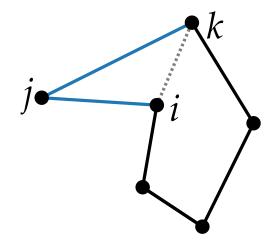
```
NearestAdditionAlgorithm(G = (V, E), d)
```

Find closest pair, say i and jSet tour T to go from i to j to i**for** n-2 iterations **do**



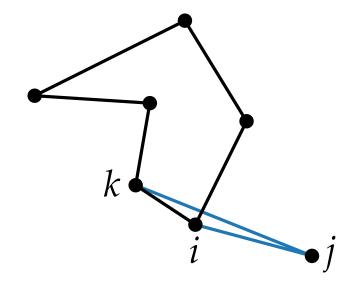
```
NEARESTADDITIONALGORITHM (G = (V, E), d)
```

Find closest pair, say i and jSet tour T to go from i to j to ifor n-2 iterations **do**



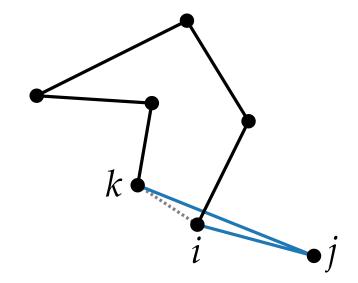
```
NEARESTADDITIONALGORITHM (G = (V, E), d)
```

Find closest pair, say i and jSet tour T to go from i to j to i**for** n-2 iterations **do**



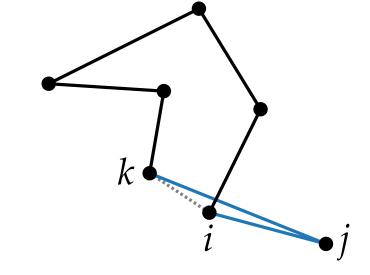
```
NEARESTADDITIONALGORITHM(G = (V, E), d)
Find closest pair, say i and j
Set tour T to go from i to j to i
for n-2 iterations do

Find pair i \in T and j \notin T with min d(i,j)
Let k be vertex after i in T
Add j between i and k
```



```
NEARESTADDITIONALGORITHM(G = (V, E), d)
Find closest pair, say i and j
Set tour T to go from i to j to i
for n-2 iterations do

| Find pair i \in T and j \notin T with min d(i,j)
```



Theorem 6.

The NEARESTADDITIONALGORITHM is a 2-approximation algorithm for metric TSP.

Let k be vertex after i in T

Add j between i and k

NEARESTADDITIONALGORITHM (G = (V, E), d)

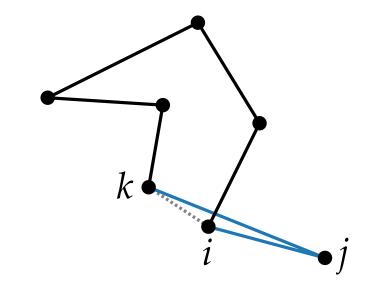
Find closest pair, say i and jSet tour T to go from i to j to i

for n-2 iterations do

Find pair $i \in T$ and $j \notin T$ with min d(i, j)

Let k be vertex after i in T

Add j between i and k



Theorem 6.

The NEARESTADDITIONALGORITHM is a 2-approximation algorithm for metric TSP.

Proof.

- Exercise.
- Hints: MST and Prim's algorithm.

■ In some cases, we can get arbitrarily good approximations.

In some cases, we can get arbitrarily good approximations.

Definition.

Let Π be a minimisation problem. An algorithm \mathcal{A} is called an **polynomial-time approximation scheme (PTAS)**, if \mathcal{A} computes for every input (I, ε) consisting of an instance I of Π and $\varepsilon > 0$ a value $\mathcal{A}(I)$, such that:

- lacksquare $\mathcal{A}(I) \leq (1+\varepsilon) \cdot \mathsf{OPT}$, and
- lacksquare the runtime of \mathcal{A} is polynomiall in |I| für every $\varepsilon > 0$.

In some cases, we can get arbitrarily good approximations.

Let Π be a minimisation problem. An algorithm \mathcal{A} is called an polynomial-time approximation scheme (PTAS), if \mathcal{A} computes for every input (I, ε) consisting of an instance I of Π and $\varepsilon > 0$ a value $\mathcal{A}(I)$, such that:

$$\geq (1-arepsilon)$$

- $\geq (1 \varepsilon)$ $A(I) \leq (1 + \varepsilon) \cdot \mathsf{OPT}$, and
- \blacksquare the runtime of \mathcal{A} is polynomiall in |I| für every $\varepsilon > 0$.

In some cases, we can get arbitrarily good approximations.

Let Π be a minimisation problem. An algorithm \mathcal{A} is called an polynomial-time approximation scheme (PTAS), if \mathcal{A} computes for every input (I, ε) consisting of an instance I of Π and $\varepsilon > 0$ a value $\mathcal{A}(I)$, such that:

$$\geq (1-\varepsilon)$$

- $\geq (1 \varepsilon)$ $A(I) \leq (1 + \varepsilon) \cdot \mathsf{OPT}$, and
- \blacksquare the runtime of \mathcal{A} is polynomiall in |I| für every $\varepsilon > 0$.

 \mathcal{A} is called a fully polynomial-time approximation scheme (FPTAS), if it runs polynomial in |I| and $1/\varepsilon$.

In some cases, we can get arbitrarily good approximations.

maximisation

Let Π be a minimisation problem. An algorithm \mathcal{A} is called an polynomial-time approximation scheme (PTAS), if \mathcal{A} computes for every input (I, ε) consisting of an instance I of Π and $\varepsilon > 0$ a value $\mathcal{A}(I)$, such that:

$$\geq (1-\varepsilon)$$

- $\geq (1-\varepsilon)$ $A(I) \leq (1+\varepsilon) \cdot \mathsf{OPT}$, and
- lacksquare the runtime of $\mathcal A$ is polynomiall in |I| für every $\varepsilon>0$.

 \mathcal{A} is called a fully polynomial-time approximation scheme (FPTAS), if it runs polynomial in |I| and $1/\varepsilon$.

