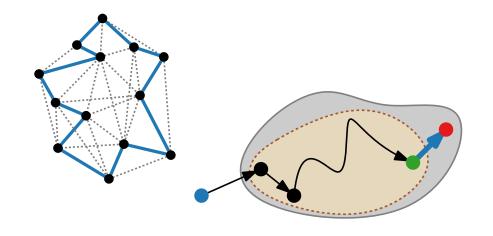


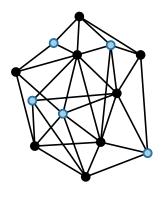
# Advanced Algorithms

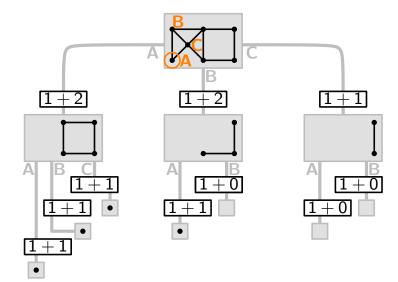
# Exact algorithms for NP-hard problems

TSP and MIS

Jonathan Klawitter · WS20

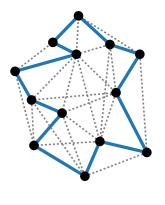




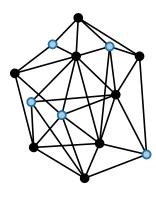


# Examples of NP-hard problems

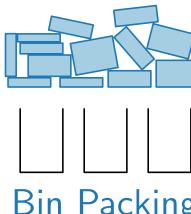
Many important (practical) problems are NP-hard, for example . . .

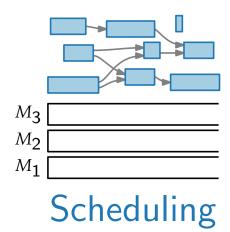






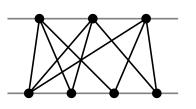
MIS



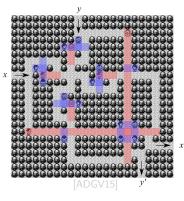


$$(x_1 \lor x_2 \lor \neg x_4) \land (\neg x_2 \lor x_3 \lor \neg x_4) \land (x_3 \lor x_7 \lor \neg x_8) \land$$

SAT



**Graph Drawing** 



Games

### Formal view on NP-hardness

But what does NP-hard/-complete actually mean?

- NP-hard = non-deterministic polynomial-time hard
- A decision problem H is NP-hard when it is "at least as hard as the hardest problems in P".
- or: There is a polynomial-time many-one reduction from an NP-hard problem L to H.
- If  $P \neq NP$ , then NP-hard problems cannot be solved in polynomial time.

### Misconceptions about NP-hardness

### Common misconceptions [Mann '17]

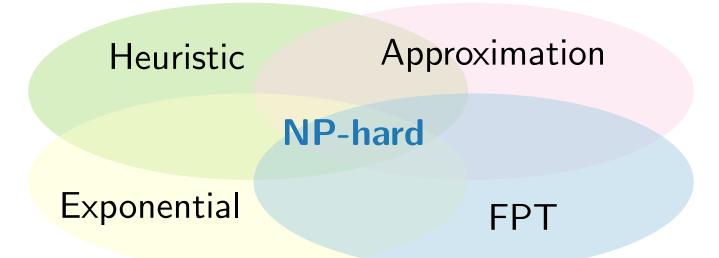
- If similar problems are NP-hard, then the problem at hand is also NP-hard.
- Problems that are hard to solve in practice by an engineer are NP-hard.
- NP-hard problems cannot be solved optimally.
- NP-hard problems cannot be solved more efficiently than by exhaustive search.
- For solving NP-hard problems, the only practical possibility is the use of heuristics.

