Advanced Algorithms

Exact algorithms for NP-hard problems TSP and MIS

Jonathan Klawitter • WS20

Examples of NP-hard problems

Many important (practical) problems are NP-hard, for example ...

$$
\begin{aligned}
& \left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge \\
& \left(\neg x_{2} \vee x_{3} \vee \neg x_{4}\right) \wedge \\
& \left(x_{3} \vee x_{7} \vee \neg x_{8}\right) \wedge
\end{aligned}
$$

Graph Drawing

Bin Packing

Games

Formal view on NP-hardness

But what does NP-hard/-complete actually mean?
■ NP-hard = non-deterministic polynomial-time hard
■ A decision problem H is NP-hard when it is "at least as hard as the hardest problems in $\mathrm{P}^{\prime \prime}$.

■ or: There is a polynomial-time many-one reduction from an NP-hard problem L to H.
■ If $P \neq N P$, then NP-hard problems cannot be solved in polynomial time.

Misconceptions about NP-hardness

Common misconceptions [Mann '17]
■ If similar problems are NP-hard, then the problem at hand is also NP-hard.
■ Problems that are hard to solve in practice by an engineer are NP-hard.

■ NP-hard problems cannot be solved optimally.

- NP-hard problems cannot be solved more efficiently than by exhaustive search.
- For solving NP-hard problems, the only practical possibility is the use of heuristics.

Dealing with NP-hard problems

What should we do?

- Sacrifice optimality for speed
\square Heuristics (Simulated Annealing, Tabu-Search)
- Approximation Algorithms (Christofides-Algorithm)
\square Optimal Solutions
- Exact exponential-time algorithms

this lecture

■ Fine-grained analysis - parameterized algorithms

Heuristic	Approximation
Exponential	

Motivation

Exponential runningtime ... but can we at least find exact algorithms that are faster than brute-force (trivial) approaches?

- TSP: Bellman-Held-Karp algorithm has running time $\mathcal{O}\left(2^{n} n^{2}\right)$ compared to a $\mathcal{O}(n!n)$-time brute-force search.
■ MIS: algorithm by Tarjan \& Trojanowski runs in $\mathcal{O}\left(2^{n / 3}\right)$ time compared to a trivial $\mathcal{O}\left(n 2^{n}\right)$-time approach.
- Coloring: Lawler gaven an $\mathcal{O}\left(n(1+\sqrt[3]{3})^{n}\right)$ algorithm compared to $\mathcal{O}\left(n^{n+1}\right)$-time brute-force.
- SAT: No better algorithm than trivial brute-force search known.

\mathcal{O}^{*}-notation

$$
\mathcal{O}\left(1.4^{n} \cdot n^{2}\right) \subsetneq \mathcal{O}\left(1.5^{n} \cdot n\right) \subsetneq \mathcal{O}\left(2^{n}\right)
$$

- negligible polynomial factors

■ base of exponential part dominates

$$
f(n) \in \mathcal{O}^{*}(g(n)) \Leftrightarrow \exists \text { polynomial } p(n) \text { with } f(n) \in \mathcal{O}(g(n) p(n))
$$

■ typical result

Approach	Runtime in \mathcal{O}-Notation	\mathcal{O}^{*}-Notation
Brute-Force	$\mathcal{O}\left(2^{n}\right)$	$\mathcal{O}^{*}\left(2^{n}\right)$
Algorithm A	$\mathcal{O}\left(1.5^{n} \cdot n\right)$	$\mathcal{O}^{*}\left(1.5^{n}\right)$
Algorithm B	$\mathcal{O}\left(1.4^{n} \cdot n^{2}\right)$	$\mathcal{O}^{*}\left(1.4^{n}\right)$

Traveling Salesperson Problem (TSP)

Input. Distinct cities $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ with distances $d\left(c_{i}, c_{j}\right) \in Q \geq 0$; directed, complete graph G with edge weights d
Output. Tour of the traveling salesperson of minimal total length that visits all the cities and returns to the starting point;

i.e. a Hamiltonian cycle $\left(v_{\pi(1)}, \ldots, v_{\pi(n)}, v_{\pi(1)}\right)$ of G of minimum weight

$$
\sum_{i=1}^{n-1} d\left(v_{\pi(i)}, v_{\pi(i+1)}\right)+d\left(v_{\pi(n)}, v_{\pi(1)}\right)
$$

Brute-force.