Examples.

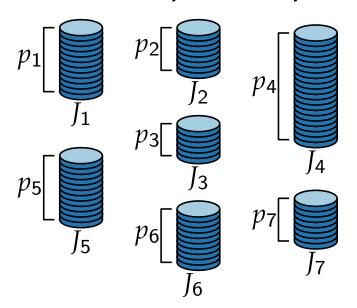
$$\bigcirc \mathcal{O}\left(n^2 \cdot 3^{\frac{1}{\varepsilon}}\right) \Rightarrow \mathsf{PTAS} \mathsf{\ but\ not\ FPTAS}$$

$$\bigcirc \mathcal{O}\left(n^4 \cdot \left(\frac{1}{\varepsilon}\right)^2\right) \Rightarrow \mathsf{FPTAS}$$

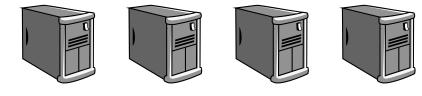
Multiprocessor Scheduling

Input.

n jobs J_1, \ldots, J_n with durations p_1, \ldots, p_n .



 \blacksquare *m* identical machines (m < n)



Input.

n jobs J_1, \ldots, J_n with durations p_1, \ldots, p_n .

 $p_{1} \begin{bmatrix} p_{2} \\ J_{1} \\ p_{3} \end{bmatrix}$ $p_{4} \begin{bmatrix} p_{4} \\ J_{4} \\ p_{5} \end{bmatrix}$ $p_{5} \begin{bmatrix} p_{6} \\ J_{5} \\ p_{6} \end{bmatrix}$ $p_{7} \begin{bmatrix} p_{7} \\ J_{7} \\ p_{7} \end{bmatrix}$

 \blacksquare m identical machines (m < n)

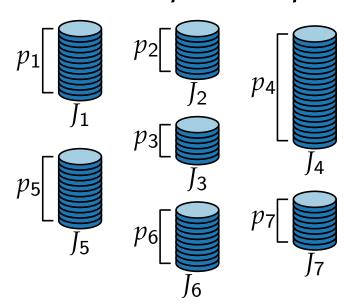
Output.

Distribution of jobs to machines such that the time when all jobs have been processed is minimal.

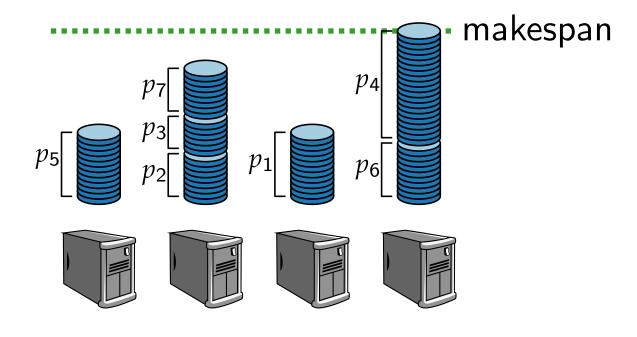
This is called the **makespan** of the distribution.

Input.

n jobs J_1, \ldots, J_n with durations p_1, \ldots, p_n .



 \blacksquare m identical machines (m < n)

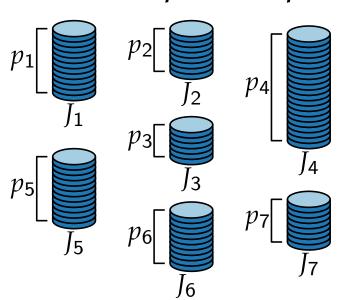


Output. Distribution of jobs to machines such that the time when all jobs have been processed is minimal.

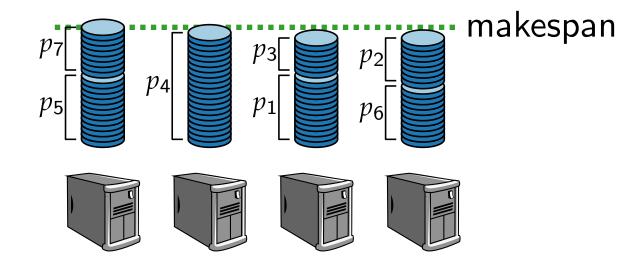
This is called the makespan of the distribution.

Input.

■ n jobs J_1, \ldots, J_n with durations p_1, \ldots, p_n .



 \blacksquare m identical machines (m < n)



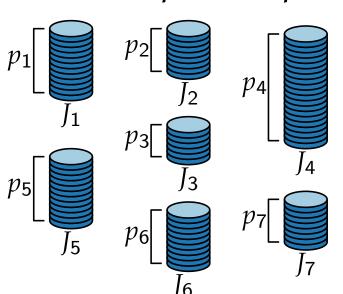
Output.

Distribution of jobs to machines such that the time when all jobs have been processed is minimal.

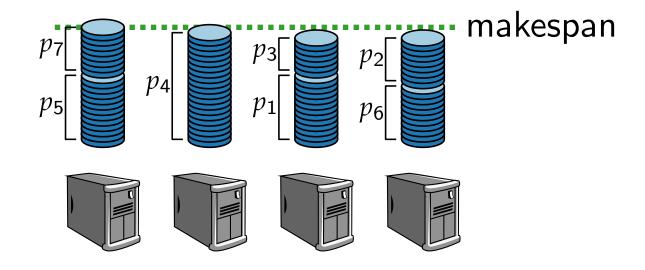
This is called the **makespan** of the distribution.

Input.

■ n jobs J_1, \ldots, J_n with durations p_1, \ldots, p_n .



 \blacksquare m identical machines (m < n)



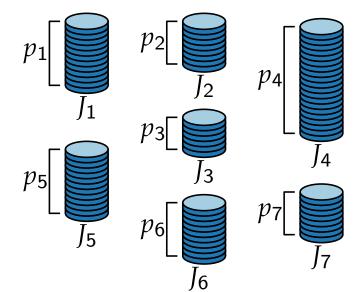
Output. Distribution of jobs to machines such that the time when all jobs have been processed is minimal.