### Dealing with NP-hard problems

#### What should we do?

- Sacrifice optimality for speed
  - Heuristics (Simulated Annealing, Tabu-Search)
  - Approximation Algorithms (Christofides-Algorithm)
- Optimal Solutions
  - Exact exponential-time algorithms 

    this lecture
  - Fine-grained analysis parameterized algorithms



### Motivation

Exponential runningtime ... but can we at least find exact algorithms that are faster than **brute-force** (trivial) approaches?

- TSP: Bellman-Held-Karp algorithm has running time  $\mathcal{O}(2^n n^2)$  compared to a  $\mathcal{O}(n!n)$ -time brute-force search.
- MIS: algorithm by Tarjan & Trojanowski runs in  $\mathcal{O}(2^{n/3})$  time compared to a trivial  $\mathcal{O}(n2^n)$ -time approach.
- COLORING: Lawler gaven an  $\mathcal{O}(n(1+\sqrt[3]{3})^n)$  algorithm compared to  $\mathcal{O}(n^{n+1})$ -time brute-force.
- SAT: No better algorithm than trivial brute-force search known.

### $\mathcal{O}^*$ -notation

$$\mathcal{O}(1.4^n \cdot n^2) \subsetneq \mathcal{O}(1.5^n \cdot n) \subsetneq \mathcal{O}(2^n)$$

- negligible polynomial factors
- base of exponential part dominates

$$f(n) \in \mathcal{O}^*(g(n)) \Leftrightarrow \exists \text{ polynomial } p(n) \text{ with } f(n) \in \mathcal{O}(g(n)p(n))$$

typical result

| Approach    | Runtime in $\mathcal{O}	ext{-Notation}$ | $\mathcal{O}^*$ -Notation |
|-------------|-----------------------------------------|---------------------------|
| Brute-Force | $\mathcal{O}(2^n)$                      | $\mathcal{O}^*(2^n)$      |
| Algorithm A | $\mathcal{O}(1.5^n \cdot n)$            | $\mathcal{O}^*(1.5^n)$    |
| Algorithm B | $\mathcal{O}(1.4^n \cdot n^2)$          | $\mathcal{O}^*(1.4^n)$    |

# Traveling Salesperson Problem (TSP)

**Input.** Distinct cities  $\{v_1, v_2, \dots, v_n\}$  with distances  $d(c_i, c_j) \in Q_{\geq 0}$ ; directed, complete graph G with edge weights d

Output. Tour of the traveling salesperson of minimal total length that visits all the cities and returns to the starting point;



i.e. a Hamiltonian cycle  $(v_{\pi(1)}, \ldots, v_{\pi(n)}, v_{\pi(1)})$  of G of minimum weight

$$\sum_{i=1}^{n-1} d(v_{\pi(i)}, v_{\pi(i+1)}) + d(v_{\pi(n)}, v_{\pi(1)})$$

#### Brute-force.

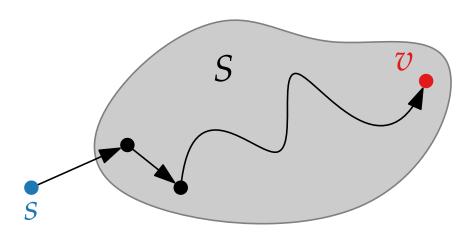
- Try all permutations and pick the one with smallest weight.
- Runtime:  $\Theta(n! \cdot n) = n \cdot 2^{\Theta(n \log n)}$

# TSP – Dynamic programming Bellman-Held-Karp algorithm

#### Idea.

- Reuse optimal substructures with dynamic programming.
- Select a starting vertex  $s \in V$ .
- For each  $S \subseteq V s$  and  $v \in S$ , let:

 $OPT[S, v] = length of a shortest s-v-path that visits precisely the vertices of <math>S \cup \{s\}$ .



■ Use OPT[S - v, u] to compute OPT[S, v].



