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Flow network

A flow network G = (V, E) is a digraph with
B unique source s and sink f,

B no antiparallel edges, and

B a capacity c(u,v) > 0 for every (u,v) € E.
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The value |f]| of a flow f is defined as
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Given G and f, the residual capacity ¢, for a pair u,v € V' is
c(u,v) — f(u,v) if (u,v) € E
ce(u,v) =< f(v,u) if (v,u) € E
0 otherwise.
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Residual network & augmenting path

The residual network Gy = (V, E¢) for a flow network G with flow f has
B Er={(u,0) € VxV]cg(u,v) >0}

An augmenting path is an st-path in Gy. = use to increase f
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Ford-Folkerson and Edmons-Karp algorithms

FordFulkerson(G = (V,E), c, s, t)

foreach uv € E do } initialising zero flow

| fuw <0
while G, contains augmenting path p do
A < minypep cr(U0) } residucal capacity of p
foreach uv € p do )
if uv € E then
| fuo & fuv A >augmentation along p
else
L fvu — fvu — A )

return f } return max flow
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foreach uv € L do } initialising zero flow
L Jw 0 shortest
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foreach uv € p do )
if uv € E then
| fuo — fuo + A >augmentation along p
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Ford-Folkerson and Edmons-Karp algorithms

EdmondsKarp
FordFutkersen(G = (V,E), ¢, s, t)

foreach uv € E do

| fuo <0
] shortest _
while G, containsyaugmenting path p do

} initialising zero flow

A < minypep cr(U0) } residucal capacity of p
foreach uv € p do )
if uv € E then
| fuo & fuv A >augmentation along p
else
L fvu — fvu — A )
return f } return max flow

B Ford-Folkerson runs in O(|E||f*|) and Edmons-Karp in O(|V||E|?) time.
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Max-flow min-cut theorem

‘Theorem.

For a flow f in a flow network G, the
following conditions are equivalent:

B f is a maximum flow in G.

B Gy contains no augmenting paths.

B [f] =¢(S,T) for some cut (5, T) of G. |




Push-relabel idea

A New Approach to the Maximum-Flow Problem

ANDREW V. GOLDBERG

Massachusetts Institute of Technology, Cambridee, Massachusetts
AND

ROBERT E. TARJAN

Princeton University, Princeton, New Jersey, and AT&T Bell Laboratories, Murray Hill, New Jersey

Abstract. All previously known cfficient maximum-flow algorithms work by finding augmenting paths,
either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortest-length
augmenting paths at once (using the layered network approach of Dinic). An alternative method based
on the preflow concept of Karzanov 1s introduced. A preflow is like a flow, except that the t~ 4l amount
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for the next phase, Our algorithm abandons the idea of finding a flow in each
phase and also abandons the idea of global phases. Instead, our algorithm maintains
a preflow in the onginal network and pushes local flow excess toward the sink
along what it estimates to be shortest paths in the residual graph. This pushing of
flow changes the residual graph, and paths to the sink may become saturated.
Excess that cannot be moved to the sink is returned to the source, also along
estimated shortest paths. Only when the algorithm terminates does the preflow
bhecome a flow, and then it is a maximum flow.



Push-relabel idea




Push-relabel idea

0/6




Push-relabel idea

0/6




Push-relabel idea

0/6




Push-relabel idea

T 0/7
9/9
d 0/2
8/8 /—vb 0/4
0/6
0/5 0/5



Push-relabel idea

9/9

5 d 0/2
b 0/4

8/8 =+

0/ : 0/5 0/6



Push-relabel idea

9/9
5 d 0/2

8/8 ﬁb 0/4

0/ : 0/5 0/6



Push-relabel idea

9/9
5 d 0/2

8/8

0/ : 0/5 0/6



Push-relabel idea

9/9

8/8

4/4

0/5 C

0/5

/7

2/2

0/6

- 10



Push-relabel idea

9/9

2/4

8/8 =¥

0/5 C

0/5

/7

2/2

0/6

- 11



Push-relabel idea

9/9

8/8 gb

2/4

0/5 c 0/5

/7

2/2

6/6

- 12



Push-relabel idea

6/6

- 13



Preflow, excess flow and height

A preflow in G is a real-value function f: V X V — R that
satisfies the capacity constraint and, for all u € V' \ {s}, /18
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B Y f(ou)— Y f(u,v)>0.
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Preflow, excess flow and height

A preflow in G is a real-value function f: V X V — R that

satisfies the capacity constraint and, for all u € V' \ {s}, /18 10/12
) f(ou)— Y f(u,v)>0. u >
veV veV ,Z/Af
The excess flow of a vertex u is
e(u) =3

me(u)= ¥ flo.u)— X f(u0) -
veV veV
A vertex u is called overflowing, when e(u) > 0.

