





# Algorithmen und Datenstrukturen

Wintersemester 2019/20 23. Vorlesung

Greedy- und Approximationsalgorithmen

#### Operations Research

#### Optimierung für Wirtschaftsabläufe:

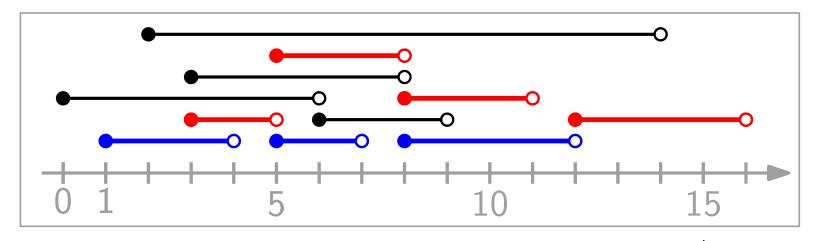
- Standortplanung
- Ablaufplanung
- Flottenmanagement
- Pack- und Zuschnittprobleme
- . . .

#### Werkzeuge:

Statistik, Optimierung, Wahrscheinlichkeitstheorie, Spieltheorie, Graphentheorie, mathematische Programmierung, Simulation...

### Ein einfaches Problem der Ablaufplanung

Gegeben: Menge  $A = \{a_1, \ldots, a_n\}$  von Aktivitäten, wobei für  $i = 1, \ldots, n$  gilt  $a_i = [s_i, e_i)$ .



 $a_i$  und  $a_j$  sind *kompatibel*, wenn  $a_i \cap a_j = \emptyset$ .

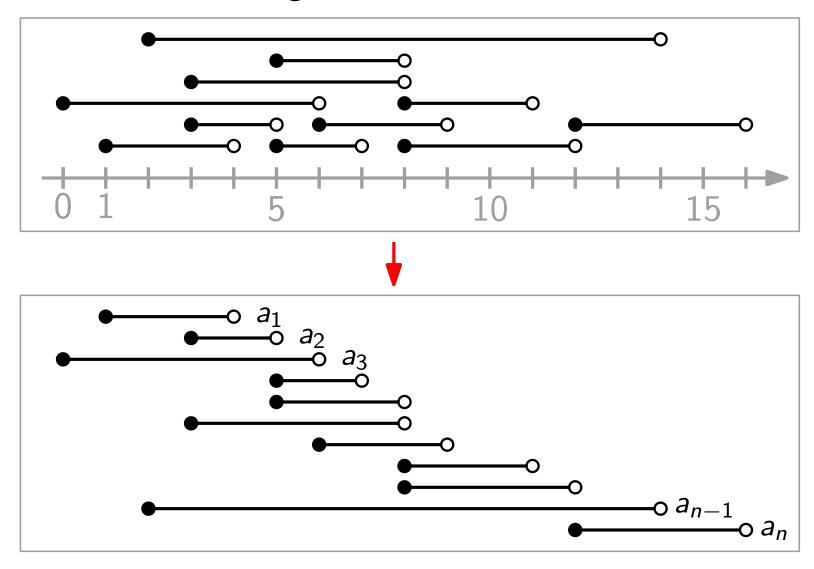
Die Aktivitäten in  $A' \subset A$  sind paarweise kompatibel, wenn für jedes Paar  $a_i, a_j \in A'$  gilt, dass  $a_i$  und  $a_i$  kompatibel sind.

Gesucht: eine größtmögliche Menge paarweise kompatibler Aktivitäten.

Grund: Aktivitäten (à 1€), die gleiche Ressource benutzen

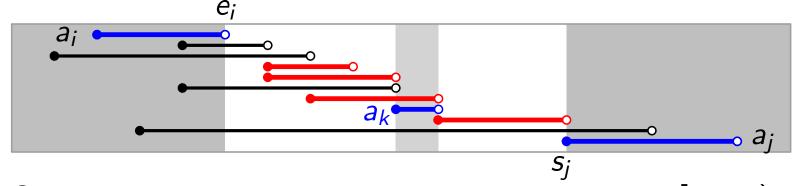
#### Ein kleiner technischer Trick

Wir nummerieren (für den Rest der Vorlesung) die Aktivitäten so, dass für die Endtermine gilt  $e_1 \le e_2 \le \cdots \le e_n$ .