This is called the **makespan** of the distribution.

Multiprocess scheduling is NP-hard.

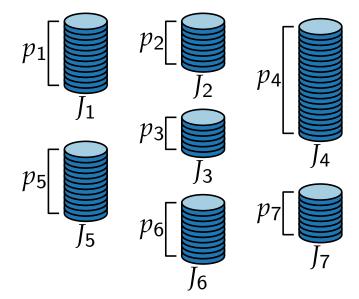
LISTSCHEDULING (J_1, \ldots, J_n, m)

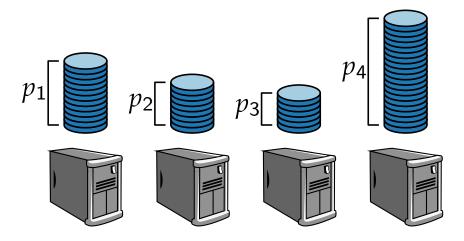
Put the first m jobs on the m machines Put next job on first free machine



LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first m jobs on the m machines Put next job on first free machine

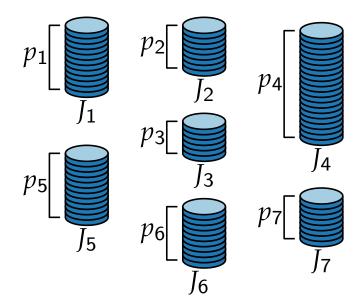


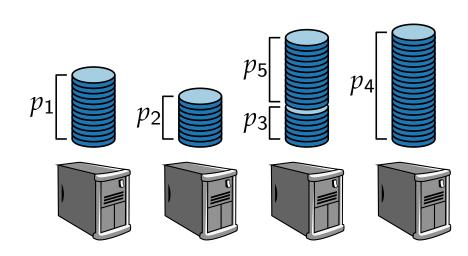


LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first m jobs on the m machines

Put next job on first free machine

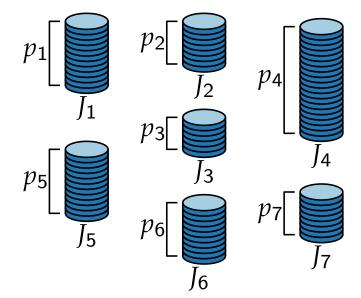


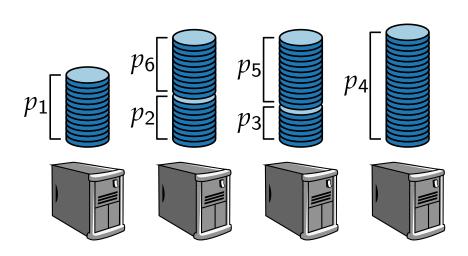


LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first m jobs on the m machines

Put next job on first free machine

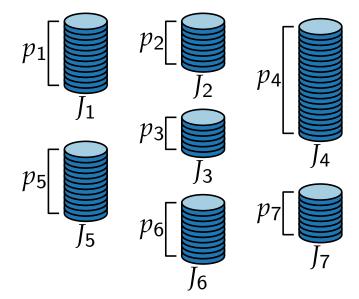


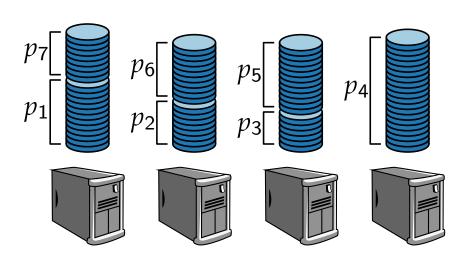


LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first m jobs on the m machines

Put next job on first free machine

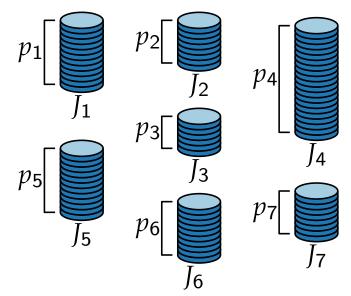




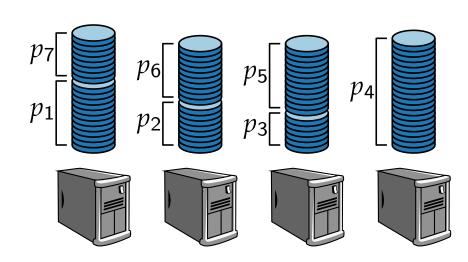
LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first m jobs on the m machines Put next job on first free machine

Example.



LISTSCHEDULING runs in $\mathcal{O}(n)$ time.



LISTSCHEDULING(J_1, \ldots, J_n, m)

Put the first m jobs on the m machines Put next job on first free machine

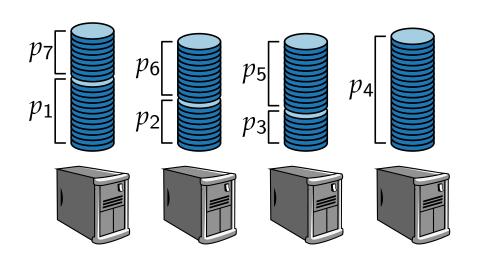
Example.



LISTSCHEDULING runs in $\mathcal{O}(n)$ time.

Theorem 7.

LISTSCHEDULING is a $\left(2-\frac{1}{m}\right)$ -approximation algorithm.



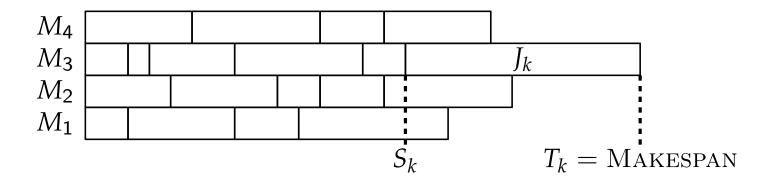
LISTSCHEDULING(J_1, \ldots, J_n, m)

Put the first m jobs on the m machines Put next job on first free machine

Theorem 7.

LISTSCHEDULING is a $(2-\frac{1}{m})$ -approximation algorithm.