For a flow network G with preflow f, a height function is a
function h: V — IN such that

B a(s) =|V|,

m i(t) =0, and

B /i(u) < h(v) +1 for every residual edge (u,v) € Ey.




PUSH operation

PUsH(u, v)
Condition: u is overflowing, c¢(u,v) > 0, and h(u) = h(v) + 1
Effect: Push min(e(u), c¢(u,v)) overflow from u to v
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PUSH operation

PUsH(u, v)
Condition: u is overflowing, c¢(u,v) > 0, and h(u) = h(v) + 1
Effect: Push min(e(u), cf(u,v)) overflow from u to v
A < min(e(u), cr(u,v))
if (u,v) € E then
f(uv) < f(u,v) +A

else
f(ou) < f(o,u) — A Example.

PUsH(u, v)
AN
A=14
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PUSH operation

PUsH(u, v)

Condition: u is overflowing, c¢(u,v) > 0, and h(u) = h(v) + 1
Effect: Push min(e(u), cf(u,v)) overflow from u to v
A < min(e(u), cr(u,v))
if (u,v) € E then
f(uv) < f(u,v) +A
else
f(ou) < f(o,u) — A Example.
e(u) «—e(u) — A
e(v) < e(v) + A

PUsH(u, v)
AN
A=14

1 e(u)
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RELABEL operation

RELABEL(u)
Condition: u is overflowing and
h(u) < h(v) forall v € V with (u,v) € E¢
Effect: Increase the height of u
h(u) <= 14+ min{h(v): (u,v) € Ef}
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RELABEL(u)

Condition: u is overflowing and
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Example.
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PUSH-R)

L LAB]

PUSH-RELABEL(G)

5L algorithm

INITPREFLOW(G, s)
while there exists an applicable

PUSH or RELABEL operation x do

| apply x

12 -



L LAB]

PUSH-R)

PUSH-RELABEL(G)

5L algorithm

INITPREFLOW(G, s)

while there exists an applicable
PUSH or RELABEL operation x do
| apply x

INITPREFLOW (G, s)

h(v) <~ 0,e(v) <0 YoeV

h(s) « |V

f(u,v) <0 V(u,v)€E
for each v adjacent to s do

L £(s,0) < c(s,0)

e(v) < c(s,v)
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PUSH-R)

NLAB.

PUSH-RELABEL(G)

5L algorithm

INITPREFLOW(G, s)

while there exists an applicable
PUSH or RELABEL operation x do
| apply x

INITPREFLOW (G, s)

h(v) <~ 0,e(v) <0 YoeV

h(s) « |V

f(u,v) <0 V(u,v)€E
for each v adjacent to s do

L £(s,0) < c(s,0)

e(v) < c(s,v)

B initialises heights
B pushes max flow over all out-
going edges of s
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Correctness

Part 1.
If the algorithm terminates, the preflow is maximum flow.
B If an overflowing vertex exists, the algorithm can continue.

B The algorithm maintains f as a preflow and
J1 as a height function.

B Sink t is not reachable from source s in Gf.
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Correctness

Part 1.

If the algorithm terminates, the preflow is maximum flow.

B If an overflowing vertex exists, the algorithm can continue.

B The algorithm maintains f as a preflow and
J1 as a height function.

B Sink t is not reachable from source s in Gf.

The algorithm terminates and the heights stay finite.

Part 2.
B Find
B Find
B Find

u

u

u

D

D

D

pEer

pDer

per

poundad

poundad

poundad

on heights.
for calls of RELABEL.

for calls of PUSH.

13 -



Continuation

‘Lemma 1.

a relabel operation applies to u.