### Dynamisches Programmieren?

#### 1. Struktur einer optimalen Lösung charakterisieren



Sei  $A_{ij} \subset A$  die Menge aller Aktivitäten in  $[e_i, s_i)$ , d.h. "zwischen"  $a_i$  und  $a_i$ .

Ang.  $a_i$  und  $a_i$  sind in einer opt. Lösung  $L \subseteq A$  enthalten, dann ist  $L \cap A_{ij}$  eine opt. Lösung für  $A_{ij}$ .

 $\Rightarrow$  optimale Substruktur!

Beweis? ) Austauschargument!

#### 2. Wert einer optimalen Lösung rekursiv definieren

Sei  $c_{ij}$  die Kardinalität einer opt. Lösung für  $A_{ij}$ .

Dann gilt: 
$$c_{ij} = \max_{a_k \in A_{ii}} c_{ik} + 1 + c_{kj}$$

#### Dynamisches Programmieren?

#### 3. Wert einer optimalen Lösung berechnen

Setze  $e_0 = -\infty$  und  $s_{n+1} = +\infty$ . Dann ist  $A = A_{0,n+1}$ .

Berechne  $c_{0,n+1}$ , die Kardinalität einer opt. Lösung für A.

(a) top-down

(b) bottom-up

TopDownDP(int[]s, int[]e, int i, int j)

 $\rightarrow$  liefert  $c_{ii}$ 

BottomUpDP(int[]s, int[]e)

 $\rightarrow$  liefert  $c_{0,n+1}$ 

Siehe Folie

"Zurück zum dynamischen Programmieren"

**Laufzeit?**  $O(n^3)...$ 

#### 2. Wert einer optimalen Lösung rekursiv definieren

Sei  $c_{ij}$  die Kardinalität einer opt. Lösung für  $A_{ij}$ .

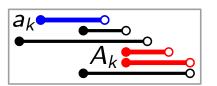
Dann gilt:  $c_{ij} = \max_{a_k \in A_{ij}} c_{ik} + 1 + c_{kj}$ 

#### Darf's auch etwas einfacher sein?

Idee:

Sei L opt. Lösung für A. – Welche Aktivität hat gute Chancen die erste ("linkeste") in L zu sein?

**Intuition:** Die Aktivität  $a_1$  mit frühester Endzeit – weil  $a_1$  die gemeinsame Ressource am wenigsten einschränkt.



Sei  $A_k = \{a_i \in A : s_i \geq e_k\}$  die Menge der Aktivitäten, die nach Ablauf von  $a_k$  beginnen.

Sei  $L_k$  eine optimale Lösung von  $A_k$ .

Falls Intuition korrekt, dann ist  $\{a_1\} \cup L_1$  optimal.

Satz.

Sei  $A_k \neq \emptyset$ .

optimale Teilstruktur!

Sei  $a_m$  Aktivität mit frühester Endzeit in  $A_k$ .

 $\Rightarrow$  es gibt eine opt. Lösung von  $A_k$ , die  $a_m$  enthält.

Beweis. Austauschargument!

### Greedy – rekursiv

```
GreedyRecursive(int[] s, int[] e)
  e_0 = -\infty  // \Rightarrow A_0 = A
  // Aktivitäten nach Endzeiten sortieren, falls nötig
  return GreedyRecursiveMain(s, e, 0)
GreedyRecursiveMain(int[] s, int[] e, int k)// best. Lsg. für A_k
  m = k + 1; n = s.length
  // Finde Aktivität a_m mit kleinster Endzeit in A_k
  while m \le n and s[m] < e[k] do
   | m = m + 1
  if m > n then return \emptyset
  else return \{a_m\} \cup \mathsf{GreedyRecursiveMain}(s, e, m)
```

### Greedy – rekursiv

```
GreedyRecursive(int[] s, int[] e)
  e_0 = -\infty  // \Rightarrow A_0 = A
  // Aktivitäten nach Endzeiten sortieren, falls nötig
  return GreedyRecursiveMain(s, e, 0)
GreedyRecursiveMain(int[] s, int[] e, int k)// best. Lsg. für A_k
  m = k + 1; n = s.length
  // Finde Aktivität a_m mit kleinster Endzeit in A_k
  while m \le n and s[m] < e[k] do
  m = m + 1
  if m > n then return \emptyset
  else return \{a_m\} \cup \text{GreedyRecursiveMain}(s, e, m)
```

**Laufzeit?** Wie oft wird m inkrementiert? Insgesamt, über alle rekursiven Aufrufe, n Mal. D.h. GreedyRecursive läuft (ohne Sortieren) in  $\Theta(n)$  Zeit.