Richard M. Karp



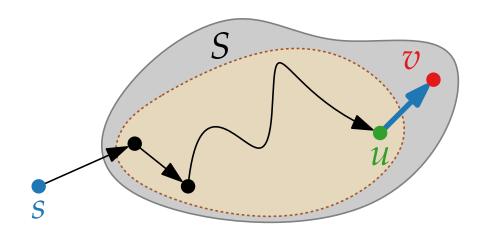
Richard E. Bellman

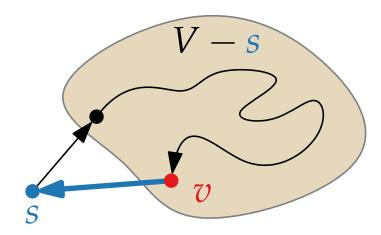
### TSP – Dynamic programming

#### Details.

- The base case  $S = \{v\}$  is easy:  $OPT[\{v\}, v] = d(s, v)$ .
- When  $|S| \ge 2$ , compute OPT[S, v] recursively:

$$\mathsf{OPT}[S, v] = \min\{\mathsf{OPT}[S - v, u] + d(u, v) \mid u \in S - v\}$$





After computing OPT[S, v] for each  $S \subseteq V - s$  and each  $v \in V - s$ , the optimal solution is easily obtained as follows:

$$\mathsf{OPT} = \min\{\mathsf{OPT}[V-s,v]\} + d(v,s) \mid v \in V-s\}$$

# TSP – Dynamic programming

#### Pseudocode.

Algorithm Bellmann-Held-Karp(G, c)

$$\begin{array}{l} \text{for each } v \in V - s \text{ do} \\ \quad \big \lfloor \text{ OPT}[\{v\}, v] = c(s, v) \end{array}$$

$$\begin{cases} \textbf{for } j \leftarrow 2 \textbf{ to } n-1 \textbf{ do} \\ \textbf{for each } S \subseteq V-s \textbf{ with } |S| = j \textbf{ do} \\ \textbf{for each } v \in S \textbf{ do} \\ \textbf{OPT}[S,v] \leftarrow \min\{\textbf{OPT}[S-v,u] \\ +c(u,v) \mid u \in S-v\} \end{cases} \mathcal{O}(2^n)$$

return min{  $OPT[V-s,v]+c(v,s) \mid v \in V-s$  }

A shortest tour can be produced by backtracking the DP table (as usual).

### Analysis.

- innermost loop executes  $\mathcal{O}(2^n \cdot n)$  iterations
- $\blacksquare$  each takes  $\mathcal{O}(n)$  time
- $\blacksquare$  total of  $\mathcal{O}(2^n n^2) = \mathcal{O}^*(2^n)$
- Space usage in  $\Theta(2^n \cdot n)$
- or actually better? What table values do we need to store?

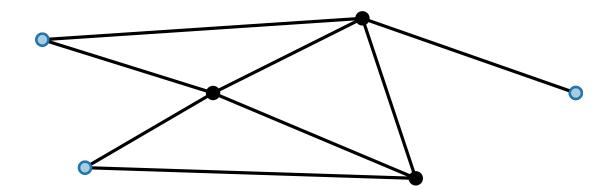
### TSP - Discussion

- DP algorithm that runs in  $\mathcal{O}^*(2^n)$  time and  $\mathcal{O}(2^n \cdot n)$  space
- Brute-force runs in  $2^{O(n \log n)}$  time
  - ⇒ Sacrifice space for speedup
- Many variants of TSP: symmetric, assymetric, metric, vehicle routing problem, . . .
- Metric TSP can easily be 2-approximated. (Do you remember how?)
- Eucledian TSP considered in course Approxiomation Algorithms.
- In practice, one successful approach is to start with a greedily computed Hamiltonian cycle and then use 2-OPT and 3-OPT swaps to improve it.

# Maximum Independent Set (MIS)

**Input.** Graph G = (V, E) with n vertices.

Output. Maximum size independent set, i.e., a largest set  $U \subseteq V$ , such that no pair of vertices in U are adjacent in G.