If a vertex u is overflowing, either a push or

~\

J

Height function:
B us)=1v|,
B i(t) =0, and
B /(u) <h(v)+1 for every
residual edge (u,v) € Ey.

PusH(u, v)
Condition: u is overflowing,
ce(u,v) >0, and h(u) = h(v) +1
A <+ min(e(u), cr(u,v))
if (u,v) € E then

| f(uv) « f(u,v) +A
else

|_ f(ou) <« f(o,u)+A
e(u) < e(u) — A
e(v) < e(v) + A

RELABEL(u)

Condition: u is overflowing,
h(u) < h(v) Vo € V with (u,v) € Ef
h(u) <=1+ min{h(v) : (u,v) € Ef}
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If no push operation valid for (u,v) € E¢, then
B /i(u) < h(v) for all v with (u,v) € Ey.
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If a vertex u is overflowing, either a push or
a relabel operation applies to u.

J

Proof.
Assuming /1(u) is valid, we have
B /i(u) < h(v)+1 forall v with (u,v) € E.

If no push operation valid for (u,v) € E¢, then
B /i(u) < h(v) for all v with (u,v) € Ey.
Therefore, RELABEL(u) is applicable.

Height function:
B us)=1v|,
B i(t) =0, and
B /(u) <h(v)+1 for every
residual edge (u,v) € Ey.
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Maintaining the preflow

‘Lemma 2.
The push-relabel algorithm maintains a
preflow f.

Height function:
B us)=1v|,
B i(t) =0, and
B /(u) <h(v)+1 for every
residual edge (u,v) € Ey.

PusH(u, v)
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ce(u,v) >0, and h(u) = h(v) +1
A <+ min(e(u), cr(u,v))
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else

|_ f(ou) <« f(o,u)+A
e(u) < e(u) — A
e(v) < e(v) + A

RELABEL(u)

Condition: u is overflowing,
h(u) < h(v) Vo € V with (u,v) € Ef
h(u) <=1+ min{h(v) : (u,v) € Ef}
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Maintaining the preflow

‘Lemma 2. |
The push-relabel algorithm maintains a
preflow f. )

Proof.
B INITPREFLOW initialises a preflow f. v

B RELABEL(u) doesn't affect f. v

B PusH(u,v) maintains f as a preflow. v’

Height function:
B us)=1v|,
B i(t) =0, and
B /(u) <h(v)+1 for every
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Maintaining the height function

‘'Lemma 3. |
The push-relabel algorithm maintains /1 as
a height function. )
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Maintaining the height function

‘'Lemma 3. |
The push-relabel algorithm maintains /1 as
a height function. )

Proof.
B INITPREFLOW initialises /1 as a height function. v

Height function:
B us)=1v|,
B i(t) =0, and
B /(u) <h(v)+1 for every
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Maintaining the height function

‘'Lemma 3. |
The push-relabel algorithm maintains /1 as
a height function. )

Proof.
B INITPREFLOW initialises /1 as a height function. v

B PuUsH(u,v) leaves /1 a height function.

Height function:
B us)=1v|,
B i(t) =0, and
B /(u) <h(v)+1 for every
residual edge (u,v) € Ey.
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else
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Reachability of the sink

'Lemma 4.
During the push-relabel algorithm, there is
‘no path from s to f in Gy.

Height function:
B us)=1v|,
B i(t) =0, and
B /(u) <h(v)+1 for every
residual edge (u,v) € Ey.
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( R Height function:
Lemma 4. B o) =V
_ : : B u(t)=0, and
During the push—rela.bel algorithm, there is B () < (o) 1 for every
‘no path from s to t in Gy. ) residual edge (1, v) € Ef.
Proof.
Suppose there is a path s = vg, v1,..., 0 =t in Gy.
Then

B (0;,041) € Ef for 0 <i<k—1, and
] h(UZ‘) < h(vi—H) +1for0<i<k-1.

= h(s) < h(t) +k =k



Reachability of the sink

d ) Height function:
Lemma 4. B o) =V
_ : : B u(t)=0, and
During the push—rela_bel algorithm, there is B () < (o) 1 for every
no path from s to £ in Gy. residual edge (1, v) € Ef.
. J
Proof.
Suppose there is a path s = vg, v1,..., 0 =t in Gy.
Then

B (0;,041) € Ef for 0 <i<k—1, and
] h(vi) < h(vi—H) +1for0<i<k-1.