### Greedy – iterativ

```
GreedyIterative(int[] s, int[] e)
  n = s.length
  if n=0 then return \emptyset
  L = \{a_1\}
  k = 1 // höchster Index in L
  for m=2 to n do
      if s[m] \geq e[k] then
      L = L \cup \{a_m\}
k = m
  return L
```

**Laufzeit?** Greedylterative läuft ebenfalls in  $\Theta(n)$  Zeit.

**Bemerkung:** Greedylterative berechnet dieselbe optimale Lösung wie GreedyRecursive – die "linkeste".

## Die Greedy-Strategie

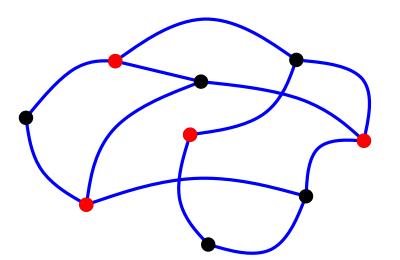
- 1. Teste, ob das Problem optimale Teilstruktur aufweist.
- 2. Entwickle eine rekursive Lösung
- 3. Zeige, dass bei einer Greedy-Entscheidung nur *ein* Teilproblem bleibt
- 4. Beweise, dass die Greedy-Wahl "sicher" ist (vgl. Kruskal!)
- 5. Entwickle einen rekursiven Greedy-Algorithmus
- 6. Konvertiere den rekursiven in einen iterativen Algorithmus

#### Food for Thought

 Welches allgemeinere Ablaufproblem könnte das DP lösen – aber nicht der GA?

Zur Erinnerung: Das DP berechnet  $c_{ij} = \max_{a_k \in A_{ij}} c_{ik} + 1 + c_{kj}$ .

2. Problem größte unabhängige Menge (guM) in Graphen:



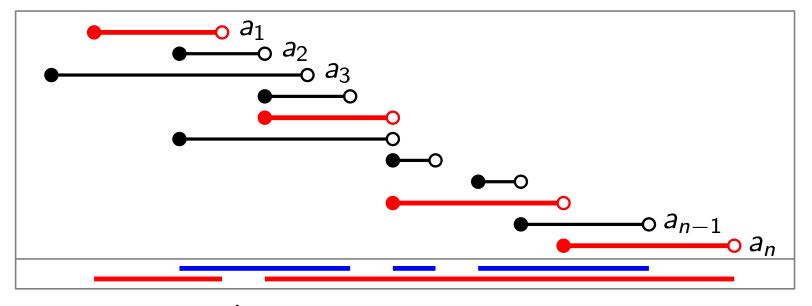
Finde eine größte
Teilmenge *U* der
Knoten, so dass keine
zwei Knoten in *U*benachbart sind.

- Was hat guM mit unserem Ablaufplanungsproblem zu tun?
- Kann man guM mit DP oder GA lösen?

### Ein ähnliches Problem der Ablaufplanung

Gegeben: Menge  $A = \{a_1, \ldots, a_n\}$  von halboffenen Intervallen, mit  $a_i = [s_i, e_i)$  für  $i = 1, \ldots, n$ .

Für die Endpunkte gelte  $e_1 \leq e_2 \leq \cdots \leq e_n$ .



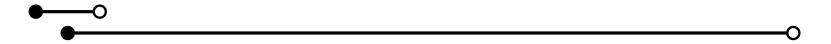
Gesucht: eine Menge  $A' \subseteq A$  paarweise disjunkter Intervalle, deren Gesamtlänge  $\ell(A')$  maximal ist.

Grund: Intervalle  $\hat{=}$  Prozesse, die die gleiche Ressource nutzen; der Gesamtertrag ist proportional zur Auslastung.

