
1

Route Planning under Uncertainty:
The Canadian Traveller Problem

29.05.2024

Leticia Serejo Kunz

based on the paper with the same title by Evdokia
Nikolova and David R. Karger (2008)

Seminar ’Optimization under Uncertainty’



2

Content

- What is the Canadian Traveller Problem?

- Heuristic solutions

- Problem: Canadian Traveller is #P-hard

(- Optimal policy for DAGs (dynamic programming))

- General approach: Markov Decision Processes

- Optimal Policy for disjoint-path graphs (MDPs)

- Recap



3

What is the Canadian Traveller Problem?

First described in 1991 by Papadimitriou & Yannakakis:

”The road map is now known, but the roads with question marks may be unsuitable
for travel (say, due to snowfall), an eventuality that is revealed to us only when an

adjacent node is reached.”



3

What is the Canadian Traveller Problem?

First described in 1991 by Papadimitriou & Yannakakis:

”The road map is now known, but the roads with question marks may be unsuitable
for travel (say, due to snowfall), an eventuality that is revealed to us only when an

adjacent node is reached.”

In this paper:

- distributions for the costs of edges are given

- upon arriving at a node we see the actual cost values of
incident edges (once observed, an edge cost remains fixed)

GOAL: find an optimal policy for travelling from
source s to destination t



3

What is the Canadian Traveller Problem?

In this paper:

- distributions for the cost values of the edges are given

- upon arriving at a node we see the actual cost values of incident edges
(once observed, an edge cost remains fixed)

GOAL: find an optimal policy for reaching from source s to destination t
that minimizes expected cost

- policy: mapping from perceived states of the environment to
probablities of selecting each possible action
- optimal: if the expected cost is smaller than or equal to that
of all other policies

What’s an optimal policy?



4

The Canadian Traveller Problem: Example

3 7/22

1

s

v1

v2

t

13/16

What would you do?

Notation i/j : edge can cost i or j ;
both values have probablities of 50%
i and j are positive numbers



4

The Canadian Traveller Problem: Example

3

1

s

v1

v2

t

22

13/16

What would you do?

Notation i/j : edge can cost i or j ;
both values have probablities of 50%
i and j are positive numbers



4

The Canadian Traveller Problem: Example

3

1

s

v1

v2

t

22

13

What would you do?

Notation i/j : edge can cost i or j ;
both values have probablities of 50%
i and j are positive numbers



4

The Canadian Traveller Problem: Example

3

1

s

v1

v2

t

22

13

What would you do?

Notation i/j : edge can cost i or j ;
both values have probablities of 50%
i and j are positive numbers



5

Heuristic solution: What could go wrong?

What would a heuristic solution look like?

3 7/22

1

s

v1

v2

t

13/16



5

Heuristic solution: What could go wrong?

- minimum expected distance: replaces unknown edge costs by
their expectation

What would a heuristic solution look like?

3

1

s

v1

v2

t

14.5

14.5



6

Heuristics: Minimum expected distance

X1

X2

Xn

mini E [Xi ]− ε

0

ε > 0

.

.

.

Xi : random variables for edge costs



6

Heuristics: Minimum expected distance

X1

X2

Xn

mini E [Xi ]− ε

0

ε > 0

Always takes the top route
⇒ suboptimal if the costs of all Xi are 1 with probability p > 0
and 0 otherwise:

.

.

.

Xi : random variables for edge costs



6

Heuristics: Minimum expected distance

X1

X2

Xn

mini E [Xi ]− ε

0

ε > 0

Always takes the top route
⇒ suboptimal if the costs of all Xi are 1 with probability p > 0
and 0 otherwise:

limε→0
min E [Xi ]−ε
E [minXi ]

= limε→0
p−ε
pn = p

pn = 1
pn−1

⇒ exponential gap from the optimum

.

.

.

Xi : random variables for edge costs



7

Heuristics: Expected minimum distance

- Ω(log |V |) gap from the optimal policy

- optimal on DAGs (see later)



8

General approach: Markov Decision Processes

What are MDPs?
- model for sequential decision making
- widely used in reinforcement learning



8

General approach: Markov Decision Processes

Components:
- set of states (comprises current location and knowledge)
- set of actions
- probabilities of transitioning from one state to another given
an action
- costs/rewards (function of the state)

What are MDPs?
- model for sequential decision making
- widely used in reinforcement learning



8

General approach: Markov Decision Processes

Components:
- set of states (comprises current location and knowledge)
- set of actions
- probabilities of transitioning from one state to another given
an action
- costs/rewards (function of the state)

