

Advanced Algorithms

Exact algorithms for NP-hard problems

TSP and MIS

Jonathan Klawitter · WS20

Examples of NP-hard problems

Many important (practical) problems are NP-hard, for example . . .

MIS

$$(x_1 \lor x_2 \lor \neg x_4) \land (\neg x_2 \lor x_3 \lor \neg x_4) \land (x_3 \lor x_7 \lor \neg x_8) \land$$

SAT

Graph Drawing

Games

Formal view on NP-hardness

But what does NP-hard/-complete actually mean?

- NP-hard = non-deterministic polynomial-time hard
- A decision problem H is NP-hard when it is "at least as hard as the hardest problems in P".
- or: There is a polynomial-time many-one reduction from an NP-hard problem L to H.
- If $P \neq NP$, then NP-hard problems cannot be solved in polynomial time.

Misconceptions about NP-hardness

Common misconceptions [Mann '17]

- If similar problems are NP-hard, then the problem at hand is also NP-hard.
- Problems that are hard to solve in practice by an engineer are NP-hard.
- NP-hard problems cannot be solved optimally.
- NP-hard problems cannot be solved more efficiently than by exhaustive search.
- For solving NP-hard problems, the only practical possibility is the use of heuristics.

Dealing with NP-hard problems

What should we do?

- Sacrifice optimality for speed
 - Heuristics (Simulated Annealing, Tabu-Search)
 - Approximation Algorithms (Christofides-Algorithm)
- Optimal Solutions
 - Exact exponential-time algorithms

 this lecture
 - Fine-grained analysis parameterized algorithms

Motivation

Exponential runningtime ... but can we at least find exact algorithms that are faster than **brute-force** (trivial) approaches?

- TSP: Bellman-Held-Karp algorithm has running time $\mathcal{O}(2^n n^2)$ compared to a $\mathcal{O}(n!n)$ -time brute-force search.
- MIS: algorithm by Tarjan & Trojanowski runs in $\mathcal{O}(2^{n/3})$ time compared to a trivial $\mathcal{O}(n2^n)$ -time approach.
- COLORING: Lawler gaven an $\mathcal{O}(n(1+\sqrt[3]{3})^n)$ algorithm compared to $\mathcal{O}(n^{n+1})$ -time brute-force.
- SAT: No better algorithm than trivial brute-force search known.

\mathcal{O}^* -notation

$$\mathcal{O}(1.4^n \cdot n^2) \subsetneq \mathcal{O}(1.5^n \cdot n) \subsetneq \mathcal{O}(2^n)$$

- negligible polynomial factors
- base of exponential part dominates

$$f(n) \in \mathcal{O}^*(g(n)) \Leftrightarrow \exists \text{ polynomial } p(n) \text{ with } f(n) \in \mathcal{O}(g(n)p(n))$$

typical result

Approach	Runtime in $\mathcal{O} ext{-Notation}$	\mathcal{O}^* -Notation
Brute-Force	$\mathcal{O}(2^n)$	$\mathcal{O}^*(2^n)$
Algorithm A	$\mathcal{O}(1.5^n \cdot n)$	$\mathcal{O}^*(1.5^n)$
Algorithm B	$\mathcal{O}(1.4^n \cdot n^2)$	$\mathcal{O}^*(1.4^n)$

Traveling Salesperson Problem (TSP)

Input. Distinct cities $\{v_1, v_2, \dots, v_n\}$ with distances $d(c_i, c_j) \in Q_{\geq 0}$; directed, complete graph G with edge weights d

Output. Tour of the traveling salesperson of minimal total length that visits all the cities and returns to the starting point;

i.e. a Hamiltonian cycle $(v_{\pi(1)}, \ldots, v_{\pi(n)}, v_{\pi(1)})$ of G of minimum weight

$$\sum_{i=1}^{n-1} d(v_{\pi(i)}, v_{\pi(i+1)}) + d(v_{\pi(n)}, v_{\pi(1)})$$

Brute-force.

- Try all permutations and pick the one with smallest weight.
- Runtime: $\Theta(n! \cdot n) = n \cdot 2^{\Theta(n \log n)}$

TSP – Dynamic programming Bellman-Held-Karp algorithm

Idea.

- Reuse optimal substructures with dynamic programming.
- Select a starting vertex $s \in V$.
- For each $S \subseteq V s$ and $v \in S$, let:

 $OPT[S, v] = length of a shortest s-v-path that visits precisely the vertices of <math>S \cup \{s\}$.

■ Use OPT[S - v, u] to compute OPT[S, v].

Richard M. Karp

Richard E. Bellman

TSP – Dynamic programming

Details.

- The base case $S = \{v\}$ is easy: $OPT[\{v\}, v] = d(s, v)$.
- When $|S| \ge 2$, compute OPT[S, v] recursively:

$$\mathsf{OPT}[S, v] = \min\{\mathsf{OPT}[S - v, u] + d(u, v) \mid u \in S - v\}$$

After computing OPT[S, v] for each $S \subseteq V - s$ and each $v \in V - s$, the optimal solution is easily obtained as follows:

$$\mathsf{OPT} = \min\{\mathsf{OPT}[V-s,v]\} + d(v,s) \mid v \in V-s\}$$

TSP – Dynamic programming

Pseudocode.