#### Greedy?

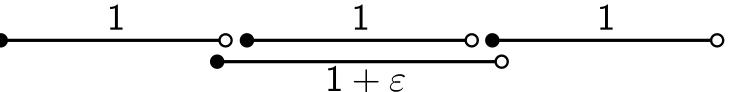
1. Versuch: Nimm Aktivität mit frühestem Endtermin, streiche dazu inkompatible Aktivitäten und iteriere.

Gegenbsp.:



**2. Versuch:** Nimm längste Aktivität, streiche dazu inkompatible Aktivitäten und iteriere.

Gegenbsp.:



**Aufgabe:** Können Sie den 2. GA in  $O(n \log n)$ 

Zeit implementieren?

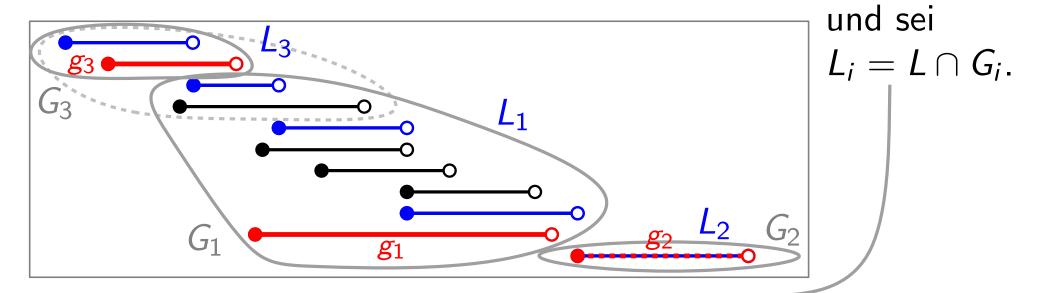
Diskutieren Sie mit Ihrer NachbarIn!

#### Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Lösung  $L \subseteq A$ .

Sei  $G = \{g_1, g_2, \dots, g_k\} \subseteq A$  die Greedy-Lösung (in dieser Rf.).

Für  $i=1,\ldots,k$  sei  $G_i=\{a\in A\mid a\cap g_i\neq\emptyset\}\setminus (G_1\cup\cdots\cup G_{i-1})$ 



Dann gilt  $A = G_1 \dot{\cup} G_2 \dot{\cup} \cdots \dot{\cup} G_k$  und  $L = L_1 \dot{\cup} L_2 \dot{\cup} \ldots \dot{\cup} L_k$ .

"⊆": GA wählt so lange Intervalle aus, bis es keine mehr gibt.

" $\supseteq$ ": klar, da  $G_1 \subseteq A$ ,  $G_2 \subseteq A$ , ...,  $G_k \subseteq A$ 

#### Wie gut/schlecht ist der 2. GA?

Behauptung: Für 
$$i=1,\ldots,k$$
 gilt  $\ell(L_i)<3\ell(g_i)$ .

$$1 \qquad 1 \qquad 1 \qquad 1 \qquad L_i$$

$$1+\varepsilon \qquad g_i$$
Beweis.

(a)  $g_i$  ist nach Wahl ein längstes Intervall in  $G_i$ 
(b) jedes  $a\in L_i$  schneidet  $g_i$ 
(c) Intervalle in  $L_i$  sind paarweise disjunkt

$$\Rightarrow$$
 OPT =  $\ell(L) = \sum_{i=1}^{k} \ell(L_i) < 3 \sum_{i=1}^{k} \ell(g_i) = 3\ell(G)$ 

$$\Rightarrow \ell(G) > \mathsf{OPT}/3$$

 $\Rightarrow$  2. GA liefert *immer* mind. 1/3 der maximalen Gesamtlänge.

Also ist der 2. GA ein Faktor-(1/3)-Approximationsalgorithmus.

#### Approxi. . . hä?

"All exact science is dominated by the idea of approximation."

Bertrand Russell (1872–1970)

Sei Π ein Maximierungsproblem.

Sei  $\zeta$  die *Zielfunktion* von  $\Pi$ : Lösung  $\mapsto \mathbb{Q}_{\geq 0}$ .

Sei  $\gamma$  eine Zahl  $\leq 1$ .