- Try all permutations and pick the one with smallest weight.
- Runtime: $\Theta(n!\cdot n)=n \cdot 2^{\Theta(n \log n)}$

TSP - Dynamic programming Bellman-Held-Karp algorithm
 \section*{Idea.}

- Reuse optimal substructures with dynamic programming.
- Select a starting vertex $s \in V$.
- For each $S \subseteq V-s$ and $v \in S$, let:
$\operatorname{OPT}[S, v]=$ length of a shortest $s-v$-path that visits precisely the vertices of $S \cup\{s\}$.

■ Use OPT $[S-v, u]$ to compute OPT $[S, v]$.

Richard M. Karp

Richard E. Bellman

TSP - Dynamic programming

Details.

\square The base case $S=\{v\}$ is easy: $\operatorname{OPT}[\{v\}, v]=d(s, v)$.

- When $|S| \geq 2$, compute $\operatorname{OPT}[S, v]$ recursively:

$$
\operatorname{OPT}[S, v]=\min \{\operatorname{OPT}[S-v, u]+d(u, v) \mid u \in S-v\}
$$

■ After computing $\mathrm{OPT}[S, v]$ for each $S \subseteq V-s$ and each $v \in V-s$, the optimal solution is easily obtained as follows:

$$
\mathrm{OPT}=\min \{\mathrm{OPT}[V-s, v]\}+d(v, s) \mid v \in V-s\}
$$

TSP - Dynamic programming

```
Pseudocode.
Algorithm Bellmann-Held-Karp(G,c)
foreach}v\inV-s\mathrm{ do
L OPT[{v},v]=c(s,v)
\begin{tabular}{ll} 
for \(j \leftarrow 2\) to \(n-1\) do & \\
\begin{tabular}{ll} 
foreach \(S \subseteq V-s\) with \(|S|=j\) do & \(\mathcal{O}\left(2^{n}\right)\) \\
& \(\} \mathcal{O}(n)\)
\end{tabular},\(r\) foreach \(v \in S\) do &
\end{tabular}
                OPT[S,v]}\leftarrow\operatorname{min}{\operatorname{OPT}[S-v,u
                +c(u,v)|u\inS-v}
return min{OPT[V-s,v]+c(v,s)|v\inV-s}
```

- A shortest tour can be produced by backtracking the DP table (as usual).

Analysis.

- innermost loop executes $\mathcal{O}\left(2^{n} \cdot n\right)$ iterations
■ each takes $\mathcal{O}(n)$ time
\square total of $\mathcal{O}\left(2^{n} n^{2}\right)=\mathcal{O}^{*}\left(2^{n}\right)$
- Space usage in $\Theta\left(2^{n} \cdot n\right)$

■ or actually better? What table values do we need to store?

TSP - Discussion

■ DP algorithm that runs in $\mathcal{O}^{*}\left(2^{n}\right)$ time and $\mathcal{O}\left(2^{n} \cdot n\right)$ space

- Brute-force runs in $2^{\mathcal{O}(n \log n)}$ time
\Rightarrow Sacrifice space for speedup
■ Many variants of TSP: symmetric, assymetric, metric, vehicle routing problem, ...
■ Metric TSP can easily be 2-approximated. (Do you remember how?)
- Eucledian TSP considered in course Approxiomation Algorithms.

■ In practice, one successful approach is to start with a greedily computed Hamiltonian cycle and then use 2-OPT and 3-OPT swaps to improve it.

Maximum Independent Set (MIS)

Input. Graph $G=(V, E)$ with n vertices.
Output. Maximum size independent set, i.e., a largest set $U \subseteq V$, such that no pair of vertices in U are adjacent in G.