#### Brute-force.

- $\blacksquare$  Try all subets of V.
- Runtime:  $\mathcal{O}(2^n \cdot n)$

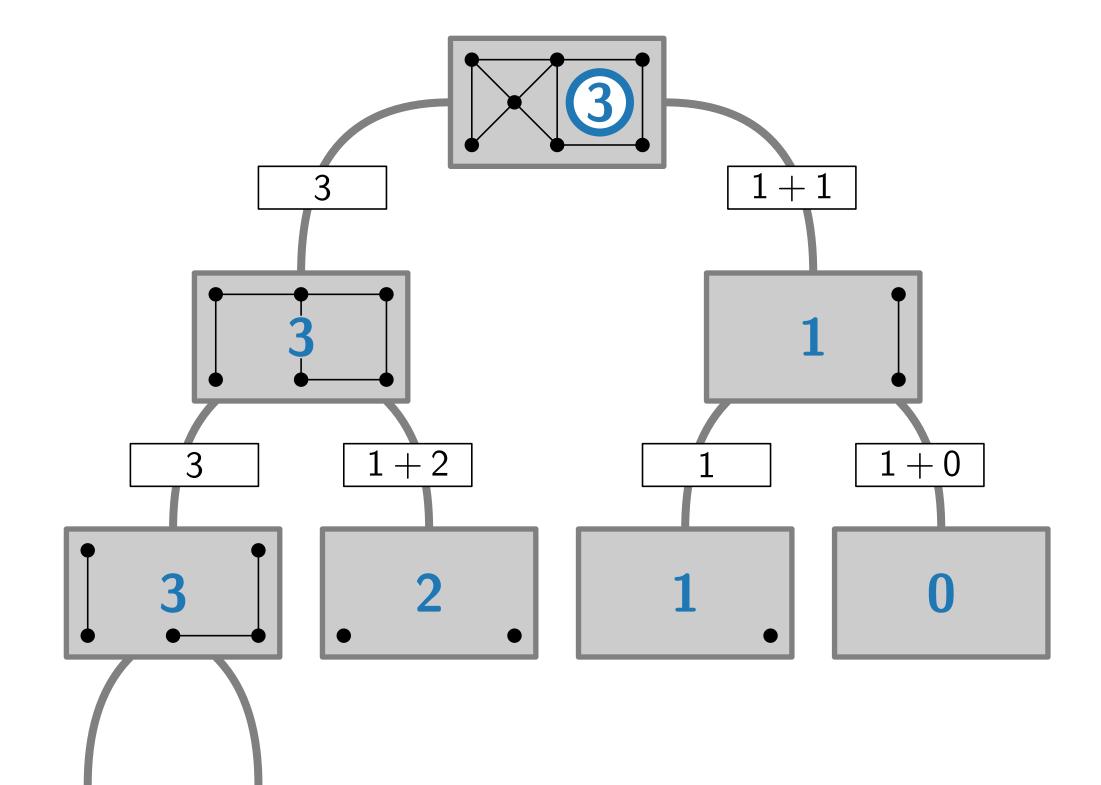
### Naive MIS branching.

 $\blacksquare$  Take a vertex v or don't take it.

Algorithm NaiveMIS(G)

if 
$$V = \emptyset$$
 then return 0

 $v \leftarrow ext{arbitrary vertex in } V(G)$ return  $\max\{1+ ext{NaiveMIS}(G-N(v)-\{v\}),$  $\text{NaiveMIS}(G-\{v\})\}$ 



# MIS – Smarter branching

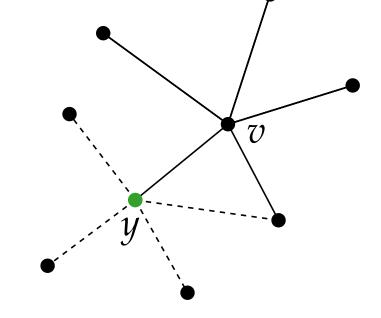
#### Lemma.