 $\zeta$ (optimale Lösung)

Ein Algorithmus  $\mathcal{A}$  heißt  $\gamma$ -Approximation, wenn

•  $\mathcal{A}$  für jede Instanz I von  $\Pi$  eine Lösung  $\mathcal{A}(I)$  berechnet, so dass

$$\frac{\zeta(\mathcal{A}(I))}{\mathsf{OPT}(I)} \ge \gamma$$

• die Laufzeit von  $\mathcal{A}$  polynomiell in |I| ist.

z.B. Ablaufplanung

$$\zeta = \ell$$

$$\gamma = 1/3$$

1/3-Approx.
liefert Menge von
Aktivitäten, deren
Gesamtlänge
mindestens 1/3
der maximal möglichen Länge ist.

Größe der Instanz I

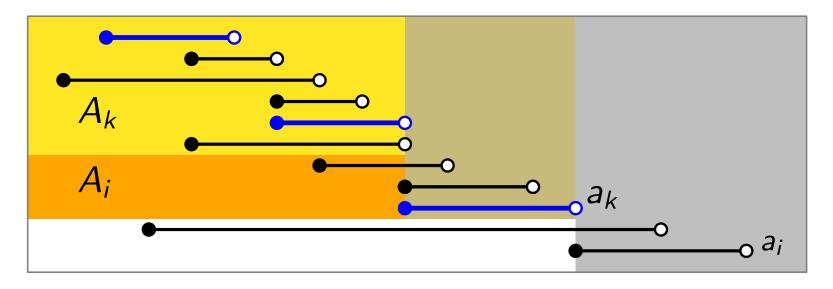
 $O(n \log n)$ 

## Zurück zum dynamischen Programmieren

```
BottomUpDPWeighted(int[] s, int[] e)
  n = s.length
  c = \text{new int}[0..n][1..n+1] // c_{ij} = \text{Wert einer opt. Lsg. für } A_{ij}
  for d = 1 to n - 1 do //d = , Distanz" zwischen j und i
      for i = 0 to (n + 1) - d do NEU! Im ungewichteten Fall
           j = i + d
                                                    stand hier eine Eins.
           if a_i und a_i kompatibel then 1/2 falls a_i \cap a_i = \emptyset
               for k = i + 1 to j - 1 do
                    c' = \frac{c[i][k]}{\ell(a_k)} + \frac{c[k][j]}{\ell(a_k)}
                    if c' > c then c = c
                                                         2. Wert einer
                                                         optimalen Lösung
           else c[i][j] = 0 Laufzeit? O(n^3)
                                                         rekursiv definieren
                               Aber warum verzweigen
                                                         c_{ij} = \max_{a_k \in A_{ij}} c_{ik} + 1 + c_{kj}
  return c[0, n+1]
                               wir hier zweimal?
```

### Dynamisches Programmieren, aber einfacher

Für i = 1, ..., n sei  $A_i = \{a_j \in A \mid e_j \le s_i\}$  die Menge aller Intervalle in A, die enden, bevor  $a_i$  beginnt. (Setze  $A_{n+1} = A$ .)



Eine optimale Lösung für  $A_i$  besteht aus:

- einem letzten Intervall  $a_k$  und
- einer optimalen Lösung für  $A_k$ .

optimale Teilstruktur!

Also gilt für den Wert  $c_i$  einer optimalen Lösung für  $A_i$ :

$$c_i = \max_{a_k \in A_i} c_k + \ell(a_k)$$

### Dynamisches Programmieren, aber einfacher

Also gilt für den Wert  $c_i$  einer optimalen Lösung für  $A_i$ :

$$c_i = \max_{a_k \in A_i} c_k + \ell(a_k)$$

Erinnern wir uns...

 $c_{n+1}$  ist der Wert der optimalen Lösung für  $A_{n+1} = A$ .

Also genügt es  $c_1, \ldots, c_{n+1}$  zu berechnen.

**Laufzeit?**  $O(n^2)$ 

Work out the details!

#### Resultate:

- Der 2. Greedy-Alg. findet in  $O(n \log n)$  Zeit eine Lösung, die *mindestens* 1/3 *des maximalen Ertrags* garantiert.
  - Unser neues DP findet in  $O(n^2)$  Zeit eine Lösung mit maximalem Ertrag.

    Trade-Off zwischen Zeit und Qualität!