Proof. Let J_k be the last job with start time S_k and finish time $T_k = \text{MAKESPAN}$



LISTSCHEDULING(J_1, \ldots, J_n, m)

Put the first m jobs on the m machines Put next job on first free machine

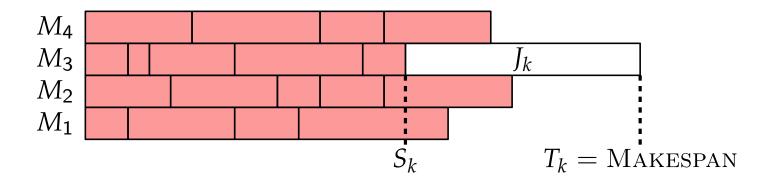
Theorem 7.

LISTSCHEDULING is a $(2-\frac{1}{m})$ -approximation algorithm.

Proof. Let J_k be the last job with start time S_k and finish time $T_k = \text{MAKESPAN}$

No machine idles at time S_k .

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$
 weight of all jobs but J_k evenly distributed on m machines



LISTSCHEDULING(J_1, \ldots, J_n, m)

Put the first m jobs on the m machines Put next job on first free machine

Theorem 7.

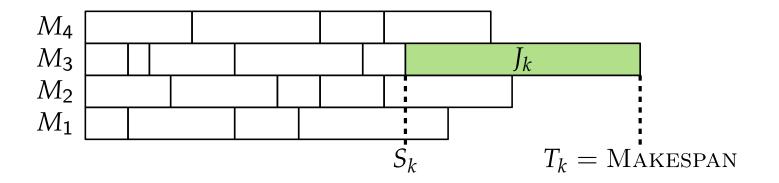
LISTSCHEDULING is a $(2-\frac{1}{m})$ -approximation algorithm.

Proof. Let J_k be the last job with start time S_k and finish time $T_k = \text{MAKESPAN}$

No machine idles at time S_k .

$$S_k \le \frac{1}{m} \sum_{i \ne k} p_i$$
 weight of all jobs but J_k evenly distributed on m machines

- For an optimal Makespan T_{OPT} , we have:
- $T_{\mathsf{OPT}} \geq p_k$



LISTSCHEDULING(J_1, \ldots, J_n, m)

Put the first m jobs on the m machines Put next job on first free machine

Theorem 7.

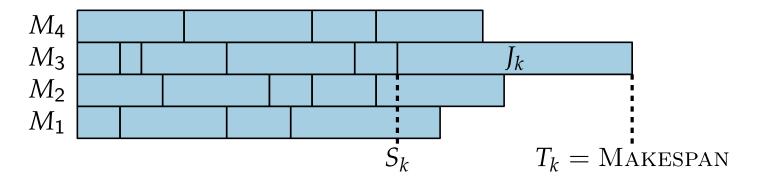
LISTSCHEDULING is a $(2-\frac{1}{m})$ -approximation algorithm.

Proof. Let I_k be the last job with start time S_k and finish time $T_k = \text{MAKESPAN}$

No machine idles at time S_k .

$$S_k \le \frac{1}{m} \sum_{i \ne k} p_i$$
 weight of all jobs but J_k evenly distributed on m machines

- For an optimal Makespan T_{OPT} , we have:
- $T_{\text{OPT}} \ge p_k$ $T_{\text{OPT}} \ge \frac{1}{m} \sum_{i=1}^{n} p_i$ weight of all jobs evenly distributed



LISTSCHEDULING(J_1, \ldots, J_n, m)

Put the first m jobs on the m machines Put next job on first free machine

Theorem 7.

LISTSCHEDULING is a $(2-\frac{1}{m})$ -approximation algorithm.

Proof. Let I_k be the last job with start time S_k and finish time $T_k = \text{MAKESPAN}$

No machine idles at time S_k .

$$S_k \le \frac{1}{m} \sum_{i \ne k} p_i$$
 weight of all jobs but J_k evenly distributed on m machines

For an optimal Makespan T_{OPT} , we have:

$$T_{\mathsf{OPT}} \geq p_k$$



$$T_k = S_k + p_k$$

LISTSCHEDULING(J_1, \ldots, J_n, m)

Put the first m jobs on the m machines Put next job on first free machine

Theorem 7.

LISTSCHEDULING is a $(2-\frac{1}{m})$ -approximation algorithm.

Proof. Let I_k be the last job with start time S_k and finish time $T_k = \text{MAKESPAN}$

No machine idles at time S_k .

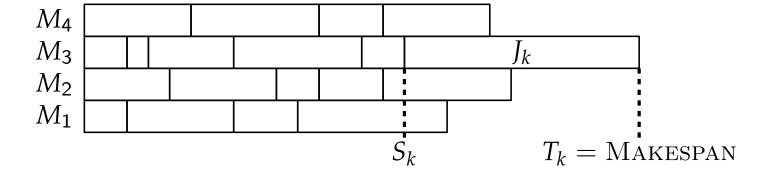
$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$
 weight of all jobs but J_k evenly distributed on m machines

For an optimal Makespan T_{OPT} , we have:

$$T_{\mathsf{OPT}} \geq p_k$$

■
$$T_{\text{OPT}} \ge p_k$$

■ $T_{\text{OPT}} \ge \frac{1}{m} \sum_{i=1}^n p_i$ weight of all jobs evenly distributed



$$T_k = S_k + p_k$$

$$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$

LISTSCHEDULING(J_1, \ldots, J_n, m)

Put the first m jobs on the m machines Put next job on first free machine

Theorem 7.

LISTSCHEDULING is a $(2-\frac{1}{m})$ -approximation algorithm.

Proof. Let I_k be the last job with start time S_k and finish time $T_k = \text{MAKESPAN}$

No machine idles at time S_k .

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$
 weight of all jobs but J_k evenly distributed on m machines

For an optimal MAKESPAN T_{OPT} , we have:

$$T_{\mathsf{OPT}} \geq p_k$$

$$T_k = S_k + p_k$$

$$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$

$$= \frac{1}{m} \cdot \sum_{i=1}^n p_i + \left(1 - \frac{1}{m}\right) \cdot p_k$$

$$M_4$$
 M_3 M_2 M_1 M_2 M_3 M_4 M_5 M_6 M_6 M_6 M_7 M_8 M_8 M_8 M_9 M_9

LISTSCHEDULING(J_1, \ldots, J_n, m)

Put the first m jobs on the m machines Put next job on first free machine

Theorem 7.