Why MDPs?
The optimal policy can be found in polynomial time in the size
of the MDP (the number of states and actions)

What are MDPs?
- model for sequential decision making
- widely used in reinforcement learning



9

MDPs: Deterministic example

12 9

1

Graph:

s

v1

v2

t

2



9

MDPs: Deterministic example

12 9

1

Graph:

s

v1

v2

t

2

resulting MDP:

s0



9

MDPs: Deterministic example

12 9

1

Graph:

s

v1

v2

t

2

resulting MDP:

av1 av2

sv1 sv2

s0



9

MDPs: Deterministic example

12 9

1

Graph:

s

v1

v2

t

2

resulting MDP:

-1-12

av1 av2

sv1 sv2

-1

s0



9

MDPs: Deterministic example

12 9

1

Graph:

s

v1

v2

t

2

resulting MDP:

av1,t

-9
-2

av2,t

sv1,t sv1,t

-1-12

av1 av2

sv1 sv2

-1

s0



10

MDPs: Example with uncertainty

12 9/14

1

Graph:

s

v1

v2

t

2/1



10

MDPs: Example with uncertainty

12 9/14

1

Graph:

s

v1

v2

t

2/1

resulting MDP:

s0



10

MDPs: Example with uncertainty

12 9/14

1

Graph:

s

v1

v2

t

2/1

resulting MDP:

s0

av1 av2



10

MDPs: Example with uncertainty

12 9/14

1

Graph:

s

v1

v2

t

2/1

resulting MDP:

s0

av1 av2

-1-12



10

MDPs: Example with uncertainty

12 9/14

1

Graph:

s

v1

v2

t

2/1

resulting MDP:

s0

av1 av2

sv1,1 sv1,2 sv2,1 sv2,2

0.5 0.5 0.5 0.5

-1-12



10

MDPs: Example with uncertainty

12 9/14

1

Graph:

s

v1

v2

t

2/1

resulting MDP:

s0

av1 av2

sv1,1 sv1,2 sv2,1 sv2,2

av1,1,s
av1,1,t

av1,2,s
av1,2,t

av2,1,s
av2,1,t

av2,2,s
av2,2,t

0.5 0.5 0.5 0.5

-1-12

- 12
-9

-12
-14

-1

-2
-1

-1



10

MDPs: Example with uncertainty

12 9/14

1

Graph:

s

v1

v2

t

2/1

resulting MDP:

s0

av1 av2

sv1,1 sv1,2 sv2,1 sv2,2

av1,1,s
av1,1,t

av1,2,s
av1,2,t

av2,1,s
av2,1,t

av2,2,s
av2,2,t

0.5 0.5 0.5 0.5

-1-12

- 12
-9

-12
-14

-1

-2
-1

-1

...
...

...
...

...
...

...
...



10

MDPs: Example with uncertainty

12 9/14

1

Graph:

s

v1

v2

t

2/1

resulting MDP:

s0

av1 av2

sv1,1 sv1,2 sv2,1 sv2,2

av1,1,s
av1,1,t

av1,2,s
av1,2,t

av2,1,s
av2,1,t

av2,2,s
av2,2,t

0.5 0.5 0.5 0.5

-1-12

- 12
-9

-12
-14

-1

-2
-1

-1

...
...

...
...

...
...

...
...

Problem: obvious state space is exponential
in the size of the graph



11

Problem: Canadian Traveller is #P-hard

#P: class of functions that can be computed by a
nondeterministic Turing machine of polynomial time complexity

⇒ optimal policy that minimizes the expected cost of travel
can not be found in polynomial time



11

Problem: Canadian Traveller is #P-hard

#P: class of functions that can be computed by a
nondeterministic Turing machine of polynomial time complexity

⇒ Focus on exact solutions on special classes of
graphs that can be found in polynomial time

⇒ optimal policy that minimizes the expected cost of travel
can not be found in polynomial time



12

Optimal policy for disjoint-path graphs

A1

Ai

Ak

a1

ai

ak

n1

ni

nk

ai : explored distance on the i-th path
ni : number of unexplored edges on the i-th path
Ai : first unexplored node on the i-th path

...

s t

...



12

Optimal policy for disjoint-path graphs

A1

Ai

Ak

a1

ai

ak

n1

ni

nk

...

s t

...

Constraints for edge costs:
- independent and identically distributed
- can only take on two distinct (non-negative) values

ai : explored distance
ni : number of unexplored edges
Ai : first unexplored node



13

Optimal policy for disjoint-path graphs

0
0

0

?

?