= h(s) < h(t) +k =k

But then and since k < |V| — 1, follows /i(s) < |V|. X



Partial correctness of the algorithm

‘Theorem 5.
If the push-relabel algorithm terminates,

‘the computed preflow f is @ maximum flow. |
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Partial correctness of the algorithm

‘Theorem 5.

If the push-relabel algorithm terminates,
‘the computed preflow f is a maximum flow.

Proof.
B By Lemma 1, the algorithm stops, when

there is no overflowing vertex.

J

B By Lemma 2, f is a preflow.
= f is a flow.

B By Lemma 3, /1 is a height function.
B 5o by Lemma 4, there is no st-path in Gy.

= By the Max-Flow Min-Cut Theorem,
the flow f is a maximum flow.

18 -



Correctness

Part 1. \/

If the algorithm terminates, the preflow is maximum flow.
B If an overflowing exists, the algorithm can continue.

B The algorithm maintains f as a preflow and /1 as a
height function.

B Sink t is not reachable from source s in Gf.
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Correctness

Part 1. \/

If the algorithm terminates, the preflow is maximum flow.

B If an overflowing exists, the algorithm can continue.

B The algorithm maintains f as a preflow and /1 as a
height function.

B Sink t is not reachable from source s in Gf.

The algorithm terminates and the heights stay finite.

Part 2.
B Find
B Find
B Find

u

u

u

D

D

D

pEer

pDer

per

poundad

poundad

poundad

on heights.
for calls of RELABEL.

for calls of PUSH.
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Reachability of source in residual graph

'Lemma 6.
There is a path from every overflowing
vertex v to s in Gy.

~\
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‘Lemma 6.
There is a path from every overflowing

vertex v to s In Gf.
\_ )

Proof.
B S, < vertices reachable from v in Gf.

B Suppose v € Sy.
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‘Lemma 6.
There is a path from every overflowing

vertex v to s In Gf.
\_ )

Proof.
B S, < vertices reachable from v in Gf.

B Suppose v € Sy.

B Since [ a preflow and s € S;, we have ) e(w) > 0.

WESy

B Since v € Sy, we even have ) e(w) > 0.
weS,




Reachability of source in residual graph

( N\
Lemma 6.

There is a path from every overflowing
vertex v to s in Gy.

Proof.
B S, < vertices reachable from v in Gf.

B Suppose v € Sy.

B Since [ a preflow and s € S;, we have ) e(w) > 0.
WESy

B Since v € Sy, we even have ) e(w) > 0.
weS,

B There is edge (u, w) with u ¢ S,,w € Sy and f(u, w) > 0.




Reachability of source in residual graph

( N\
Lemma 6.

There is a path from every overflowing
vertex v to s in Gy.

Proof.
B S, < vertices reachable from v in Gf.

B Suppose v € Sy.

B Since [ a preflow and s € S;, we have ) e(w) > 0.
WESy

B Since v € Sy, we even have ) e(w) > 0.
weS,

B There is edge (u, w) with u ¢ S,,w € Sy and f(u, w) > 0.

B But then cf(w, u) > 0, meaning u is reachable from v. X




Upper bound on height

7

\.

Lemma 7.

During the push-relable algorithm, we have
h(v) <2|V|—1forallveV.

Height function:
B us)=1v|,
B i(t) =0, and
B /(u) <h(v)+1 for every
residual edge (u,v) € Ey.

RELABEL(u)

Condition: u is overflowing,
h(u) < h(v) Vo € V with (u,v) € Ef
h(u) <= 14+ min{h(v) : (u,v) € Ef}
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\_
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J
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Lemma 7.

During the push-relable algorithm, we have
h(v) <2|V|—1forallveV.

\_
Proof.
B Statement holds after initialisation.

J

B Let v be an overflowing vertex that is relabeled.

B By Lemma 6, there is a path v = vg, 01,...,0r = s In Gf.