LISTSCHEDULING is a $(2-\frac{1}{m})$ -approximation algorithm.

Proof. Let J_k be the last job with start time S_k and finish time $T_k = \text{MAKESPAN}$

No machine idles at time S_k .

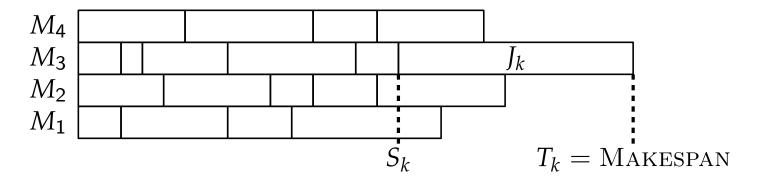
$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$
 weight of all jobs but J_k evenly distributed on m machines

For an optimal MAKESPAN T_{OPT} , we have:

$$T_{\mathsf{OPT}} \geq p_k$$

■
$$T_{\text{OPT}} \ge p_k$$

■ $T_{\text{OPT}} \ge \frac{1}{m} \sum_{i=1}^n p_i$ weight of all jobs evenly distributed



$$T_k = S_k + p_k$$

$$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$

$$= \frac{1}{m} \cdot \sum_{i=1}^{n} p_i + \left(1 - \frac{1}{m}\right) \cdot p_k$$

$$\leq T_{\text{OPT}} + \left(1 - \frac{1}{m}\right) \cdot T_{\text{OPT}}$$

LISTSCHEDULING(J_1, \ldots, J_n, m)

Put the first m jobs on the m machines Put next job on first free machine

Theorem 7.

LISTSCHEDULING is a $(2-\frac{1}{m})$ -approximation algorithm.

Proof. Let J_k be the last job with start time S_k and finish time $T_k = \text{MAKESPAN}$

No machine idles at time S_k .

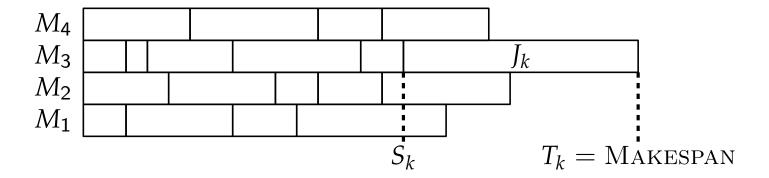
$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$
 weight of all jobs but J_k evenly distributed on m machines

For an optimal Makespan T_{OPT} , we have:

$$T_{\mathsf{OPT}} \geq p_k$$

■
$$T_{\text{OPT}} \ge p_k$$

■ $T_{\text{OPT}} \ge \frac{1}{m} \sum_{i=1}^{n} p_i$ weight of all jobs evenly distributed



$$T_{k} = S_{k} + p_{k}$$

$$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i} + p_{k}$$

$$= \frac{1}{m} \cdot \sum_{i=1}^{n} p_{i} + \left(1 - \frac{1}{m}\right) \cdot p_{k}$$

$$\leq T_{\mathsf{OPT}} + \left(1 - \frac{1}{m}\right) \cdot T_{\mathsf{OPT}}$$

$$= \left(2 - \frac{1}{m}\right) \cdot T_{\mathsf{OPT}}$$

```
For a constant \ell (1 \le \ell \le n) define the algorithm \mathcal{A}_{\ell} as follows. \mathcal{A}_{\ell}(J_1,\ldots,J_n,m)
Sort jobs in descending order of runtime
Schedule the \ell longest jobs J_1,\ldots,J_{\ell} optimally
Use LISTSCHEDULING for the reamining jobs J_{\ell+1},\ldots,J_n
```

For a constant ℓ $(1 \le \ell \le n)$ define the algorithm \mathcal{A}_{ℓ} as follows.

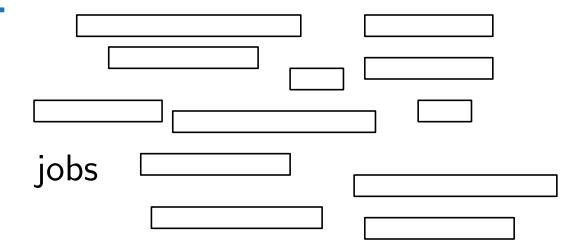
$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

Sort jobs in descending order of runtime

Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally

Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$

$$\ell = 6$$



For a constant ℓ $(1 \le \ell \le n)$ define the algorithm \mathcal{A}_{ℓ} as follows.

```
\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)
```

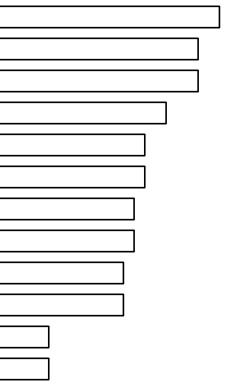
Sort jobs in descending order of runtime

Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally

Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$

Example.

$$\ell = 6$$



For a constant ℓ $(1 \le \ell \le n)$ define the algorithm \mathcal{A}_{ℓ} as follows.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

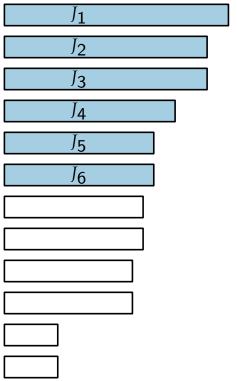
Sort jobs in descending order of runtime

Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally

Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$

Example.

$$\ell = 6$$



$M_4 \\ M_3 \\ M_2 \\ M_1$	J_1		
M_3	J ₂	J_{5}	
M_2	J ₃		
M_1	J ₄	J ₆	

For a constant ℓ $(1 \le \ell \le n)$ define the algorithm \mathcal{A}_{ℓ} as follows.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