?
?

?
?

?

?

?
?

?

?
s t

?=̂0/1

?
?

?

? ?

?
?

?

What would you do (intuitively)?



13

Optimal policy for disjoint-path graphs

0
0

0
0

1

0 1

0
0

0
1

?

?

?
?

?
?

?

?

?
?

?

?
s t

?=̂0/1

What would you do (intuitively)?
⇒ explore all paths up to the first cost-1 edge
And now?



13

Optimal policy for disjoint-path graphs

0
0

0
0

1

0 1

0
0

0
1

?

?

?
?

?
?

?

?

?
?

?

?
s t

?=̂0/1

What would you do?
⇒ explore all paths up to the first cost-1 edge
And now?
⇒ Select the path with fewest unexplored edges



14

Optimal policy for disjoint-path graphs

1
1

1

?

?

?
?

?
?

?

?

?
?

?

?
s t

?=̂1/K

?
?

?

? ?

?
?

?

And in this case?



14

Optimal policy for disjoint-path graphs

1
1

1

?

?

?
?

?

?

?

?
?

?

?
s t

?=̂1/K

?
?

?

? ?

?
?

?And in this case?
⇒ properties of the optimal policy:
- once we have crossed a K -edge, we will never cross it again
- once we have chosen to follow a path we follow it until the
first K -edge



14

Optimal policy for disjoint-path graphs

⇒ still needed:

1
1

1

?

?

?
?

?

?

?

?
?

?

?
s t

?=̂1/K

?
?

?

? ?

?
?

?

policy for how to explore the paths
(what order, how many)

⇒ MDP

And in this case?
⇒ properties of the optimal policy:
- once we have crossed a K -edge,
we will never cross it again
- once we have chosen to follow a path
we follow it until the first K -edge



14

Optimal policy for disjoint-path graphs

1
1

1

?

?

?
?

?
?

?

?

?
?

?

?
s t

?=̂1/K

?
?

?

? ?

?
?

?

Policy for how to explore two paths:

Current knowledge: (a1, x1, n1; a2, x2, n2; i)

ai : number of observed cost-1 edges;
xi = 1 or K : Last observation;

ni : number of unobserved edges remaining;
i = 1, 2: index of the current path

Properties of the optimal policy:
- once we have crossed a K -edge, we will never cross it again
- once we have chosen to follow a path we follow it until the first K -edge



14

Optimal policy for disjoint-path graphs

1
1

1

?

?

?
?

?
?

?

?

?
?

?

?
s t

?=̂1/K

?
?

?

? ?

?
?

?

Policy for how to explore two paths:

Current knowledge: (a1, x1, n1; a2, x2, n2; i)

⇒ only O(|E |4) many states and only two actions (to continue
along the current path or turn back to the other path)

ai : number of observed cost-1 edges;
xi = 1 or K : Last observation;

ni : number of unobserved edges remaining;
i = 1, 2: index of the current path

Properties of the optimal policy:
- once we have crossed a K -edge, we will never cross it again
- once we have chosen to follow a path we follow it until the first K -edge



14

Optimal policy for disjoint-path graphs

1
1

1

?

?

?
?

?

?

?

?
?

?

?
s t

?=̂1/K

?
?

?

? ?

?
?

?

Properties of the optimal policy:
- once we have crossed a K -edge, we will never cross it again
- once we have chosen to follow a path we follow it until the first K -edge

Comparison of two paths:
(a1, x1, n1; a2, x2, n2; i)

Arbitrary many paths:

- use subroutine for two paths (keep only information about
the best explored path so far)
- order of the paths:
- paths which start with a cost-1 edge in order of increasing length
- paths which start with a cost-K -edge: keep only the one with the
fewest edges

⇒ only O(|E |5) many states and only three actions
(to continue along the current path, turn back to the best previously
explored path or continue to the next unexplored path)



15

Optimal policy for DAGs

Problem can be solved in O(|E |) with dynamic programming

Notations:
- w(v): expected cost of following the optimal policy from
node v to t
- Xvv ′ : random cost of edge (v , v ′)

DAG = directed acyclic graph



16

Optimal policy for DAGs

8

2/3

5/6
6/9

2/4

2/5

5
v3

s

v1

v2

t

w(v) = E [minv ′{Xvv ′ + w(v ′)}]