Naive MIS branching.

- Take a vertex v or don't take it.

Algorithm NaiveMIS(G)
if $V=\varnothing$ then
return 0
$v \leftarrow$ arbitrary vertex in $V(G)$ return $\max \{1+$ NaiveMIS $(G-N(v)-\{v\})$, NaiveMIS $(G-\{v\})\}$

MIS - Smarter branching

Lemma.

Let U be a maximum independent set in G. Then for each $v \in V$:

1. $v \in U \Rightarrow N(v) \cap U=\varnothing$
2. $v \notin U \Rightarrow|N(v) \cap U| \geq 1$

Thus, $N[v]:=N(v) \cup\{v\}$ contains some $y \in U$ and no other vertex of $N[y]$ is in U.

Smarter MIS branching.

- For some vertex v, branch on vertices in $N[v]$.

Algorithm MIS(G)

$$
\begin{gathered}
\text { if } V=\varnothing \text { then } \\
\begin{array}{c}
\text { return } 0
\end{array}
\end{gathered}
$$

$v \leftarrow$ vertex of minimum degree in $V(G)$ return $1+\max \{\operatorname{MIS}(G-N[y]) \mid y \in N[v]\}$

- Correctness follows from Lemma.
- We prove a runtime of $\mathcal{O}^{*}\left(3^{n / 3}\right)=\mathcal{O}^{*}\left(1.4423^{n}\right)$.

MIS - Branching analysis

Execution corresponds to a search tree whose vertices are labeled with the input of the respective recursive call.

- Let $B(n)$ be the maximum number of leaves of a search tree for a graph with n vertices.
- Search-tree has height $\leq n$.
\rightsquigarrow The algorithm's runtime is

$$
T(n) \in O^{*}(n B(n))=O^{*}(B(n))
$$

- Let's consider an example run.

MIS - Runtime analysis

For a worst-case n-vertex graph $G(n \geq 1)$:

$$
B(n) \leq \sum_{y \in N[v]} B(n-(\operatorname{deg}(y)+1)) \leq(\operatorname{deg}(v)+1) \cdot B(n-(\operatorname{deg}(v)+1))
$$

where v is a minimum degree vertex of G, and we note that $B\left(n^{\prime}\right) \leq B(n)$ for any $n^{\prime} \leq n$.
We prove by induction that $B(n) \leq 3^{n / 3}$.
■ Base case: $B(0)=1 \leq 3^{0 / 3}$
■ Hypothesis: for $n \geq 1$, set $s=\operatorname{deg}(v)+1$ in the above inequality
$B(n) \leq s \cdot B(n-s) \leq s \cdot 3^{(n-s) / 3}=\frac{s}{3^{s / 3}} \cdot 3^{n / 3} \stackrel{?}{\leq} 3^{n / 3}$ $B(n) \in O^{*}\left(\sqrt[3]{3}^{n}\right) \subset O^{*}\left(1.44225^{n}\right)$

MIS - Discussion

■ Smarter branching leads to $\mathcal{O}^{*}\left(1.44225^{n}\right)$-time algorithme,
■ compared to brute-force, which runs in $\mathcal{O}\left(2^{n} \cdot n\right)$ time.

- Algorithms for MIS known that run in $\mathcal{O}^{*}\left(1.2202^{n}\right)$ time and polynomial space,
■ and in $\mathcal{O}^{*}\left(1.2109^{n}\right)$ time and exponential space.
■ What vertices are always in a MIS?
■ What vertices can we savely assume are in a MIS?

■ Advanced case analysis in [Fomin, Kratsch Ch 2.3] leading to a $\mathcal{O}^{*}\left(1.2786^{n}\right)$-time algorithm.
■ Exercise: Enumerating MISs
■ Exercise: Edge-branching for MIS

Literature

Main source:
■ [Fomin, Kratsch Ch1] "Exact Exponential Algorithms"
Referenced papers:
■ [ADMV '15] Classic Nintendo Games are (Computationally) Hard

- [Mann '17] The Top Eight Misconceptions about NP-Hardness