Let U be a maximum independent set in G. Then for each  $v \in V$ :

1. 
$$v \in U \Rightarrow N(v) \cap U = \emptyset$$

2. 
$$v \notin U \Rightarrow |N(v) \cap U| \geq 1$$

Thus,  $N[v] := N(v) \cup \{v\}$  contains some  $y \in U$  and no other vertex of N[y] is in U.



### Smarter MIS branching.

For some vertex v, branch on vertices in N[v].

Algorithm MIS(G)

$$\begin{array}{c} \text{if } V = \varnothing \text{ then} \\ \text{return 0} \end{array}$$

 $v \leftarrow \text{vertex of minimum degree in } V(G)$  $\mathbf{return} \ 1 + \max\{\mathsf{MIS}(G-N[y]) \mid y \in N[v]\}$ 

- Correctness follows from Lemma.
- We prove a runtime of  $\mathcal{O}^*(3^{n/3}) = \mathcal{O}^*(1.4423^n)$ .

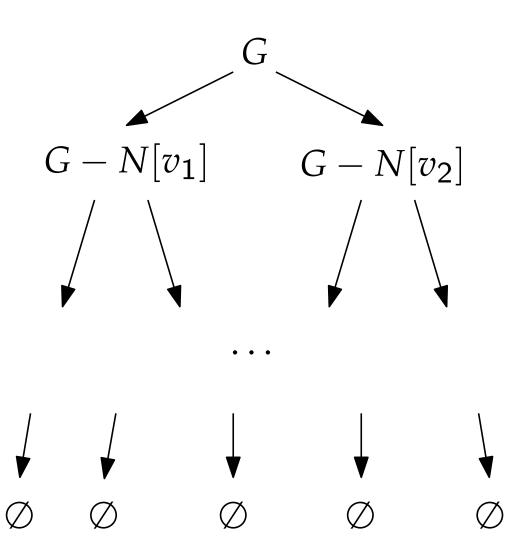
### MIS – Branching analysis

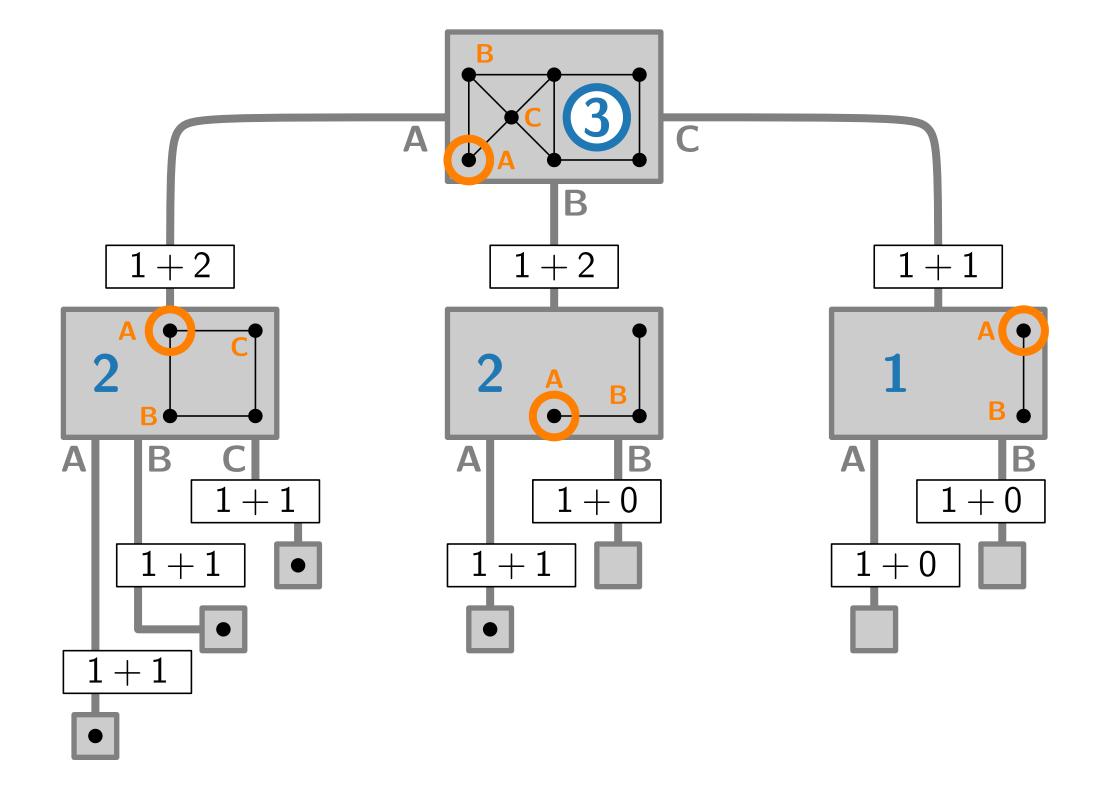
Execution corresponds to a **search tree** whose vertices are labeled with the input of the respective recursive call.