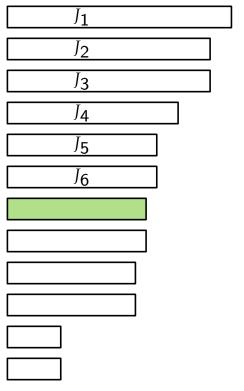
Sort jobs in descending order of runtime

Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally

Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$

Example.

$$\ell = 6$$



$M_4 \\ M_3 \\ M_2 \\ M_1$	J_1		
M_3	J ₂	J_{5}	
M_2	J ₃		
M_1	J ₄	J ₆	

For a constant ℓ ($1 \le \ell \le n$) define the algorithm \mathcal{A}_{ℓ} as follows.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

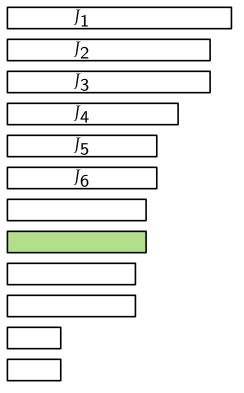
Sort jobs in descending order of runtime

Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally

Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$

Example.

$$\ell = 6$$



M_4	J_1		
M_3	J_2	J ₅	
M_2	J ₃		
M_1	J ₄	J ₆	

For a constant ℓ ($1 \le \ell \le n$) define the algorithm \mathcal{A}_{ℓ} as follows.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

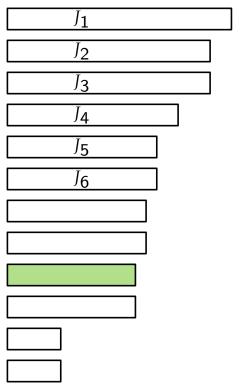
Sort jobs in descending order of runtime

Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally

Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$

Example.

$$\ell = 6$$



M_{4}	J_1		
M_3	J ₂	J ₅	_
M_2	J ₃		
M_1	J ₄	J ₆	

For a constant ℓ ($1 \le \ell \le n$) define the algorithm \mathcal{A}_{ℓ} as follows.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

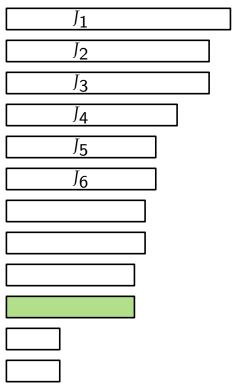
Sort jobs in descending order of runtime

Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally

Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$

Example.

$$\ell = 6$$



M_{4}	J_1		
$M_{ m 4}$	J ₂	J_5	
M_2	J ₃		
M_1	J ₄	J ₆	

For a constant ℓ ($1 \le \ell \le n$) define the algorithm \mathcal{A}_{ℓ} as follows.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

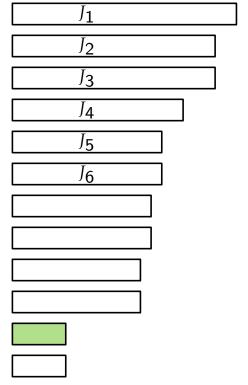
Sort jobs in descending order of runtime

Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally

Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$

Example.

$$\ell = 6$$



M_{4}	J_1		
M_3	J ₂	J_5	
M_2	J ₃		
M_1	J ₄	J_{6}	

For a constant ℓ ($1 \le \ell \le n$) define the algorithm \mathcal{A}_{ℓ} as follows.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

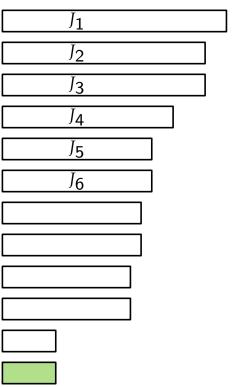
Sort jobs in descending order of runtime

Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally

Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$

Example.

$$\ell = 6$$



M_{4}	J_1				
M_4 M_3	J ₂		J ₅		
M_2	J ₃				
M_1	J ₄	J ₆			

For a constant ℓ ($1 \le \ell \le n$) define the algorithm \mathcal{A}_{ℓ} as follows.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

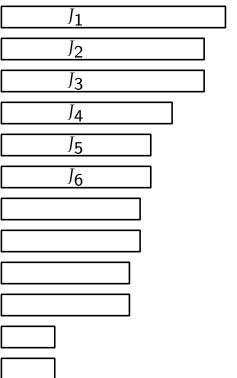
Sort jobs in descending order of runtime

Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally

Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$

Example.

$$\ell = 6$$



M_{4}	J_1		
M_3	J ₂	J ₅	
M_2	J ₃		
M_1	J ₄	J ₆	

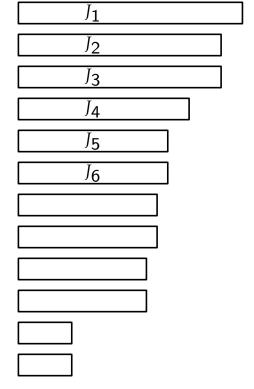
For a constant ℓ ($1 \le \ell \le n$) define the algorithm \mathcal{A}_{ℓ} as follows.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$$
Sort jobs in descending order of runtime $\mathcal{O}(n\log n)$
Schedule the ℓ longest jobs J_1,\ldots,J_ℓ optimally $\mathcal{O}(m^\ell)$
Use ListScheduling for the reamining jobs $J_{\ell+1},\ldots,J_n$ $\mathcal{O}(n)$

Polynomial time for constant ℓ : $\mathcal{O}(m^{\ell} + n \log n)$

Example.

$$\ell = 6$$



				_	
M_4	$J_{f 1}$				
M_3	J ₂	J ₅		_	
M_2	J ₃				
M_1	J ₄	J_{6}			

For a constant ℓ $(1 \le \ell \le n)$ define the algorithm \mathcal{A}_{ℓ} as follows.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$$

Sort jobs in descending order of runtime $\mathcal{O}(n\log n)$
Schedule the ℓ longest jobs J_1,\ldots,J_{ℓ} optimally $\mathcal{O}(m^{\ell})$
Use ListScheduling for the reamining jobs $J_{\ell+1},\ldots,J_n$ $\mathcal{O}(n)$

Polynomial time for constant ℓ : $\mathcal{O}(m^{\ell} + n \log n)$

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left\lfloor \frac{\ell}{m} \right\rfloor}$ -approximation algorithm.