16

Optimal policy for DAGs

w(v1) = 0.5 · 2 + 0.5 · 4 = 3

w(v2) = 0.5 · 5 + 0.5 · 6 = 5.5

w(v) = E [minv ′{Xvv ′ + w(v ′)}]

w(t) = 08

2/3

5/6
6/9

2/4

2/5

5
v3

s

v1

v2

t



16

Optimal policy for DAGs

w(v1) = 3

w(v2) = 5.5

w(v) = E [minv ′{Xvv ′ + w(v ′)}]

w(t) = 08

2/3

5/6
6/9

2/4

2/5

5
v3

s

v1

v2

t



16

Optimal policy for DAGs

w(v1) = 3

w(v2) = 5.5

w(v) = E [minv ′{Xvv ′ + w(v ′)}]

w(t) = 08

2/3

5/6
6/9

2/4

2/5

5
v3

s

v1

v2

t

⇒ w1(v3) = E [minv ′{2 + w(v1), 6 + w(t), 2 + w(v2)} = 5

Case 1: cv3,v1 = 2; cv3,t = 6, cv3,v2 = 2



16

Optimal policy for DAGs

w(v1) = 3

w(v2) = 5.5

w(v) = E [minv ′{Xvv ′ + w(v ′)}]

w(t) = 08

2/3

5/6
6/9

2/4

2/5

5
v3

s

v1

v2

t

⇒ w2(v3) = E [minv ′{2 + w(v1), 6 + w(t), 3 + w(v2)} = 5

Case 2: cv3,v1 = 2; cv3,t = 6, cv3,v2 = 3



16

Optimal policy for DAGs

w(v1) = 3

w(v2) = 5.5

w(v) = E [minv ′{Xvv ′ + w(v ′)}]

w(t) = 08

2/3

5/6
6/9

2/4

2/5

5
v3

s

v1

v2

t

⇒ w5(v3) = E [minv ′{5 + w(v1), 6 + w(t), 2 + w(v2)} = 6

Case 5: cv3,v1 = 5; cv3,t = 6, cv3,v2 = 2



16

Optimal policy for DAGs

w(v1) = 3

w(v2) = 5.5

w(v) = E [minv ′{Xvv ′ + w(v ′)}]

w(t) = 08

2/3

5/6
6/9

2/4

2/5

5
v3

s

v1

v2

t

⇒ w(v3) =
∑8

i=1
1
2

3 · wi (v3)
= 1

8 · (4 · 5 + 2 · 6 + 7, 5 + 8) ≈ 5, 94



16

Optimal policy for DAGs

w(v) = E [minv ′{Xvv ′ + w(v ′)}]

w(v1) = 3

w(v2) = 5.5

8

2/3

5/6
6/9

2/4

2/5

5
v3

s

v1

v2

t
w(t) = 0

w(v3) ≈ 5.94

Comparison:
c(esv1) + w(v1) = 8 + 3 = 11

c(esv3) + w(v3) = 5 + 5.94 = 10.94
⇒ edge to v3 should be selected



17

Recap

Canadian Traveller Problem (according to this paper):
- distributions for the cost values of the edges are given

- upon arriving at a node: actual cost values of incident edges

Problem: cannot be solved in polynomial time
- minimum expected distance heuristic has exponential gap
from the optimal policy

- Modelling with MDPs possible, but the obvious state
space is exponential in the size of the graph

- Disjoint-path graphs (with random two-valued edge costs):
small MDPs

For special classes of graphs an exact solution can be found
efficiently:

(- DAGs: dynamic programming)



18

Sources

Evdokia Nikolova und David R. Karger: Route planning under
uncertainty: the Canadian traveller problem. In: Proceedings of
the 23rd National Conference on Artificial Intelligence -
Volume 2, AAAI’08, Seite 969–974. AAAI Press, 2008, ISBN
9781577353683.

This Presentation is based on:



19

Further sources:

- Christos H. Papadimitriou und Mihalis Yannakakis: Shortest paths wi-
thout a map. Theoretical Computer Science, 84(1):127–150, 1991,
https://doi.org/10.1016/0304-3975(91)90263-2, ISSN 0304-3975.
https://www.sciencedirect.com/science/article/pii/ 0304397591902632.

- L.G. Valiant: The complexity of computing the permanent. Theoretical
Computer Science, 8(2):189–201, 1979,
https://doi.org/10.1016/0304-3975(79)90044-6, ISSN 0304-3975.
https://www.sciencedirect.com/science/article/pii/ 0304397579900446.

- David Karger und Evdokia Nikolova: Exact algorithms for the Canadian
traveller problem on paths and trees. 2008.

- Andrew G. Barto und Richard S. Sutton: Reinforcement Learning. MIT
Press, Cambride, MA, 2. Auflage, 2018.


	Titelseite