- Let B(n) be the maximum number of leaves of a search tree for a graph with n vertices.
- $\blacksquare$  Search-tree has height  $\leq n$ .

$$T(n) \in O^*(nB(n)) = O^*(B(n)).$$

Let's consider an example run.





# MIS – Runtime analysis

For a worst-case n-vertex graph G ( $n \ge 1$ ):

$$B(n) \le \sum_{y \in N[v]} B(n - (\deg(y) + 1)) \le (\deg(v) + 1) \cdot B(n - (\deg(v) + 1))$$

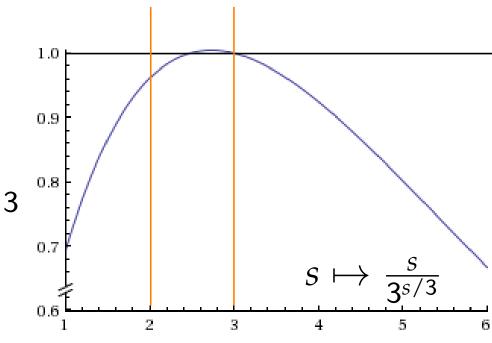
where v is a minimum degree vertex of G, and we note that  $B(n') \leq B(n)$  for any  $n' \leq n$ .

We prove by induction that  $B(n) \leq 3^{n/3}$ .

- Base case:  $B(0) = 1 \le 3^{0/3}$
- Hypothesis: for  $n \ge 1$ , set  $s = \deg(v) + 1$  in the above inequality

$$B(n) \le s \cdot B(n-s) \le s \cdot 3^{(n-s)/3} = \frac{s}{3^{s/3}} \cdot 3^{n/3} \stackrel{?}{\le} 3^{n/3}$$

$$B(n) \in O^*(\sqrt[3]{3}^n) \subset O^*(1.44225^n)$$



### MIS – Discussion

- Smarter branching leads to  $\mathcal{O}^*(1.44225^n)$ -time algorithme,
- $\blacksquare$  compared to brute-force, which runs in  $\mathcal{O}(2^n \cdot n)$  time.
- Algorithms for MIS known that run in  $\mathcal{O}^*(1.2202^n)$  time and polynomial space,
- lacksquare and in  $\mathcal{O}^*(1.2109^n)$  time and exponential space.
- What vertices are always in a MIS?
- What vertices can we savely assume are in a MIS?



- **Exercise**: Enumerating MISs
- Exercise: Edge-branching for MIS

### Literature

#### Main source:

- [Fomin, Kratsch Ch1] "Exact Exponential Algorithms" Referenced papers:
- [ADMV '15] Classic Nintendo Games are (Computationally) Hard
- [Mann '17] The Top Eight Misconceptions about NP-Hardness