For a constant ℓ ($1 \le \ell \le n$) define the algorithm \mathcal{A}_{ℓ} as follows.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$$

Sort jobs in descending order of runtime $\mathcal{O}(n\log n)$
Schedule the ℓ longest jobs J_1,\ldots,J_{ℓ} optimally $\mathcal{O}(m^{\ell})$
Use ListScheduling for the reamining jobs $J_{\ell+1},\ldots,J_n$ $\mathcal{O}(n)$

Polynomial time for constant ℓ : $\mathcal{O}(m^{\ell} + n \log n)$

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm.

For $\varepsilon > 0$, choose ℓ such that $\mathcal{A}_{\varepsilon} = \mathcal{A}_{\ell(\varepsilon)}$ is a $(1+\varepsilon)$ -approximation algorithm.

Corollary 9.

For a constant number of machines, $\{A_{\varepsilon} \mid \varepsilon > 0\}$ is a PTAS.

For a constant ℓ ($1 \le \ell \le n$) define the algorithm \mathcal{A}_{ℓ} as follows.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$$

Sort jobs in descending order of runtime $\mathcal{O}(n\log n)$
Schedule the ℓ longest jobs J_1,\ldots,J_{ℓ} optimally $\mathcal{O}(m^{\ell})$
Use ListScheduling for the reamining jobs $J_{\ell+1},\ldots,J_n$ $\mathcal{O}(n)$

Polynomial time for constant ℓ : $\mathcal{O}(m^{\ell} + n \log n)$

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm.

- For $\varepsilon > 0$, choose ℓ such that $\mathcal{A}_{\varepsilon} = \mathcal{A}_{\ell(\varepsilon)}$ is a $(1 + \varepsilon)$ -approximation algorithm.
- $\{A_{\varepsilon} \mid \varepsilon > 0\}$ isn't a FPTAS, since the running time is not polynomial in $\frac{1}{\varepsilon}$.

Corollary 9.

For a constant number of machines, $\{A_{\varepsilon} \mid \varepsilon > 0\}$ is a PTAS.

Multiprocessor Scheduling – PTAS (proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm.

```
\mathcal{A}_{\ell}(J_1, \ldots, J_n, m)
Sort jobs in descending order of runtime
Schedule the \ell longest jobs J_1, \ldots, J_{\ell} optimally
Use LISTSCHEDULING for the reamining jobs J_{\ell+1}, \ldots, J_n
```

Proof. Let J_k be the last job with start time S_k and finish time $T_k = \text{Makespan}$

Theorem 8.

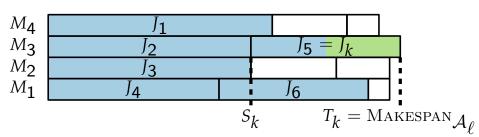
For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$

Proof. Let J_k be the last job with start time S_k and finish time $T_k = \text{MAKESPAN}$

Case 1. J_k is one of the longest ℓ jobs J_1, \ldots, J_{ℓ} .



Theorem 8.

For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm.

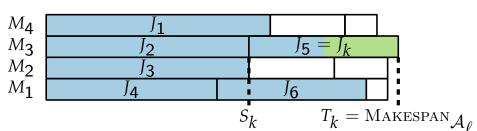
$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$

Proof. Let J_k be the last job with start time S_k and finish time $T_k = \text{MAKESPAN}$

Case 1. J_k is one of the longest ℓ jobs J_1, \ldots, J_{ℓ} .

- Solution is optimal for J_1, \ldots, J_k
- \blacksquare Hence, solution is optimal for J_1, \ldots, J_n



Theorem 8.

For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

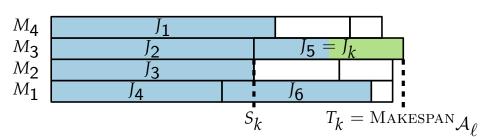
Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$

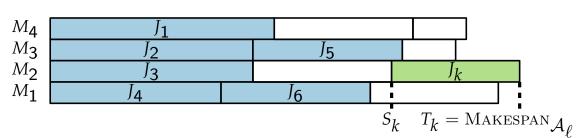
Proof. Let J_k be the last job with start time S_k and finish time $T_k = \text{MAKESPAN}$

Case 1. J_k is one of the longest ℓ jobs J_1, \ldots, J_{ℓ} .

- Solution is optimal for J_1, \ldots, J_k
- \blacksquare Hence, solution is optimal for J_1, \ldots, J_n

Case 2. J_k is not one of the longest ℓ jobs J_1, \ldots, J_{ℓ} .





Theorem 8.

For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$

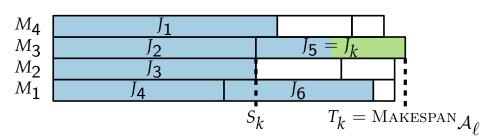
Proof. Let J_k be the last job with start time S_k and finish time $T_k = \text{MAKESPAN}$

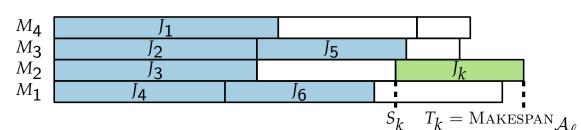
Case 1. J_k is one of the longest ℓ jobs J_1, \ldots, J_{ℓ} .

- Solution is optimal for J_1, \ldots, J_k
- \blacksquare Hence, solution is optimal for J_1, \ldots, J_n

Case 2. J_k is not one of the longest ℓ jobs J_1, \ldots, J_{ℓ} .

- Similar analysis to ListScheduling
- Use that there are $\ell+1$ jobs that are at least as long as J_k (including J_k).





Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+rac{1-rac{1}{m}}{1+\left|rac{\ell}{m}
ight|}$ -approximation algorithm.

Proof of Case 2.