Algorithm Bellmann-Held-Karp(G, c)

$$\begin{array}{l} \text{for each } v \in V - s \text{ do} \\ \quad \big \lfloor \text{ OPT}[\{v\}, v] = c(s, v) \end{array}$$

$$\begin{cases} \textbf{for } j \leftarrow 2 \textbf{ to } n-1 \textbf{ do} \\ \textbf{for each } S \subseteq V-s \textbf{ with } |S| = j \textbf{ do} \\ \textbf{for each } v \in S \textbf{ do} \\ \textbf{OPT}[S,v] \leftarrow \min\{\textbf{OPT}[S-v,u] \\ +c(u,v) \mid u \in S-v\} \end{cases} \mathcal{O}(2^n)$$

return min{ $OPT[V-s,v]+c(v,s) \mid v \in V-s$ }

A shortest tour can be produced by backtracking the DP table (as usual).

Analysis.

- innermost loop executes $\mathcal{O}(2^n \cdot n)$ iterations
- \blacksquare each takes $\mathcal{O}(n)$ time
- \blacksquare total of $\mathcal{O}(2^n n^2) = \mathcal{O}^*(2^n)$
- Space usage in $\Theta(2^n \cdot n)$
- or actually better? What table values do we need to store?

TSP - Discussion

- DP algorithm that runs in $\mathcal{O}^*(2^n)$ time and $\mathcal{O}(2^n \cdot n)$ space
- Brute-force runs in $2^{O(n \log n)}$ time
 - ⇒ Sacrifice space for speedup
- Many variants of TSP: symmetric, assymetric, metric, vehicle routing problem, . . .
- Metric TSP can easily be 2-approximated. (Do you remember how?)
- Eucledian TSP considered in course Approxiomation Algorithms.
- In practice, one successful approach is to start with a greedily computed Hamiltonian cycle and then use 2-OPT and 3-OPT swaps to improve it.

Maximum Independent Set (MIS)

Input. Graph G = (V, E) with n vertices.

Output. Maximum size independent set, i.e., a largest set $U \subseteq V$, such that no pair of vertices in U are adjacent in G.

Brute-force.

- \blacksquare Try all subets of V.
- Runtime: $\mathcal{O}(2^n \cdot n)$

Naive MIS branching.

 \blacksquare Take a vertex v or don't take it.

Algorithm NaiveMIS(G)

if
$$V = \emptyset$$
 then return 0

 $v \leftarrow ext{arbitrary vertex in } V(G)$ return $\max\{1+ ext{NaiveMIS}(G-N(v)-\{v\}),$ $\text{NaiveMIS}(G-\{v\})\}$

MIS – Smarter branching

Lemma.

Let U be a maximum independent set in G. Then for each $v \in V$:

1.
$$v \in U \Rightarrow N(v) \cap U = \emptyset$$

2.
$$v \notin U \Rightarrow |N(v) \cap U| \geq 1$$

Thus, $N[v] := N(v) \cup \{v\}$ contains some $y \in U$ and no other vertex of N[y] is in U.

Smarter MIS branching.

For some vertex v, branch on vertices in N[v].

Algorithm MIS(G)

$$\begin{array}{c} \text{if } V = \varnothing \text{ then} \\ \text{return 0} \end{array}$$

 $v \leftarrow \text{vertex of minimum degree in } V(G)$ $\mathbf{return} \ 1 + \max\{\mathsf{MIS}(G-N[y]) \mid y \in N[v]\}$

- Correctness follows from Lemma.
- We prove a runtime of $\mathcal{O}^*(3^{n/3}) = \mathcal{O}^*(1.4423^n)$.

MIS – Branching analysis

Execution corresponds to a **search tree** whose vertices are labeled with the input of the respective recursive call.

- Let B(n) be the maximum number of leaves of a search tree for a graph with n vertices.
- \blacksquare Search-tree has height $\leq n$.

$$T(n) \in O^*(nB(n)) = O^*(B(n)).$$

Let's consider an example run.

MIS – Runtime analysis

For a worst-case n-vertex graph G ($n \ge 1$):

$$B(n) \le \sum_{y \in N[v]} B(n - (\deg(y) + 1)) \le (\deg(v) + 1) \cdot B(n - (\deg(v) + 1))$$

where v is a minimum degree vertex of G, and we note that $B(n') \leq B(n)$ for any $n' \leq n$.

We prove by induction that $B(n) \leq 3^{n/3}$.

- Base case: $B(0) = 1 \le 3^{0/3}$
- Hypothesis: for $n \ge 1$, set $s = \deg(v) + 1$ in the above inequality

$$B(n) \le s \cdot B(n-s) \le s \cdot 3^{(n-s)/3} = \frac{s}{3^{s/3}} \cdot 3^{n/3} \stackrel{?}{\le} 3^{n/3}$$

$$B(n) \in O^*(\sqrt[3]{3}^n) \subset O^*(1.44225^n)$$

MIS – Discussion

- Smarter branching leads to $\mathcal{O}^*(1.44225^n)$ -time algorithme,
- \blacksquare compared to brute-force, which runs in $\mathcal{O}(2^n \cdot n)$ time.
- Algorithms for MIS known that run in $\mathcal{O}^*(1.2202^n)$ time and polynomial space,
- lacksquare and in $\mathcal{O}^*(1.2109^n)$ time and exponential space.
- What vertices are always in a MIS?
- What vertices can we savely assume are in a MIS?

- **Exercise**: Enumerating MISs
- Exercise: Edge-branching for MIS

Literature

Main source:

- [Fomin, Kratsch Ch1] "Exact Exponential Algorithms" Referenced papers:
- [ADMV '15] Classic Nintendo Games are (Computationally) Hard
- [Mann '17] The Top Eight Misconceptions about NP-Hardness