Height function:
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Upper bound on height

‘Lemma 7. ) Hiiglﬁt:)uicrxiﬂ?:

During the push-relable algorithm, we have = Zgﬁ)i%(;;‘ilfor every
kh(v) <2|V|—1forallveV. ) residual edge (i, v) € Ef.
PrOOf' RE(I.:.i:ijinc(in)r u is overflowin

B Statement holds after initialisation. () < h(o) Yo € V with (4,7) € Ef

. . h(u) <= 14+ min{h(v) : (u,v) € Ef}
B Let v be an overflowing vertex that is relabeled.

B By Lemma 6, there is a path v = vg, 01,...,0r = s In Gf.
B Then h(vi) < h(vi+1) +1for0<i<k-—1.
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Lemma 7.

During the push-relable algorithm, we have
h(v) <2|V|—1forallveV.

\_
Proof.
B Statement holds after initialisation.

J

B Let v be an overflowing vertex that is relabeled.

B By Lemma 6, there is a path v = vg, 01,...,0r = s In Gf.

B Then h(vi) < h(vi+1) +1for0<i<k-—1.

B Since k < |V|—1, we have hi(v) < h(s) +k <2|V|—1.

Height function:
B us)=1v|,
B i(t) =0, and
B /(u) <h(v)+1 for every
residual edge (u,v) € Ey.

RELABEL(u)
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Upper bound on height and RELABEL operations

( N\
Lemma 7.

During the push-relable algorithm, we have
h(v) <2|V|—1forallveV.

\_
Proof.
B Statement holds after initialisation.

J

B Let v be an overflowing vertex that is relabeled.

B By Lemma 6, there is a path v = vg, 01,...,0r = s In Gf.

B Then h(vi) < h(vi+1) +1for0<i<k-—1.

B Since k < |V|—1, we have hi(v) < h(s) +k <2|V|—1.

~\

‘Corollary 8.
The push-relable algorithm executes at
‘most 2|V|? RELABEL operations.

Height function:
B us)=1v|,
B i(t) =0, and
B /(u) <h(v)+1 for every
residual edge (u,v) € Ey.

RELABEL(u)

Condition: u is overflowing,
h(u) < h(v) Vo € V with (u,v) € Ef
h(u) <= 14+ min{h(v) : (u,v) € Ef}
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Saturating and unsaturating PUSH operations

The operation PUSH(u, v) is
B saturating, if afterwards ¢, (u,v) =0,

2/6 PUsH(u, v) 6/6
wW— o =
A=4

B and unsaturating otherwise.

2/6 PUsH(u, v) 4/6

w—

AN=2



Upper bound on saturating PUSH operations

‘Lemma 9.
The push-relable algorithm executes at
‘most 2|V||E| saturating PUSH operations.

~\

J

PusH(u, v)
Condition: u is overflowing,
ce(u,v) >0, and h(u) = h(v) +1
A <+ min(e(u), cr(u,v))
if (u,v) € E then
| f(uv) « f(u,v) +A
else
|_ f(ou) <« f(o,u)+A
e(u) < e(u) — A
e(v) < e(v) + A
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Upper bound on saturating PUSH operations

‘Lemma 9.
The push-relable algorithm executes at
‘most 2|V||E| saturating PUSH operations.

~\

J

Proof.
B Consider saturating PUSH(u, v)
mhi(u) =h(v)+1

PusH(u, v)
Condition: u is overflowing,
ce(u,v) >0, and h(u) = h(v) +1
A <+ min(e(u), cr(u,v))
if (u,v) € E then

| f(uv) « f(u,v) +A
else

|_ f(ou) <« f(o,u)+A
e(u) < e(u) — A
e(v) < e(v) + A

ecessary PUsH(u, v)
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Upper bound on saturating PUSH operations

‘Lemma 9.
The push-relable algorithm executes at
‘most 2|V||E| saturating PUSH operations.