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$

$$T_{\mathsf{OPT}} \geq p_k$$

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$

$$T_k = S_k + p_k$$

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+rac{1-rac{1}{m}}{1+\left|rac{\ell}{m}\right|}$ -approximation algorithm.

$\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$

Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$

Proof of Case 2.

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$

$$T_{OPT} \geq p_k$$

$$T_k = S_k + p_k$$

$$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+rac{1-rac{1}{m}}{1+\left|rac{\ell}{m}
ight|}$ -approximation algorithm.

Proof of Case 2.

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$

$$\blacksquare$$
 $T_{\mathsf{OPT}} \geq p_k$

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$

$$T_k = S_k + p_k$$

$$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$

$$= \frac{1}{m} \cdot \sum_{i=1}^m p_i + \left(1 - \frac{1}{m}\right) \cdot p_k$$

 $T_{\mathsf{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_i$

Theorem 8.

For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm.

Proof of Case 2.

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$

$$T_{\mathsf{OPT}} \geq p_k$$

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally Use LISTSCHEDULING for the reamining jobs $J_{\ell+1}, \ldots, J_n$

$$T_k = S_k + p_k$$

$$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$

$$= \frac{1}{m} \cdot \sum_{i=1}^m p_i + \left(1 - \frac{1}{m}\right) \cdot p_k$$

$$\leq T_{\mathsf{OPT}} + \left(1 - \frac{1}{m}\right) \cdot T_{\mathsf{OPT}}$$

Theorem 8.

For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_ℓ is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm.

Proof of Case 2.

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$

$$T_{\mathsf{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_i$$

$$T_{\mathsf{OPT}} \geq p_k$$

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally Use LISTSCHEDULING for the reamining jobs $J_{\ell+1}, \ldots, J_n$

$$T_{k} = S_{k} + p_{k}$$

$$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i} + p_{k}$$

$$= \frac{1}{m} \cdot \sum_{i=1}^{m} p_{i} + \left(1 - \frac{1}{m}\right) \cdot p_{k}$$

$$\leq T_{\text{OPT}} + \left(1 - \frac{1}{m}\right) \cdot T_{\text{OPT}}$$

can we do better?

better?

Multiprocessor Scheduling – PTAS (proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|}$ -approximation algorithm.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$

Proof of Case 2.

- Consider only J_1, \ldots, J_ℓ, J_k :
- $T_{\text{OPT}} \geq p_k \cdot \left(1 + \left| \frac{\ell}{m} \right| \right)$ one machine has this many jobs* each has lenght $\geq p_k$
 - lacksquare on average, each machine has more than $rac{\ell}{m}$ of the $\ell+1$ jobs
 - at least one machine achieves the average

$$M_4$$
 M_3
 M_2
 M_1
 M_3
 M_2
 M_3
 M_4
 M_5
 M_5
 M_6
 M_6
 M_6
 M_7
 M_8
 M_8
 M_9
 M_9

$$T_k = S_k + p_k$$

$$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$

$$= \frac{1}{m} \cdot \sum_{i=1}^{m} p_i + \left(1 - \frac{1}{m}\right) \cdot p_k$$

$$\leq T_{\text{OPT}} + \left(1 - \frac{1}{m}\right) \cdot T_{\text{OPT}}$$
can we do

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+rac{1-rac{1}{m}}{1+|rac{\ell}{m}|}$ -approximation algorithm.

$$\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$$

Sort jobs in descending order of runtime Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally Use ListScheduling for the reamining jobs $J_{\ell+1}, \ldots, J_n$

Proof of Case 2.

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$

- Consider only J_1, \ldots, J_ℓ, J_k :
- $T_{\mathsf{OPT}} \geq p_k \cdot \left(1 + \left| \frac{\ell}{m} \right| \right)$ one machine has this many jobs* each has lenght $\geq p_k$
 - lacksquare on average, each machine has more than $rac{\ell}{m}$ of the $\ell+1$ jobs
 - at least one machine achieves the average

$$M_4$$
 M_3
 M_2
 M_2
 M_1
 M_3
 M_4
 M_5
 M_5
 M_5
 M_5
 M_6
 M_6

$$T_k = S_k + p_k$$

$$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$

$$= \frac{1}{m} \cdot \sum_{i=1}^m p_i + \left(1 - \frac{1}{m}\right) \cdot p_k$$

$$\leq T_{\text{OPT}} + \frac{1 - \frac{1}{m}}{1 + \left|\frac{\ell}{m}\right|} \cdot T_{\text{OPT}}$$

Discussion

- Only "easy" NP-hard problems admit FPTAS (PTAS).
- Not all problems can be approximated (Max Clique).
- Study of approximability of NP-hard problems yields a more fine-grained classification of the difficulty.

Discussion

- Only "easy" NP-hard problems admit FPTAS (PTAS).
- Not all problems can be approximated (Max Clique).
- Study of approximability of NP-hard problems yields a more fine-grained classification of the difficulty.
- Approximation algorithms exist also for non-NP-hard problems
- Approximation algorithms can be of various types: greedy, local search, geometric, DP, ...
- One important technique is LP-relaxation (next lecture).

Discussion

- Only "easy" NP-hard problems admit FPTAS (PTAS).
- Not all problems can be approximated (Max Clique).
- Study of approximability of NP-hard problems yields a more fine-grained classification of the difficulty.
- Approximation algorithms exist also for non-NP-hard problems
- Approximation algorithms can be of various types: greedy, local search, geometric, DP, ...
- One important technique is LP-relaxation (next lecture).
- Min Vertex Coloring on planar graphs can be approximated with an additive approximation guarantee of 2.
- Christofides' approximation algorithm for Metric TSP has approximation factor 1.5.

Approximation

Literature

Main references

- [Jansen, Margraf Ch3] "Approximative Algorithmen und Nichtapproximierbarkeit"
- [Williamson, Shmoys Ch3] "The Design of Approximation Algorithms"

Another book recommendation:

- [Vazirani] "Approximation Algorithms" and don't forget our lecture
 - Approximation Algorithms.

For more precise definitions see

https://go.uniwue.de/approxdef