~\

J

Proof.
B Consider saturating PUSH(u, v)
mhi(u) =h(v)+1

PusH(u, v)
Condition: u is overflowing,
ce(u,v) >0, and h(u) = h(v) +1
A <+ min(e(u), cr(u,v))
if (u,v) € E then

| f(uv) « f(u,v) +A
else

|_ f(ou) <« f(o,u)+A
e(u) < e(u) — A
e(v) < e(v) + A

B For another saturating PUsH(u, v), first PUSH(v, 1) necessary PusH(u, v)

m /i(v) = h(u)+ 1 necessary

PuUsH(v, u)
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Upper bound on saturating PUSH operations

h PusH(u, v
Lemma 9. (o) |
Condition: u is overflowing,

The push-relable algorithm executes at cf(u,0) >0, and h(u) = h(v) +1

most 2|V||E| saturating PUSH operations. ﬁair;;”éeé”t)l;(i{f”'”))

g u.v u,v)+A
Proof. ellse flwo) e flwo)+

a

\.

m Consider saturating PUSH(u, v) L flow) = o +a
m h(u) = h(v) + 1 o) eo) 1 b
B For another saturating PUsH(u, v), first PUSH(v, 1) necessary PusH(u, v)
m /i(v) = h(u)+ 1 necessary PUSH (0, 1)
B After another saturating PusH(u, v), both /(1) and /1(v) have Pusii(i, o)

increased by at least two.
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Upper bound on saturating PUSH operations

f h PusH(u, v)
Lemma 9. L |
Condition: u is overflowing,

The push-relable algorithm executes at cf(u,0) >0, and h(u) = h(v) +1

most 2|V||E| saturating PUSH operations. - ﬁ(i’r;;“éeéut)l;zﬁ(u.v))

| f(uv) « f(u,v) +A

\.

Proof. else
m Consider saturating PUSH(u, v) L flow) = o +a
m h(u) = h(v) + 1 o) eo) 1 b
B For another saturating PUsH(u, v), first PUSH(v, 1) necessary PusH(u, v)
m /i(v) = h(u)+ 1 necessary PUSH (0, 1)
B After another saturating PusH(u, v), both /(1) and /1(v) have Pusii(i, o)

increased by at least two.
B But by Lemma 6, /1(u) < 2|V| —1and h(v) <2|V|—1.
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Upper bound on saturating PUSH operations

‘Lemma 9.
The push-relable algorithm executes at
‘most 2|V||E| saturating PUSH operations.

\

J

Proof.
B Consider saturating PUSH(u, v)
mhi(u) =h(v)+1

PusH(u, v)
Condition: u is overflowing,
ce(u,v) >0, and h(u) = h(v) +1
A <+ min(e(u), cr(u,v))
if (u,v) € E then
| f(uv) « f(u,v) +A
else
|_ f(ou) <« f(o,u)+A
e(u) < e(u) — A
e(v) < e(v) + A

B For another saturating PUsH(u, v), first PUSH(v, 1) necessary PusH(u, v)

m /i(v) = h(u)+ 1 necessary

B After another saturating PusH(u, v), both /(1) and /1(v) have

increased by at least two.

PuUsH(v, u)

PusH(u, v)

B But by Lemma 6, /1(u) < 2|V| —1and h(v) <2|V|—1.
B There are at most 2|V| — 1 sat. PUSH operations for edge (u, v).
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Upper bound on unsaturating PUSH operations

'Lemma 10.
The push-relable algorithm executes at
‘most 4|V |?|E| unsaturating PUSH ops.

~\

PusH(u, v)
Condition: u is overflowing,
ce(u,v) >0, and h(u) = h(v) +1
A <+ min(e(u), cr(u,v))
if (u,v) € E then
| f(uv) « f(u,v) +A
else
|_ f(ou) <« f(o,u)+A
e(u) < e(u) — A
e(v) < e(v) + A
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Upper bound on unsaturating PUSH operations

‘Lemma 10. )

The push-relable algorithm executes at
most 4|V|?|E| unsaturating PUSH ops.

Proof.

B Consider H = Y h(v).
veV\{s,t},
v overflowing

B After initialisation and at the end H = 0.

.

PusH(u, v)

Condition: u is overflowing,
ce(u,v) >0, and h(u) = h(v) +1
A <+ min(e(u), cr(u,v))
if (u,v) € E then

I| f(uv) « f(u,v)+A

|_ f(ou) <« f(o,u)+A
e(u) < e(u) — A
e(v) < e(v) + A
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Upper bound on unsaturating PUSH operations

( )

Lemma 10.
The push-relable algorithm executes at
most 4|V|?|E| unsaturating PUSH ops.

Proof.

B Consider H = Y h(v).
veV\{s,t},
v overflowing

B After initialisation and at the end H = 0.

\.

B A saturating PUSH increases ‘H by at most 2|V| — 1.

PusH(u, v)
Condition: u is overflowing,
ce(u,v) >0, and h(u) = h(v) +1
A <+ min(e(u), cr(u,v))
if (u,v) € E then
| f(uv) « f(u,v) +A
else
|_ f(ou) <« f(o,u)+A
e(u) < e(u) — A
e(v) < e(v) + A

B By Lemma 8, all saturating PUSH ops. increases ‘H by at most

(2[V] =1)-2|V||E|.
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Upper bound on unsaturating PUSH operations

( ) PusH(u, v
Lemma 10. (o) |
Condition: u is overflowing,

The push-relable algorithm executes at cf(u,0) >0, and h(u) = h(v) +1
most 4|V|?|E| unsaturating PUSH ops. A ¢ min(e(u), ¢y (u,v))

) if (u,v) € E then
| f(uv) « f(u,v) +A

\.

Proof. e
" Consider 7= 2 = h©) e(|:t) ];(Ue'g)ti(v’u)ﬂ
EV\{s.t}, e(0) < (o) + A

v overflowing

B After initialisation and at the end ‘H = 0.
B A saturating PUSH increases ‘H by at most 2|V| — 1.

B By Lemma 8, all saturating PUSH ops. increases ‘H by at most
(2[V] =1)-2|V]|E|.

B By Lemma 7, all RELABEL ops increases H by at most (2|V| —1)-|V].
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Upper bound on unsaturating PUSH operations

( ) PusH(u, v
Lemma 10. (o) |
Condition: u is overflowing,

The push-relable algorithm executes at cf(u,0) >0, and h(u) = h(v) +1
most 4|V|?|E| unsaturating PUSH ops. A ¢ min(e(u), ¢y (u,v))

) if (u,v) € E then
| f(uv) « f(u,v) +A

\.

Proof. e
" Consider 7= 2 = h©) e(|:t) ];(Ue'g)ti(v’u)ﬂ
EV\{s.t}, e(0) < (o) + A

v overflowing

B After initialisation and at the end ‘H = 0.
B A saturating PUSH increases ‘H by at most 2|V| — 1.

B By Lemma 8, all saturating PUSH ops. increases ‘H by at most
(2[V] =1)-2|V]|E|.

B By Lemma 7, all RELABEL ops increases H by at most (2|V| —1)-|V].
B An unsaturating PUsH(u, v) decrease H by at least 1, since h(u) — h(v) > 1.
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Termination of the algorithm

If the push-relabel algorithm terminates,

‘Theorem 5. )

‘the computed preflow f is a maximum flow.

‘Theorem 11. )
The push-relabel algorithm terminates after

‘O(|V|?|E|) valid PusH or RELABEL ops.

Proof.
B Follows by Corollary 8 and Lemma 9-+10.

J

25



Implementation

The actual running time depends on the selection order of
overflowing vertices:
B FIFO implementation:
Pick overflowing vertex by first-in-first-out principle:
O(|V]3) running time.
V|2

with dynamic trees: O(|V||E| log W)

B Highest label:
For PUSH select highest overflowing vertex: O(\V\2|EI%)

B Excess scaling:
For PusH(u, v) choose edge (u,v) such that u is
overflowing, e(u) is sufficiently high and e(v) sufficiently

small: O(|E| + |V|?log C), where C = max c(u, )
(u,v)€E
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Discussion

B The push-relabel method offers an alternative framework to
the Ford-Folkerson method to develope algorithms that solve
the maximum flow problem.

B Push-relabel algorithms are regarded as benchmarks for ma-
ximum flow algorithms.

B In practice, heuristics are used to improve the performance
of push-relabel algorithms. Any ideas?

B The algorithm can be extended to solve the minimum cost
flow problem.
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| iterature

Main source:

B [CLRS Ch26] <— Cormen et al. “Introduction to Algorithms”

Original papers:

B [Goldberg, Tarjan '88] A new approach to the maximum-flow problem

Links:

B MaxFlow Ford-Folkerson and Edmonds-Karp animations
https://visualgo.net/en /maxflow
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